1
|
Gong G, Huang H, Tong Z, Zheng Y, Bian D, Zhang Y. Implant derived high local concentration of magnesium inhibits tumorigenicity of osteosarcoma. Biomaterials 2025; 320:123263. [PMID: 40132359 DOI: 10.1016/j.biomaterials.2025.123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/25/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Osteosarcoma (OS) is a fatal malignant tumor that occurs in bone, whose main treatment is surgical resection. With anti-tumor and osteogenic effects, Magnesium (Mg) is a promising biodegradable metal for postoperative treatment in OS, however, its anti-OS effect and mechanism still need to be explored. Here, while holding the ability to promote osteogenesis, Mg metal at the same time significantly reduces the proliferation, migration and invasion of various OS cells (UMR106, 143B, K7M2) in vitro. Similarly, it inhibits the growth and lung metastasis of UMR106 induced tumors in xenograft models in vivo. The mRNA-seq analysis shows that Mg significantly inhibits Wnt-pathway (increased APC, Axin2 and GSK3β to induce degradation of β-catenin) in typical OS, which is further verified by western blotting and immunofluorescence analyses. A Mg2+ concentration of 240 mg/L, either from Mg metal extract or Mg salt (MgCl2), equivalently exhibits significantly increased APC, Axin2, GSK3β and decreased β-catenin, and then inhibits tumorigenicity of typical OS cells. This work reveals that a local high concentration of Mg can inhibit OS by down-regulating Wnt-pathway, and meanwhile favors for normal health bone, which demonstrates a new approach and mechanism in the treatment of OS with Mg-based biodegradable metals.
Collapse
Affiliation(s)
- Gencheng Gong
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Orthopedics, Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhipei Tong
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yufeng Zheng
- Department of Orthopedics, Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Dong Bian
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yu Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Orthopedics, Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
2
|
Ravichandran N, Uvarajan D, Ravikumar M, Mahendhran K, Krishnamoorthy K, Vellingiri B, Govindasamy C, Narayanasamy A. Gracilaria edulis-mediated silver nanoparticles as a targeted strategy for cervical cancer with integrated toxicity evaluation in zebrafish. Bioorg Chem 2025; 159:108361. [PMID: 40088685 DOI: 10.1016/j.bioorg.2025.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Cervical cancer remains a critical global health concern, demanding the development of innovative therapies to address the limitations of conventional chemotherapeutics, including systemic toxicity and lack of specificity. Silver nanoparticles synthesized using Gracilaria edulis (GE-AgNPs) present a novel therapeutic strategy, exhibiting selective cytotoxicity against the HEK293 normal epithelial cell line and HeLa cervical cancer cell line. Phytochemical analysis of Gracilaria edulis identified bioactive compounds such as 4-Benzaldehyde and 1H-1,3-Benzimidazole-1-acetonitrile, both associated with potent anticancer activities. Comprehensive characterization of GE-AgNPs through spectroscopy and microscopy revealed distinctive physicochemical properties, including an absorption peak at 332 nm and a hexagonal crystalline structure. Cytotoxicity assays confirmed that GE-AgNPs induce apoptosis in HeLa cells exhibit a concentration-dependent response, with an IC50 value of 54.05 μg/mL, while GE-AgNPs exhibited no significant toxicity to HEK293 cells at the tested concentrations, as evidenced by a higher IC50 value of 83.6 μg/mL. The pro-apoptotic effect was mediated through the development of reactive oxygen species (ROS), validated using dual staining and Hoechst assays, which demonstrated chromatin condensation indicative of apoptosis. Molecular analysis further elucidated the mechanism of action, highlighting significant inhibition of the PI3K/AKT signaling pathway. This was evidenced by downregulation of PI3K, AKT, and mTOR genes alongside the upregulation of PTEN, a critical tumor suppressor. Zebrafish embryo toxicity assays provided insights into the biocompatibility of GE-AgNPs, revealing low toxicity at therapeutic concentrations but developmental abnormalities and neurotoxicity at higher doses. These findings underscore the promise of GE-AgNPs as a targeted therapy option for cervical cancer, effectively modulating the PI3K/AKT pathway while maintaining manageable toxicity profiles. Further investigations into optimizing dosing regimens and exploring synergistic effects with existing treatments could enhance their clinical applicability.
Collapse
Affiliation(s)
- Nandita Ravichandran
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Deenathayalan Uvarajan
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Manish Ravikumar
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Karthikeyan Mahendhran
- Department of Microbiology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Kavithaa Krishnamoorthy
- Department of Biotechnology, Hindusthan College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Neurobiology (Ageing and Pediatric) Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Gerges MN, Donia T, Mohamed TM. Indole-3-Carbinol Mechanisms Combating Chemicals and Drug Toxicities. J Biochem Mol Toxicol 2025; 39:e70280. [PMID: 40269607 DOI: 10.1002/jbt.70280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/20/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The toxicity of chemicals and drugs is a common crisis worldwide. Therefore, the search for protective compounds is growing. Natural compounds such as indole-3-carbinol (I3C) derived from cruciferous vegetables are preferred since they are safe for humans and the environment. This review focuses on I3C potential role in preventing and repairing damage caused by chemicals and drugs. Interestingly, I3C ameliorates hepatotoxicity induced by carbon tetrachloride (CCl4), diethylnitrosamine (DENA), alcohol, gold nanoparticles, and microbial toxins. Additionally, it inhibits carcinogenesis induced by different chemicals and prevents the deleterious effects of different antineoplastic drugs including cisplatin, doxorubicin (DOX), and trabectidin on normal tissues. Moreover, it reduces fetal malformation and protects against micronuclei formation and calstogenecity induced by cyclophosphamide (CP) in bone marrow cells. It also attenuates methotrexate (MTX)-induced hepatotoxicity, mitigates neurotoxicity caused by thioacetamide and clonidine, and protects against aspirin side effects in gastric mucosa. Furthermore, its nanoparticles inhibit neuronal damage caused by glutamate and rotenone. Thus, I3C prevents the toxicities caused by chemicals in the surrounding environment as well as those of consumed drugs.
Collapse
Affiliation(s)
- Marian N Gerges
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Saini S, Kumar Y. Structural and functional analysis of engineered antibodies for cancer immunotherapy: insights into protein compactness and solvent accessibility. J Biomol Struct Dyn 2025; 43:3859-3872. [PMID: 38173178 DOI: 10.1080/07391102.2023.2300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Antibodies are crucial tools in various biomedical applications, including immunotherapy. In this study, we focused on designing and engineering antibodies to enhance their structural dynamics and functional properties. By employing advanced computational techniques and experimental validation, we gained crucial insights into the impact of specific mutations on the engineered antibodies. This study investigates the design and engineering of antibodies to improve their structural dynamics and functional properties. Structural attributes, such as protein compactness and solvent accessibility, were assessed, revealing interesting trends in anti-CD3 and anti-HER2 antibodies. Mutations in CD3 antibodies resulted in a more stable conformation, while mutant HER2 antibodies exhibited altered interaction with the target. Analysis of secondary structure assignments demonstrated significant changes in the folding and stability of the mutant antibodies compared to the wild-type counterparts. The conformational landscape of the engineered antibodies was explored, providing insights into folding pathways and binding mechanisms. Overall, the current study highlights the significance of antibody design and engineering in modulating structural dynamics and functional properties. The findings contribute to developing improved immunotherapeutic strategies by optimising antibody-based therapeutics for targeted diseases with enhanced efficacy and precision.
Collapse
Affiliation(s)
- Samvedna Saini
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), New Delhi, India
| | - Yatender Kumar
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), New Delhi, India
| |
Collapse
|
5
|
Uti DE, Atangwho IJ, Alum EU, Ntaobeten E, Obeten UN, Bawa I, Agada SA, Ukam CIO, Egbung GE. Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. DISCOVER NANO 2025; 20:70. [PMID: 40272665 DOI: 10.1186/s11671-025-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Emmanuella Ntaobeten
- Department of Cancer and Haematology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Uket Nta Obeten
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Inalegwu Bawa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | - Samuel A Agada
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | | | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
6
|
He L, Zhao T, Leong WZ, Sharda A, Mayerhofer C, Mei S, Bonilla GM, Menendez-Gonzalez JB, Gustafsson K, Fukushima T, Kristiansen TA, Lee JW, Xu Y, Chen L, Xia J, Orozco LA, Budnik B, Sadreyev R, Dou Z, Sykes DB, Scadden DT. PSTK inhibition activates cGAS-STING, precipitating ferroptotic cell death in leukemic stem cells. Blood 2025; 145:1903-1914. [PMID: 39912669 DOI: 10.1182/blood.2024026040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT Differentiation arrest and dependence on oxidative metabolism are features shared among genetically diverse acute myeloid leukemias (AMLs). A phenotypic CRISPR-CRISPR-associated protein 9 screen in AML identified dependence on phosphoseryl-transfer RNA kinase (PSTK), an atypical kinase required for the biosynthesis of all selenoproteins. In vivo, PSTK inhibition (PSTKi) impaired AML cell growth and leukemic stem cell self-renewal. Notably, timed pharmacologic PSTKi effectively targeted chemotherapy-resistant AML in murine and patient-derived xenograft models, showing selectivity for malignant cells over normal hematopoietic cells. Mechanistically, PSTKi-induced reactive oxygen species (ROS) triggering mitochondrial DNA release into the cytosol and activated cyclic GMP-AMP Synthase-Stimulator of interferon genes (cGAS-STING). This activation, in turn, disrupted iron metabolism, augmenting ROS generation, and amplifying ferroptosis. Together, these findings reveal a self-reinforcing PSTK-cGAS-STING-ROS loop, culminating in an oxidative crisis and ferroptotic cell death of leukemic stem cells. These data highlight the potential for augmenting standard cancer chemotherapies using timed metabolic intervention to eliminate chemotherapy-persisting cells and thereby impede disease relapse.
Collapse
Affiliation(s)
- Lingli He
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Ting Zhao
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Wei Zhong Leong
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Azeem Sharda
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Christina Mayerhofer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Gracia M Bonilla
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Juan Bautista Menendez-Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Karin Gustafsson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Tsuyoshi Fukushima
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Trine A Kristiansen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Ji-Won Lee
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yanxin Xu
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lei Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Jun Xia
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Luis Angel Orozco
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Research Laboratory, Faculty of Art and Science, Harvard University, Cambridge, MA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zhixun Dou
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David B Sykes
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
7
|
Zhu S, Li J, Sun H, Liang J, Qiu Z, Zhou X, Wang W, Wei D, Zhong L. A biotin guided Pt IV amphiphilic prodrug synergized with CDK4/6 inhibition for enhanced tumor targeted therapy. NANOSCALE 2025; 17:9907-9913. [PMID: 40136056 DOI: 10.1039/d5nr00218d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Platinum-based chemotherapy has been the first-line treatment for advanced bladder cancer for decades, but its durability and safety remain important challenges. Targeted delivery and other precision medicine bring hope to fight cancer. In this study, we present a novel targeted therapy utilizing a biotin receptor-targeting lipid PtIV prodrug amphiphile, which encapsulates a CDK4/6 inhibitor into BPtIV@Rib. CDK4/6 inhibitors have the potential to combat breast cancer and enhance sensitivity to cisplatin, thereby improving its therapeutic efficacy. Our findings demonstrate that BPtIV@Rib also exhibits excellent bladder tumor-targeting capability, resulting in increased accumulation of Pt and ribociclib (Rib) at the tumor site. The combination of PtIV and Rib leads to substantial tumor growth suppression while minimizing synergistic toxicity compared to conventional therapies. In conclusion, this combination therapy represents a promising strategy for enhanced targeted treatment of bladder cancer, potentially improving patient outcomes while reducing adverse effects.
