1
|
Jang JH, Lee TJ, Sung EG, Song IH, Kim JY. Pioglitazone mediates apoptosis in Caki cells via downregulating c-FLIP (L) expression and reducing Bcl-2 protein stability. Oncol Lett 2021; 22:743. [PMID: 34466155 PMCID: PMC8387863 DOI: 10.3892/ol.2021.13004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
Pioglitazone is an anti-diabetic agent used in the treatment of type 2 diabetes, which belongs to the thiazolidinediones (TZDs) group. TZDs target peroxisome proliferator-activated receptor γ (PPARγ), which functions as a transcription factor of the nuclear hormone receptor. Pioglitazone has antitumor effects in several cancer types and could be a tool for drug therapy in various cancer treatments. Nevertheless, the molecular basis for pioglitazone-induced anticancer effects in renal cancer (RC) has not yet been elucidated. Thus, the aim of the present study was to investigate the detailed signaling pathway underlying pioglitazone-induced apoptosis in Caki cells derived from human clear cell renal cell carcinoma. As a result, it was demonstrated by flow cytometry analysis and Annexin V-propidium iodide staining that pioglitazone treatment induced apoptotic cell death in a dose-dependent manner in Caki cells. The protein expression levels of cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP)(L) and Bcl-2, which were determined by western blotting, decreased after pioglitazone treatment in Caki cells. Flow cytometry and western blot analyses demonstrated that pioglitazone-mediated apoptosis was blocked following pretreatment with the pan-caspase inhibitor, z-VAD-fmk, indicating that pioglitazone-induced apoptosis was mediated via a caspase-dependent signaling pathway. However, the reactive oxygen species (ROS) scavenger, N-acetylcysteine (NAC), did not affect pioglitazone-mediated apoptosis and degradation of c-FLIP(L) and Bcl-2 protein. Of note, it was found by western blot analysis that Bcl-2 protein expression was downregulated by the decreased protein stability of Bcl-2 in pioglitazone-treated Caki cells. In conclusion, these findings indicated that pioglitazone-induced apoptosis is regulated through caspase-mediated degradation of FLIP(L) and reduction of Bcl-2 protein stability, suggesting that pioglitazone is a feasible apoptotic agent that could be used in the treatment of human RC.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Eon-Gi Sung
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| |
Collapse
|
2
|
Roy A, Sahoo J, Kamalanathan S, Naik D, Mohan P, Kalayarasan R. Diabetes and pancreatic cancer: Exploring the two-way traffic. World J Gastroenterol 2021; 27:4939-4962. [PMID: 34497428 PMCID: PMC8384733 DOI: 10.3748/wjg.v27.i30.4939] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is often associated with a poor prognosis. Long-standing diabetes mellitus is considered as an important risk factor for its development. This risk can be modified by the use of certain antidiabetic medications. On the other hand, new-onset diabetes can signal towards an underlying PC in the elderly population. Recently, several attempts have been made to develop an effective clinical tool for PC screening using a combination of history of new-onset diabetes and several other clinical and biochemical markers. On the contrary, diabetes affects the survival after treatment for PC. We describe this intimate and complex two-way relationship of diabetes and PC in this review by exploring the underlying pathogenesis.
Collapse
Affiliation(s)
- Ayan Roy
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Pazhanivel Mohan
- Department of Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Raja Kalayarasan
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
3
|
Kumari GK, Kiran AVVVR, Krishnamurthy PT. Preliminary evaluation on the beneficial effects of pioglitazone in the treatment of endometrial cancer. Med Oncol 2021; 38:71. [PMID: 34008039 DOI: 10.1007/s12032-021-01521-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Endometrial cancer (EMC) is one of the complicated gynecological cancers, affecting more than three million women worldwide. Anticancer strategies such as chemotherapy, radiation, and surgery are found to be ineffective and are associated with patient incompliances. The aim of the present study is to repurpose non-oncological drug, i.e., Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, in the treatment of endometrial cancer. The study groups consist of 50 female Swiss albino mice, out of which 40 had endometrial cancer induced with N-ethyl-N-nitrosourea (ENU) and estradiol hexadrobenzoate (EHB). The other groups received saline, EHB, paclitaxel, and different test doses of pioglitazones. Different preliminary parameters such as weekly body weight, mean survival time, percentage increase in life span, and uterine tissue weight were analyzed along with histopathological analysis. We observed a significant change in weekly body weight, improvement in percentage life span, and partial restoration of uterine tissue weight to normal compared to a standard drug, paclitaxel. In the present preliminary evaluation, we have identified that pioglitazone exhibited a significant dose-dependent anticancer activity against ENU- and EHB-induced endometrial cancer, compared to the standard paclitaxel.
