1
|
Nathani P, Sharma P. Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach. Gastrointest Endosc Clin N Am 2025; 35:319-353. [PMID: 40021232 DOI: 10.1016/j.giec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of lesions. This review describes the available artificial intelligence (AI) technology and the current data on AI tools for screening esophageal squamous cell cancer, Barret's esophagus-related neoplasia, and gastric cancer. These tools outperformed endoscopists in many situations. Recent randomized controlled trials have demonstrated the successful application of AI tools in clinical practice with improved outcomes.
Collapse
Affiliation(s)
- Piyush Nathani
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Prateek Sharma
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA; Kansas City Veteran Affairs Medical Center, Kansas City, MO, USA
| |
Collapse
|
2
|
Li B, Du YY, Tan WM, He DL, Qi ZP, Yu HH, Shi Q, Ren Z, Cai MY, Yan B, Cai SL, Zhong YS. Effect of computer aided detection system on esophageal neoplasm diagnosis in varied levels of endoscopists. NPJ Digit Med 2025; 8:160. [PMID: 40082585 PMCID: PMC11906877 DOI: 10.1038/s41746-025-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
A computer-aided detection (CAD) system for early esophagus carcinoma identification during endoscopy with narrow-band imaging (NBI) was evaluated in a large-scale, prospective, tandem, randomized controlled trial to assess its effectiveness. The study was registered at the Chinese Clinical Trial Registry (ChiCTR2100050654, 2021/09/01). Involving 3400 patients were randomly assigned to either routine (routine-first) or CAD-assisted (CAD-first) NBI endoscopy, followed by the other procedure, with targeted biopsies taken at the end of the second examination. The primary outcome was the diagnosis of 1 or more neoplastic lesion of esophagus during the first examination. The CAD-first group demonstrated a significantly higher neoplastic lesion detection rate (3.12%) compared to the routine-first group (1.59%) with a relative detection ratio of 1.96 (P = 0.0047). Subgroup analysis revealed a higher detection rate in junior endoscopists using CAD-first, while no significant difference was observed for senior endoscopists. The CAD system significantly improved esophageal neoplasm detection, particularly benefiting junior endoscopists.
Collapse
Affiliation(s)
- Bing Li
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yan-Yun Du
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Wei-Min Tan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
| | - Dong-Li He
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhi-Peng Qi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hon-Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau SAR, China
| | - Qiang Shi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhong Ren
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ming-Yan Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Bo Yan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China.
| | - Shi-Lun Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Yun-Shi Zhong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Zhou N, Yuan X, Liu W, Luo Q, Liu R, Hu B. Artificial intelligence in endoscopic diagnosis of esophageal squamous cell carcinoma and precancerous lesions. Chin Med J (Engl) 2025:00029330-990000000-01442. [PMID: 40008787 DOI: 10.1097/cm9.0000000000003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Indexed: 02/27/2025] Open
Abstract
ABSTRACT Esophageal squamous cell carcinoma (ESCC) poses a significant global health challenge, necessitating early detection, timely diagnosis, and prompt treatment to improve patient outcomes. Endoscopic examination plays a pivotal role in this regard. However, despite the availability of various endoscopic techniques, certain limitations can result in missed or misdiagnosed ESCCs. Currently, artificial intelligence (AI)-assisted endoscopic diagnosis has made significant strides in addressing these limitations and improving the diagnosis of ESCC and precancerous lesions. In this review, we provide an overview of the current state of AI applications for endoscopic diagnosis of ESCC and precancerous lesions in aspects including lesion characterization, margin delineation, invasion depth estimation, and microvascular subtype classification. Furthermore, we offer insights into the future direction of this field, highlighting potential advancements that can lead to more accurate diagnoses and ultimately better prognoses for patients.
Collapse
Affiliation(s)
- Nuoya Zhou
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianglei Yuan
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruide Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Waki K, Nagaoka K, Okubo K, Kiyama M, Gushima R, Ohno K, Honda M, Yamasaki A, Matsuno K, Furuta Y, Miyamoto H, Naoe H, Amagasaki M, Tanaka Y. Optimizing AI models to predict esophageal squamous cell carcinoma risk by incorporating small datasets of soft palate images. Sci Rep 2025; 15:4003. [PMID: 39893225 PMCID: PMC11787386 DOI: 10.1038/s41598-025-86829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
There is a currently an unmet need for non-invasive methods to predict the risk of esophageal squamous cell carcinoma (ESCC). Previously, we found that specific soft palate morphologies are strongly associated with increased ESCC risk. However, there is currently no artificial intelligence (AI) system that utilizes oral images for ESCC risk assessment. Here, we evaluated three AI models and three fine-tuning approaches with regard to their ESCC predictive power. Our dataset contained 539 cases, which were subdivided into 221 high-risk cases (2491 images) and 318 non-high-risk cases (2524 images). We used 480 cases (4295 images) for the training dataset, and the rest for validation. The Bilinear convolutional neural network (CNN) model (especially when pre-trained on fractal images) demonstrated diagnostic precision that was comparable to or better than other models for distinguishing between high-risk and non-high-risk groups. In addition, when tested with a small number of images containing soft palate data, the model showed high precision: the best AUC model had 0.91 (sensitivity 0.86, specificity 0.79). This study presents a significant advance in the development of an AI-based non-invasive screening tool for the identification of high-risk ESCC patients. The approach may be particularly suitable for institutes with limited medical imaging resources.
Collapse
Affiliation(s)
- Kotaro Waki
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Keishi Okubo
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Masato Kiyama
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Ryosuke Gushima
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Kento Ohno
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Munenori Honda
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Akira Yamasaki
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Kenshi Matsuno
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yoki Furuta
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Hideaki Miyamoto
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Hideaki Naoe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Motoki Amagasaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan.
| |
Collapse
|
5
|
Rai HM, Yoo J, Razaque A. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. EXPERT SYSTEMS WITH APPLICATIONS 2024; 255:124838. [DOI: 10.1016/j.eswa.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
6
|
Zhang WY, Chang YJ, Shi RH. Artificial intelligence enhances the management of esophageal squamous cell carcinoma in the precision oncology era. World J Gastroenterol 2024; 30:4267-4280. [PMID: 39492825 PMCID: PMC11525855 DOI: 10.3748/wjg.v30.i39.4267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer with a poor prognosis. Early diagnosis and prognosis assessment are crucial for improving the survival rate of ESCC patients. With the advancement of artificial intelligence (AI) technology and the proliferation of medical digital information, AI has demonstrated promising sensitivity and accuracy in assisting precise detection, treatment decision-making, and prognosis assessment of ESCC. It has become a unique opportunity to enhance comprehensive clinical management of ESCC in the era of precision oncology. This review examines how AI is applied to the diagnosis, treatment, and prognosis assessment of ESCC in the era of precision oncology, and analyzes the challenges and potential opportunities that AI faces in clinical translation. Through insights into future prospects, it is hoped that this review will contribute to the real-world application of AI in future clinical settings, ultimately alleviating the disease burden caused by ESCC.
