1
|
Yuan S, Xu N, Yang J, Yuan B. Emerging role of PES1 in disease: A promising therapeutic target? Gene 2025; 932:148896. [PMID: 39209183 DOI: 10.1016/j.gene.2024.148896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Pescadillo ribosomal biogenesis factor 1 (PES1), a nucleolar protein initially identified in zebrafish, plays an important role in embryonic development and ribosomal biogenesis. Notably, PES1 has been found to be overexpressed in a number of cancer types, where it contributes to tumorigenesis and cancer progression by promoting cell proliferation, suppressing cellular senescence, modulating the tumor microenvironment (TME) and promoting drug resistance in cancer cells. Moreover, recent emerging evidence suggests that PES1 expression is significantly elevated in the livers of Type 2 diabetes mellitus (T2DM) and obese patients, indicating its involvement in the pathogenesis of metabolic diseases through lipid metabolism regulation. In this review, we present the structural characteristics and biological functions of PES1, as well as complexes in which PES1 participates. Furthermore, we comprehensively summarize the multifaceted role of PES1 in various diseases and the latest insights into its underlying molecular mechanisms. Finally, we discuss the potential clinical translational perspectives of targeting PES1, highlighting its promising as a therapeutic intervention and treatment target.
Collapse
Affiliation(s)
- Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Nuo Xu
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Ma W, Lu Y, Jin X, Lin N, Zhang L, Song Y. Targeting selective autophagy and beyond: From underlying mechanisms to potential therapies. J Adv Res 2024; 65:297-327. [PMID: 38750694 PMCID: PMC11518956 DOI: 10.1016/j.jare.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Jin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Na Lin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yaowen Song
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Wei Liu, Wenyu Wang, Chenglong Tian, Ming-Zhong Sun, Shuqing Liu, and Qinlong Liu. Network pharmacology prediction to discover the potential pharmacological action mechanism of Rhizoma Dioscoreae for liver regeneration. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:479-491. [PMID: 39198228 PMCID: PMC11362001 DOI: 10.4196/kjpp.2024.28.5.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 09/01/2024]
Abstract
Improving liver regeneration (LR) remains a medical issue, and there is currently a lack of safe and effective drugs for LR. Rhizoma Dioscoreae (SanYak, SY) is a traditional Chinese medicine. However, the underlying action mechanism of SY treatment for LR is yet to be fully elucidated. To explore the mechanism by which SY affects LR, we have conducted a series of methods for network pharmacological analysis, molecular docking, and in vivo experimental validation in mice. Overall, 9 compounds and 30 predicted target genes of SY were found to be associated with the therapeutic effects of LR. Compared with the model group, hematoxylin and eosin staining revealed that the mice with preoperative drug intervention possessed fewer postoperative hepatocyte bubbles and relatively regular morphology. Furthermore, the serum alanine transaminase and aspartate aminotransferase levels were reduced, immunohistochemistry revealed elevated proliferating cell nuclear antigen positivity rate, and Western blotting demonstrated that the phospho-protein kinase B (AKT)/AKT ratio was downregulated and that vascular endothelial growth factor A (VEGFA) expression levels were upregulated. This study explored dioscin, the main active ingredient of SY, and its potential therapeutic effects on LR. It repairs damaged liver following surgery and promotes liver cell proliferation. The action mechanism comprises reducing AKT phosphorylation levels and upregulating VEGFA expression levels. Thus, this study provides a new direction for further research on the mechanism of SY promoting LR.
Collapse
Affiliation(s)
- Wei Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Wenyu Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116021, Liaoning, China
| | - Chenglong Tian
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116021, Liaoning, China
| | - Ming-Zhong Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - and Qinlong Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116021, Liaoning, China
| |
Collapse
|
4
|
Ruan X, Zhang X, Liu L, Zhang J. Mechanism of Xiaoyao San in treating non-alcoholic fatty liver disease with liver depression and spleen deficiency: based on bioinformatics, metabolomics and in vivo experiments. J Biomol Struct Dyn 2024; 42:5128-5146. [PMID: 37440274 DOI: 10.1080/07391102.2023.2231544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Xiaoyao san (XYS) plays an important role in treatment of non-alcoholic fatty liver disease (NAFLD) with liver stagnation and spleen deficiency, but its specific mechanism is still unclear. This study aimed to investigate the material basis and mechanism by means of network pharmacology, metabolomics, systems biology and molecular docking methods. On this basis, NAFLD rat model with liver stagnation and spleen deficiency was constructed and XYS was used to intervene, and liver histopathology, biochemical detection, enzyme-linked immunosorbent assay, quantitative PCR assay and western blotting were used to further verify the mechanism. Through the above research methods, network pharmacology study showed that there were 94 targets in total for XYS in the treatment of NAFLD. Metabolomics study showed that NAFLD with liver depression and spleen deficiency had a total of 73 differential metabolites. Systems biology found that PTGS2 and PPARG were the core targets; Quercetin, kaempferol, naringenin, beta-sitosterol and stigmasterol were the core active components; AA, cAMP were the core metabolites. And molecular docking showed that the core active components can act well on the key targets. Animal experiments showed that XYS could improve liver histopathology, increase 5HT and NA, decrease INS and FBG, improve blood lipids and liver function, decrease AA, increase cAMP, down-regulate PTGS2, up-regulate PPARG, and decrease PGE2 and 15d-PGJ2. In conclusion, XYS might treat NAFLD with liver depression and spleen deficiency by down-regulating PTGS2, up-regulating PPARG, reducing AA content, increasing cAMP, improving insulin resistance, affecting glucose and lipid metabolism, inhibiting oxidative stress and inflammatory response.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaofeng Ruan
- School of Acupuncture - Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoming Zhang
- School of Acupuncture - Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Liming Liu
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Liver Medicine, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Liver Medicine, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Wang J, Yang N, Xu Y. Natural Products in the Modulation of Farnesoid X Receptor Against Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:291-314. [PMID: 38480498 DOI: 10.1142/s0192415x24500137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern with a high prevalence and increasing economic burden, but official medicine remains unavailable. Farnesoid X receptor (FXR), a nuclear receptor member, is one of the most promising drug targets for NAFLD therapy that plays a crucial role in modulating bile acid, glucose, and lipid homeostasis, as well as inhibits hepatic inflammation and fibrosis. However, the rejection of the FXR agonist, obecholic acid, by the Food and Drug Administration for treating hepatic fibrosis raises a question about the functions of FXR in NAFLD progression and the therapeutic strategy to be used. Natural products, such as FXR modulators, have become the focus of attention for NAFLD therapy with fewer adverse reactions. The anti-NAFLD mechanisms seem to act as FXR agonists and antagonists or are involved in the FXR signaling pathway activation, indicating a promising target of FXR therapeutic prospects using natural products. This review discusses the effective mechanisms of FXR in NAFLD alleviation, and summarizes currently available natural products such as silymarin, glycyrrhizin, cycloastragenol, berberine, and gypenosides, for targeting FXR, which can facilitate development of naturally targeted drug by medicinal specialists for effective treatment of NAFLD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, P. R. China
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, P. R. China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, P. R. China
| |
Collapse
|
6
|
Ding X, He X, Tang B, Lan T. Integrated traditional Chinese and Western medicine in the prevention and treatment of non-alcoholic fatty liver disease: future directions and strategies. Chin Med 2024; 19:21. [PMID: 38310315 PMCID: PMC10838467 DOI: 10.1186/s13020-024-00894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Bulang Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
7
|
Raza S, Rajak S, Singh R, Zhou J, Sinha RA, Goel A. Cell-type specific role of autophagy in the liver and its implications in non-alcoholic fatty liver disease. World J Hepatol 2023; 15:1272-1283. [PMID: 38192406 PMCID: PMC7615497 DOI: 10.4254/wjh.v15.i12.1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023] Open
Abstract
Autophagy, a cellular degradative process, has emerged as a key regulator of cellular energy production and stress mitigation. Dysregulated autophagy is a common phenomenon observed in several human diseases, and its restoration offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more recently renamed metabolic dysfunction-associated steatotic liver disease, is a major metabolic liver disease affecting almost 30% of the world population. Unfortunately, NAFLD has no pharmacological therapies available to date. Autophagy regulates several hepatic processes including lipid metabolism, inflammation, cellular integrity and cellular plasticity in both parenchymal (hepatocytes) and non-parenchymal cells (Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells) with a profound impact on NAFLD progression. Understanding cell type-specific autophagy in the liver is essential in order to develop targeted treatments for liver diseases such as NAFLD. Modulating autophagy in specific cell types can have varying effects on liver function and pathology, making it a promising area of research for liver-related disorders. This review aims to summarize our present understanding of cell-type specific effects of autophagy and their implications in developing autophagy centric therapies for NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Rajani Singh
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Jin Zhou
- CVMD, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Amit Goel
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India.