Collapse
Affiliation(s)
- Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Ooty, Tamil Nadu, 643001, India
| | - Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Ooty, Tamil Nadu, 643001, India.
| |
Collapse
|
4
|
Beg MS, Gupta A, Sher D, Ali S, Khan S, Gao A, Stewart T, Ahn C, Berry J, Mortensen EM. Impact of Concurrent Medication Use on Pancreatic Cancer Survival-SEER-Medicare Analysis. Am J Clin Oncol 2018; 41:766-771. [PMID: 28079594 PMCID: PMC5503814 DOI: 10.1097/coc.0000000000000359] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Preclinical studies have suggested that non-antineoplastic medication use may impact pancreatic cancer biology. We examined the association of several medication classes on pancreatic cancer survival in a large medical claims database. MATERIALS AND METHODS Histologically confirmed pancreatic adenocarcinoma diagnosed between 2006 and 2009 were analyzed from the Surveillance, Epidemiology, and End Results-Medicare database with available part D data. Drug use was defined as having 2 prescriptions filled within 12 months of pancreatic cancer diagnosis. The following medication classes/combinations were analyzed: β-blocker, statin, insulin, metformin, thiazolidinedione, warfarin, heparin, β-blocker/statin, metformin/statin, and β-blocker/metformin. Multivariable Cox proportional hazard models adjusting for age, sex, race, stage at diagnosis, site of cancer, and Charlson comorbidity index were constructed to test the association between medication classes and overall survival. RESULTS A total of 13,702 patients were included in the study; median age 76 years, 42.5% males, 77.1% white. The most common anatomic site and stage at diagnosis were head of the pancreas (49.9%) and stage 4 (49.6%), respectively. Ninety-four percent of patients died in the follow-up period (median overall survival 5.3 mo). Multivariable Cox regression analysis showed that use of β-blockers, heparin, insulin, and warfarin were significantly associated with improved survival (P<0.05 for each one), whereas metformin, thiazolidinedione, statin, and combination therapies were not. CONCLUSIONS In this study, use of β-blockers, heparin, insulin, and warfarin were associated with improved survival in patients with pancreatic cancer. Additional studies are needed to validate these findings in the clinical setting.
Collapse
Affiliation(s)
- Muhammad Shaalan Beg
- Division of Hematology/Oncology, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390-8852
- Harold C. Simmons Cancer Center, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Arjun Gupta
- Department of Internal Medicine, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - David Sher
- Harold C. Simmons Cancer Center, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Sadia Ali
- Division of Endocrinology and Metabolism, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Saad Khan
- Division of Hematology/Oncology, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390-8852
- Harold C. Simmons Cancer Center, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Ang Gao
- Department of Clinical Sciences, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Tyler Stewart
- Department of Internal Medicine, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Chul Ahn
- Harold C. Simmons Cancer Center, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
- Department of Clinical Sciences, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Jarett Berry
- Division of Cardiology, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
| | - Eric M. Mortensen
- Department of Internal Medicine, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
- Department of Clinical Sciences, University of Texas- Southwestern Medical Center. 5323 Harry Hines Blvd Dallas, TX 75390
- VA North Texas Health Care System, 4500 South Lancaster, Dallas, TX 75216
| |
Collapse
|
5
|
The Histone Deacetylase Inhibitor Valproic Acid Sensitizes Gemcitabine-Induced Cytotoxicity in Gemcitabine-Resistant Pancreatic Cancer Cells Possibly Through Inhibition of the DNA Repair Protein Gamma-H2AX. Target Oncol 2016; 10:575-81. [PMID: 25940934 DOI: 10.1007/s11523-015-0370-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Gemcitabine (GEM) remains a major chemotherapeutic drug for pancreatic cancer, but resistance to GEM has been a big problem, as its response rate has been decreasing year by year. METHODS The effect of the histone deacetylase inhibitor (HDAI) valproic acid (VPA) was compared with tranilast and RI-1 as a combinatorial treatment with GEM in four pancreatic cancer cell lines, BxPC-3, PK45p, MiaPaCa-2 and PK59. Cell viability assays were carried out to check the cytotoxic effects, western blotting was carried out for DNA repair mechanisms, and localization was determined by immunofluorescence. RESULTS The sensitization factors (i.e., the fold ratio of cell viability for GEM/GEM plus drug) reveal that VPA increases the cytotoxic sensitization to GEM at approximately 2.7-fold, 1.2-fold, 1.5-fold and 2.2-fold in BxPC-3, MiaPaCa-2, PK-45p and PK-59 cell lines, respectively. Moreover, GEM induces activation of the DNA repair protein H2AX proportional to the dosage. Interestingly, however, this effect can be abrogated by VPA. CONCLUSIONS These results indicate that VPA enhances GEM-induced cytotoxicity in GEM-resistant pancreatic cancer cells, possibly through inhibition of DNA damage signaling and repair. Our study suggests VPA as a potential therapeutic agent for combinatorial treatment with GEM in pancreatic cancer.