Collapse
Affiliation(s)
- Wan-Yue Zhang
- School of Medicine, Southeast University, Nanjing 221000, Jiangsu Province, China
| | - Yong-Jian Chang
- School of Cyber Science and Engineering, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Rui-Hua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
7
|
Theocharopoulos C, Davakis S, Ziogas DC, Theocharopoulos A, Foteinou D, Mylonakis A, Katsaros I, Gogas H, Charalabopoulos A. Deep Learning for Image Analysis in the Diagnosis and Management of Esophageal Cancer. Cancers (Basel) 2024; 16:3285. [PMID: 39409906 PMCID: PMC11475041 DOI: 10.3390/cancers16193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Esophageal cancer has a dismal prognosis and necessitates a multimodal and multidisciplinary approach from diagnosis to treatment. High-definition white-light endoscopy and histopathological confirmation remain the gold standard for the definitive diagnosis of premalignant and malignant lesions. Artificial intelligence using deep learning (DL) methods for image analysis constitutes a promising adjunct for the clinical endoscopist that could effectively decrease BE overdiagnosis and unnecessary surveillance, while also assisting in the timely detection of dysplastic BE and esophageal cancer. A plethora of studies published during the last five years have consistently reported highly accurate DL algorithms with comparable or superior performance compared to endoscopists. Recent efforts aim to expand DL utilization into further aspects of esophageal neoplasia management including histologic diagnosis, segmentation of gross tumor volume, pretreatment prediction and post-treatment evaluation of patient response to systemic therapy and operative guidance during minimally invasive esophagectomy. Our manuscript serves as an introduction to the growing literature of DL applications for image analysis in the management of esophageal neoplasia, concisely presenting all currently published studies. We also aim to guide the clinician across basic functional principles, evaluation metrics and limitations of DL for image recognition to facilitate the comprehension and critical evaluation of the presented studies.
Collapse
Affiliation(s)
| | - Spyridon Davakis
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Achilleas Theocharopoulos
- Department of Electrical and Computer Engineering, National Technical University of Athens, 10682 Athens, Greece;
| | - Dimitra Foteinou
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Adam Mylonakis
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Ioannis Katsaros
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Helen Gogas
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Alexandros Charalabopoulos
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| |
Collapse
|
8
|
Tao Y, Fang L, Qin G, Xu Y, Zhang S, Zhang X, Du S. Efficiency of endoscopic artificial intelligence in the diagnosis of early esophageal cancer. Thorac Cancer 2024; 15:1296-1304. [PMID: 38685604 PMCID: PMC11147664 DOI: 10.1111/1759-7714.15261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The accuracy of artificial intelligence (AI) and experts in diagnosing early esophageal cancer (EC) and its infiltration depth was summarized and analyzed, thus identifying the advantages of AI over traditional manual diagnosis, with a view to more accurately assisting doctors in evaluating the patients' conditions and improving their cure and survival rates. METHODS The PubMed, EMBASE, Cochrane, Google, and CNKI databases were searched for relevant literature related to AI diagnosis of early EC and its invasion depth published before August 2023. Summary analysis of pooled sensitivity, specificity, summary receiver operating characteristics (SROC) and area under the curve (AUC) of AI in diagnosing early EC were performed, and Review Manager and Stata were adopted for data analysis. RESULTS A total of 19 studies were enrolled with a low to moderate total risk of bias. The pooled sensitivity of AI for diagnosing early EC was markedly higher than that of novices and comparable to that of endoscopists. Moreover, AI predicted early EC with markedly higher AUCs than novices and experts (0.93 vs. 0.74 vs. 0.89). In addition, pooled sensitivity and specificity in the diagnosis of invasion depth in early EC were higher than that of experts, with AUCs of 0.97 and 0.92, respectively. CONCLUSION AI-assistance can diagnose early EC and its infiltration depth more accurately, which can help in its early intervention and the customization of personalized treatment plans. Therefore, AI systems have great potential in the early diagnosis of EC.