| |
Collapse
|
8
|
Zhang Y, Chen Q, Fu X, Zhu S, Huang Q, Li C. Current Advances in the Regulatory Effects of Bioactive Compounds from Dietary Resources on Nonalcoholic Fatty Liver Disease: Role of Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17554-17569. [PMID: 37955247 DOI: 10.1021/acs.jafc.3c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease characterized by lipid metabolic disorder primarily due to sedentary lifestyles and excessive food consumption. However, there are currently no approved and effective drugs available to treat NAFLD. In recent years, research has shown that dietary bioactive compounds, such as polysaccharides, polyphenols, flavones, and alkaloids, have the potential to improve NAFLD by regulating autophagy. However, there is no up-to-date review of research progress in this field. This review aims to systematically summarize and discuss the regulatory effects and molecular mechanisms of dietary bioactive compounds on NAFLD through the modulation of autophagy. The existing research has demonstrated that some dietary bioactive compounds can effectively improve various aspects of NAFLD progression, such as lipid metabolism, insulin resistance (IR), endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial homeostasis, and inflammation. Molecular mechanism studies have revealed that they exert their beneficial effects on NAFLD through autophagy-mediated signaling pathways, predominantly involving transcription factor EB (TFEB), mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), SIRT, and PTEN-induced kinase 1 (PINK1)/parkin. Furthermore, the challenges and prospects of current research in this field are highlighted. Overall, this review provides valuable insights into the potential treatment of NAFLD using dietary bioactive compounds that can modulate autophagy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- School of Food Science and Dietetics, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Lu SY, Tan K, Zhong S, Cheong KL. Marine algal polysaccharides as future potential constituents against non-alcoholic steatohepatitis. Int J Biol Macromol 2023; 250:126247. [PMID: 37562483 DOI: 10.1016/j.ijbiomac.2023.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most chronic and incurable liver diseases triggered mainly by an inappropriate diet and hereditary factors which burden liver metabolic stress, and may result in liver fibrosis or even cancer. While the available drugs show adverse side effects. The non-toxic bioactive molecules derived from natural resources, particularly marine algal polysaccharides (MAPs), present significant potential for treating NASH. In this review, we summarized the protective effects of MAPs on NASH from multiple perspectives, including reducing oxidative stress, regulating lipid metabolism, enhancing immune function, preventing fibrosis, and providing cell protection. Furthermore, the mechanisms of MAPs in treating NASH were comprehensively described. Additionally, we highlight the influences of the special structures of MAPs on their bioactive differences. Through this comprehensive review, we aim to further elucidate the molecular mechanisms of MAPs in NASH and inspire insights for deeper research on the functional food and clinical applications of MAPs.
Collapse
Affiliation(s)
- Si-Yuan Lu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China.
| |
Collapse
|
10
|
Xu L, Xu K, Xiong P, Zhong C, Zhang X, Gao R, Zhou X, Shen T. Zhuyu Pill Alleviates Nonalcoholic Fatty Liver Disease by Regulating Bile Acid Metabolism through the Gut-Liver Axis. ACS OMEGA 2023; 8:29033-29045. [PMID: 37599938 PMCID: PMC10433349 DOI: 10.1021/acsomega.3c01955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
AIM The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide, but there are currently limited treatment options available. Therefore, it is necessary to research new treatment strategies. Zhuyu Pill (ZYP) is a well-known herbal recipe consisting of Huanglian (Coptidis rhizoma) and Wuzhuyu (Evodiae Fructus) that has been clinically used to treat NAFLD. This study aimed to investigate the impact of ZYP on NAFLD induced by a high-fat diet (HFD) and to identify its potential mechanism. METHODS In this investigation, we used ZYP to treat a mouse model of NAFLD induced by an HFD. We conducted various analyses including assessment of serum biochemical indices, histological evaluation, fecal metabonomics analysis, western blot, and quantitative real-time polymerase chain reaction. RESULTS ZYP effectively improved blood lipid levels and reduced inflammatory response in HFD mice, while also alleviating liver cell damage and lipid accumulation. Additionally, ZYP influenced the fecal bile acid (BA) metabolism profiles of HFD mice by inhibiting the signal transduction of ileal farnesoid X receptor (FXR) fibroblast growth factor 15 (FGF15), enhancing the expression of cytochrome P450 family 7 subfamily A member 1(CYP7A1), promoting BA synthesis and increasing the metabolic elimination of cholesterol. CONCLUSION ZYP shows promise as a potential treatment for alleviating NAFLD by modulating BA metabolism through the FXR-FGF15-CYP7A1 pathway.
Collapse
Affiliation(s)
- Lu Xu
- School
of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Kunhe Xu
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Peiyu Xiong
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun Zhong
- Sichuan
Second Hospital of Traditional Chinese Medicine, Chengdu 610014, China
| | - Xiaobo Zhang
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Gao
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Zhou
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Shen
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
11
|
Huang Z, Ye Y, Xu A, Li Z. Effects of Astragalus membranaceus Polysaccharides on Growth Performance, Physiological and Biochemical Parameters, and Expression of Genes Related to Lipid Metabolism of Spotted Sea Bass, Lateolabrax maculatus. AQUACULTURE NUTRITION 2023; 2023:6191330. [PMID: 37303608 PMCID: PMC10256447 DOI: 10.1155/2023/6191330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
This experiment investigated the effects of Astragalus membranaceus polysaccharides (AMP) on growth, physiological and biochemical parameters, and the expression of lipid metabolism-related genes in spotted sea bass, Lateolabrax maculatus. A total of 450 spotted sea bass (10.44 ± 0.09 g) were divided into six groups and were given diets with different levels of AMP (0, 0.2, 0.4, 0.6, 0.8, and 1.0 g/kg) for 28 days, respectively. Results indicated that dietary intake of AMP significantly improved fish weight gain, specific growth rate, feed conversion, and trypsin activity. Meanwhile, fish fed with AMP manifested significantly higher serum total antioxidant capacity and activity of hepatic superoxide dismutase, catalase, and lysozyme. Lower triglyceride and total cholesterol were noted in fish fed with AMP (P < 0.05). Moreover, hepatic ACC1 and ACC2 were downregulated by dietary intake of AMP, and PPAR-α, CPT1, and HSL were upregulated accordingly (P < 0.05). Parameters with significant difference were analyzed by quadratic regression analysis, and results showed that 0.6881 g/kg of AMP is the optimal dosage for spotted sea bass in size (10.44 ± 0.09 g). In conclusion, dietary intake of AMP can improve the growth, physiological status, and lipid metabolism of spotted sea bass, thereby indicating its promise as a potential dietary supplement.
Collapse
Affiliation(s)
- Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen, China
| | - Youling Ye
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen, China
| | - Anle Xu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen, China
| |
Collapse
|
12
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
13
|
An Updated Review on Efficiency of Penthorum chinense Pursh in Traditional Uses, Toxicology, and Clinical Trials. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4254051. [PMID: 36852294 PMCID: PMC9966574 DOI: 10.1155/2023/4254051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 02/20/2023]
Abstract
Traditional Chinese medicines (TCM) play an important role in the control and treatment of several animal diseases. Penthorum chinense Pursh (PCP) is a famous plant for its use in traditional medication practice and therapeutic effects in numerous pathological conditions. In China, PCP is utilized for both food and medication due to numerous bioactivities. PCP is widely administered in prevention and treatment of traumatic injury, edema, and liver diseases with functions of reducing swelling, support diuresis, blood stasis, and mitigation symptoms of excessive alcohol intake. Recently, PCP highlighted for research trials in various fields including pharmacology, pharmacognosy, cosmeceuticals, nutraceuticals, and pharmaceuticals due to medicinal significance with less toxicity and an effective ethnomedicine in veterinary practice. PCP contains diverse important ingredients such as flavonoids, organic acids, coumarins, lignans, polyphenols, and sterols that are important bioactive constituents of PCP exerting the therapeutic benefits and organ-protecting effects. In veterinary, PCP extract, compound, and phytochemicals/biomolecules significantly reversed the liver and kidney injuries, via antioxidation, oxidative stress, apoptosis, mitochondrial signaling pathways, and related genes. PCP water extract and compounds also proved in animal and humans' clinical trial for their hepatoprotective, antiaging, nephroprotective, anti-inflammatory, antidiabetic, antibacterial, antiapoptotic, immune regulation, and antioxidative stress pathways. This updated review spotlighted the current information on efficiency and application of PCP by compiling and reviewing recent publications on animal research. In addition, this review discussed the toxicology, traditional use, comparative, and clinical application of PCP in veterinary practices to authenticate and find out new perspectives on the research and development of this herbal medicine.