Collapse
|
6
|
Jazi MS, Mohammadi S, Yazdani Y, Sedighi S, Memarian A, Aghaei M. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:779-86. [PMID: 27635203 PMCID: PMC5010851 DOI: pmid/27635203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. MATERIALS AND METHODS Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. RESULTS Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. CONCLUSION These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.
Collapse
Affiliation(s)
- Marie Saghaeian Jazi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Corresponding author: Yaghoub Yazdani. Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran. Fax: +98-1732430564;
| | - Sima Sedighi
- Joint, Bone, and Connective tissue Research Center (JBCRC), Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Aghaei
- Joint, Bone, and Connective tissue Research Center (JBCRC), Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
Polvani S, Tarocchi M, Tempesti S, Bencini L, Galli A. Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J Gastroenterol 2016; 22:2441-2459. [PMID: 26937133 PMCID: PMC4768191 DOI: 10.3748/wjg.v22.i8.2441] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/17/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer death with an overall survival of 5% at five years. The development of PDAC is characteristically associated to the accumulation of distinctive genetic mutations and is preceded by the exposure to several risk factors. Epidemiology has demonstrated that PDAC risk factors may be non-modifiable risks (sex, age, presence of genetic mutations, ethnicity) and modifiable and co-morbidity factors related to the specific habits and lifestyle. Recently it has become evident that obesity and diabetes are two important modifiable risk factors for PDAC. Obesity and diabetes are complex systemic and intertwined diseases and, over the years, experimental evidence indicate that insulin-resistance, alteration of adipokines, especially leptin and adiponectin, oxidative stress and inflammation may play a role in PDAC. Peroxisome proliferator activated receptor-γ (PPARγ) is a nuclear receptor transcription factor that is implicated in the regulation of metabolism, differentiation and inflammation. PPARγ is a key regulator of adipocytes differentiation, regulates insulin and adipokines production and secretion, may modulate inflammation, and it is implicated in PDAC. PPARγ agonists are used in the treatment of diabetes and oxidative stress-associated diseases and have been evaluated for the treatment of PDAC. PPARγ is at the cross-road of diabetes, obesity, and PDAC and it is an interesting target to pharmacologically prevent PDAC in obese and diabetic patients.
Collapse
|
8
|
Chemotherapy and chemoprevention by thiazolidinediones. BIOMED RESEARCH INTERNATIONAL 2015; 2015:845340. [PMID: 25866814 PMCID: PMC4383438 DOI: 10.1155/2015/845340] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
Abstract
Thiazolidinediones (TZDs) are synthetic ligands of Peroxisome-Proliferator-Activated Receptor gamma (PPARγ). Troglitazone, rosiglitazone, and pioglitazone have been approved for treatment of diabetes mellitus type II. All three compounds, together with the first TZD ciglitazone, also showed an antitumor effect in preclinical studies and a beneficial effect in some clinical trials. This review summarizes hypotheses on the role of PPARγ in tumors, on cellular targets of TZDs, antitumor effects of monotherapy and of TZDs in combination with other compounds, with a focus on their role in the treatment of differentiated thyroid carcinoma. The results of chemopreventive effects of TZDs are also considered. Existing data suggest that the action of TZDs is highly complex and that actions do not correlate with cellular PPARγ expression status. Effects are cell-, species-, and compound-specific and concentration-dependent. Data from human trials suggest the efficacy of TZDs as monotherapy in prostate cancer and glioma and as chemopreventive agent in colon, lung, and breast cancer. TZDs in combination with other therapies might increase antitumor effects in thyroid cancer, soft tissue sarcoma, and melanoma.