Collapse
Affiliation(s)
- Yongkang Tao
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Long Fang
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Geng Qin
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Yingying Xu
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Shuang Zhang
- Beijing University of Chinese MedicineBeijingChina
| | | | - Shiyu Du
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
9
|
Gao X, Lin J, Qu C, Wang C, Wu A, Zhu J, Xu C. Computer-aided diagnostic system with automated deep learning method based on the AutoGluon framework improved the diagnostic accuracy of early esophageal cancer. J Gastrointest Oncol 2024; 15:535-543. [PMID: 38756633 PMCID: PMC11094492 DOI: 10.21037/jgo-24-158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background There have been studies on the application of computer-aided diagnosis (CAD) in the endoscopic diagnosis of early esophageal cancer (EEC), but there is still a significant gap from clinical application. We developed an endoscopic CAD system for EEC based on the AutoGluon framework, aiming to explore the feasibility of automatic deep learning (DL) in clinical application. Methods The endoscopic pictures of normal esophagus, esophagitis, and EEC were collected from The First Affiliated Hospital of Soochow University (September 2015 to December 2021) and the Norwegian HyperKvasir database. All images of non-cancerous esophageal lesions and EEC in this study were pathologically examined. There were three tasks: task A was normal vs. lesion classification under non-magnifying endoscopy (n=932 vs. 1,092); task B was non-cancer lesion vs. EEC classification under non-magnifying endoscopy (n=594 vs. 429); and task C was non-cancer lesion vs. EEC classification under magnifying endoscopy (n=505 vs. 824). In all classification tasks, we took 100 pictures as the verification set, and the rest comprised as the training set. The CAD system was established based on the AutoGluon framework. Diagnostic performance of the model was compared with that of endoscopists grouped according to years of experience (senior >15 years; junior <5 years). Model evaluation indicators included accuracy, recall rate, precision, F1 value, interpretation time, and the area under the receiver operating characteristic (ROC) curve (AUC). Results In tasks A and B, the accuracies of medium-performance CAD and high-performance CAD were lower than those of junior doctors and senior doctors. In task C, the medium-performance and high-performance CAD accuracies were close to those of junior doctors and senior doctors. The high-performance CAD model outperformed the junior doctors in both task A (0.850 vs. 0.830) and task C (0.840 vs. 0.830) in sensitivity comparison, but there was still a large gap between high-performance CAD models and doctors in sensitivity comparison. In task A, with the aid of CAD pre-interpretation, the accuracy of junior and senior physicians were significantly improved (from 0.880 to 0.915 and from 0.920 to 0.945, respectively); the time spent on film reading was significantly shortened (junior: from 11.3 to 8.7 s; senior: from 6.7 to 5.5 s). In task C, with the aid of CAD pre-interpretation, the accuracy of junior and senior physicians were significantly improved (from 0.850 to 0.865 and from 0.915 to 0.935, respectively); the reading time was significantly shortened (junior: from 9.5 to 7.7 s; senior: from 5.6 to 3.0 s). Conclusions The CAD system based on the AutoGluon framework can assist doctors to improve the diagnostic accuracy and reading time of EEC under endoscopy. This study reveals that automatic DL methods are promising in clinical application.
Collapse
Affiliation(s)
- Xin Gao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxi Lin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changju Qu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Airong Wu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinzhou Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Qi JH, Huang SL, Jin SZ. Novel milestones for early esophageal carcinoma: From bench to bed. World J Gastrointest Oncol 2024; 16:1104-1118. [PMID: 38660637 PMCID: PMC11037034 DOI: 10.4251/wjgo.v16.i4.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/28/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer worldwide, and esophageal squamous cell carcinoma (ESCC) accounts for the majority of cases of EC. To effectively diagnose and treat ESCC and improve patient prognosis, timely diagnosis in the initial phase of the illness is necessary. This article offers a detailed summary of the latest advancements and emerging technologies in the timely identification of ECs. Molecular biology and epigenetics approaches involve the use of molecular mechanisms combined with fluorescence quantitative polymerase chain reaction (qPCR), high-throughput sequencing technology (next-generation sequencing), and digital PCR technology to study endogenous or exogenous biomolecular changes in the human body and provide a decision-making basis for the diagnosis, treatment, and prognosis of diseases. The investigation of the microbiome is a swiftly progressing area in human cancer research, and microorganisms with complex functions are potential components of the tumor microenvironment. The intratumoral microbiota was also found to be connected to tumor progression. The application of endoscopy as a crucial technique for the early identification of ESCC has been essential, and with ongoing advancements in technology, endoscopy has continuously improved. With the advancement of artificial intelligence (AI) technology, the utilization of AI in the detection of gastrointestinal tumors has become increasingly prevalent. The implementation of AI can effectively resolve the discrepancies among observers, improve the detection rate, assist in predicting the depth of invasion and differentiation status, guide the pericancerous margins, and aid in a more accurate diagnosis of ESCC.
Collapse
Affiliation(s)
- Ji-Han Qi
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Ling Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
11
|
Guidozzi N, Menon N, Chidambaram S, Markar SR. The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: a systematic review and meta-analysis. Dis Esophagus 2023; 36:doad048. [PMID: 37480192 PMCID: PMC10789250 DOI: 10.1093/dote/doad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Early detection of esophageal cancer is limited by accurate endoscopic diagnosis of subtle macroscopic lesions. Endoscopic interpretation is subject to expertise, diagnostic skill, and thus human error. Artificial intelligence (AI) in endoscopy is increasingly bridging this gap. This systematic review and meta-analysis consolidate the evidence on the use of AI in the endoscopic diagnosis of esophageal cancer. The systematic review was carried out using Pubmed, MEDLINE and Ovid EMBASE databases and articles on the role of AI in the endoscopic diagnosis of esophageal cancer management were included. A meta-analysis was also performed. Fourteen studies (1590 patients) assessed the use of AI in endoscopic diagnosis of esophageal squamous cell carcinoma-the pooled sensitivity and specificity were 91.2% (84.3-95.2%) and 80% (64.3-89.9%). Nine studies (478 patients) assessed AI capabilities of diagnosing esophageal adenocarcinoma with the pooled sensitivity and specificity of 93.1% (86.8-96.4) and 86.9% (81.7-90.7). The remaining studies formed the qualitative summary. AI technology, as an adjunct to endoscopy, can assist in accurate, early detection of esophageal malignancy. It has shown superior results to endoscopists alone in identifying early cancer and assessing depth of tumor invasion, with the added benefit of not requiring a specialized skill set. Despite promising results, the application in real-time endoscopy is limited, and further multicenter trials are required to accurately assess its use in routine practice.
Collapse
Affiliation(s)
- Nadia Guidozzi
- Department of General Surgery, University of Witwatersrand, Johannesburg, South Africa
| | - Nainika Menon
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
| | - Swathikan Chidambaram
- Academic Surgical Unit, Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London, UK
| | - Sheraz Rehan Markar
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Zhang JQ, Mi JJ, Wang R. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15:1998-2016. [DOI: 10.4251/wjgo.v15.i11.1998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Esophageal cancer is the seventh-most common cancer type worldwide, accounting for 5% of death from malignancy. Development of novel diagnostic techniques has facilitated screening, early detection, and improved prognosis. Convolutional neural network (CNN)-based image analysis promises great potential for diagnosing and determining the prognosis of esophageal cancer, enabling even early detection of dysplasia.
AIM To conduct a meta-analysis of the diagnostic accuracy of CNN models for the diagnosis of esophageal cancer and high-grade dysplasia (HGD).