Collapse
|
14
|
Zhou J, Lu Y, Lin Y, Li C, Liu J, Jiang Z, Chen K. Overexpression of hepatic pescadillo 1 in obesity induces lipid dysregulation by inhibiting autophagy. Transl Res 2023:S1931-5244(23)00021-X. [PMID: 36775058 DOI: 10.1016/j.trsl.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Previous studies indicated that increased hepatic pescadillo 1 (PES1) in type II diabetic mice was associated with lipid dysregulation. However, the role of PES1 in obesity-associated lipid dysregulation is still unknown. This study investigates the effects and underlying mechanism. Livers from obese and healthy humans and mice were collected, and C57BL/6J mice were either fed on standard diet or high fat diet (HFD). McArdle 7777 rat hepatoma cells were treated with phosphate-buffered saline and oleic acid (OA)+ palmitic acid (PA), respectively. In vitro Pes1 knockdown or overexpression and in vivo Pes1 knockdown or liver-specific ablation or supplementation of Pes1 were used to explore the modulating role of PES1. We found that obesity in humans enhanced hepatic PES1 protein, accompanied by increased plasma TG. These data are consistent with those from OA+PA-treated cells and from HFD- or Pes1 overexpression-treated C57BL/6J mice. In vitro and in vivo Pes1 knockdown in cultured cells and in ob/ob mice promoted the expression of autophagy markers (TFEB, Beclin1 and LC3B-Ⅱ) while decreasing p62 and TG, contrary to Pes1 overexpression in cells and in normal mice. Moreover, liver-specific knockout of Pes1 protected the mice fed on HFD from increased TG levels, facilitating the TFEB, Beclin1 and LC3B-Ⅱ and curbing p62. Mechanistically, OA+PA increased C/EBPβ binding to the Pes1 promoter, leading to the elevation of PES1, and subsequently enhancing PES1-facilitated ubiquitination of TFEB. Our findings reveal that overexpression of hepatic PES1 in obesity may induce TG dysregulation by inhibiting autophagy.
Collapse
Affiliation(s)
- Jielin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China; Department of Oncology, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
| | - Yao Lu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yan Lin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chengcheng Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Juan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhengxuan Jiang
- Department of Ophthalmology, the Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China.
| | - Keyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China; Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China.
| |
Collapse
|
15
|
Venkat R, Verma E, Daimary UD, Kumar A, Girisa S, Dutta U, Ahn KS, Kunnumakkara AB. The Journey of Resveratrol from Vineyards to Clinics. Cancer Invest 2023; 41:183-220. [PMID: 35993769 DOI: 10.1080/07357907.2022.2115057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With rising technological advancements, several factors influence the lifestyle of people and stimulate chronic inflammation that severely affects the human body. Chronic inflammation leads to a broad range of physical and pathophysiological distress. For many years, non-steroidal drugs and corticosteroids were most frequently used in treating inflammation and related ailments. However, long-term usage of these drugs aggravates the conditions of chronic diseases and is presented with morbid side effects, especially in old age. Hence, the quest for safe and less toxic anti-inflammatory compounds of high therapeutic potential with least adverse side effects has shifted researchers' attention to ancient medicinal system. Resveratrol (RSV) - 3,4,5' trihydroxystilbene is one such naturally available polyphenolic stilbene derivative obtained from various plant sources. For over 2000 years, these plants have been used in Asian medicinal system for curing inflammation-associated disorders. There is a wealth of in vitro, in vivo and clinical evidence that shows RSV could induce anti-aging health benefits including, anti-cancer, anti-inflammatory, anti-oxidant, phytoesterogenic, and cardio protective properties. However, the issue of rapid elimination of RSV through the metabolic system and its low bio-availability is of paramount importance which is being studied extensively. Therefore, in this article, we scientifically reviewed the molecular targets, biological activities, beneficial and contradicting effects of RSV as evinced by clinical studies for the prevention and treatment of inflammation-mediated chronic disorders.
Collapse
Affiliation(s)
- Ramya Venkat
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uma Dutta
- Department of Zoology, Cell and Molecular Biology Laboratory, Cotton University, Guwahati, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
16
|
Ma S, Yang B, Shi Y, Du Y, Lv Y, Liu J, Liu E, Xu H, Deng L, Chen XY. Adlay (Coix lacryma-jobi L.) Polyphenol Improves Hepatic Glucose and Lipid Homeostasis through Regulating Intestinal Flora via AMPK Pathway. Mol Nutr Food Res 2022; 66:e2200447. [PMID: 36214059 DOI: 10.1002/mnfr.202200447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic syndrome characterized of abnormal lipid deposition in the liver. Adlay polyphenol (AP), an effective component extracted from Coix lacryma-jobi L., has been reported that it can be used as a dietary supplement to prevent NAFLD. In this study, the mechanism and action of AP on lipid metabolism and regulation of intestinal flora are investigated. METHODS AND RESULTS AP significantly decreases the lipid accumulation in free fatty acid-treated HepG2 cells. Western blot results indicate that AP improves lipid metabolism via activating the p-AMPK/p-ACC pathway. In vivo experiments show AP treatment significantly decreases the body weight, liver weight, hepatic triglyceride, and total cholesterol contents, as well as the serum glucose levels in high fat diet-fed mice, which may affect lipid accumulation by activating AMPK pathway and changing intestinal bacterial communities and intestinal microbiome metabolism. CONCLUSION AP can be used as a food supplement for improving lipid metabolic dysfunction and reducing the incidence of metabolic diseases.
Collapse
Affiliation(s)
- Shengsuo Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Bing Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
- Department of Traditional Chinese Medicine, Yuebei People's Hospital, Shaoguan, Guangdong, 512026, China
| | - Yucong Shi
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yang Du
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yiwen Lv
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jiarong Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Enyan Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
- Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Research on Emergency in CM" "Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, AMI Key Lab of Chinese Medicine in Guangzhou, Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, 510632, China
| | - Xiao-Yin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
17
|
Zhang L, Liu X, Huang M, Wang R, Zhu W, Li Y, Shen L, Li C. Metformin Inhibits HaCaT Cell Proliferation Under Hyperlipidemia Through Reducing Reactive Oxygen Species via FOXO3 Activation. Clin Cosmet Investig Dermatol 2022; 15:1403-1413. [PMID: 35910506 PMCID: PMC9326038 DOI: 10.2147/ccid.s368845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022]
Abstract
Purpose Metformin (MET) has been proved to be effective for the treatment of psoriasis. The mechanisms of its action under the hyperlipidemia have yet to be fully elucidated. Here, we investigated the effect of metformin on the cell proliferation induced by hyperlipidemia and the underlying mechanism in immortalized human keratinocyte cell line (HaCat). Methods Wild-type or FOXO3 knockdown HaCat cells were treated with free fatty acids (FFA) for 10 days and then co-treated with metformin for another 4 days. Triglyceride (TG) level, cell viability, proliferation, apoptosis, antioxidant enzymes, reactive oxygen species (ROS) levels, as well as the transcription activity of FOXO3 were analyzed. Results Metformin decreased HaCaT cell proliferation and induced cell apoptosis after FFA treatment. Metformin was found to significantly increase the expressions and the activities of superoxide dismutase (SOD) as well as catalase (CAT), and reduced the reactive oxygen species (ROS) level. Metformin significantly promoted the autophagy and increase FOXO3 protein level in the nucleus under hyperlipidemia. However, all of the effects from metformin were partially blocked by FOXO3 knockdown. Conclusion This study demonstrated that under the hyperlipidemia, metformin has significant antiproliferation and proapoptosis effects by reducing ROS level as well as increasing autophagy. All of these effects from metformin were through FOXO3-dependent pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xiaoling Liu
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Min Huang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Rui Wang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Wenwei Zhu
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yu Li
- Department of Dermatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lin Shen
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Chengxin Li
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| |
Collapse
|
18
|
Liu Z, Li G, Zhang Y, Jin H, Liu Y, Dong J, Li X, Liu Y, Liang X. Blending Technology Based on HPLC Fingerprint and Nonlinear Programming to Control the Quality of Ginkgo Leaves. Molecules 2022; 27:molecules27154733. [PMID: 35897910 PMCID: PMC9332425 DOI: 10.3390/molecules27154733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
The breadth and depth of traditional Chinese medicine (TCM) applications have been expanding in recent years, yet the problem of quality control has arisen in the application process. It is essential to design an algorithm to provide blending ratios that ensure a high overall product similarity to the target with controlled deviations in individual ingredient content. We developed a new blending algorithm and scheme by comparing different samples of ginkgo leaves. High-consistency samples were used to establish the blending target, and qualified samples were used for blending. Principal component analysis (PCA) was used as the sample screening method. A nonlinear programming algorithm was applied to calculate the blending ratio under different blending constraints. In one set of calculation experiments, the result was blended by the same samples under different conditions. Its relative deviation coefficients (RDCs) were controlled within ±10%. In another set of calculations, the RDCs of more component blending by different samples were controlled within ±20%. Finally, the near-critical calculation ratio was used for the actual experiments. The experimental results met the initial setting requirements. The results show that our algorithm can flexibly control the content of TCMs. The quality control of the production process of TCMs was achieved by improving the content stability of raw materials using blending. The algorithm provides a groundbreaking idea for quality control of TCMs.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guixin Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
| | - Yu Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongli Jin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Yucheng Liu
- Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China; (Y.L.); (J.D.)
| | - Jiatao Dong
- Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China; (Y.L.); (J.D.)