Collapse
Affiliation(s)
- Shaoming Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jiaxu Li
- College of Chemistry and Materials, Graduate School, Nanning Normal University, Nanning 530001, People's Republic of China
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Hao Sun
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China.
| | - Jian Liang
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China.
| | - Zhi Qiu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiaoguang Zhou
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Lei Zhong
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China.
| |
Collapse
|
8
|
Liu Y, Wu Z, Gu C, Fang J, Peng Y, Peng L, Chen W, Yao L, He L. ShenJiaoLingCao decoction ameliorates cyclophosphamide-induced splenic injury and immunosuppression via the inhibition of MEK/ERK signaling pathway activity and modulation of amino acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119830. [PMID: 40250640 DOI: 10.1016/j.jep.2025.119830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ShenJiaoLingCao Decoction (SJLCD) is derived from the classic Chinese medicine prescription, which consists of ten kinds of herbs. In China, SJLCD has been used as an immunomodulator in clinical practice for more than ten years. However, no relevant studies have been done to clarify the pharmacodynamic underpinnings of its regulation of the body's immune system and its related processes. AIM OF THE STUDY This study aims to assess the immunomodulatory effects of SJLCD. MATERIALS AND METHODS Ultra performance liquid chromatography-quadrupole-orbitrap mass spectrometry (UPLC-Q-Orbitrap MS) was utilized to characterize the chemical constituents in SJLCD and establish its fingerprint profile. Predicting potential bioactive compounds in SJLCD for immunomodulatory effects and elucidating their mechanisms of action using artificial intelligence technology. Experiments at the animal level were carried out to verify the accuracy of the predictions. Firstly, an immunocompromised model was constructed by intraperitoneal injection of 80 mg/kg of cyclophosphamide (CTX) into rats for 3 consecutive days, and SJLCD was administered by oral administration for 14 days. The immunomodulatory effect of SJLCD on immune organs was verified by evaluating the immune organ index and histopathological examinations using hematoxylin and eosin (H&E) staining. The effect of SJLCD on relevant immune cells was examined by measuring erythrocytes, leukocytes and lymphocytes. The effect of SJLCD on relevant immune molecules was assessed by detecting the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), matrix metalloproteinase-9 (MMP9), cluster of differentiation 3 (CD3), cluster of differentiation 4 (CD4) and cluster of differentiation 8 (CD8). Western blot was used to verify and analyze the possible immunomodulatory mechanisms of SJLCD. Finally, serum untargeted metabolomics was used to detect the differential metabolites of SJLCD in immunocompromised rats. RESULTS In this study, a total of 91 compounds were identified in the SJLCD, and the results showed a high degree of similarity (S1-S11 > 0.935) among the 11 samples in positive ion mode. Artificial intelligence computer techniques predicted that quercetin, kaempferol, and fumarine in SJLCD bound better to core targets, especially MAPK1. On animal-level validation, it was found that from an immune organ perspective, SJLCD ameliorated CTX-induced thymus and spleen damage. From an immune cell perspective, SJLCD significantly increased peripheral erythrocyte, leukocyte and lymphocyte counts in immunocompromised rats. From the immune molecular level, SJLCD down-regulated the levels of TNF-α, IL-6, IL-1β, MMP9, CD8 and up-regulated the level of CD3 and CD4 which normalize its secretion. Mechanistically, SJLCD regulates immunity possibly through the MEK/ERK signaling pathway and by affecting amino acid metabolism. CONCLUSION In the present study, we found that SJLCD has satisfactory immunomodulatory activity, which may be achieved by affecting the MEK/ERK signaling pathway and amino acid metabolism of the body.
Collapse
Affiliation(s)
- Yuzhen Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
| | - ZhuXia Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
| | - Chen Gu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
| | - Jing Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
| | - Yusi Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
| | - Lei Peng
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; He Rongjia Pharmaceutical Technology Co., Nantong, 226000, Jiangsu, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
| | - Ling He
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, 230012, China.
| |
Collapse
|
9
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
10
|
Zhang X, Lin B, Wang X, Fanɡ N, Wu L, Wan H, Zhou H. Research Progress on the Treatment of Related Diseases With Astragalus. Drug Des Devel Ther 2025; 19:2845-2862. [PMID: 40248273 PMCID: PMC12003202 DOI: 10.2147/dddt.s494915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/11/2025] [Indexed: 04/19/2025] Open
Abstract
Astragalus mongholicus Bunge [Fabaceae; Astragali radix] is an herb widely used in traditional Chinese medicine. It has diuretic, anti-aging, antihypertensive, immune-boosting, liver-protective, anti-stress and other extensive pharmacological effects. In recent years, Astragalus and its extract have been used to treat lung and stomach qi deficiency as well as general qi deficiency. This paper summarizes the mode of action and mechanisms of Astragalus in treating various diseases, and provides valuable insights for the future application, development, and improvement of Astragalus. In this paper, literature on the use of Astragalus in treating related diseases over the past five years was collected from PubMed and CNKI databases, and the pathogenic mechanisms of Astragalus and its extracts were reviewed. Its mechanism of action is primarily involved in antioxidant protection, anti-inflammatory effects, and anti-apoptotic properties. This provides a new research direction for future studies and clinical treatments using Astragalus.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Bingying Lin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiaoqian Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Ninɡji Fanɡ
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lifei Wu
- Department of Physical Education, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, People’s Republic of China
| | - Huifen Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
11
|
Li L, Xie S, Zhou J, Ran J. Utilizing aptamers in targeted protein degradation strategies for disease therapy. J Pathol 2025. [PMID: 40207978 DOI: 10.1002/path.6422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 02/26/2025] [Indexed: 04/11/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy, offering the potential to reduce disease-causing proteins that have traditionally been challenging to target using conventional small molecules. Despite significant advances made with TPD technologies, challenges such as high molecular weight, difficulties in identifying suitable ligands, suboptimal absorption, and metabolic instability remain unresolved. Recently, aptamers - single-stranded DNA or RNA oligonucleotides known for their high specificity and affinity for protein targets - have introduced novel opportunities to expand the scope of TPD, a strategy now referred to as aptamer-based TPD. This approach has demonstrated considerable promise in treating various diseases, such as cancer and ocular disorders. For example, an aptamer-proteolysis-targeting chimera (PROTAC) conjugate (APC) improved tumor targeting and reduced toxicity in a breast cancer model, and a vascular endothelial growth factor-degrading (VED)-lysosome-targeting chimera (LYTAC) molecule effectively inhibited abnormal vascular growth in vascular retinal diseases. These examples highlight the practical relevance and potential in advancing drug discovery efforts. In this review we provide a comprehensive overview of the latest advances in aptamer-based TPD strategies, including proteolysis-targeting and lysosome-targeting chimeras, emphasizing their applications, potential therapeutic benefits, as well as the challenges that must be overcome to fully harness their clinical potential. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, PR China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
| |
Collapse
|
12
|
He YT, Geng XY, Chang MY, Li FF, Du XL, Chen BZ, Guo XD. Harnessing innovation in microneedle technology for Women's healthcare. J Control Release 2025; 382:113706. [PMID: 40220870 DOI: 10.1016/j.jconrel.2025.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/17/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Women's health management plays a crucial role in modern healthcare, encompassing the prevention, detection, and treatment of female diseases. However, existing technologies often face challenges, such as the invasiveness and discomfort associated with serological testing and injection-based therapies. Microneedles, as an emerging technology in biomedical engineering, demonstrate significant advantages. These micron-sized transdermal devices are applicable in a range of applications, from drug delivery to interstitial fluid sampling, and their painless, minimally invasive nature significantly enhances medication compliance. In recent years, microneedles have been widely utilized in women's health management, showing promising results in early disease prevention and subsequent treatment. Although there are reviews about microneedles applied in disease treatment management, few of them focus on the application of microneedles in the prevention and early detection of women's disease. Herein, we present a comprehensive overview of the current application status of microneedles in women's health management, with a special emphasis on their design and mechanism for disease prevention, and treatment in women. Finally, we discuss the advantages and limitations of microneedles in women's health management, and propose suggestions for future research direction.
Collapse
Affiliation(s)
- Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Yao Geng
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Yu Chang
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fei Fei Li
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Ling Du
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
13
|
Zaccariotto GDC, Bistaffa MJ, Zapata AMM, Rodero C, Coelho F, Quitiba JVB, Lima L, Sterman R, Cardoso VMDO, Zucolotto V. Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation. ACS NANO 2025. [PMID: 40202241 DOI: 10.1021/acsnano.4c15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cancer immunotherapy has transformed the landscape of oncological treatment by employing various strategies to teach the immune system to eliminate tumors. Among these, cancer nanovaccines are an emerging strategy that utilizes nanotechnology to enhance immune activation in response to tumor antigens. This review addresses the principles behind the different technologies in this field aimed at generating a robust and effective immune response. The diversity of strategies adopted for the design of nanovaccines is discussed, including the types of active agents, nanocarriers, their functionalizations, and the incorporation of adjuvants. Furthermore, strategies to optimize nanoparticle formulations to enhance the antigen presentation, target immune cells, and organs and promote strong and durable antitumor responses are explored. Finally, we analyze the current state of clinical application, highlighting ongoing clinical trials and the future potential of cancer nanovaccines. The insights presented in this review aim to guide future research and development efforts in the field, contributing to the advancement of more effective and targeted nanovaccines in the fight against cancer.
Collapse
Affiliation(s)
- Gabriel de Camargo Zaccariotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Maria Julia Bistaffa
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Angelica Maria Mazuera Zapata
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Camila Rodero
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Fernanda Coelho
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - João Victor Brandão Quitiba
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Lorena Lima
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Raquel Sterman
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | | | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| |
Collapse
|
14
|
Novák J, Takács T, Tilajka Á, László L, Oravecz O, Farkas E, Than NG, Buday L, Balogh A, Vas V. The sweet and the bitter sides of galectin-1 in immunity: its role in immune cell functions, apoptosis, and immunotherapies for cancer with a focus on T cells. Semin Immunopathol 2025; 47:24. [PMID: 40178639 PMCID: PMC11968517 DOI: 10.1007/s00281-025-01047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/07/2025] [Indexed: 04/05/2025]
Abstract
Galectin-1 (Gal-1), a member of the β-galactoside-binding soluble lectin family, is a double-edged sword in immunity. On one hand, it plays a crucial role in regulating diverse immune cell functions, including the apoptosis of activated T cells. These processes are key in resolving inflammation and preventing autoimmune diseases. On the other hand, Gal-1 has significant implications in cancer, where tumor cells and the tumor microenvironment (TME) (e.g., tumor-associated fibroblasts, myeloid-derived suppressor cells) secrete Gal-1 to evade immune surveillance and promote cancer cell growth. Within the TME, Gal-1 enhances the differentiation of tolerogenic dendritic cells, induces the apoptosis of effector T cells, and enhances the proliferation of regulatory T cells, collectively facilitating tumor immune escape. Therefore, targeting Gal-1 holds the potential to boost anti-tumor immunity and improve the efficacy of cancer immunotherapy. This review provides insights into the intricate role of Gal-1 in immune cell regulation, with an emphasis on T cells, and elucidates how tumors exploit Gal-1 for immune evasion and growth. Furthermore, we discuss the potential of Gal-1 as a therapeutic target to augment current immunotherapies across various cancer types.