METHODS PubMed, EMBASE, Web of Science and Cochrane Library databases were searched for articles published up to November 30, 2022. We evaluated the diagnostic accuracy of using the CNN model with still image-based analysis and with video-based analysis for esophageal cancer or HGD, as well as for the invasion depth of esophageal cancer. The pooled sensitivity, pooled specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were estimated, together with the 95% confidence intervals (CI). A bivariate method and hierarchical summary receiver operating characteristic method were used to calculate the diagnostic test accuracy of the CNN model. Meta-regression and subgroup analyses were used to identify sources of heterogeneity.
RESULTS A total of 28 studies were included in this systematic review and meta-analysis. Using still image-based analysis for the diagnosis of esophageal cancer or HGD provided a pooled sensitivity of 0.95 (95%CI: 0.92-0.97), pooled specificity of 0.92 (0.89-0.94), PLR of 11.5 (8.3-16.0), NLR of 0.06 (0.04-0.09), DOR of 205 (115-365), and AUC of 0.98 (0.96-0.99). When video-based analysis was used, a pooled sensitivity of 0.85 (0.77-0.91), pooled specificity of 0.73 (0.59-0.83), PLR of 3.1 (1.9-5.0), NLR of 0.20 (0.12-0.34), DOR of 15 (6-38) and AUC of 0.87 (0.84-0.90) were found. Prediction of invasion depth resulted in a pooled sensitivity of 0.90 (0.87-0.92), pooled specificity of 0.83 (95%CI: 0.76-0.88), PLR of 7.8 (1.9-32.0), NLR of 0.10 (0.41-0.25), DOR of 118 (11-1305), and AUC of 0.95 (0.92-0.96).
CONCLUSION CNN-based image analysis in diagnosing esophageal cancer and HGD is an excellent diagnostic method with high sensitivity and specificity that merits further investigation in large, multicenter clinical trials.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jun-Jie Mi
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan 030012, Shanxi Province, China
| | - Rong Wang
- Department of Gastroenterology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan 030012, Shanxi Province, China
| |
Collapse
|
13
|
Pan Y, He L, Chen W, Yang Y. The current state of artificial intelligence in endoscopic diagnosis of early esophageal squamous cell carcinoma. Front Oncol 2023; 13:1198941. [PMID: 37293591 PMCID: PMC10247226 DOI: 10.3389/fonc.2023.1198941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive tract. The most effective method of reducing the disease burden in areas with a high incidence of esophageal cancer is to prevent the disease from developing into invasive cancer through screening. Endoscopic screening is key for the early diagnosis and treatment of ESCC. However, due to the uneven professional level of endoscopists, there are still many missed cases because of failure to recognize lesions. In recent years, along with remarkable progress in medical imaging and video evaluation technology based on deep machine learning, the development of artificial intelligence (AI) is expected to provide new auxiliary methods of endoscopic diagnosis and the treatment of early ESCC. The convolution neural network (CNN) in the deep learning model extracts the key features of the input image data using continuous convolution layers and then classifies images through full-layer connections. The CNN is widely used in medical image classification, and greatly improves the accuracy of endoscopic image classification. This review focuses on the AI-assisted diagnosis of early ESCC and prediction of early ESCC invasion depth under multiple imaging modalities. The excellent image recognition ability of AI is suitable for the detection and diagnosis of ESCC and can reduce missed diagnoses and help endoscopists better complete endoscopic examinations. However, the selective bias used in the training dataset of the AI system affects its general utility.
Collapse
Affiliation(s)
- Yuwei Pan
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lanying He
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Weiqing Chen
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongtao Yang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
14
|
Yuan XL, Zeng XH, Liu W, Mou Y, Zhang WH, Zhou ZD, Chen X, Hu YX, Hu B. Artificial intelligence for detecting and delineating the extent of superficial esophageal squamous cell carcinoma and precancerous lesions under narrow-band imaging (with video). Gastrointest Endosc 2023; 97:664-672.e4. [PMID: 36509114 DOI: 10.1016/j.gie.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/04/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Although narrow-band imaging (NBI) is a useful modality for detecting and delineating esophageal squamous cell carcinoma (ESCC), there is a risk of incorrectly determining the margins of some lesions even with NBI. This study aimed to develop an artificial intelligence (AI) system for detecting superficial ESCC and precancerous lesions and delineating the extent of lesions under NBI. METHODS Nonmagnified NBI images from 4 hospitals were collected and annotated. Internal and external image test datasets were used to evaluate the detection and delineation performance of the system. The delineation performance of the system was compared with that of endoscopists. Furthermore, the system was directly integrated into the endoscopy equipment, and its real-time diagnostic capability was prospectively estimated. RESULTS The system was trained and tested using 10,047 still images and 140 videos from 1112 patients and 1183 lesions. In the image testing, the accuracy of the system in detecting lesions in internal and external tests was 92.4% and 89.9%, respectively. The accuracy of the system in delineating extents in internal and external tests was 88.9% and 87.0%, respectively. The delineation performance of the system was superior to that of junior endoscopists and similar to that of senior endoscopists. In the prospective clinical evaluation, the system exhibited satisfactory performance, with an accuracy of 91.4% in detecting lesions and an accuracy of 85.9% in delineating extents. CONCLUSIONS The proposed AI system could accurately detect superficial ESCC and precancerous lesions and delineate the extent of lesions under NBI.
Collapse
Affiliation(s)
- Xiang-Lei Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xian-Hui Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wan-Hong Zhang
- Department of Gastroenterology, Cangxi People's Hospital, Guangyuan, Sichuan, China
| | - Zheng-Duan Zhou
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| | - Xin Chen
- The First People's Hospital of Shuangliu District, Chengdu, Sichuan, China
| | - Yan-Xing Hu
- Xiamen Innovision Medical Technology Co, Ltd, Xiamen, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Tang S, Yu X, Cheang CF, Ji X, Yu HH, Choi IC. CLELNet: A continual learning network for esophageal lesion analysis on endoscopic images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107399. [PMID: 36780717 DOI: 10.1016/j.cmpb.2023.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE A deep learning-based intelligent diagnosis system can significantly reduce the burden of endoscopists in the daily analysis of esophageal lesions. Considering the need to add new tasks in the diagnosis system, a deep learning model that can train a series of tasks incrementally using endoscopic images is essential for identifying the types and regions of esophageal lesions. METHOD In this paper, we proposed a continual learning-based esophageal lesion network (CLELNet), in which a convolutional autoencoder was designed to extract representation features of endoscopic images among different esophageal lesions. The proposed CLELNet consists of shared layers and task-specific layers. Shared layers are used to extract common features among different lesions while task-specific layers can complete different tasks. The first two tasks trained by the CLELNet are the classification (task 1) and the segmentation (task 2). We collected a dataset of esophageal endoscopic images from Macau Kiang Wu Hospital for training and testing the CLELNet. RESULTS The experimental results showed that the classification accuracy of task 1 was 95.96%, and the Intersection Over Union and the Dice Similarity Coefficient of task 2 were 65.66% and 78.08%, respectively. CONCLUSIONS The proposed CLELNet can realize task-incremental learning without forgetting the previous tasks and thus become a useful computer-aided diagnosis system in esophageal lesions analysis.