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (X.L.); (Y.L.); Tel.: +86-791-8306-1116 (X.L.); +86-411-8437-9519 (Y.L.)
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (X.L.); (Y.L.); Tel.: +86-791-8306-1116 (X.L.); +86-411-8437-9519 (Y.L.)
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| |
Collapse
|
19
|
Zhang Y, Chen Y. Roles of organelle-specific autophagy in hepatocytes in the development and treatment of non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:1673-1681. [PMID: 35950774 PMCID: PMC9509094 DOI: 10.1097/cm9.0000000000002263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is a disorder of lipid metabolism. The lipotoxic intermediates of lipid metabolism cause mitochondrial dysfunction and endoplasmic reticulum stress. Organelle-specific autophagy is responsible for the removal of dysfunctional organelles to maintain intracellular homeostasis. Lipophagy contributes to lipid turnover by degrading lipid droplets. The level of autophagy changes during the course of NAFLD, and the activation of hepatocyte autophagy might represent a method of treating NAFLD.
Collapse
Affiliation(s)
- Yizhi Zhang
- Fourth Department of Liver Disease (Difficult and Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing 100069, China,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult and Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing 100069, China,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| |
Collapse
|
20
|
Giordo R, Wehbe Z, Posadino AM, Erre GL, Eid AH, Mangoni AA, Pintus G. Disease-Associated Regulation of Non-Coding RNAs by Resveratrol: Molecular Insights and Therapeutic Applications. Front Cell Dev Biol 2022; 10:894305. [PMID: 35912113 PMCID: PMC9326031 DOI: 10.3389/fcell.2022.894305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
There have been significant advances, particularly over the last 20 years, in the identification of non-coding RNAs (ncRNAs) and their pathophysiological role in a wide range of disease states, particularly cancer and other chronic conditions characterized by excess inflammation and oxidative stress such as atherosclerosis, diabetes, obesity, multiple sclerosis, osteoporosis, liver and lung fibrosis. Such discoveries have potential therapeutic implications as a better understanding of the molecular mechanisms underpinning the effects of ncRNAs on critical homeostatic control mechanisms and biochemical pathways might lead to the identification of novel druggable targets. In this context, increasing evidence suggests that several natural compounds can target ncRNAs at different levels and, consequently, influence processes involved in the onset and progression of disease states. The natural phenol resveratrol has been extensively studied for therapeutic purposes in view of its established anti-inflammatory and antioxidant effects, particularly in disease states such as cancer and cardiovascular disease that are associated with human aging. However, increasing in vitro and in vivo evidence also suggests that resveratrol can directly target various ncRNAs and that this mediates, at least in part, its potential therapeutic effects. This review critically appraises the available evidence regarding the resveratrol-mediated modulation of different ncRNAs in a wide range of disease states characterized by a pro-inflammatory state and oxidative stress, the potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zena Wehbe
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, University of London, London, United Kingdom
| | | | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Q.U. Health. Qatar University, Doha, Qatar
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Adelaide, SA, Australia
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| |
Collapse
|
21
|
Cao L, Wu Y, Li W, Zhang Z, Niu Y, Li C, Gu S. Cornus officinalis vinegar reduces body weight and attenuates hepatic steatosis in mouse model of nonalcoholic fatty liver disease. J Food Sci 2022; 87:3248-3259. [PMID: 35673882 DOI: 10.1111/1750-3841.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to determine the main bioactive components of Cornus officinalis vinegar (COV) and assess the effects of COV on the body weight (BW) and hepatic steatosis in a nonalcoholic fatty liver disease (NAFLD) mouse model. Seven-week-old KM female mice were divided into five treatment groups: (1) Normal control (NC) group, (2) high fat diet (HFD) group, (3) low concentration treatment group (3.5% COV), (4) medium concentration treatment group (5.0% COV), and (5) high concentration treatment group (6.5% COV). Mice in the NC group were fed with a normal chow diet, and those in the other four groups were fed with a HFD known for causing obesity for 10 weeks. Then, mice in the three COV treatment groups were orally administered with COV once a day for 6 weeks. Results showed that the contents of loganin and morroniside in COV reached 16.82 and 51.17 µg/ml, respectively, and COV also contained multiple organic acids. COV significantly reduced BW, abdominal fat weight, liver weight, and the levels of glucose, triglyceride, and low-density lipoprotein cholesterol of serum and increased the levels of high-density lipoprotein cholesterol of serum (p < 0.05). COV also improved the liver function and anti-oxidant activity of liver (p < 0.05). COV treatments increased the interleukin-10 expression and reduced the tumor necrosis factor-α expression in the liver tissue of NAFLD mice (p < 0.05). Histopathological observation revealed that COV suppressed hepatic lipid accumulation and steatosis. The results suggest that COV may contribute to the alleviation of NAFLD and obesity.
Collapse
Affiliation(s)
- Li Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| | - Wenwen Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| | - Zengmiao Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| | - Yaping Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| | - Chenchen Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| |
Collapse
|
22
|
Du Z, Huang D, Shi P, Dong Z, Wang X, Li M, Chen W, Zhang F, Sun L. Integrated Chemical Interpretation and Network Pharmacology Analysis to Reveal the Anti-Liver Fibrosis Effect of Penthorum chinense. Front Pharmacol 2022; 13:788388. [PMID: 35721129 PMCID: PMC9201443 DOI: 10.3389/fphar.2022.788388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis is a disease with complex pathological mechanisms. Penthorum chinense Pursh (P. chinense) is a traditional Chinese medicine (TCM) for liver injury treatment. However, the pharmacological mechanisms of P. chinense on liver fibrosis have not been investigated and clarified clearly. This study was designed to investigate the chemicals in P. chinense and explore its effect on liver fibrosis. First, we developed a highly efficient method, called DDA-assisted DIA, which can both broaden mass spectrometry (MS) coverage and MS2 quality. In DDA-assisted DIA, data-dependent acquisition (DDA) and data-independent acquisition (DIA) were merged to construct a molecular network, in which 1,094 mass features were retained in Penthorum chinense Pursh (P. chinense). Out of these, 169 compounds were identified based on both MS1 and MS2 analysis. After that, based on a network pharmacology study, 94 bioactive compounds and 440 targets of P. chinense associated with liver fibrosis were obtained, forming a tight compound–target network. Meanwhile, the network pharmacology experimental results showed that multiple pathways interacted with the HIF-1 pathway, which was first identified involved in P. chinense. It could be observed that some proteins, such as TNF-α, Timp1, and HO-1, were involved in the HIF-1 pathway. Furthermore, the pharmacological effects of P. chinense on these proteins were verified by CCl4-induced rat liver fibrosis, and P. chinense was found to improve liver functions through regulating TNF-α, Timp1, and HO-1 expressions. In summary, DDA-assisted DIA could provide more detailed compound information, which will help us to annotate the ingredients of TCM, and combination with computerized network pharmacology provided a theoretical basis for revealing the mechanism of P. chinense.
Collapse
Affiliation(s)
- Zenan Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Doudou Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengjie Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Xiujuan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Mengshuang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wansheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lianna Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
23
|
Liu N, Yang J, Ma W, Li C, An L, Zhang X, Zou Q. Xiaoyao Powder in the treatment of non-alcoholic fatty liver disease: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114999. [PMID: 35051605 DOI: 10.1016/j.jep.2022.114999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide with alarming prevalence. Due to its complex pathogeneses and considerable individual heterogeneity in disease, there is no specific medication to NAFLD safely and effectively. Therefore, there is a great need to explore complementary and alternative therapies. Xiaoyao Powder (XYP), a classic Chinese formula, has been tremendously applied to gastrointestinal diseases, especially non-alcoholic fatty liver disease. However, the efficacy and safety of XYP have not been fully assessed. AIM OF THE STUDY To assess the effectiveness and safety of XYP for NAFLD. MATERIALS AND METHODS The assigned registration number on the PROSPERO platform of this meta-analysis is CRD42020192154, and we strictly followed the protocol. We searched eight primary databases from their inception to June 2020. Two authors independently identified random controlled trials (RCTs) of XYP for NAFLD and evaluated the quality of the retrieved articles by Cochrane accessing risk bias tool. At least one of the following indices was thoroughly documented for outcome measurement: total effective rate, total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyl transpeptidase (GGT), body mass index (BMI), and adiponectin. We calculated risk ratio (RR) and mean difference (MD) for dichotomous data and continuous variables with a 95% confidence interval (CI). R 4.0.5 software was employed for data synthesis. RESULTS Consequently, we identified 12 studies with 1012 participants. XYP, whether individually or combined with essential treatment, ameliorated NAFLD regardless of the course of the disease or curative duration. This benefit was mainly driven by regulating levels of serum markers, involving TC, TG, ALT, AST, GGT, and adiponectin. Three studies where statins were concerned about drug safety reported several adverse events with clinical symptoms, varying from flatulence, constipation, and diarrhea to rash, whereas others did not. CONCLUSION Our findings provided evidence that XYP is a therapeutic option to treat NAFLD effectively and safely. Notwithstanding, a precise and comprehensive conclusion calls for RCTs on a larger scale with more rigorous designs considering the inferior methodological quality and limited retrieved articles.