Collapse
Affiliation(s)
- Julianna Novák
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Tamás Takács
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Álmos Tilajka
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Loretta László
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Orsolya Oravecz
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Emese Farkas
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Károly Rácz Conservative Medicine Division, Doctoral College, Semmelweis University, Budapest, 1091, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, 1088, Hungary
| | - László Buday
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| | - Virág Vas
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
15
|
Salgado-Vasco A, Torres-Morales J, Durán-Rojas CI, Beltrán-Sánchez LY, Amarillo M, Ettenberger M. The impact of group music therapy on anxiety, stress, and wellbeing levels, and chemotherapy-induced side effects for oncology patients and their caregivers during chemotherapy: a retrospective cohort study. BMC Complement Med Ther 2025; 25:124. [PMID: 40176020 PMCID: PMC11966791 DOI: 10.1186/s12906-025-04837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/25/2025] [Indexed: 04/04/2025] Open
Abstract
INTRODUCTION Cancer is currently the second most common cause of death worldwide and is often treated with chemotherapy. Music therapy is a widely used adjunct therapy offered in oncology settings to attenuate negative impacts of treatment on patient's physical and mental health; however, music therapy research during chemotherapy is relatively scarce. The aim of this study is to evaluate the impact of group music therapy sessions with patients and caregivers on their perceived anxiety, stress, and wellbeing levels and the perception of chemotherapy-induced side effects for patients. MATERIALS AND METHODS This is a retrospective cohort study following the STROBE guidelines. From April to October 2022, 41 group music therapy sessions including 141 patients and 51 caregivers were conducted. Participants filled out pre- and post-intervention Visual Analogue Scales (VAS) assessing their anxiety, stress, and wellbeing levels, and for patients the intensity of chemotherapy-induced side effects. RESULTS The results show a statistically significant decrease of anxiety and stress levels (p < .001), an increase in well-being of patients and caregivers (p < .001, p = .009), and a decrease in patients' perceived intensity of chemotherapy-induced side effects (p = .003). Calculated effect sizes were moderate for anxiety, stress, and well-being levels, and small for chemotherapy-induced side effects. DISCUSSION This is the first study regarding group music therapy sessions for cancer patients and their caregivers during chemotherapy in Colombia. Music therapy has been found to be a valuable strategy to reduce psychological distress in this population and to provide opportunities for fostering self-care and social interaction. CONCLUSIONS Music therapy should be considered as a valuable complementary therapy during chemotherapy. However, it is crucial to conduct prospective studies with parallel group designs to confirm these preliminary findings.
Collapse
Affiliation(s)
- Andrés Salgado-Vasco
- Music Therapy Service, Department of Social Management, University Hospital Fundación Santa Fe de Bogotá, Cra. 7 # 117-15, 110121, Bogotá, Colombia
- SONO - Centro de Musicoterapia, Bogotá, Colombia
| | - Juliana Torres-Morales
- Music Therapy Service, Department of Social Management, University Hospital Fundación Santa Fe de Bogotá, Cra. 7 # 117-15, 110121, Bogotá, Colombia
- SONO - Centro de Musicoterapia, Bogotá, Colombia
- Department of Music Therapy, Berklee College of Music, Boston, USA
| | - Clara Inés Durán-Rojas
- Cancer Institute Fundación Santa Fe de Bogotá, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | | | - Mark Ettenberger
- Music Therapy Service, Department of Social Management, University Hospital Fundación Santa Fe de Bogotá, Cra. 7 # 117-15, 110121, Bogotá, Colombia.
- SONO - Centro de Musicoterapia, Bogotá, Colombia.
| |
Collapse
|
16
|
Rezazadeh‐Gavgani E, Majidazar R, Lotfinejad P, Kazemi T, Shamekh A. Immune Checkpoint Molecules: A Review on Pathways and Immunotherapy Implications. Immun Inflamm Dis 2025; 13:e70196. [PMID: 40243372 PMCID: PMC12004596 DOI: 10.1002/iid3.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Today, treating cancer patients with monoclonal antibodies (mAbs), by targeting immune checkpoints, is one of the most outstanding immunotherapeutic methods. Immune checkpoints are special molecules having regulatory role in immune system responses. Once these molecules are presented on cancer cells, these cells will be capable of evading the immune system through their own specific pathways. This Evasion can be prevented by counterbalancing immune system responses with immune checkpoints related antibodies. AIMS The current study aimed to highlight immunotherapy and its methods, describe the immune checkpoints pathways, outline the immune checkpoint inhibitors (ICIs), and recent advances in this field, and sketch an outlook on the best treatment options for the most prevalent cancers. MATERIALS & METHODS This research implemented a narrative review method. A comprehensive literature review on the history, molecular and cellular biology, and the clinical aspects of immune checkpoint molecules was performed to illustrate the pathways involved in various cancers. Also, currently-available and future potential immunotherapies targeting these pathways were extracted from the searched studies. RESULTS The immune checkpoint family consists of many molecules, including CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, and TIGIT. Attempts to modify these molecules in cancer treatment led to the development of therapeutic monoclonal antibodies. Most of these antibodies have entered clinical studies and some of them have been approved by the Food and Drug Administration (FDA) to be used in cancer patients' treatment plans. DISCUSSION With these novel treatments and the combination therapies they offer, there is also hope for better treatment outcomes for the previously untreatable metastatic cancers. In spite of the beneficial aspects of immune checkpoint therapy, similar to other treatments, they may cause side effects in some patients. Therefore, more studies are needed to reduce the probable side effects and uncover their underlying mechanism. CONCLUSION Based on the data shown in this review, there is still a lack of knowledge about the complete properties of ICIs and the possible combination therapies that we may be able to implement to achieve a better treatment response in cancer patients.
Collapse
Affiliation(s)
| | - Reza Majidazar
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Parisa Lotfinejad
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Tohid Kazemi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Ali Shamekh
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
17
|
Mohammadi Barzelighi H, Bakhshi B, Daraei B, Mirzaei A. Investigating the effect of rAzurin loaded mesoporous silica nanoparticles enwrapped with chitosan-folic acid on breast tumor regression in BALB/ C mice. Int J Biol Macromol 2025; 300:139245. [PMID: 39732269 DOI: 10.1016/j.ijbiomac.2024.139245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study aimed to examine how mesoporous silica nanoparticles-chitosan-folic acid impacted the release of recombinant Azurin within the tumor environment. The goal was to trigger apoptosis and stimulate immune responses against both transformed and normal cells in BALB/c mice. The study found that the use of rAzu-MSNs-CS-FA, a specific formulation containing mesoporous silica nanoparticles-chitosan-folic acid, resulted in pH-responsive behavior and slower release of rAzurin compared to other groups. This formulation inhibited MCF7 cells at higher concentrations, induced apoptosis in cells, and caused DNA degradation. It also increased the uptake efficiency of rAzurin and stimulated the secretion of TNF-α, INF-γ, and IL-4 while inhibiting the secretion of IL-6. Furthermore, it regulated the expression of specific genes (upregulating tlr3 and downregulating tlr2, 4, and 9). In animal studies with BALB/c mice, the rAzu-MSNs-CS-FA formulation led to tumor regression and decreased tumor volume over 21 days. Overall, this formulation showed promising results in inducing cytotoxic effects against cancer cells, promoting apoptosis, and eliciting appropriate immune responses, suggesting its potential as a valuable therapy for breast cancer.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezoo Mirzaei
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Hu Z, Xiao X, Zhang G, Li Y. Revolutionizing fixed-dose combinations with long-acting microsphere. Eur J Pharm Sci 2025; 207:107032. [PMID: 39914724 DOI: 10.1016/j.ejps.2025.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Combination therapy, involving the concurrent use of multiple medications, has become crucial for managing complex diseases with diverse pathological mechanisms. Fixed-Dose Combinations (FDCs) are formulated to leverage the synergistic effects of multiple drugs, thereby enhancing therapeutic outcomes. However, conventional FDCs typically maintain therapeutic effects for only up to 24 h and require frequent dosing, which often results in patient non-compliance and inconsistent treatment responses, especially in chronic diseases. This highlights the urgent need for long-acting FDCs that can provide sustained drug release over extended periods-weeks, months, or even years-thereby reducing dosing frequency and enhancing patient adherence. Microspheres, with their ability to encapsulate and release multiple medications in predefined patterns, are highly advantageous for developing long-acting FDC drugs. This review emphasizes the increasing demand for long-acting FDC drugs that ensure sustained drug release, reduce dosing frequency, and ultimately improve patient adherence. We also highlight the potential of microsphere technology, which enables precise encapsulation and sustained release of multiple medications, as a promising approach for revolutionizing long-acting FDCs with enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiao Xiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Guiyun Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
20
|
Tai YC, Wang W, Wells MT. Estimand-based inference in the presence of long-term survivors. Stat Methods Med Res 2025:9622802251327686. [PMID: 40165447 DOI: 10.1177/09622802251327686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In this article, we develop nonparametric inference methods for comparing survival data across two samples, beneficial for clinical trials of novel cancer therapies where long-term survival is critical. These therapies, including immunotherapies and other advanced treatments, aim to establish durable effects. They often exhibit distinct survival patterns such as crossing or delayed separation and potentially leveling-off at the tails of survival curves, violating the proportional hazards assumption and rendering the hazard ratio inappropriate for measuring treatment effects. Our methodology uses the mixture cure framework to separately analyze cure rates of long-term survivors and the survival functions of susceptible individuals. We evaluated a nonparametric estimator for the susceptible survival function in a one-sample setting. Under sufficient follow-up, it is expressed as a location-scale-shift variant of the Kaplan-Meier estimator. It retains desirable features of the Kaplan-Meier estimator, including inverse-probability-censoring weighting, product-limit estimation, self-consistency, and nonparametric efficiency. Under insufficient follow-up, it can be adapted by incorporating a suitable cure rate estimator. In the two-sample setting, in addition to using the difference in cure rates to measure long-term effects, we propose a graphical estimand to compare relative treatment effects on susceptible subgroups. This process, inspired by Kendall's tau, compares the order of survival times among susceptible individuals. Large-sample properties of the proposed methods are derived for inference and their finite-sample properties are evaluated through simulations. The methodology is applied to analyze digitized data from the CheckMate 067 trial.