Collapse
Affiliation(s)
- Suigu Tang
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR
| | - Xiaoyuan Yu
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR
| | - Chak Fong Cheang
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR.
| | - Xiaoyu Ji
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR
| | - Hon Ho Yu
- Kiang Wu Hospital, Rua de Coelho do Amaral, Macau SAR
| | - I Cheong Choi
- Kiang Wu Hospital, Rua de Coelho do Amaral, Macau SAR
| |
Collapse
|
16
|
Wong MW, Rogers BD, Liu MX, Lei WY, Liu TT, Yi CH, Hung JS, Liang SW, Tseng CW, Wang JH, Wu PA, Chen CL. Application of Artificial Intelligence in Measuring Novel pH-Impedance Metrics for Optimal Diagnosis of GERD. Diagnostics (Basel) 2023; 13:diagnostics13050960. [PMID: 36900104 PMCID: PMC10000892 DOI: 10.3390/diagnostics13050960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Novel metrics extracted from pH-impedance monitoring can augment the diagnosis of gastroesophageal reflux disease (GERD). Artificial intelligence (AI) is being widely used to improve the diagnostic capabilities of various diseases. In this review, we update the current literature regarding applications of artificial intelligence in measuring novel pH-impedance metrics. AI demonstrates high performance in the measurement of impedance metrics, including numbers of reflux episodes and post-reflux swallow-induced peristaltic wave index and, furthermore, extracts baseline impedance from the entire pH-impedance study. AI is expected to play a reliable role in facilitating measuring novel impedance metrics in patients with GERD in the near future.
Collapse
Affiliation(s)
- Ming-Wun Wong
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Benjamin D. Rogers
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Min-Xiang Liu
- AI Innovation Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Wei-Yi Lei
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Tso-Tsai Liu
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Chih-Hsun Yi
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Jui-Sheng Hung
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Shu-Wei Liang
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Chiu-Wang Tseng
- NVIDIA AI Technology Center, NVIDIA Corporation, Taipei 11492, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Ping-An Wu
- AI Innovation Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Chien-Lin Chen
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Liang M, Xu C, Zhang X, Zhang Z, Cao J. Effect of anesthesia assistance on the detection rate of precancerous lesions and early esophageal squamous cell cancer in esophagogastroduodenoscopy screening: A retrospective study based on propensity score matching. Front Med (Lausanne) 2023; 10:1039979. [PMID: 37035346 PMCID: PMC10078984 DOI: 10.3389/fmed.2023.1039979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Background Esophagogastroduodenoscopy (EGD) screening is vital for the early diagnosis of esophageal squamous cell cancer (ESCC). However, improvement in the detection rate of precancerous lesions and early ESCC with anesthesia assistance (AA) has not yet been investigated. This retrospective study aimed to evaluate the effect of AA on the detection rate of precancerous lesions and early ESCC in patients undergoing EGD screening and identify risk factors affecting the detection rate. Methods We reviewed patients' electronic medical records who underwent EGD screening between May 2019 and August 2020. Patients were divided into two groups based on whether they received AA: those in Group A underwent EGD screening with AA, and patients in Group O underwent EGD screening without AA. Propensity score matching (PSM) was used to account for differences in baseline characteristics. Detection rates of precancerous lesions and early ESCC were compared between the two groups following PSM. Binary logistic regression was used to identify risk factors affecting the detection rate. Results The final analysis included 21,835 patients (Group A = 13,319, Group O = 8,516) from 28,985 patients who underwent EGD screening during the study period. Following PSM, 6009 patients remained in each group for analysis. There was no significant difference in the detection rate of precancerous lesions and early ESCC between Groups A and O (1.1% vs. 0.8%, p > 0.05). Binary logistic regression showed that age (50-59 years, 60-69 years and 70-79 years), higher endoscopist seniority, high-definition (HD) endoscopy, narrow-band imaging (NBI), and number of endoscopic images were all independent risk factors that affected the detection rate of precancerous lesions and early ESCC. Conclusion There was no statistically significant difference in the detection rate of precancerous lesions and early ESCC between patients who underwent EGD screening with and without AA. All independent risk factors that affected the detection rate of precancerous lesions and early ESCC included the following: age (50-59 years, 60-69 years and 70-79 years), higher endoscopist seniority, HD endoscopy, NBI, and number of endoscopic images. Endoscopists should consider all these factors as much as possible when performing EGD screening.