Collapse
Affiliation(s)
- Nian Liu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jiayao Yang
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China; Wuhan No.1 Hospital, Wuhan, 430022, China.
| | - Wei Ma
- Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Chenyu Li
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Liu An
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao Zhang
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi Zou
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
24
|
Yu L, Hong W, Lu S, Li Y, Guan Y, Weng X, Feng Z. The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment. Front Pharmacol 2022; 13:780496. [PMID: 35350750 PMCID: PMC8957978 DOI: 10.3389/fphar.2022.780496] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is among the most prevalent primary liver diseases worldwide and can develop into various conditions, ranging from simple steatosis, through non-alcoholic steatohepatitis (NASH), to fibrosis, and eventually cirrhosis and hepatocellular carcinoma. Nevertheless, there is no effective treatment for NAFLD due to the complicated etiology. Recently, activation of the NLPR3 inflammasome has been demonstrated to be a contributing factor in the development of NAFLD, particularly as a modulator of progression from initial hepatic steatosis to NASH. NLRP3 inflammasome, as a caspase-1 activation platform, is critical for processing key pro-inflammatory cytokines and pyroptosis. Various stimuli involved in NAFLD can activate the NLRP3 inflammasome, depending on the diverse cellular stresses that they cause. NLRP3 inflammasome-related inhibitors and agents for NAFLD treatment have been tested and demonstrated positive effects in experimental models. Meanwhile, some drugs have been applied in clinical studies, supporting this therapeutic approach. In this review, we discuss the activation, biological functions, and treatment targeting the NLRP3 inflammasome in the context of NAFLD progression. Specifically, we focus on the different types of therapeutic agents that can inhibit the NLRP3 inflammasome and summarize their pharmacological effectiveness for NAFLD treatment.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,The Third Clinical College of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Wei Hong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shen Lu
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yaya Guan
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Xiaogang Weng
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
25
|
Miao J, Guo L, Cui H, Wang L, Zhu B, Lei J, Li P, Jia J, Zhang Z. Er-Chen Decoction Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Rats through Remodeling Gut Microbiota and Regulating the Serum Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6221340. [PMID: 35399623 PMCID: PMC8991405 DOI: 10.1155/2022/6221340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Many studies have found that the dysfunction in gut microbiota and the metabolic dysfunction can promote nonalcoholic fatty liver disease (NAFLD) development. Er-Chen decoction (EC) can be used in the treatment of NAFLD. However, the mechanism of this hepatoprotection is still unknown. In this study, we constructed a rat model with NAFLD fed with high-fat chow and administered EC treatment. The therapeutic effects of EC on NAFLD were evaluated by measuring transaminases, blood lipid levels, and pathological changes in the liver. In addition, we measured the effects of EC on liver inflammatory response and oxidative stress. The changes in gut microbiota after EC treatment were studied using 16S rRNA sequencing. Serum untargeted metabolomics analysis was also used to study the metabolic regulatory mechanisms of EC on NAFLD. The results showed that EC decreased the serum transaminases and lipid levels and improved the pathological changes in NAFLD rats. Furthermore, EC enhanced the activities of SOD and GSH-Px and decreased MDA level in the liver. EC treatment also decreased the gene and protein levels of IL-6, IL-1β, and TNF-α in the liver and serum. The 16S rRNA sequencing and untargeted metabolomics indicated that EC treatment affected the gut microbiota and regulated serum metabolism. Correlation analysis showed that the effects of EC on taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways were associated with affecting in the abundance of Lactobacillus, Dubosiella, Lachnospiraceae, Desulfovibri, Romboutsia, Akkermansia, Intestinimonas, and Candidatus_saccharimonas in the gut. In conclusion, our study confirmed the protective effect of EC on NAFLD. EC could treat NAFLD by inhibiting oxidative stress, reducing inflammatory responses, and improving the dysbiosis of gut microbiota and the modulation of the taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways in serum.
Collapse
Affiliation(s)
- Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Liying Guo
- Tianjin Second People's Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Li Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Bo Zhu
- Tianjin Second People's Hospital, Tianjin, China
| | - Jinyan Lei
- Tianjin Second People's Hospital, Tianjin, China
| | - Peng Li
- Tianjin Second People's Hospital, Tianjin, China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Tianjin, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
26
|
Lin X, Song F, Wu Y, Xue D, Wang Y. Lycium barbarum polysaccharide attenuates Pseudomonas- aeruginosa pyocyanin-induced cellular injury in mice airway epithelial cells. Food Nutr Res 2022; 66:4585. [PMID: 35261577 PMCID: PMC8861857 DOI: 10.29219/fnr.v66.4585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/08/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Background Lycium barbarum berries have been utilized in Asia for many years. However, the mechanisms of its lung-defensive properties are indeterminate. Objective We investigate whether L. barbarum polysaccharide (LBP) could weaken Pseudomonas aeruginosa infection-induced lung injury. Design Mice primary air-liquid interface epithelial cultures were pretreated with LBP and subsequently treated with pyocyanin (PCN). Lung injury, including apoptosis, inflammation, and oxidative stress, was estimated by western blot, enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction, Real-time qPCR (Q-PCR). Flow cytometry was used to test cell apoptosis. Moreover, Balb/c mice were used to evaluate the tissue injury. We used hematoxylin-eosin staining and immunofluorescence to detect the expression of related proteins and tissue damage in mouse lungs and spleen. Results The flow cytometric analysis shows the potential of LBP to reduce time-dependent cell death by PCN. Mechanistically, LBP reduces PCN-induced expression of proapoptotic proteins and caspase3 and induces the activation of Bcl-2 in mice bronchial epithelial cells. Similarly, LBP reduces PCN-induced intracellular reactive oxygen species (ROS) production. Moreover, LBP inhibits the production of inflammatory cytokines, Interleukin (IL-1β), Tumor Necrosis Factor (TNF), IL-6, and IL-8. Our study confirms the ability of LBP to retard PCN-induced injury in mice lung and spleen. Conclusions The inhibition of PCN-induced lung injury by LBP is capable of protecting mice cells from injury.
Collapse
Affiliation(s)
- Xue Lin
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Fuyang Song
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Yiming Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Di Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
- Yujiong Wang and Di Xue, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China. and
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- Yujiong Wang and Di Xue, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China. and
| |
Collapse
|
27
|
Sun C, Shan F, Liu M, Liu B, Zhou Q, Zheng X, Xu X. High-Fat-Diet-Induced Oxidative Stress in Giant Freshwater Prawn ( Macrobrachium rosenbergii) via NF-κB/NO Signal Pathway and the Amelioration of Vitamin E. Antioxidants (Basel) 2022; 11:antiox11020228. [PMID: 35204111 PMCID: PMC8868509 DOI: 10.3390/antiox11020228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Lipids work as essential energy sources for organisms. However, prawns fed on high-fat diets suffer from oxidative stress, whose potential mechanisms are poorly understood. The present study aimed to explore the regulation mechanism of oxidative stress induced by high fat and the amelioration by vitamin E (VE) of oxidative stress. Macrobrachium rosenbergii were fed with two dietary fat levels (LF 9% and HF 13%) and two VE levels (200 mg/kg and 600 mg/kg) for 8 weeks. The results showed that the HF diet decreased the growth performance, survival rate and antioxidant capacity of M. rosenbergii, as well as inducing hypertrophied lipid droplets, lipophagy and apoptosis. A total of 600 mg/kg of VE in the HF diet alleviated the negative effects induced by HF. In addition, the HF diet suppressed the expression of toll-dorsal and imd-relish signal pathways. After the relish and dorsal pathways were knocked down, the downstream iNOS and NO levels decreased and the MDA level increased. The results indicated that M. rosenbergii fed with a high-fat diet could cause oxidative damage. Its molecular mechanism may be attributed to the fact that high fat suppresses the NF-κB/NO signaling pathway mediating pro-oxidant and antioxidant targets for regulation of oxidative stress. Dietary VE in an HF diet alleviated hepatopancreas oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.S.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| | - Fan Shan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.S.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
- Correspondence: ; Tel.: +86-0510-8555-6101
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.S.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.S.); (Q.Z.); (X.Z.)
| | - Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| |
Collapse
|
28
|
Yang X, Deng Y, Tu Y, Feng D, Liao W. Nobiletin mitigates NAFLD via lipophagy and inflammation. Food Funct 2022; 13:10186-10199. [DOI: 10.1039/d2fo01682f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), an increasingly serious health issue in the world, was characterized as lipid metabolic disorder without a satisfactory treatment. Nobiletin (NOB), a citrus flavonoid, was considered...