Collapse
Affiliation(s)
- Yi-Cheng Tai
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan, ROC
| | - Weijing Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan, ROC
| | - Martin T Wells
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Mannan A, Mohan M, Singh TG. Revenge unraveling the fortress: Exploring anticancer drug resistance mechanisms in BC for enhanced therapeutic strategies. Crit Rev Oncol Hematol 2025; 210:104707. [PMID: 40122355 DOI: 10.1016/j.critrevonc.2025.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Breast cancer (BC) is the most prevalent form of cancer in women worldwide and the main cause of cancer-related fatalities in females. BC can be classified into various types based on where cancer has begun to grow or spread, specific characteristics that influence how cancer behaves, and treatment choices. BC is multifaceted, and due to its diverse nature, the mechanisms involved are complex and have not yet been understood. Overexpression and expression of various factors involved in the functioning of mechanisms lead to abnormal changes, providing an environment supporting cancer cell growth. Understanding BC risk factors and early diagnosis through screening techniques like mammography and diagnostic techniques such as imaging and biopsies has advanced significantly. A wide range of treatment options, including surgery, radiation, chemotherapy, targeted treatments, and hormonal therapies, are now available. Daily advancements are being made in the clinical treatment of BC. Still, BC drug resistance cases remain highly prevalent and are currently one of the biggest problems faced by medical science. To increase response rates and possibly lengthen survival, there is a critical requirement for novel medicines with minimal sensitivity to overcome drug resistance. This review classifies different mechanisms that are involved in the development of BC and workable pharmacological targets and explains how they relate to the development of BC drug resistance. By concentrating on the mechanisms covered in this review, we can have a deep understanding of different mechanisms and learn innovative ways to develop novel therapeutics for the disease to combat medication resistance.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
22
|
Sun N, Yan H, Liu X, Xu X, Zhao W, Zhang J, Wang M, Liu Y, Miao L. Polydatin Alleviates Cyclophosphamide-Induced Mouse Immunosuppression by Promoting Splenic Lymphocyte Proliferation and Thymic T Cell Development and Differentiation. Int J Mol Sci 2025; 26:2800. [PMID: 40141442 PMCID: PMC11943104 DOI: 10.3390/ijms26062800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Immunosuppression increases disease risk, and the natural compound polydatin (PD) has been reported to modulate immune-related disorders. In cyclophosphamide-induced immunosuppressed mice, PD was evaluated for its immunomodulatory effects. Immune organ indices were measured, while H&E staining and ELISA assessed spleen pathology and serum cytokine levels. The proliferation of splenic lymphocytes, both total and subpopulation, was determined using concanavalin A or lipopolysaccharide stimulation, with flow cytometry analyzing peripheral blood and splenic lymphocytes, thymic T cell subtypes, cell cycling, and bromodeoxyuridine incorporation. Western blotting was used to assess Ki67, PCNA expression, and MAPK activation. PD significantly alleviated cyclophosphamide-induced reductions in spleen and thymus indices, improved the organization of red and white pulp in the spleen, and restored TNF-α and IFN-γ levels. It reversed cyclophosphamide-induced cell cycle arrest, characterized by increased PCNA and decreased Ki67, and corrected the diminished numbers of B and T cells and the reduced CD4+/CD8+ ratio in the thymus. In vitro, PD directly promoted splenic lymphocyte proliferation and cell cycling via MAPK activation. Overall, our findings demonstrated that PD alleviated mouse immunosuppression by activating splenic lymphocyte proliferation and re-organizing thymic T cell development and differentiation.
Collapse
Affiliation(s)
- Na Sun
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Huimin Yan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xiuping Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xingdi Xu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Zhao
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Jing Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Meng Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Yuxuan Liu
- Key Laboratory of Immune Microenvironment and Disease, Immunology Department, Ministry of Education, Tianjin Medical University, Tianjin 301617, China;
| | - Lin Miao
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
23
|
Heymann D, Muñoz-Garcia J, Babuty A, Audéon A, Ollivier E, Papy-Garcia D, Chantepie S, Zykwinska A, Sinquin C, Colliec-Jouault S. A new promising anticancer agent: A glycosaminoglycan-mimetic derived from the marine bacterial infernan exopolysaccharide. Int J Biol Macromol 2025; 308:142074. [PMID: 40118403 DOI: 10.1016/j.ijbiomac.2025.142074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Marine microorganisms are a promising source of innovative compounds for medical applications. The present study aimed to investigate anticancer potential of oversulfated low molecular weight derivatives, named OSIDs, prepared from infernan, a marine bacterial exopolysaccharide. In order to identify a lead, OSIDs with different sulfate contents and molecular weights were firstly evaluated in vitro in a large series of human and murine tumor cell lines. Among all derivatives tested, OSID4 was the most effective, showing a significant dose-dependent inhibitory effect on the viability of cancer cells. OSID4 was then able to significantly slow down progression of lung and melanoma tumor growth in immunocompetent tumor-bearing mouse models. In immunodeficient mice bearing a human lung carcinoma, a notable inhibitory effect of OSID4, comparable to doxorubicin, was observed. In combination with doxorubicin, OSID4 did not exhibit any drug interaction. The activity of OSID4 was confirmed by its modulatory effect on the transcriptomic profile of human lung cancer cells. Finally, toxicity and pharmacokinetic parameters disclosed that OSID4 presented no toxicity and no bleeding risk. In conclusion, by combining its notable anticancer and moderate anticoagulant activities, OSID4 may be promising for treatment of cancers associated with a high risk of thromboembolic events.
Collapse
Affiliation(s)
- Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, F44322 Nantes, France; Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France; University of Sheffield, School of Medicine and Population Health, S102RX Sheffield, UK.
| | - Javier Muñoz-Garcia
- Nantes Université, CNRS, UMR6286, US2B, F44322 Nantes, France; Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France
| | - Antoine Babuty
- Nantes Université, CNRS, UMR6286, US2B, F44322 Nantes, France; Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France; CHU de Nantes, Department of Hemostasis, F-44201 Nantes, France
| | - Antoine Audéon
- Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France; SATT Ouest Valorisation, F-44201 Nantes, France
| | - Emilie Ollivier
- Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France
| | - Dulce Papy-Garcia
- Université Paris Est Créteil (UPEC), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), F-94010 Créteil, France
| | - Sandrine Chantepie
- Université Paris Est Créteil (UPEC), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), F-94010 Créteil, France
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | | |
Collapse
|
24
|
Yaseen Z, Nandave M, Sharma L. Anti-diabetic Biologicals: Exploring the Role of Different Analytical Techniques. Crit Rev Anal Chem 2025:1-22. [PMID: 40088445 DOI: 10.1080/10408347.2025.2472793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Antidiabetic biologicals (ADBs) have revolutionized the treatment of diabetes mellitus, once considered incurable through conventional medicine. These biological products, derived from natural sources via extraction, semi-synthesis, or recombinant DNA technology, include insulin and its analogs, GLP-1 receptor agonists, amylin analogs, and the recently approved monoclonal antibody teplizumab. Regulatory authorities worldwide have established QC parameters outlined in pharmacopoeias, alongside analytical techniques to ensure their safety and efficacy. This review focuses on the analytical techniques used to assess QC parameters of ADBs, including chromatographic methods, spectroscopic techniques, capillary electrophoresis, immunoassays, and endotoxin testing. Key parameters such as identification, potency, purity, and impurity profiling are thoroughly examined. The paper provides a comprehensive and up-to-date compilation of QC requirements and methodologies, along with a detailed comparison of analytical techniques. In doing so, it highlights their advantages and limitations, offering valuable insights for researchers and regulatory professionals involved in selecting suitable methods for QC assessment and understanding the complexities of ADBs evaluation. Furthermore, the article discusses the paramount importance of QC and future perspectives, emphasizing the transition to advanced versions of current techniques driven by the need for efficiency and reliability in quality testing.
Collapse
Affiliation(s)
- Zahid Yaseen
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
- Department of Pharmaceutical Biotechnology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Mukesh Nandave
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
25
|
Zaremba A, Zaremba P, Zahorodnia S. In silico development of HASDI-G2 as a novel agent for selective recognition of the DNA sequence. Sci Rep 2025; 15:8577. [PMID: 40075113 PMCID: PMC11904238 DOI: 10.1038/s41598-025-89967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Genetic information, which is mostly encoded in the form of DNA sequence, is the basis of life. Its deviations are often the cause of the most deadly diseases such as cancer. Accordingly, the development of methods to control the transcription of certain DNA parts is an important direction of modern pharmacological and biological research. Within the scope of this work, we are investigating the second generation of a polyintercalating agent that we developed earlier, potentially capable of recognizing 16-bp DNA sequences. In order to confirm its ability for advanced selective DNA recognition a series of simulation experiments was conducted. We differentially investigated the stability of HASDI-G2 complexes with mutated targeting sequences and their native variants. Firstly, we confirmed the ability of HASDI-G2 to clearly discriminate the target sequence (EBNA1) from a random site in the human genome (KCNH2). That repeated the experiment of the polyintercalator's previous version and additionally showed better results of the next-generation structure. Next, we examined HASDI-G2 under conditions where the target sequence differed from the random one increasingly slightly. And we found that even a one-nucleotide mismatch leads to a similar complex destabilization as a mismatch of 3 or 4 nucleotides. Such complexes showed significant conformational rearrangements, accompanied by a sharp decrease in the hydrogen bonds quantity, a drop in the binding free energy, and local melting of the DNA duplex. Moreover, the latter applied not only to sites of direct incompatibility, but also to parts where HASDI-G2 fully corresponded to the sequence of intercalation.