Collapse
Affiliation(s)
- Min Liang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chunhong Xu
- Department of Astroenterology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xinyan Zhang
- Department of Pathology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Zongwang Zhang
- Department of Anesthesiology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
- *Correspondence: Zongwang Zhang,
| | - Junli Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Junli Cao,
| |
Collapse
|
18
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
19
|
Islam MM, Poly TN, Walther BA, Yeh CY, Seyed-Abdul S, Li YC(J, Lin MC. Deep Learning for the Diagnosis of Esophageal Cancer in Endoscopic Images: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14235996. [PMID: 36497480 PMCID: PMC9736434 DOI: 10.3390/cancers14235996] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer, one of the most common cancers with a poor prognosis, is the sixth leading cause of cancer-related mortality worldwide. Early and accurate diagnosis of esophageal cancer, thus, plays a vital role in choosing the appropriate treatment plan for patients and increasing their survival rate. However, an accurate diagnosis of esophageal cancer requires substantial expertise and experience. Nowadays, the deep learning (DL) model for the diagnosis of esophageal cancer has shown promising performance. Therefore, we conducted an updated meta-analysis to determine the diagnostic accuracy of the DL model for the diagnosis of esophageal cancer. A search of PubMed, EMBASE, Scopus, and Web of Science, between 1 January 2012 and 1 August 2022, was conducted to identify potential studies evaluating the diagnostic performance of the DL model for esophageal cancer using endoscopic images. The study was performed in accordance with PRISMA guidelines. Two reviewers independently assessed potential studies for inclusion and extracted data from retrieved studies. Methodological quality was assessed by using the QUADAS-2 guidelines. The pooled accuracy, sensitivity, specificity, positive and negative predictive value, and the area under the receiver operating curve (AUROC) were calculated using a random effect model. A total of 28 potential studies involving a total of 703,006 images were included. The pooled accuracy, sensitivity, specificity, and positive and negative predictive value of DL for the diagnosis of esophageal cancer were 92.90%, 93.80%, 91.73%, 93.62%, and 91.97%, respectively. The pooled AUROC of DL for the diagnosis of esophageal cancer was 0.96. Furthermore, there was no publication bias among the studies. The findings of our study show that the DL model has great potential to accurately and quickly diagnose esophageal cancer. However, most studies developed their model using endoscopic data from the Asian population. Therefore, we recommend further validation through studies of other populations as well.
Collapse
Affiliation(s)
- Md. Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Bruno Andreas Walther
- Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Chih-Yang Yeh
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Shabbir Seyed-Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chuan (Jack) Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Dermatology, Wan Fang Hospital, Taipei 116, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Chin Lin
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Meng QQ, Gao Y, Lin H, Wang TJ, Zhang YR, Feng J, Li ZS, Xin L, Wang LW. Application of an artificial intelligence system for endoscopic diagnosis of superficial esophageal squamous cell carcinoma. World J Gastroenterol 2022; 28:5483-5493. [PMID: 36312830 PMCID: PMC9611708 DOI: 10.3748/wjg.v28.i37.5483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Upper gastrointestinal endoscopy is critical for esophageal squamous cell carcinoma (ESCC) detection; however, endoscopists require long-term training to avoid missing superficial lesions.
AIM To develop a deep learning computer-assisted diagnosis (CAD) system for endoscopic detection of superficial ESCC and investigate its application value.
METHODS We configured the CAD system for white-light and narrow-band imaging modes based on the YOLO v5 algorithm. A total of 4447 images from 837 patients and 1695 images from 323 patients were included in the training and testing datasets, respectively. Two experts and two non-expert endoscopists reviewed the testing dataset independently and with computer assistance. The diagnostic performance was evaluated in terms of the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity.
RESULTS The area under the receiver operating characteristics curve, accuracy, sensitivity, and specificity of the CAD system were 0.982 [95% confidence interval (CI): 0.969-0.994], 92.9% (95%CI: 89.5%-95.2%), 91.9% (95%CI: 87.4%-94.9%), and 94.7% (95%CI: 89.0%-97.6%), respectively. The accuracy of CAD was significantly higher than that of non-expert endoscopists (78.3%, P < 0.001 compared with CAD) and comparable to that of expert endoscopists (91.0%, P = 0.129 compared with CAD). After referring to the CAD results, the accuracy of the non-expert endoscopists significantly improved (88.2% vs 78.3%, P < 0.001). Lesions with Paris classification type 0-IIb were more likely to be inaccurately identified by the CAD system.
CONCLUSION The diagnostic performance of the CAD system is promising and may assist in improving detectability, particularly for inexperienced endoscopists.
Collapse
Affiliation(s)
- Qian-Qian Meng
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| | - Tian-Jiao Wang
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| | - Yan-Rong Zhang
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| | - Jian Feng
- Qingdao Medcare Digital Engineering Co. Ltd., Qingdao Medcare Digital Engineering Co. Ltd., Qingdao 26600, Shandong Province, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| | - Luo-Wei Wang
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
21
|
Luo D, Kuang F, Du J, Zhou M, Liu X, Luo X, Tang Y, Li B, Su S. Artificial Intelligence-Assisted Endoscopic Diagnosis of Early Upper Gastrointestinal Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:855175. [PMID: 35756602 PMCID: PMC9229174 DOI: 10.3389/fonc.2022.855175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The aim of this study was to assess the diagnostic ability of artificial intelligence (AI) in the detection of early upper gastrointestinal cancer (EUGIC) using endoscopic images. Methods Databases were searched for studies on AI-assisted diagnosis of EUGIC using endoscopic images. The pooled area under the curve (AUC), sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) with 95% confidence interval (CI) were calculated. Results Overall, 34 studies were included in our final analysis. Among the 17 image-based studies investigating early esophageal cancer (EEC) detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.98, 0.95 (95% CI, 0.95–0.96), 0.95 (95% CI, 0.94–0.95), 10.76 (95% CI, 7.33–15.79), 0.07 (95% CI, 0.04–0.11), and 173.93 (95% CI, 81.79–369.83), respectively. Among the seven patient-based studies investigating EEC detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.98, 0.94 (95% CI, 0.91–0.96), 0.90 (95% CI, 0.88–0.92), 6.14 (95% CI, 2.06–18.30), 0.07 (95% CI, 0.04–0.11), and 69.13 (95% CI, 14.73–324.45), respectively. Among the 15 image-based studies investigating early gastric cancer (EGC) detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.94, 0.87 (95% CI, 0.87–0.88), 0.88 (95% CI, 0.87–0.88), 7.20 (95% CI, 4.32–12.00), 0.14 (95% CI, 0.09–0.23), and 48.77 (95% CI, 24.98–95.19), respectively. Conclusions On the basis of our meta-analysis, AI exhibited high accuracy in diagnosis of EUGIC. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier PROSPERO (CRD42021270443).