Collapse
|
29
|
Bandopadhyay S, Anand U, Gadekar VS, Jha NK, Gupta PK, Behl T, Kumar M, Shekhawat MS, Dey A. Dioscin: A review on pharmacological properties and therapeutic values. Biofactors 2022; 48:22-55. [PMID: 34919768 DOI: 10.1002/biof.1815] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Dioscin has gained immense popularity as a natural, bioactive steroid saponin, which offers numerous medical benefits. The growing global incidence of disease-associated morbidity and mortality continues to compromise human health, facilitating an increasingly urgent need for nontoxic, noninvasive, and efficient treatment alternatives. Natural compounds can contribute vastly to this field. Over recent years, studies have demonstrated the remarkable protective actions of dioscin against a variety of human malignancies, metabolic disorders, organ injuries, and viral/fungal infections. The successful usage of this phytocompound has been widely seen in medical treatment procedures under traditional Chinese medicine, and it is becoming progressively prevalent worldwide. This review provides an insight into the wide spectrum of pharmacological activities of dioscin, as reported and compiled in recent literature. The various novel approaches and applications of dioscin also verify the advantages exhibited by plant extracts against commercially available drugs, highlighting the potential of phytochemical agents like dioscin to be further incorporated into clinical practice.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
30
|
Li R, Qi Y, Yuan Q, Xu L, Gao M, Xu Y, Han X, Yin L, Liu C. Protective effects of dioscin against isoproterenol-induced cardiac hypertrophy via adjusting PKCε/ERK-mediated oxidative stress. Eur J Pharmacol 2021; 907:174277. [PMID: 34171391 DOI: 10.1016/j.ejphar.2021.174277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022]
Abstract
Cardiac hypertrophy (CH) plays a central role in cardiac remodeling and is an independent risk factor for cardiac events. It is imperative to find drugs with protective effect on CH. Dioscin, one natural product, shows various pharmacological activities, and PKCepsilon (PKCε) plays an important role in the physiological hypertrophic responses. Thus, we aimed to investigate the possible protective effect of dioscin on CH through PKCε. In the present study, the isoproterenol (ISO)-induced H9C2 cells and primary cardiomyocytes models, and the ISO-induced rat model were established, and the pharmacodynamics and mechanism of dioscin were investigated. In vitro results prompted that, dioscin significantly improved ISO-induced cardiomyocyte hypertrophy, decreased the levels of cell size, protein content of single cell, reactive oxygen species, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), beta-myosin heavy chain (β-MHC). Moreover, in vivo, changes in histopathological of the animals caused by ISO are improved by dioscin. And dioscin decreased the index of CH and the levels of CK, MDA, LDH, and increased the levels of GSH, SOD and GSH-Px. Mechanism research showed that dioscin inhibited the expression levels of PKCε, and affected the expression levels of p-MEK, p-ERK, Nrf2, Keap1 and HO-1 to inhibit oxidative stress. In addition, the results of ISO-induced CH in PKCε siRNA transfected H9C2 cells and C57BL/6 mice further showed that the protective effect of dioscin on CH, which was mediated by inhibition of PKCε/ERK signal pathway. In summary, dioscin can effectively inhibit CH by regulating PKCε-mediated oxidative stress, which should be considered as one potent candidate for new drug research and development to treat CH in the future.
Collapse
Affiliation(s)
- Ruomiao Li
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Qianhui Yuan
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China.
| | - Chuntong Liu
- Pharmaceutical Department, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
31
|
Zhao W, Chen L, Zhou H, Deng C, Han Q, Chen Y, Wu Q, Li S. Protective effect of carvacrol on liver injury in type 2 diabetic db/db mice. Mol Med Rep 2021; 24:741. [PMID: 34435648 PMCID: PMC8430346 DOI: 10.3892/mmr.2021.12381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the protective effect of carvacrol on liver injury in mice with type 2 diabetes mellitus (T2DM) and to assess its potential molecular mechanism. Mice were divided into three groups (n=15/group): Non-diabetic db/m+ mice group, db/db mice group and db/db mice + carvacrol group. In the db/db mice + carvacrol group, db/db mice were administered 10 mg/kg carvacrol daily by gavage for 6 weeks. Fasting blood glucose and insulin levels were separately examined. Pathological changes were observed using hematoxylin and eosin, Masson's trichrome, periodic acid Schiff and reticular fiber staining. In addition, immunohistochemistry, immunofluorescence and western blotting were used to examine the expression levels of Toll-like receptor 4 (TLR4), NF-κB, NALP3, AKT1, phosphorylated (p)-AKT1, insulin receptor (INSR), p-INSR, mTOR, p-mTOR, insulin receptor substrate 1 (IRS1) and p-IRS1 in the liver tissues. The results revealed that carvacrol improved blood glucose and insulin resistance of T2DM db/db mice. After treatment with carvacrol for 6 weeks, the serum levels of TC, TG and LDL-C were markedly reduced, whereas HDL-C levels were significantly increased in db/db mice. Furthermore, carvacrol administration significantly decreased serum ALT and AST levels in db/db mice. Serum BUN, Cre and UA levels were markedly higher in db/db mice compared with those in the control group; however, carvacrol treatment markedly reduced their serum levels in db/db mice. Furthermore, histological examinations confirmed that carvacrol could protect the liver of db/db mice. Carvacrol could ameliorate liver injury induced by T2DM via mediating insulin, TLR4/NF-κB and AKT1/mTOR signaling pathways. The present findings suggested that carvacrol exerted protective effects on the liver in T2DM db/db mice, which could be related to insulin, TLR4/NF-κB and AKT1/mTOR signaling pathways.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Li Chen
- Department of Prevention and Health Care, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Heng Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Chunyan Deng
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Qizhen Han
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Yonghua Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Qing Wu
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Shanshan Li
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| |
Collapse
|
32
|
Song Y, Li X, Liu F, Zhu H, Shen Y. Isoalantolactone alleviates ovalbumin‑induced asthmatic inflammation by reducing alternatively activated macrophage and STAT6/PPAR‑γ/KLF4 signals. Mol Med Rep 2021; 24:701. [PMID: 34368878 DOI: 10.3892/mmr.2021.12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Isoalantolactone (IAL), a sesquiterpene lactone, has anti‑inflammatory activity in lipopolysaccharide (LPS)‑induced sepsis. However, it remains to be elucidated whether IAL influences asthmatic inflammation. The present study found that IAL inhibited ovalbumin (OVA)‑induced asthmatic inflammation and attenuated OVA‑induced eosinophil infiltration, immunoglobulin E generation and the production of interleukin (IL)‑4, IL‑5, C‑C motif chemokine ligand (CCL)17 and CCL22. In addition, IAL treatment with IL‑4 reduced the expression of arginase‑1, Ym‑1, CCL17 and CCL22 in bone marrow‑derived macrophages in vitro. Furthermore, IAL inhibited IL‑4‑induced STAT6 phosphorylation and the expression of peroxisome proliferator‑activated receptor γ and Krüppel‑like factor 4. Collectively, the results suggested that IAL attenuated asthmatic inflammation and is a potential therapeutic agent for the treatment of asthma.