Collapse
Affiliation(s)
- Andrii Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine.
| | - Polina Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| | - Svіtlana Zahorodnia
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| |
Collapse
|
26
|
Hussain MS, Ramalingam PS, Chellasamy G, Yun K, Bisht AS, Gupta G. Harnessing Artificial Intelligence for Precision Diagnosis and Treatment of Triple Negative Breast Cancer. Clin Breast Cancer 2025:S1526-8209(25)00052-7. [PMID: 40158912 DOI: 10.1016/j.clbc.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive subtype of breast cancer (BC) characterized by the absence of estrogen, progesterone, and HER2 receptors, resulting in limited therapeutic options. This article critically examines the role of Artificial Intelligence (AI) in enhancing the diagnosis and treatment of TNBC treatment. We begin by discussing the incidence of TNBC and the fundamentals of precision medicine, emphasizing the need for innovative diagnostic and therapeutic approaches. Current diagnostic methods, including conventional imaging techniques and histopathological assessments, exhibit limitations such as delayed diagnosis and interpretative discrepancies. This article highlights AI-driven advancements in image analysis, biomarker discovery, and the integration of multi-omics data, leading to enhanced precision and efficiency in diagnosis and treatment. In treatment, AI facilitates personalized therapeutic strategies, accelerates drug discovery, and enables real-time monitoring of patient responses. However, challenges persist, including issues related to data quality, model interpretability, and the societal impact of AI implementation. In the conclusion, we discuss the future prospects of integrating AI into clinical practice and emphasize the importance of multidisciplinary collaboration. This review aims to outline key trends and provide recommendations for utilizing AI to improve TNBC management outcomes, while highlighting the need for further research.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India.
| | - Prasanna Srinivasan Ramalingam
- Protein Engineering lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, South Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, South Korea
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
27
|
Li Y, Sun Y, Yu K, Li Z, Miao H, Xiao W. Keratin: A potential driver of tumor metastasis. Int J Biol Macromol 2025; 307:141752. [PMID: 40049479 DOI: 10.1016/j.ijbiomac.2025.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Keratins, as essential components of intermediate filaments in epithelial cells, play a crucial role in maintaining cell structure and function. In various malignant epithelial tumors, abnormal keratin expression is frequently observed and serves not only as a diagnostic marker but also closely correlates with tumor progression. Extensive research has demonstrated that keratins are pivotal in multiple stages of tumor metastasis, including responding to mechanical forces, evading the immune system, reprogramming metabolism, promoting angiogenesis, and resisting apoptosis. Here we emphasize that keratins significantly enhance the migratory and invasive capabilities of tumor cells, making them critical drivers of tumor metastasis. These findings highlight the importance of targeting keratins as a strategic approach to combat tumor metastasis, thereby advancing our understanding of their role in cancer progression and offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuening Li
- Army Medical University, Chongqing, China
| | - Yiming Sun
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kun Yu
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhixi Li
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing, China.
| | - Weidong Xiao
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
28
|
Lee SO, Joo SH, Cho SS, Yoon G, Choi YH, Park JW, Weon KY, Shim JH. Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK. Biomol Ther (Seoul) 2025; 33:344-354. [PMID: 39933827 PMCID: PMC11893492 DOI: 10.4062/biomolther.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 02/13/2025] Open
Abstract
Anticancer activities of Licochalcone D (LCD) in human colorectal cancer (CRC) cells HCT116 and oxaliplatin-resistant HCT116 (HCT116-OxR) were determined. Cell viability assay and soft agar assay were used to analyze antiproliferative activity of LCD. Flow cytometry was performed to determine effects of LCD on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. Western blot analysis was used to monitor levels of proteins involved in cell cycle and apoptosis signaling pathways. LCD suppressed the growth and anchorageindependent colony formation of both HCT116 and HCT116-OxR cells. Cell cycle analysis by flow cytometry indicated that LCD induced cell cycle arrest and increased cells in sub-G1 phase. In parallel with the antiproliferative effect of LCD, LCD up-regulated levels of p21 and p27 while downregulating cyclin B1 and cdc2. In addition, phosphorylation levels of JNK and p38 mitogen-activated protein kinase (MAPK) were increased by LCD. Inhibition of these kinases somehow prevented the antiproliferative effect of LCD. Moreover, LCD increased ROS and deregulated mitochondrial membrane potential, leading to the activation of multiple caspases. An ROS scavenger N-acetyl-cysteine (NAC) or pan-caspase inhibitor Z-VAD-FMK prevented the antiproliferative effect of LCD, supporting that ROS generation and caspase activation mediated LCD-induced apoptosis in CRC cells. In conclusion, LCD exerted antitumor activity in CRC cells by inducing ROS generation and phosphorylation of JNK and p38 MAPK. These results support that LCD could be further developed as a chemotherapeutic agent for treating CRC.
Collapse
Affiliation(s)
- Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Kwon-Yeon Weon
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| |
Collapse
|
29
|
Nam KY, Kim MS, An J, Min S, Lee JH, Park JS, Huh CH, Yun SH, Lee KJ. Human-Centric, Three Dimensional Micro Light-Emitting Diodes for Cosmetic and Medical Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416716. [PMID: 39960366 PMCID: PMC11905057 DOI: 10.1002/advs.202416716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Phototherapy based on micro light-emitting diodes (µLEDs) has gained enormous attention in the medical field as a patient-friendly therapeutic method due to its advantages of minimal invasiveness, fewer side effects, and versatile device form factors with high stability in biological environment. Effective cosmetic and medical phototherapy depends on deep light penetration, precise irradiation, and simultaneous multi-site stimulation, facilitated by three-dimensional (3D) optoelectronics specifically designed for complex human matters, defined here as 3D µLEDs. This perspective article aims to present the functionalities and strategies of 3D µLEDs for human-centric phototherapy. This study investigates the effectiveness of phototherapy enabled by three key functionalities such as shape morphing, self-adaptation, and multilayered spatiotemporal mapping of 3D µLEDs. Finally, this article provides future insights of 3D µLEDs for human-centric phototherapy applications.
Collapse
Affiliation(s)
- Ki Yun Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34 141, Republic of Korea
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34 141, Republic of Korea
| | - Min Seo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34 141, Republic of Korea
| | - Jaehun An
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34 141, Republic of Korea
| | - Seongwook Min
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34 141, Republic of Korea
| | - Jae Hee Lee
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60 208, USA
| | - Jae Sung Park
- Yonsei Myview Clinic, 301, Sadang-ro, Dongjak-gu, Seoul, 0 7008, Republic of Korea
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital (SNUBH), 173-82, Gumi-ro, Bundang-gu, Seongnam, 13 620, Republic of Korea
| | - Seok Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 0 2114, USA
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34 141, Republic of Korea
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34 141, Republic of Korea
| |
Collapse
|
30
|
Badir A, Refki S, Sekkat Z. Utilizing gold nanoparticles in plasmonic photothermal therapy for cancer treatment. Heliyon 2025; 11:e42738. [PMID: 40084020 PMCID: PMC11904586 DOI: 10.1016/j.heliyon.2025.e42738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
In recent decades, significant attention has been directed towards gold nanoparticles due to their exceptional properties, capturing the interest of researchers globally. Their unique characteristics, such as localized surface plasmon resonance, high surface area to volume ratio, biocompatibility, and facile surface functionalization, render them highly suitable for diverse applications, ranging from optoelectronics and sensing to surface-enhanced spectroscopies and biomedical uses, particularly in the realm of photothermal therapy. Plasmonic photothermal therapy, an emerging biomedical technology, has garnered substantial interest for its potential in cancer treatment and management. This approach employs photothermal agents, such as gold nanoparticles, which absorb light in the near-infrared region. When these agents accumulate within cancer cells, the absorbed photon energy is converted into heat, inducing local hyperthermia. This localized effect selectively eliminates damaged cells adjacent to nanoparticles while sparing normal cells. Various shapes and sizes of gold nanoparticles have proven well-suited candidates for photothermal therapy. This paper provides an overview of the distinctive properties of gold nanoparticles. It delves into the surface functionalization techniques crucial for ensuring cancer cells' effective retention and targeting of gold nanoparticles. In this context, the present paper reviews diverse applications of gold nanoparticles with different shapes in plasmonic photothermal therapy, encompassing nanospheres, nanorods, nanoshells, nanostars, and nanocages.
Collapse
Affiliation(s)
- Amina Badir
- Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Optics and Photonics Center, Moroccan Foundation for Advanced Science Innovation and Research, MAScIR, University Mohammed VI Polytechnic, Benguerir, Morocco
| | - Siham Refki
- Optics and Photonics Center, Moroccan Foundation for Advanced Science Innovation and Research, MAScIR, University Mohammed VI Polytechnic, Benguerir, Morocco
| | - Zouheir Sekkat
- Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Optics and Photonics Center, Moroccan Foundation for Advanced Science Innovation and Research, MAScIR, University Mohammed VI Polytechnic, Benguerir, Morocco
| |
Collapse
|
31
|
Zhivkov AM, Hristova SH, Popov TT. Anticancer Nanoparticle Carriers of the Proapoptotic Protein Cytochrome c. Pharmaceutics 2025; 17:305. [PMID: 40142969 PMCID: PMC11945056 DOI: 10.3390/pharmaceutics17030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
This review discusses the literature data on the synthesis, physicochemical properties, and cytotoxicity of composite nanoparticles bearing the mitochondrial protein cytochrome c (cytC), which can act as a proapoptotic mediator in addition to its main function as an electron carrier in the electron transport chain. The introduction of exogenous cytC via absorption of carrier particles, the phagocytosis of colloid particles of submicrometric size, or the receptor-mediated endocytosis of nanoparticles in cancer cells, initiates the process of apoptosis-a multistage cascade of biochemical reactions leading to complete destruction of the cells. CytC-carrier composite particles have the potential for use in the treatment of neoplasms with superficial localization: skin, mouth, stomach, colon, etc. This approach can solve the two main problems of anticancer therapy: selectivity and non-toxicity. Selectivity is based on the incapability of the normal cell to absorb (nano)particles, except for the cells of the immune system. The use of cytC as a protein that normally functions in mitochondria is harmless for the macroorganism. In this review, the factors limiting cytotoxicity and the ways to increase it are discussed from the point of view of the physicochemical properties of the cytC-carrier particles. The different techniques used for the preparation of cytC-bearing colloids and nanoparticles are discussed. Articles reporting the achievement of high cytotoxicity with each of the techniques are critically analyzed.
Collapse
Affiliation(s)
- Alexandar M. Zhivkov
- Scientific Research Center, “St. Kliment Ohridski” Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Svetlana H. Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
- Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Trifon T. Popov
- Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
32
|
Pabon CM, Wong J, Perez M, Jimenez-Abarca J, Xiao L, Jackson L, Park A, Lankford A, Akula V, Datar S, Hopper T, Alkhatib Y, Earles T, Patel T. Successful posthospitalisation oncology workflow implementing LACE+ score to stratify and reduce readmissions within a safety-net hospital. BMJ Open Qual 2025; 14:e003068. [PMID: 39947738 PMCID: PMC11831318 DOI: 10.1136/bmjoq-2024-003068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/26/2025] [Indexed: 02/19/2025] Open
Abstract
BACKGROUND Patients with advanced cancers visit the emergency room and get hospitalised frequently, with potentially half of these visits being avoidable. Our institution provides comprehensive, low-cost cancer treatment to a safety-net population in Texas. We performed a retrospective review of hospital readmission patterns amongst our oncology patients and developed a posthospitalisation workflow to reduce readmissions. METHOD Following discharge, oncology patients were risk stratified based on their Length of stay, Acuity of admission, Charlson comorbidity index score and Emergency department visits+index in the past 6 months. The higher the score, the quicker the outpatient oncology follow-up. In addition to addressing acute issues related to hospitalisation, patients were also able to receive newly translated resources while in clinic. RESULTS The preintervention 30-day-readmission rate was 17.3% (June 2022-December 2022) (95% CI 13.4% to 21.8%). Meanwhile, the postintervention 30-day-readmission rate was 14.7% (June 2023-December 2023) (95% CI 10.9% to 19.2%). While a 2.6% reduction in readmissions was achieved, this decrease was not statistically significant (-2.6%; 95% CI -8.4% to 3.2%; p value=0.375). Emergency use utilisation decreased from 90% to 15%. CONCLUSIONS Our team was able to facilitate and coordinate outpatient care for oncology patients following hospitalisation. The expedited care allowed providers to ensure that the care plan after hospitalisation was well understood and accessible to the patient. Furthermore, language-appropriate resources were provided to patients at that time. Our intervention was feasible, easy to implement and quick to produce tangible improvements in patient care. More time is needed to determine whether this will create a statistically significant impact on readmission rates.