Collapse
Affiliation(s)
- De Luo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fei Kuang
- Department of General Surgery, Changhai Hospital of The Second Military Medical University, Shanghai, China
| | - Juan Du
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Mengjia Zhou
- Department of Ultrasound, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Liu
- Department of Hepatobiliary Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Xinchen Luo
- Department of Gastroenterology, Zigong Third People's Hospital, Zigong, China
| | - Yong Tang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Nagao S, Tani Y, Shibata J, Tsuji Y, Tada T, Ishihara R, Fujishiro M. Implementation of artificial intelligence in upper gastrointestinal endoscopy. DEN OPEN 2022; 2:e72. [PMID: 35873509 PMCID: PMC9302271 DOI: 10.1002/deo2.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022]
Abstract
The application of artificial intelligence (AI) using deep learning has significantly expanded in the field of esophagogastric endoscopy. Recent studies have shown promising results in detecting and differentiating early gastric cancer using AI tools built using white light, magnified, or image-enhanced endoscopic images. Some studies have reported the use of AI tools to predict the depth of early gastric cancer based on endoscopic images. Similarly, studies based on using AI for detecting early esophageal cancer have also been reported, with an accuracy comparable to that of endoscopy specialists. Moreover, an AI system, developed to diagnose pharyngeal cancer, has shown promising performance with high sensitivity. These reports suggest that, if introduced for regular use in clinical settings, AI systems can significantly reduce the burden on physicians. This review summarizes the current status of AI applications in the upper gastrointestinal tract and presents directions for clinical practice implementation and future research.
Collapse
Affiliation(s)
- Sayaka Nagao
- Department of GastroenterologyGraduate School of Medicinethe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryGraduate School of Medicinethe University of TokyoTokyoJapan
| | - Yasuhiro Tani
- Department of Gastrointestinal OncologyOsaka International Cancer InstituteOsakaJapan
| | - Junichi Shibata
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
| | - Yosuke Tsuji
- Department of GastroenterologyGraduate School of Medicinethe University of TokyoTokyoJapan
| | - Tomohiro Tada
- Tada Tomohiro Institute of Gastroenterology and ProctologySaitamaJapan
- AI Medical Service Inc.TokyoJapan
- Department of Surgical OncologyGraduate School of Medicinethe University of TokyoTokyoJapan
| | - Ryu Ishihara
- Department of Gastrointestinal OncologyOsaka International Cancer InstituteOsakaJapan
| | - Mitsuhiro Fujishiro
- Department of GastroenterologyGraduate School of Medicinethe University of TokyoTokyoJapan
| |
Collapse
|
23
|
Visaggi P, Barberio B, Gregori D, Azzolina D, Martinato M, Hassan C, Sharma P, Savarino E, de Bortoli N. Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases. Aliment Pharmacol Ther 2022; 55:528-540. [PMID: 35098562 PMCID: PMC9305819 DOI: 10.1111/apt.16778] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Artificial intelligence (AI) has recently been applied to endoscopy and questionnaires for the evaluation of oesophageal diseases (ODs). AIM We performed a systematic review with meta-analysis to evaluate the performance of AI in the diagnosis of malignant and benign OD. METHODS We searched MEDLINE, EMBASE, EMBASE Classic and the Cochrane Library. A bivariate random-effect model was used to calculate pooled diagnostic efficacy of AI models and endoscopists. The reference tests were histology for neoplasms and the clinical and instrumental diagnosis for gastro-oesophageal reflux disease (GERD). The pooled area under the summary receiver operating characteristic (AUROC), sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR) and diagnostic odds ratio (DOR) were estimated. RESULTS For the diagnosis of Barrett's neoplasia, AI had AUROC of 0.90, sensitivity 0.89, specificity 0.86, PLR 6.50, NLR 0.13 and DOR 50.53. AI models' performance was comparable with that of endoscopists (P = 0.35). For the diagnosis of oesophageal squamous cell carcinoma, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.97, 0.95, 0.92, 12.65, 0.05 and DOR 258.36, respectively. In this task, AI performed better than endoscopists although without statistically significant differences. In the detection of abnormal intrapapillary capillary loops, the performance of AI was: AUROC 0.98, sensitivity 0.94, specificity 0.94, PLR 14.75, NLR 0.07 and DOR 225.83. For the diagnosis of GERD based on questionnaires, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.99, 0.97, 0.97, 38.26, 0.03 and 1159.6, respectively. CONCLUSIONS AI demonstrated high performance in the clinical and endoscopic diagnosis of OD.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Brigida Barberio
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Danila Azzolina
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
- Department of Medical ScienceUniversity of FerraraFerraraItaly
| | - Matteo Martinato
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas UniversityVia Rita Levi Montalcini 420072 Pieve Emanuele, MilanItaly
- IRCCS Humanitas Research Hospitalvia Manzoni 5620089 Rozzano, MilanItaly
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical CenterKansas CityMissouriUSA
| | - Edoardo Savarino
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Nicola de Bortoli
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
24
|
Visaggi P, de Bortoli N, Barberio B, Savarino V, Oleas R, Rosi EM, Marchi S, Ribolsi M, Savarino E. Artificial Intelligence in the Diagnosis of Upper Gastrointestinal Diseases. J Clin Gastroenterol 2022; 56:23-35. [PMID: 34739406 PMCID: PMC9988236 DOI: 10.1097/mcg.0000000000001629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Artificial intelligence (AI) has enormous potential to support clinical routine workflows and therefore is gaining increasing popularity among medical professionals. In the field of gastroenterology, investigations on AI and computer-aided diagnosis (CAD) systems have mainly focused on the lower gastrointestinal (GI) tract. However, numerous CAD tools have been tested also in upper GI disorders showing encouraging results. The main application of AI in the upper GI tract is endoscopy; however, the need to analyze increasing loads of numerical and categorical data in short times has pushed researchers to investigate applications of AI systems in other upper GI settings, including gastroesophageal reflux disease, eosinophilic esophagitis, and motility disorders. AI and CAD systems will be increasingly incorporated into daily clinical practice in the coming years, thus at least basic notions will be soon required among physicians. For noninsiders, the working principles and potential of AI may be as fascinating as obscure. Accordingly, we reviewed systematic reviews, meta-analyses, randomized controlled trials, and original research articles regarding the performance of AI in the diagnosis of both malignant and benign esophageal and gastric diseases, also discussing essential characteristics of AI.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Nicola de Bortoli
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Brigida Barberio
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| | - Vincenzo Savarino
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, Genoa
| | - Roberto Oleas
- Ecuadorean Institute of Digestive Diseases, Guayaquil, Ecuador
| | - Emma M. Rosi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Santino Marchi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Mentore Ribolsi
- Department of Digestive Diseases, Campus Bio Medico University of Rome, Roma, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| |
Collapse
|
25
|
Li Q, Liu BR. Application of artificial intelligence-assisted endoscopic detection of early esophageal cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1389-1395. [DOI: 10.11569/wcjd.v29.i24.1389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, artificial intelligence (AI) combined with endoscopy has made an appearance in the diagnosis of early esophageal cancer (EC) and achieved satisfactory results. Due to the rapid progression and poor prognosis of EC, the early detection and diagnosis of EC are of great value for patient prognosis improvement. AI has been applied in the screening of early EC and has shown advantages; notably, it is more accurate than less-experienced endoscopists. In China, the detection of early EC depends on endoscopist expertise and is inevitably subject to interobserver variability. The excellent imaging recognition ability of AI is very suitable for the diagnosis and recognition of EC, thereby reducing the missed diagnosis and helping physicians to perform endoscopy better. This paper reviews the application and relevant progress of AI in the field of endoscopic detection of early EC (including squamous cell carcinoma and adenocarcinoma), with a focus on diagnostic performance of AI to identify different types of endoscopic images, such as sensitivity and specificity.