Collapse
Affiliation(s)
- Yunduan Song
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Xiaozong Li
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Fangfang Liu
- Department of Operation Management Office, Shanghai Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, P.R. China
| | - Hongbo Zhu
- Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| |
Collapse
|
33
|
Wang W, He Y, Liu Q. Parthenolide plays a protective role in the liver of mice with metabolic dysfunction‑associated fatty liver disease through the activation of the HIPPO pathway. Mol Med Rep 2021; 24:487. [PMID: 33955510 PMCID: PMC8127053 DOI: 10.3892/mmr.2021.12126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
Metabolic dysfunction‑associated fatty liver disease (MAFLD) is a serious threat to human health. Parthenolide (PAR) displays several important pharmacological activities, including the promotion of liver function recovery during hepatitis. The aim of the present study was to assess the effect of PAR on MAFLD in a mouse model. Body weight, liver to body weight ratios, histological score, alanine transaminase, aspartate transaminase, total cholesterol and triglyceride levels were determined to evaluate liver injury. Liver hydroxyproline concentrations were also assessed. The expression levels of lipid metabolism‑related genes (sterol regulatory element binding protein‑1c, fatty acid synthase, acetyl CoA carboxylase 1, stearoyl CoA desaturase 1 and carbohydrate response element‑binding protein, peroxisome proliferator‑activated receptor α, carnitine palmitoyl transferase 1α and acyl‑CoA dehydrogenase short chain), liver fibrosis‑associated genes (α‑smooth muscle actin, tissue inhibitor of metalloproteinase 1 and TGF‑β1), pro‑inflammatory cytokines (TNF‑α, IL‑1β and IL‑6) and oxidative stress‑associated enzymes (malondialdehyde, superoxide dismutase and glutathione peroxidase) were measured in mice with MAFLD. The expression levels of genes associated with the HIPPO pathway were also measured. In vivo experiments using a specific inhibitor of HIPPO signalling were performed to verify the role of this pathway in the effects of PAR. PAR exerted beneficial effects on liver injury, lipid metabolism, fibrosis, inflammation and oxidative stress in mice with MAFLD, which was mediated by activation of the HIPPO pathway.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Hepatology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yukai He
- Department of Hepatology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Qiuli Liu
- Department of Hepatology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
34
|
Ore A, Akinloye OA, Adeogun AI, Ugbaja RN, Morifi E, Makatini M, Moepya R, Mbhele T. Buchholzia coriacea seed (wonderful kolanut) alleviates insulin resistance, steatosis, inflammation and oxidative stress in high fat diet model of fatty liver disease. J Food Biochem 2021; 46:e13836. [PMID: 34184286 DOI: 10.1111/jfbc.13836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic condition with multiple pathological features and it currently has no specific treatment or approved drug. Wonderful kolanut widely consumed fresh or cooked has been applied in the treatment of numerous diseases in folk medicine. In this study, we evaluate the therapeutic potentials of hydroethanolic extract of defatted Buccholzia coriacea seeds (HEBCS) in NAFLD model. HEBCS was subjected to liquid chromatography - mass spectrometry, and 30 male BALB/c mice (28 ± 2 g) were allocated to three (3) experimental groups (n = 10/group). Mice in group I were fed chow diet (CD); those in group II, high fat diet (HFD) and group III, HFD and 250 mg/kg HEBCS p.o. daily for six weeks. HEBCS alleviates HFD-induced insulin resistance and high plasma insulin and glucose levels. It further alleviates hepatic steatosis, and alters plasma lipid profile. HEBCS also protected against HFD-induced inflammation, oxidative stress and hepatocellular damage. In conclusion, HEBCS alleviated NAFLD in mice via suppression of insulin resistance, hyperlipidemia, inflammation and oxidative stress. PRACTICAL APPLICATIONS: Bioactive polyphenols and alkaloids were identified in hydroethanolic extract of defatted Buccholzia coriacea seeds (HEBCS). This study projects HEBCS as a potential therapeutic agent in the treatment of NAFLD. NAFLD is a multi-factorial condition and therefore, HEBCS is promising considering its multiple-target actions in the current model of NAFLD. HEBCS alleviates insulin resistance, metabolic dysfunction, steatosis, and inflammation in this model. There is a need to further investigate HEBCS in other models of NAFLD as a lead to future use in clinical studies.
Collapse
Affiliation(s)
- Ayokanmi Ore
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.,Biochemistry Division, Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Oluseyi Adeboye Akinloye
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Abideen Idowu Adeogun
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Regina Ngozi Ugbaja
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| | - Maya Makatini
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| | - Refilwe Moepya
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| | - Thapelo Mbhele
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| |
Collapse
|
35
|
Zhao J, Hu Y, Peng J. Targeting programmed cell death in metabolic dysfunction-associated fatty liver disease (MAFLD): a promising new therapy. Cell Mol Biol Lett 2021; 26:17. [PMID: 33962586 PMCID: PMC8103580 DOI: 10.1186/s11658-021-00254-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Most currently recommended therapies for metabolic dysfunction-associated fatty liver disease (MAFLD) involve diet control and exercise therapy. We searched PubMed and compiled the most recent research into possible forms of programmed cell death in MAFLD, including apoptosis, necroptosis, autophagy, pyroptosis and ferroptosis. Here, we summarize the state of knowledge on the signaling mechanisms for each type and, based on their characteristics, discuss how they might be relevant in MAFLD-related pathological mechanisms. Although significant challenges exist in the translation of fundamental science into clinical therapy, this review should provide a theoretical basis for innovative MAFLD clinical treatment plans that target programmed cell death.
Collapse
Affiliation(s)
- Jianan Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China.
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China.
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
36
|
Chen C, Xin X, Liu Q, Tian HJ, Peng JH, Zhao Y, Hu YY, Feng Q. Geniposide and Chlorogenic Acid Combination Improves Non-Alcoholic Fatty Liver Disease Involving the Potent Suppression of Elevated Hepatic SCD-1. Front Pharmacol 2021; 12:653641. [PMID: 34017254 PMCID: PMC8129574 DOI: 10.3389/fphar.2021.653641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of hepatic triglycerides (TGs), has become a worldwide chronic liver disease. But efficient therapy keeps unsettled. Our previous works show that geniposide and chlorogenic acid combination (namely the GC combination), two active chemical components combined with a unique ratio (67.16:1), presents beneficial effects on high-fat diet-induced NAFLD rodent models. Notably, microarray highlighted the more than 5-fold down-regulated SCD-1 gene in the GC combination group. SCD-1 is an essential lipogenic protein for monounsaturated fatty acids’ biosynthesis and serves as a key regulatory enzyme in the last stage of hepatic de novo lipogenesis (DNL). Methods: NAFLD mice model was fed with 16 weeks high-fat diet (HFD). The pharmacological effects, primarily on hepatic TG, TC, FFA, and liver enzymes, et al. of the GC combination and two individual components were evaluated. Furthermore, hepatic SCD-1 expression was quantified with qRT-PCR, immunoblotting, and immunohistochemistry. Finally, the lentivirus-mediated over-expressed cell was carried out to confirm the GC combination’s influence on SCD-1. Results: The GC combination could significantly reduce hepatic TG, TC, and FFA in NAFLD rodents. Notably, the GC combination presented synergetic therapeutic effects, compared with two components, on normalizing murine hepatic lipid deposition and disordered liver enzymes (ALT and AST). Meanwhile, the robust SCD-1 induction induced by HFD and FFA in rodents and ALM-12 cells was profoundly blunted, and this potent suppression was recapitulated in lentivirus-mediated SCD-1 over-expressed cells. Conclusion: Taken together, our data prove that the GC combination shows a substantial and synergetic anti-lipogenesis effect in treating NAFLD, and these amelioration effects are highly associated with the potent suppressed hepatic SCD-1 and a blunted DNL process.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua-Jie Tian
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Hua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| |
Collapse
|
37
|
The Role of Resveratrol in Liver Disease: A Comprehensive Review from In Vitro to Clinical Trials. Nutrients 2021; 13:nu13030933. [PMID: 33805795 PMCID: PMC7999728 DOI: 10.3390/nu13030933] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Many studies have shown that resveratrol has a lot of therapeutic effects on liver disorders. Its administration can significantly increase the survival rate after liver transplantation, reduce fat deposition and ischemia-induced necrosis and apoptosis in Wistar rats. Resveratrol can provide Liver protection against chemical, cholestatic, and alcohol-mediated damage. It can improve glucose metabolism and lipid profile, reduce liver fibrosis, and steatosis. Additionally, it is capable of altering the fatty acid composition of the liver cells. Resveratrol may be a potential treatment option for the management of non-alcoholic fatty liver disease (NAFLD) due to its anti-inflammatory, antioxidant, and calorie-restricting effects. There are also studies that have evaluated the effect of resveratrol on lipid and liver enzyme profiles among patients with metabolic syndrome (MetS) and related disorders. Based on the extent of liver disease worldwide and the need to find new treatment possibilities, this review critically examines current in vitro and in vivo preclinical studies and human clinical studies related to liver protection.