Collapse
|
9
|
Polvani S, Tarocchi M, Tempesti S, Galli A. Nuclear receptors and pathogenesis of pancreatic cancer. World J Gastroenterol 2014; 20:12062-12081. [PMID: 25232244 PMCID: PMC4161795 DOI: 10.3748/wjg.v20.i34.12062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.
Collapse
|
10
|
Zhang Z, Xu Y, Xu Q, Hou Y. PPARγ against Tumors by Different Signaling Pathways. ACTA ACUST UNITED AC 2013; 36:598-601. [DOI: 10.1159/000355328] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Stravodimou A, Mazzoccoli G, Voutsadakis IA. Peroxisome proliferator-activated receptor gamma and regulations by the ubiquitin-proteasome system in pancreatic cancer. PPAR Res 2012; 2012:367450. [PMID: 23049538 PMCID: PMC3459232 DOI: 10.1155/2012/367450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/13/2012] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the most lethal forms of human cancer. Although progress in oncology has improved outcomes in many forms of cancer, little progress has been made in pancreatic carcinoma and the prognosis of this malignancy remains grim. Several molecular abnormalities often present in pancreatic cancer have been defined and include mutations in K-ras, p53, p16, and DPC4 genes. Nuclear receptor Peroxisome Proliferator-Activated Receptor gamma (PPARγ) has a role in many carcinomas and has been found to be overexpressed in pancreatic cancer. It plays generally a tumor suppressor role antagonizing proteins promoting carcinogenesis such as NF-κB and TGFβ. Regulation of pathways involved in pancreatic carcinogenesis is effectuated by the Ubiquitin Proteasome System (UPS). This paper will examine PPARγ in pancreatic cancer, the regulation of this nuclear receptor by the UPS, and their relationship to other pathways important in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Athina Stravodimou
- Centre Pluridisciplinaire d'Oncologie, Centre Hospitalier Universitaire Vaudois, BH06, Bugnon 46, 1011 Lausanne, Switzerland
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Ioannis A. Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, Centre Hospitalier Universitaire Vaudois, BH06, Bugnon 46, 1011 Lausanne, Switzerland
| |
Collapse
|
12
|
PPARs Signaling and Cancer in the Gastrointestinal System. PPAR Res 2012; 2012:560846. [PMID: 23028383 PMCID: PMC3458283 DOI: 10.1155/2012/560846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/23/2012] [Accepted: 08/07/2012] [Indexed: 12/27/2022] Open
Abstract
Nowadays, the study of the peroxisome proliferators activated receptors (PPARs) as potential targets for cancer prevention and therapy has gained a strong interest. From a biological point of view, the overall responsibility of PPARs in cancer development and progression is still controversial since several studies report both antiproliferative and tumor-promoting actions for these signaling molecules in human cancer cells and animal models. In this paper, we discuss PPARs functions in the context of different types of gastrointestinal cancer.