Collapse
Affiliation(s)
- Qing Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Bing-Rong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
26
|
Goyal H, Sherazi SAA, Mann R, Gandhi Z, Perisetti A, Aziz M, Chandan S, Kopel J, Tharian B, Sharma N, Thosani N. Scope of Artificial Intelligence in Gastrointestinal Oncology. Cancers (Basel) 2021; 13:5494. [PMID: 34771658 PMCID: PMC8582733 DOI: 10.3390/cancers13215494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancers are among the leading causes of death worldwide, with over 2.8 million deaths annually. Over the last few decades, advancements in artificial intelligence technologies have led to their application in medicine. The use of artificial intelligence in endoscopic procedures is a significant breakthrough in modern medicine. Currently, the diagnosis of various gastrointestinal cancer relies on the manual interpretation of radiographic images by radiologists and various endoscopic images by endoscopists. This can lead to diagnostic variabilities as it requires concentration and clinical experience in the field. Artificial intelligence using machine or deep learning algorithms can provide automatic and accurate image analysis and thus assist in diagnosis. In the field of gastroenterology, the application of artificial intelligence can be vast from diagnosis, predicting tumor histology, polyp characterization, metastatic potential, prognosis, and treatment response. It can also provide accurate prediction models to determine the need for intervention with computer-aided diagnosis. The number of research studies on artificial intelligence in gastrointestinal cancer has been increasing rapidly over the last decade due to immense interest in the field. This review aims to review the impact, limitations, and future potentials of artificial intelligence in screening, diagnosis, tumor staging, treatment modalities, and prediction models for the prognosis of various gastrointestinal cancers.
Collapse
Affiliation(s)
- Hemant Goyal
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, 501 S. Washington Avenue, Scranton, PA 18505, USA
| | - Syed A. A. Sherazi
- Department of Medicine, John H Stroger Jr Hospital of Cook County, 1950 W Polk St, Chicago, IL 60612, USA;
| | - Rupinder Mann
- Department of Medicine, Saint Agnes Medical Center, 1303 E. Herndon Ave, Fresno, CA 93720, USA;
| | - Zainab Gandhi
- Department of Medicine, Geisinger Wyoming Valley Medical Center, 1000 E Mountain Dr, Wilkes-Barre, PA 18711, USA;
| | - Abhilash Perisetti
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, 11050 Parkview Circle, Fort Wayne, IN 46845, USA; (A.P.); (N.S.)
| | - Muhammad Aziz
- Department of Gastroenterology and Hepatology, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH 43614, USA;
| | - Saurabh Chandan
- Division of Gastroenterology and Hepatology, CHI Health Creighton University Medical Center, 7500 Mercy Rd, Omaha, NE 68124, USA;
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430, USA;
| | - Benjamin Tharian
- Department of Gastroenterology and Hepatology, The University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA;
| | - Neil Sharma
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, 11050 Parkview Circle, Fort Wayne, IN 46845, USA; (A.P.); (N.S.)
| | - Nirav Thosani
- Division of Gastroenterology, Hepatology & Nutrition, McGovern Medical School, UTHealth, 6410 Fannin, St #1014, Houston, TX 77030, USA;
| |
Collapse
|
27
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
28
|
Pecere S, Milluzzo SM, Esposito G, Dilaghi E, Telese A, Eusebi LH. Applications of Artificial Intelligence for the Diagnosis of Gastrointestinal Diseases. Diagnostics (Basel) 2021; 11:diagnostics11091575. [PMID: 34573917 PMCID: PMC8469485 DOI: 10.3390/diagnostics11091575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
The development of convolutional neural networks has achieved impressive advances of machine learning in recent years, leading to an increasing use of artificial intelligence (AI) in the field of gastrointestinal (GI) diseases. AI networks have been trained to differentiate benign from malignant lesions, analyze endoscopic and radiological GI images, and assess histological diagnoses, obtaining excellent results and high overall diagnostic accuracy. Nevertheless, there data are lacking on side effects of AI in the gastroenterology field, and high-quality studies comparing the performance of AI networks to health care professionals are still limited. Thus, large, controlled trials in real-time clinical settings are warranted to assess the role of AI in daily clinical practice. This narrative review gives an overview of some of the most relevant potential applications of AI for gastrointestinal diseases, highlighting advantages and main limitations and providing considerations for future development.
Collapse
Affiliation(s)
- Silvia Pecere
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00135 Rome, Italy;
- Center for Endoscopic Research Therapeutics and Training (CERTT), Catholic University, 00168 Rome, Italy
- Correspondence: (S.P.); (L.H.E.)
| | - Sebastian Manuel Milluzzo
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00135 Rome, Italy;
- Fondazione Poliambulanza Istituto Ospedaliero, 25121 Brescia, Italy
| | - Gianluca Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00168 Rome, Italy; (G.E.); (E.D.)
| | - Emanuele Dilaghi
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00168 Rome, Italy; (G.E.); (E.D.)
| | - Andrea Telese
- Department of Gastroenterology, University College London Hospital (UCLH), London NW1 2AF, UK;
| | - Leonardo Henry Eusebi
- Division of Gastroenterology and Endoscopy, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40121 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40121 Bologna, Italy
- Correspondence: (S.P.); (L.H.E.)
| |
Collapse
|