Collapse
Affiliation(s)
- Cindy M Pabon
- General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Janine Wong
- Accreditation & Regulatory Affairs, Harris Health System, Houston, Texas, USA
| | - Marcela Perez
- General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jessica Jimenez-Abarca
- General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lianchun Xiao
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lymesia Jackson
- Ambulatory Care Management, Harris Health System, Houston, Texas, USA
| | - Anne Park
- Clinical Informations, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anjali Lankford
- Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Vinita Akula
- Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Saumil Datar
- Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Taylor Hopper
- Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yaser Alkhatib
- General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Terri Earles
- General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tejal Patel
- General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
33
|
Ghimire N, Welch M, Secunda C, Fink A, Lawan A. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Promotes Hyperglycemia and Susceptibility to Streptozotocin-Induced Diabetes in Female Mice In Vivo. Cells 2025; 14:261. [PMID: 39996734 PMCID: PMC11853640 DOI: 10.3390/cells14040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The development of type 2 diabetes (T2D) is largely dependent on the maintenance of pancreatic islet function and mass. Sexual dimorphism in T2D is evident in many areas, such as pathophysiology, treatment, and prevention. Mitogen-activated protein kinase phosphatase-2 (MKP-2) has a distinct role in the regulation of cell proliferation and the development of metabolic disorders. However, whether there is a causal relationship between MKP-2 and diabetes onset is unclear. The aim of this study was to determine the role of MKP-2 in the regulation of whole-body glucose homeostasis and the impact on pancreatic islet function using streptozotocin-induced pancreatic injury. Here, we show that female mice with whole-body deletion of MKP-2 exhibit hyperglycemia in mouse models treated with multiple low doses of streptozotocin (STZ). In comparison, both male MKP-2 wild-type and knockout mice were hyperglycemic. Consistent with the hyperglycemia, female MKP-2-deficient mice exhibited reduced islet size. Under T2D conditions, MKP-2-deficient mice display enhanced pancreatic JNK and ERK phosphorylation that is associated with the downregulation of genes important for pancreatic islet development and function, Pdx-1 and MafA. Furthermore, we found impaired metabolic flux in adipose tissue that is consistent with hyperglycemia and dysfunctional pancreas. MKP-2 deletion results in reduced Akt activation that is associated with increased adiposity and insulin resistance in female MKP-2 KO mice. These studies demonstrate the critical role of MKP-2 in the development of T2D diabetes in vivo. This suggests that MKP-2 may have a gender-specific role in diabetes development. This discovery raises the possibility that postmenopausal prevention of T2D may benefit from the activation of MKP-2 activity in islet cells.
Collapse
Affiliation(s)
| | | | | | | | - Ahmed Lawan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (N.G.); (M.W.); (C.S.); (A.F.)
| |
Collapse
|
34
|
Uršič Valentinuzzi K, Kamenšek U, Kranjc Brezar S, Heranney C, Komel T, Buček S, Čemažar M, Serša G. Electrochemotherapy with bleomycin, oxaliplatin, or cisplatin in mouse tumor models, from tumor ablation to in situ vaccination. Front Immunol 2025; 16:1470432. [PMID: 40007542 PMCID: PMC11850275 DOI: 10.3389/fimmu.2025.1470432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction In addition to its direct cytotoxic effects, ablative therapies as electrochemotherapy (ECT) can elicit indirect antitumor effects by triggering immune system responses. Here, we comprehensively analyzed this dual effectiveness of intratumoral ECT with chemotherapeutic drugs bleomycin (BLM), oxaliplatin (OXA), and cisplatin (CDDP). Our aim was to determine if ECT can act as in situ vaccination and thereby induce an abscopal effect. By evaluating ECT's potential for in situ vaccination, our goal was to pave the way for future advancements for its combination with emerging (immuno)therapies, leading to enhanced responses and outcomes. Methods We employed two mouse tumor models, the immunologically cold B16F10 melanoma and 4T1 mammary carcinoma, to explore both local and systemic (i.e., abscopal) antitumor effects following equieffective intratumoral ECT with BLM, OXA, and CDDP. Through histological analyses and the use of immunodeficient and metastatic (for abscopal effect) mouse models, we identified and compared both the cytotoxic and immunological components of ECT's antitumor efficiency, such as immunologically recognizable cell deaths (immunogenic cell death and necrosis) and immune infiltrate (CD11+, CD4+, CD8+, GrB+). Results Differences in immunological involvement after equieffective intratumoral ECT were highlighted by variable kinetics of immunologically recognizable cell deaths and immune infiltrate across the studied tumor models. Particularly, the 4T1 tumor model exhibited a more pronounced involvement of the immune component compared to the B16F10 tumor model. Variances in the antitumor (immune) response were also detected based on the chemotherapeutic drug used in ECT. Collectively, ECT demonstrated effectiveness in inducing in situ vaccination in both tumor models; however, an abscopal effect was observed in the 4T1 tumor model only. Conclusions This is the first preclinical study systematically comparing the immune involvement in intratumoral ECT's efficiency using three distinct chemotherapeutic drugs in mouse tumor models. The demonstrated variability in immune response to ECT across different tumor models and chemotherapeutic drugs provides a basis for future investigations aimed at enhancing the effectiveness of combined treatments.
Collapse
Affiliation(s)
- Katja Uršič Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Chloe Heranney
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biological Engineering Department, Polytech Clermont-Ferrand, Aubiere, France
| | - Tilen Komel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Izola, Slovenia
| | - Simon Buček
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Zhu D, Pan W, Li H, Hua J, Zhang C, Zhao K. Innovative Applications of Bacteria and Their Derivatives in Targeted Tumor Therapy. ACS NANO 2025; 19:5077-5109. [PMID: 39874477 DOI: 10.1021/acsnano.4c15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including Escherichia coli, Salmonella, and Listeria monocytogenes, along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME). These bacteria and their derivatives possess intrinsic properties that stimulate the immune system, enhancing both innate and adaptive immune responses to further amplify therapeutic effects. The ability of bacteria to naturally accumulate in hypoxic tumor regions and their versatility in genetic modifications allow for tailored drug delivery strategies that synergistically enhance the effectiveness of chemotherapy, immunotherapy, and targeted therapies. This review comprehensively examines the fundamental principles of bacterial therapy, focusing on the strategies employed for bacterial engineering, drug loading, and the use of bacteria and their derivatives in targeted tumor therapy. It also discusses the challenges faced in optimizing bacterial delivery systems, such as safety concerns, unintended immune responses, and scalability for clinical applications. By exploring these aspects, this review provides a theoretical framework for improving bacterial-based drug delivery systems, contributing to the development of more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Denghui Zhu
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China
| | - Wendi Pan
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China
| | - Heqi Li
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China
- School of Medical Technology, Qiqihar Medical University, Heilongjiang Qiqihar 161006, China
| | - Jingsheng Hua
- Department of Hematology, Municipal Hospital Affiliated to Taizhou University, Zhejiang Taizhou 318000, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Heilongjiang Qiqihar 161006, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China
- Department of Hematology, Municipal Hospital Affiliated to Taizhou University, Zhejiang Taizhou 318000, China
| |
Collapse
|
36
|
Crespo E, Loureiro LR, Stammberger A, Hoffmann L, Berndt N, Hoffmann A, Dagostino C, Soto KEG, Rupp L, Arndt C, Schneider M, Ball CR, Bachmann M, Schmitz M, Feldmann A. RevCAR-mediated T-cell response against PD-L1-expressing cells turns suppression into activation. NPJ Precis Oncol 2025; 9:42. [PMID: 39924591 PMCID: PMC11808103 DOI: 10.1038/s41698-025-00828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
Applying CAR T-cell therapy to treat solid tumors is especially challenging due to the immunosuppressive tumor microenvironment (TME). While our modular RevCAR system enhances the safety and controllability of CAR T-cell therapy, effectively targeting solid tumors remains difficult. Since PD-L1 is an immune checkpoint frequently upregulated by cancer cells and their microenvironment, it is a relevant target for solid tumors. Here, we introduce a novel PD-L1 RevTM capable of redirecting RevCAR T-cells to specifically target and kill PD-L1-expressing tumor cells, becoming activated and secreting pro-inflammatory cytokines. This is shown in vitro with monolayer and 3D models, including patient-derived cultures, and in vivo. Furthermore, we demonstrate in vitro and in vivo an AND-gated targeting of cells simultaneously expressing PD-L1 and another tumor-associated antigen by the Dual RevCAR system. Our findings suggest that RevCAR-mediated targeting of PD-L1 could be a promising therapeutic approach for modulating the TME and improving solid tumor treatment.
Collapse
Affiliation(s)
- Eugenia Crespo
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Liliana R Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Antonia Stammberger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Lydia Hoffmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicole Berndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Hoffmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Dagostino
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Karla E G Soto
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia R Ball
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Faculty of Biology, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany.
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany.
| |
Collapse
|
37
|
Nagy S, Denis O, Hussein A, Kesselman MM. The Impact of Antihistamines on Immunotherapy: A Systematic Review. Cureus 2025; 17:e79421. [PMID: 40130115 PMCID: PMC11930787 DOI: 10.7759/cureus.79421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Cancer remains one of the most significant public health challenges globally, contributing to a substantial burden of disease across all populations. Conventional therapies of chemotherapy, radiation, and surgery are commonly used to treat all forms of cancer; however, they all have significant side effects to their use. Immunotherapy has emerged as an effective treatment type for a variety of cancers. As the benefits of immunotherapy in cancer treatment are identified, the interaction between immunotherapy and over-the-counter medication has been explored. Due to the cost and length of time to conduct clinical trials, alternative therapeutics are being examined. Recently, the potential interaction between antihistamines and immunotherapies has gained attention. Six articles were included that analyzed this association. In total 4,171 patients were analyzed with a mean age of 62.66. Cancer types vary between lung (including small-cell and non-small-cell lung cancer), melanoma, hepatobiliary, head and neck, breast, gastrointestinal, renal cell, gynecological, and colon cancers. Among all studies, checkpoint inhibitors were used as a form of immunotherapy. Two studies specifically identified which checkpoint therapies were utilized, including nivolumab, pembrolizumab, ipilimumab, and atezolizumab. All articles found a significant improvement in overall survival rates and longer progression-free rates when antihistamines were added to immunotherapy regimens compared to patients who did not utilize antihistamines. Additionally, some studies also analyzed mortality rates, and each found a significant reduction in mortality rates when antihistamines were paired with immunotherapy. The combination of antihistamines as cancer chemotherapeutics with immunotherapy represents a promising approach to the treatment of cancer. As immunotherapies continue to reshape cancer treatment and as we begin to investigate alternative uses for everyday medications, antihistamines may propose beneficial effects on improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Stephanie Nagy
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Oksana Denis
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Atif Hussein
- Hematology/Oncology, Memorial Cancer Institute, Pembroke Pines, USA
| | - Marc M Kesselman
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| |
Collapse
|
38
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2025; 22:127-145. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
39
|
Zhao Z, Wu X, Zhang T, Zhou M, Liu S, Yang R, Li JP. Evaluation of Multispecific Drugs Based on Patient-Derived Immunocompetent Tumor Organoids. Chembiochem 2025; 26:e202400731. [PMID: 39800663 DOI: 10.1002/cbic.202400731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Indexed: 01/24/2025]
Abstract
The evolution of antitumor drug development has transitioned from single-agent chemotherapy to targeted therapy, immunotherapy, and more recently, multispecific drugs. These innovative drugs target multiple cellular or molecular pathways simultaneously, offering a more comprehensive anticancer approach and addressing some of the limitations inherent in traditional monotherapies. However, preclinical assessment of multispecific drugs remains challenging, as conventional tumor models often lack the necessary complexity to accurately reflect the interactions between various cell types and targets. Patient-derived immunocompetent tumor organoids (PDITOs), which incorporate both tumor cells and immune cells, present a promising platform for the evaluation of these drugs. Beyond their use in drug evaluation, PDITOs can also be utilized in personalized drug screening and predicting patient-specific treatment outcomes, thus advancing both multispecific drug development and precision medicine. This perspective discusses the current landscape of multispecific drug development and the methodologies for constructing PDITOs. It also addresses the associated challenges and introduces the concept of employing these organoids to optimize the evaluation and rational design of multispecific drug therapies.