Collapse
|
13
|
Time-Qualified Patterns of Variation of PPARγ, DNMT1, and DNMT3B Expression in Pancreatic Cancer Cell Lines. PPAR Res 2012; 2012:890875. [PMID: 22966223 PMCID: PMC3433147 DOI: 10.1155/2012/890875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/16/2012] [Indexed: 12/11/2022] Open
Abstract
Carcinogenesis is related to the loss of homeostatic control of cellular processes regulated by transcriptional circuits and epigenetic mechanisms. Among these, the activities of peroxisome proliferator-activated receptors (PPARs) and DNA methyltransferases (DNMTs) are crucial and intertwined. PPARγ is a key regulator of cell fate, linking nutrient sensing to transcription processes, and its expression oscillates with circadian rhythmicity. Aim of our study was to assess the periodicity of PPARγ and DNMTs in pancreatic cancer (PC). We investigated the time-related patterns of PPARG, DNMT1, and DNMT3B expression monitoring their mRNA levels by qRT-PCR at different time points over a 28-hour span in BxPC-3, CFPAC-1, PANC-1, and MIAPaCa-2 PC cells after synchronization with serum shock. PPARG and DNMT1 expression in PANC-1 cells and PPARG expression in MIAPaCa-2 cells were characterized by a 24 h period oscillation, and a borderline significant rhythm was observed for the PPARG, DNMT1, and DNMT3B expression profiles in the other cell lines. The time-qualified profiles of gene expression showed different shapes and phase relationships in the PC cell lines examined. In conclusion, PPARG and DNMTs expression is characterized by different time-qualified patterns in cell lines derived from human PC, and this heterogeneity could influence cell phenotype and human disease behaviour.
Collapse
|
14
|
Correlations among PPARγ, DNMT1, and DNMT3B Expression Levels and Pancreatic Cancer. PPAR Res 2012; 2012:461784. [PMID: 22919364 PMCID: PMC3423985 DOI: 10.1155/2012/461784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that peroxisome proliferator-activated receptor γ (PPARγ) and DNA methyltransferases (DNMTs) play a role in carcinogenesis. In this study we aimed to evaluate the expression of PPARγ, DNMT1, and DNMT3B and their correlation with clinical-pathological features in patients with pancreatic cancer (PC), and to define the effect of PPARγ activation on DNMTs expression in PC cell lines. qRT-PCR analysis showed that DNMT3B expression was downregulated in tumors compared to normal tissues (P = 0.03), whereas PPARγ and DNMT1 levels did not show significant alterations in PC patients. Expression levels between PPARγ and DNMT1 and between DNMT1 and DNMT3B were highly correlated (P = 0.008 and P = 0.05 resp.). DNMT3B overexpression in tumor tissue was positively correlated with both lymph nodes spreading (P = 0.046) and resection margin status (P = 0.04), and a borderline association with perineural invasion (P = 0.06) was found. Furthermore, high levels of DNMT3B expression were significantly associated with a lower mortality in the whole population (HR = 0.485; 95%CI = 0.262–0.895, P = 0.02) and in the subgroup of patients without perineural invasion (HR = 0.314; 95%CI = 0.130–0.758; P = 0.01), while such association was not observed in patients with tumor invasion into perineural structures (P = 0.70). In conclusion, in vitro and in vivo PPARγ and DNMTs appear interrelated in PC, and this interaction might influence cell phenotype and disease behavior.
Collapse
|
15
|
Global Gene Expression Profiling in PPAR-γ Agonist-Treated Kidneys in an Orthologous Rat Model of Human Autosomal Recessive Polycystic Kidney Disease. PPAR Res 2012; 2012:695898. [PMID: 22666229 PMCID: PMC3359747 DOI: 10.1155/2012/695898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/17/2012] [Indexed: 01/07/2023] Open
Abstract
Kidneys are enlarged by aberrant proliferation of tubule epithelial cells leading to the formation of numerous cysts, nephron loss, and interstitial fibrosis in polycystic kidney disease (PKD). Pioglitazone (PIO), a PPAR-γ agonist, decreased cell proliferation, interstitial fibrosis, and inflammation, and ameliorated PKD progression in PCK rats (Am. J. Physiol.-Renal, 2011). To explore genetic mechanisms involved, changes in global gene expression were analyzed. By Gene Set Enrichment Analysis of 30655 genes, 13 of the top 20 downregulated gene ontology biological process gene sets and six of the top 20 curated gene set canonical pathways identified to be downregulated by PIOtreatment were related to cell cycle and proliferation, including EGF, PDGF and JNK pathways. Their relevant pathways were identified using the Kyoto Encyclopedia of Gene and Genomes database. Stearoyl-coenzyme A desaturase 1 is a key enzyme in fatty acid metabolism found in the top 5 genes downregulated by PIO treatment. Immunohistochemical analysis revealed that the gene product of this enzyme was highly expressed in PCK kidneys and decreased by PIO. These data show that PIO alters the expression of genes involved in cell cycle progression, cell proliferation, and fatty acid metabolism.
Collapse
|