Collapse
Affiliation(s)
- Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Tianyang Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
- University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Meng Zhou
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Siyang Liu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
40
|
Al Khafaji AT, Barakat AM, Shayyal AJ, Taan AA, Aboqader Al-Aouadi RF. Managing Doxorubicin Cardiotoxicity: Insights Into Molecular Mechanisms and Protective Strategies. J Biochem Mol Toxicol 2025; 39:e70155. [PMID: 39887483 DOI: 10.1002/jbt.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Cancer ranks as the second leading cause of death in the United States and poses a significant health challenge globally. Numerous therapeutic options exist for treating cancer, with chemotherapy being one of the most prominent. Chemotherapy involves the use of antineoplastic drugs, either alone or in combination with other medications, to target and kill cancer cells. However, these drugs can also adversely affect healthy cells, leading to various side effects. Among the most commonly used chemotherapy agents are anthracyclines, which include doxorubicin, daunorubicin, and epirubicin. Doxorubicin is particularly notable for its effectiveness but is also associated with significant cardiotoxicity, a common concern for patients undergoing chemotherapy. Unfortunately, there is currently no definitive treatment to prevent or reverse this cardiotoxicity. The cardiac effects of doxorubicin can manifest in several ways, including changes in electrocardiograms, arrhythmias, myocarditis, pericarditis, myocardial infarction, cardiomyopathy, heart failure, and congestive heart failure. These complications may arise during treatment, shortly after it concludes, or even weeks later. Various mechanisms have been proposed to explain doxorubicin-induced cardiotoxicity. Key factors include the inhibition of topoisomerase IIβ, mitochondrial damage, reactive oxygen species (ROS) production due to iron metabolism, increased oxidative stress, heightened inflammatory responses, and elevated rates of apoptosis and necrosis within cardiac tissue. This review article will provide a comprehensive overview of the current state of knowledge regarding doxorubicin-induced cardiomyopathy. We will explore the underlying molecular mechanisms contributing to this condition and discuss emerging therapeutic strategies aimed at mitigating its impact on cancer survivors.
Collapse
Affiliation(s)
| | | | | | - Ali Adnan Taan
- Nasr City Hospital for Health Insurance, Ministry of Health, Cairo, Egypt
| | | |
Collapse
|
41
|
Harrell CR, Volarevic A, Djonov V, Volarevic V. Mesenchymal Stem-Cell-Derived Exosomes as Novel Drug Carriers in Anti-Cancer Treatment: A Myth or Reality? Cells 2025; 14:202. [PMID: 39936993 PMCID: PMC11817634 DOI: 10.3390/cells14030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Although cancer therapy has significantly advanced in recent decades, patients and healthcare professionals are still quite concerned about adverse effects due to the non-targeted nature of currently used chemotherapeutics. Results obtained in a large number of recently published experimental studies indicated that mesenchymal stem-cell-derived exosomes (MSC-Exos), due to their biocompatibility, ability to cross biological barriers, and inherent targeting capabilities, could be used as a promising drug-delivery system for anti-cancer therapies. Their lipid bilayer protects cargo of anti-cancer drugs, making them excellent candidates for the delivery of therapeutic agents. MSC-Exos could be engineered to express ligands specific for tumor cells and, therefore, could selectively deliver anti-cancer agents directly in malignant cells, minimizing side effects associated with chemotherapeutic-dependent injury of healthy cells. MSC-Exos can carry multiple therapeutic agents, including anti-cancer drugs, micro RNAs, and small bioactive molecules, which can concurrently target multiple signaling pathways, preventing tumor growth and progression and overcoming resistance of tumor cells to many standard chemotherapeutics. Accordingly, in this review article, we summarized current knowledge and future perspectives about the therapeutic potential of MSCs-Exos in anti-cancer treatment, opening new avenues for the targeted therapy of malignant diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Ana Volarevic
- Departments of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|
42
|
Kar B, Paira P. Photostimulated Anticancer Activity of Mitochondria Localized Rhenium(I) Tricarbonyl Complexes Bearing 1H-imidazo[4,5-f][1,10]phenanthroline Ligands Against MDA-MB-231 Cancer Cells. Chemistry 2025; 31:e202401720. [PMID: 39269736 DOI: 10.1002/chem.202401720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
We have introduced Re(I) tricarbonyl complexes (ReL1 - ReL6) [Re(CO)3(N^N)Cl] where N^N=extensive π conjugated imidazo-[4,5-f][1,10]-phenanthroline derivatives that helps in strong DNA intercalation, enhanced photophysical behavior, increase the 3π-π* character of T1 state for PDT and high value of lipophilicity for cell membrane penetration. These complexes exhibited prominent intraligand/ligand-centered (π-π*/1LC) absorption bands at λ 260-350 nm and relatively weak metal-to-ligand charge-transfer (1MLCT) bands within the λ 350-550 nm range. Among the six synthesized complexes, [(CO)3ReICl(K2-N,N-2-(4-(1-benzyl-1H-tetrazol-5-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline] (ReL6) exhibited outstanding potency (IC50~6 μM, PI>9) under yellow light irradiation compared to dark conditions. Importantly, extremely lipophilic complex ReL6 showed effective penetration through the cell membrane and localized primarily in mitochondria (Pearson's correlation coefficient, PCC=0.918) of MDA-MB-231 cells. Complex ReL6 exhibited more than 9 times higher photo-toxicity in normoxic and hypoxic environment of tumor by inducing 1O2 generation (type II PDT), radical generation triggered by NADH oxidation (type I PDT). This complex is a promising candidate for TNBC treatment in hypoxic tumors, with efficacy comparable to photofrin and have demonstrated CO release ability under UV light irradiation.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
43
|
Tajik S, Beitollahi H, Nejad FG, Dourandish Z, Adeloju S. Electrochemical sensor based on multi-walled carbon nanotubes and two-dimensional zeolitic imidazolate framework nanosheets: Application in determining dacarbazine. ADMET AND DMPK 2025; 13:2617. [PMID: 40161894 PMCID: PMC11954146 DOI: 10.5599/admet.2617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Indexed: 04/02/2025] Open
Abstract
Background and Purpose Cancer is a serious public health concern, hence the determination of dacarbazine as a significant chemotherapeutic agent is very important. Experimental approach In the present work, we use a facile method to synthesize a nanocomposite of multi-walled carbon nanotubes (MWCNTs) and two-dimensional zeolitic imidazolate framework nanosheets (2D ZIF-L NSs). The resulting MWCNTs/2D ZIF-L NSs nanocomposite was characterized by field-emission scanning electron microscopy. The MWCNTs/2D ZIF-L NSs nanocomposite was subsequently used to modify a screen-printed carbon electrode (SPCE) to achieve an electrochemical sensing platform for the detection of dacarbazine. Key results From cyclic voltammetric studies, it was found that the MWCNTs/2D ZIF-L NSs nanocomposite modified SPCE provided less anodic peak potential (700 mV) and higher anodic peak current (7.7 μA) for oxidation of dacarbazine when compared to other SPCEs. The MWCNTs/2D ZIF-L NSs/SPCE displayed good performance in the quantitative determination of dacarbazine. Under optimum conditions, the differential pulse voltammetry response exhibited a linear concentration range of 0.01 to 80.0 μM for dacarbazine with a relatively high sensitivity of 0.1384 μA μM-1 and an estimated detection limit of 0.004 μM. The MWCNTs/2D ZIF-L NSs/SPCE sensor was also successfully applied to the determination of dacarbazine in injections samples of dacarbazine. Conclusion This detection method can be used as a valuable tool in the analysis of pharmaceutical formulations to bring benefits in cancer treatment.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Samuel Adeloju
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
44
|
Zhu Z, Shang Y, Lin C, Zhang D, Ai L, Li Y, Tan W, Liu Y, Zhao Z. Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin. ACS NANO 2025; 19:2315-2333. [PMID: 39760789 DOI: 10.1021/acsnano.4c12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation. Systematic studies revealed that they achieved >6- and >5.5-fold higher intratumoral accumulations of doxorubicin than aptamer-based targeted nanodrugs at 6 and 120 h post intravenous injection, respectively. Based on high drug delivery efficacy, targeted covalent nanodrugs boosted doxorubicin-induced immunogenic cell death, activated antitumor immune responses and shrank the sizes of both primary and distant tumors, and displayed better therapeutic efficacy and less adverse effect than targeted nanodrugs and commercial Doxil in 4T1 syngeneic breast tumor model featuring an immunosuppressive microenvironment. By integrating the specificity of molecular recognition, the reactivity profile of diazirine and the accuracy of light manipulation with nanodrug supremacy, our targeted covalent nanodrugs could be expected as a longer-term and efficient strategy to improve anticancer therapeutic efficacy of chemotherapeutics.
Collapse
Affiliation(s)
- Zhijia Zhu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanxue Shang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Chukai Lin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dongchen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Youshan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
45
|
Atila Uslu G, Uslu H, Çoban TA, Özkaraca M, Mendil AS, Aygörmez S. Nobiletin reduces 5-FU-induced lung injury with antioxidative, anti-inflammatory and anti-apoptotic activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03773-6. [PMID: 39820543 DOI: 10.1007/s00210-024-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025]
Abstract
Like other chemotherapeutic agents, 5-fluorouracil (5-FU) targets cancerous cells, but it also causes many unwanted side effects on healthy tissues and cells. Based on the undesirable effects of 5-FU, the aim of this study was to determine how 5-FU affects lung tissue and whether nobiletin has any protective effect. The study consisted of negative control, Nobiletin, 5-FU and Nobiletin + 5-FU groups. Nobiletin and Nobiletin + 5-FU groups received 10 mg/kg Nobiletin i.g. for 7 days. On day 8, 100 mg/kg 5-FU was administered i.p. to 5-FU and Nobiletin + 5-FU groups. Biochemical and immunohistochemical analyses were performed on the lung tissues dissected at the end of the study. 5-FU caused growth retardation, disturbed the oxidant-antioxidant balance by increasing MDA levels and decreasing GSH levels, triggered cellular apoptosis by increasing Bax and caspase-3 levels and decreasing Bcl-2, also increased lung tissue inflammation and damage by increasing NFκB and IL-1β levels. However, it was determined that Nobiletin prevented the disruption of the oxidant-antioxidant balance, showed significant anti-apoptotic effects, especially by reducing Bax levels and partially modulating caspase-3 and Bcl-2 levels, and also exhibited anti-inflammatory effects by reducing NFκB and IL-1β levels and supported the normal development of animals. Our results showed that nobiletin pretreatment showed anti-inflammatory activity by inhibiting the NFκB pathway in 5-FU-induced lung injury, suppressed oxidative stress with its antioxidant activity and was effective in modulating cellular apoptosis with its anti-apoptotic activity. In conclusion, Nobiletin has been shown to have an important potential in reducing fluorouracil-induced tissue damage by acting through multiple pathways.
Collapse
Affiliation(s)
- Gözde Atila Uslu
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Hamit Uslu
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey.
| | - Taha Abdulkadir Çoban
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Serpil Aygörmez
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
46
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
47
|
Manivannan HP, Veeraraghavan VP, Francis AP. Prediction of Multi-targeting Pharmacological Activity of Bioactive Compounds from Medicinal Plants Against Hepatocellular Carcinoma Through Advanced Network Pharmacology and Bioinformatics-Based Investigation. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05150-8. [PMID: 39820926 DOI: 10.1007/s12010-024-05150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
The primary objective of this study was to identify bioactive compounds from four medicinal plants with multi-targeting activity against hepatocellular carcinoma (HCC). A comprehensive analysis led to the identification of a subset of compounds possessing favorable drug-likeness, pharmacokinetics, and absence of toxicity profiles. Target analysis for 42 phytochemicals revealed 210 potential targets associated with HCC. Protein-protein interaction (PPI) analysis of these targets uncovered five critical hub genes, STAT3, SRC, AKT1, MAPK3, and EGFR, in our study. Correlation analysis of these hub genes indicated a strong positive correlation between EGFR, MAPK3, and SRC expression highlighting their interconnected roles in HCC. Survival analysis underscored the significant prognostic role of these hub genes in HCC underscoring their potential as biomarkers. The co-expression analysis unveiled an intricate network of interactions among the hub genes, while the enrichment analysis demonstrated their enrichment in diverse biological and signaling pathways related to HCC. Molecular docking analysis between the seven phytochemicals and five identified targets revealed that bauerenol exhibited good affinity towards all the targets. Subsequent molecular dynamics (MD) simulations demonstrated that bauerenol formed stable complexes with STAT3, AKT1, EGFR, and MAPK3, suggesting its potential as a multi-targeted inhibitor. Our research suggests that bauerenol shows promise as an inhibitor for HCC targets and stands out as a notable lead compound. However, further experimental studies are necessary to confirm its activity and to evaluate its potential as a therapeutic agent for HCC.
Collapse
Affiliation(s)
- Hema Priya Manivannan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
48
|
Siddappa T, Ravish A, Xi Z, Mohan A, Girimanchanaika SS, Krishnamurthy NP, Basappa S, Gaonkar SL, Lobie PE, Pandey V, Basappa B. Discovery of 2-Pyrazolines That Inhibit the Phosphorylation of STAT3 as Nanomolar Cytotoxic Agents. ACS OMEGA 2025; 10:114-126. [PMID: 39829533 PMCID: PMC11740381 DOI: 10.1021/acsomega.3c10504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 01/22/2025]
Abstract
STAT3 has emerged as a validated target in cancer, being functionally associated with breast cancer (BC) development, growth, resistance to chemotherapy, metastasis, and evasion of immune surveillance. Previously, a series of compounds consisting of imidazo[1,2-a]pyridine tethered 2-pyrazolines (referred to as ITPs) were developed that inhibit STAT3 phosphorylation in estrogen receptor-positive (ER+) BC cells. Herein, a new library of derivatives consisting of imidazo[1,2-a]pyridine clubbed 2-pyrazolines 2(a-o) and its amide derivatives 3(a-af) have been synthesized. Among these derivatives, 3n and 3p displayed efficacy to reduce ER+ BC cell viability, with IC50 values of 55 and 15 nM, respectively. Molecular docking simulations predicted that compound 3p bound to STAT3 protein, with a binding energy of -9.56 kcal/mol. Using Western blot analysis, it was demonstrated that treatment of ER+ BC cells with compound 3p decreased the levels of phosphorylated STAT3 at the Tyr705 residue. In conclusion, this investigation presents the synthesis of imidazopyridine clubbed 2-pyrazolines that exhibit significant efficacy in reducing viability of ER+ BC cells. In silico docking and Western blot analyses together support compound 3p as a promising novel inhibitor of STAT3 phosphorylation, suggesting its potential as a valuable candidate for further therapeutic development.
Collapse
Affiliation(s)
- Tejaswini
P. Siddappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka 570006, India
| | - Akshay Ravish
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka 570006, India
| | - Zhang Xi
- Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Arunkumar Mohan
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka 570006, India
| | - Swamy S. Girimanchanaika
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka 570006, India
| | | | - Shreeja Basappa
- Department
of Chemistry, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, India
| | - Santosh L. Gaonkar
- Department
of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Peter E. Lobie
- Shenzhen
Bay Laboratory, Shenzhen 518055, China
- Institute
of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International
Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Vijay Pandey
- Institute
of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International
Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Basappa Basappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka 570006, India
| |
Collapse
|
49
|
Naseri B, Farsad-Akhtar N, Mardi A, Baghbani E, Bornedeli S, Asadi M, Shanehbandi D. lncRNA PVT1 silencing inhibits gastric cancer cells' progression via enhancing chemosensitivity to paclitaxel. Gene 2025; 932:148900. [PMID: 39209180 DOI: 10.1016/j.gene.2024.148900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide because of its high morbidity and the absence of effective therapies. Even though paclitaxel is a powerful anticancer chemotherapy drug, recent studies have indicated its ineffectiveness against GC cells. Long non-coding RNA (lncRNA) PVT1 has a high expression in GC cells and increases the progression of tumors via inducing drug resistance. In the present study, the effects of the siRNA-mediated lncRNA PVT1 gene silencing along with paclitaxel treatment on the rate of apoptosis, growth, and migration of AGS GC cells were investigated. AGS cells were cultured and then transfected with siRNA PVT1 using electroporation. The MTT test was used to examine the effect of treatments on the viability of cultured cells. Furthermore, the flow cytometry method was used to evaluate the impact of treatments on the cell cycle process and apoptosis induction in GC cells. Finally, the mRNA expression of target genes was assessed using the qRT-PCR method. The results showed that lncRNA PVT1 gene suppression, along with paclitaxel treatment, reduces the viability of cancer cells and significantly increases the apoptosis rate of cancer cells and the number of cells arrested in the G2/M phase compared to the control group. Based on the results of qRT-PCR, combined treatment significantly decreased the expression of MMP3, MMP9, MDR1, MRP1, Bcl-2, k-Ras, and c-Myc genes and increased the expression of the Bax gene compared to the control group. The results of our study showed that lncRNA PVT1 gene targeting, together with paclitaxel treatment, induces apoptosis, inhibits growth, alleviates drug resistance, and reduces the migratory capability of GC cells. Therefore, there is a need for further investigations to evaluate the feasibility and effectiveness of this approach in vivo in animal models.
Collapse
Affiliation(s)
- Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nader Farsad-Akhtar
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Bornedeli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Meher N, Bidkar AP, Wadhwa A, Bobba KN, Dhrona S, Dasari C, Mu C, Fong COY, Cámara JA, Ali U, Basak M, Bulkley D, Steri V, Fontaine SD, Zhu J, Oskowitz A, Aggarwal RR, Sriram R, Chou J, Wilson DM, Seo Y, Santi DV, Ashley GW, VanBrocklin HF, Flavell RR. PET Imaging Using 89Zr-Labeled StarPEG Nanocarriers Reveals Heterogeneous Enhanced Permeability and Retention in Prostate Cancer. Mol Cancer Ther 2025; 24:141-151. [PMID: 39331510 DOI: 10.1158/1535-7163.mct-24-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
The enhanced permeability and retention (EPR) effect controls passive nanodrug uptake in tumors and may provide a high tumor payload with prolonged retention for cancer treatment. However, EPR-mediated tumor uptake and distribution vary by cancer phenotype. Thus, we hypothesized that a companion PET imaging surrogate may benefit EPR-mediated therapeutic drug delivery. We developed two 89Zr-radiolabeled nanocarriers based on 4-armed starPEG40kDa with or without talazoparib (TLZ), a potent PARP inhibitor, as surrogates for the PEG-TLZ4 therapeutic scaffold. For PET imaging, PEG-DFB4 and PEG-DFB1-TLZ3 were radiolabeled with 89Zr by replacing one or all four copis of TLZ on PEG-TLZ4 with deferoxamine B (DFB). The radiolabeled nanodrugs [89Zr]PEG-DFB4 and [89Zr]PEG-DFB1-TLZ3 were tested in vivo in prostate cancer subcutaneous (s.c.) xenografts (22Rv1, LTL-545, and LTL-610) and 22Rv1 metastatic models. Their EPR-mediated tumoral uptake and penetration was compared with CT26, a known EPR-high cell line. MicroPET/CT images, organ biodistribution, and calculated kinetic parameters showed high uptake in CT26 and LTL-545 and moderate to low uptake in LTL-610 and 22Rv1. MicroPET/CT and high-resolution autoradiographic images showed nanocarrier penetration into highly permeable CT26, but heterogeneous peripheral accumulation was observed in LTL-545, LTL-610, and 22Rv1 s.c. xenografts and metastatic tumors. CD31 staining of tumor sections showed homogenous vascular development in CT26 tumors and heterogeneity in other xenografts. Both [89Zr]PEG-DFB4 and [89Zr]PEG-DFB1-TLZ3 showed similar accumulation and distribution in s.c. and metastatic tumor models. Both nanocarriers can measure tumor model passive uptake heterogeneity. Although heterogeneous, prostate cancer xenografts had low EPR. These starPEG nanocarriers could be used as PET imaging surrogates to predict drug delivery and efficacy.
Collapse
Affiliation(s)
- Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chandrashekhar Dasari
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Division of Vascular and Endovascular Surgery, University of California San Francisco, San Francisco, California
| | - Changhua Mu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Cyril O Y Fong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Juan A Cámara
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Umama Ali
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Megha Basak
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - David Bulkley
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | - Jun Zhu
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Adam Oskowitz
- Division of Vascular and Endovascular Surgery, University of California San Francisco, San Francisco, California
| | - Rahul R Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jonathan Chou
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | | | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| |
Collapse
|