Collapse
|
38
|
Simental-Mendía LE, Gamboa-Gómez CI, Guerrero-Romero F, Simental-Mendía M, Sánchez-García A, Rodríguez-Ramírez M. Beneficial Effects of Plant-Derived Natural Products on Non-alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:257-272. [PMID: 33861449 DOI: 10.1007/978-3-030-64872-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease is becoming in one of the most prevalent liver diseases that leads to liver transplantation. This health problem is a multisystem disease with a complex pathogenesis that involves liver, adipose tissue, gut, and muscle. Although several pharmacological agents have been investigated to prevent or treat non-alcoholic fatty liver disease, currently there is no effective treatment for the management of this chronic liver disease. Nonetheless, the use of natural products has emerged as a alternative therapeutic for the treatment of hepatic diseases, including non-alcoholic fatty liver disease, due to its anti-inflammatory, antioxidant, antidiabetic, insulin-sensitizing, antiobesity, hypolipidemic, and hepatoprotective properties. In the present review, we have discussed the evidence from experimental and clinical studies regarding the potential beneficial effects of plant-derived natural products (quercetin, resveratrol, berberine, pomegranate, curcumin, cinnamon, green tea, coffee, garlic, ginger, ginseng, and gingko biloba) for the treatment or prevention of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México.
| | - Claudia I Gamboa-Gómez
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Fernando Guerrero-Romero
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Mario Simental-Mendía
- Department of Orthopedics and Traumatology, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Adriana Sánchez-García
- Endocrinology Division, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Mariana Rodríguez-Ramírez
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| |
Collapse
|
39
|
Wang ZY, Liu J, Zhu Z, Su CF, Sreenivasmurthy SG, Iyaswamy A, Lu JH, Chen G, Song JX, Li M. Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review. Biomed Pharmacother 2020; 133:110968. [PMID: 33189067 DOI: 10.1016/j.biopha.2020.110968] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic diseases related to progressive damage of the nervous system. Globally, the number of people with an ND is dramatically increasing consistent with the fast aging of society and one of the common features of NDs is the abnormal aggregation of diverse proteins. Autophagy is the main process by which misfolded proteins and damaged organelles are removed from cells. It has been found that the impairment of autophagy is associated with many NDs, suggesting that autophagy has a vital role in the neurodegeneration process. Recently, more and more studies have reported that autophagy inducers display a protective role in different ND experimental models, suggesting that enhancement of autophagy could be a potential therapy for NDs. In this review, the evidence for beneficial effects of traditional Chinese medicine (TCM) regulate autophagy in the models of Alzheimer's disease (AD), Parkinson's disease (PD), and other NDs are presented and common autophagy-related mechanisms are identified. The results demonstrate that TCM which regulate autophagy are potential therapeutic candidates for ND treatment.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Jia Liu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhou Zhu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Cheng-Fu Su
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | | | - Ashok Iyaswamy
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Gang Chen
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Ju-Xian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
40
|
Sheng J, Zhang B, Chen Y, Yu F. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages. Immunopharmacol Immunotoxicol 2020; 42:556-563. [PMID: 32811220 DOI: 10.1080/08923973.2020.1811308] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Capsaicin is a chili pepper extract with multiple therapeutic properties including anti-liver fibrosis. However, the paucity of its underlying mechanisms limited its widely clinical application. METHODS In the present study, carbon tetrachloride (CCl4) was used to induce liver fibrosis in mice, and transforming growth factorβ1 (TGFβ1) was used to mimic liver fibrosis in vitro. Flow cytometry was conducted to determine the expression of CD80. The inflammatory factors level was examined by ELISA, and gene expression was detected by real-time PCR and western blot. RESULTS Here, we show that capsaicin attenuates liver fibrosis progression by mediating macrophage inflammatory response. Capsaicin inhibited M1 polarization of macrophage by regulating Notch signaling leading to the reduced secretion of inflammatory cytokine TNF-α that correspondingly attenuates myofibroblasts regeneration and fibrosis formation of hepatocyte stellate cells (HSCs). CONCLUSION Taken together, capsaicin alleviates liver fibrosis by inactivation of Notch signaling and further inhibiting TNF-α secretion from M1 macrophage. Targeting TNF-α or Notch signaling in macrophage represents a promising strategy to combat liver fibrosis.
Collapse
Affiliation(s)
- Jianping Sheng
- Department of General Surgery, the People's Hospital of Yuhuan, Taizhou, China
| | - Baohang Zhang
- Department of General Surgery, the People's Hospital of Yuhuan, Taizhou, China
| | - Yongfeng Chen
- Department of General Surgery, the People's Hospital of Yuhuan, Taizhou, China
| | - Fuxiang Yu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Zhu L, Mou Q, Wang Y, Zhu Z, Cheng M. Resveratrol contributes to the inhibition of liver fibrosis by inducing autophagy via the microRNA‑20a‑mediated activation of the PTEN/PI3K/AKT signaling pathway. Int J Mol Med 2020; 46:2035-2046. [PMID: 33125088 PMCID: PMC7595670 DOI: 10.3892/ijmm.2020.4748] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis (LF) is a healing response to wounds resulting in liver injury that can cause liver failure or even cancer without functional prevention. Resveratrol (RSV) has been suggested to exert biological effects against various human diseases. MicroRNA-20a (miRNA/miR-20a) has been shown to promote disease progression. The present study aimed to assess the mechanisms through which RSV induces autophagy and activates the miR-20a-mediated phosphatase and tensin homolog (PTEN)/PI3K/AKT signaling pathway in LF. First, a rat model of carbon tetrachlo-ride (CCL4)-induced LF and a cell model of platelet-derived growth factor (PDGF)-BB-stimulated HSC-T6 cells were established for use in subsequent experiments. Subsequently, RSV at a range of concentrations was injected into the model rats with LF. Indicators related to liver injury, oxidative stress and fibrosis were determined in the rats with LF. The RSV-treated HSC-T6 cells were subjected to transfection with miR-20a mimic and PTEN overexpression plasmid to assess the levels of liver injury and LF. A dual-luciferase reporter gene assay was performed to verify the binding sites between PTEN and miR-20a. RSV was found to alleviate LF in rats, and autophagy was enhanced in the rats with LF following RSV treatment. Furthermore, the activation of the PTEN/PI3K/AKT axis attenuated LF, which was reversed by transfection with miR-20a mimic. RSV reversed the inhibitory effects of miR-20a on PTEN expression, reducing miR-20a expression and promoting PTEN, PI3K and p-AKT protein expression, thus attenuating LF. On the whole, the present study demonstrates that RSV induces autophagy and activates the miR-20a-mediated PTEN/PI3K/AKT signaling pathway to attenuate LF. These findings may lead to the development of potential therapeutic strategies for LF.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qiuju Mou
- Department of Blood Transfusion, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yinghui Wang
- Graduate School, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zixin Zhu
- Graduate School, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Mingliang Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
42
|
Zhao Q, Wei M, Zhang S, Huang Z, Lu B, Ji L. The water extract of Sophorae tonkinensis Radix et Rhizoma alleviates non-alcoholic fatty liver disease and its mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153270. [PMID: 32702591 DOI: 10.1016/j.phymed.2020.153270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/25/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sophorae tonkinensis Radix et Rhizoma is traditionally used for clearing away heat and toxic materials in China. PURPOSE This study aims to observe the amelioration of Sophorae tonkinensis water extract (STR) against non-alcoholic fatty liver disease (NAFLD) and the engaged mechanism. METHODS NAFLD was induced in mice fed by methionine and choline deficient (MCD) diet. Liver histological observation, Oil Red O, Masson's trichrome and F4/80 immunohistochemical staining were performed. Serum and liver biochemical parameters, hepatic gene and protein expression were detected. Cellular lipids accumulation in human normal liver l-02 and hepatoma HepRG cells were induced by 0.5 mM nonestesterified fatty acid (NEFA). The contents of matrine (MT) and oxymatrine (OMT) in STR were detected by using high-performance liquid chromatography (HPLC). Carnitine palmitoyltransferase 1A (CPT1A) expression and enzymatic activity were detected both in vivo and in vitro. RESULTS Serum alanine/aspartate aminotransferase (ALT/AST) activity, hepatic malondialdehyde (MDA) content and liver histological observation showed that STR alleviated hepatocellular damage in mice fed with MCD diet. Hepatic triglyceride (TG), total cholesterol (TC) and NEFA amounts, and Oil Red O staining showed that STR reduced hepatic lipids accumulation in mice fed with MCD diet. STR and its main compounds including MT and OMT decreased NEFA-induced cellular lipids accumulation in hepatocytes. STR enhanced CPT1A activity both in vivo and in vitro. MT and OMT also enhanced cellular CPT1A activity in l-02 hepatocytes treated with NEFA. Moreover, the CTP1A inhibitor etomoxir (ETO) reduced the lipid-lowering activity provided by STR, MT or OMT in vitro. Liver myeloperoxidase (MPO) activity and hydroxyproline content, Masson's trichrome and F4/80 immunohistochemical staining, and hepatic mRNA expression of some molecules involved in regulating inflammation or fibrosis demonstrated that STR alleviated hepatic inflammation and liver fibrosis in mice fed with MCD diet. CONCLUSION STR alleviated NAFLD by inhibiting hepatic inflammation and liver fibrosis, and reducing hepatic lipids accumulation through promoting fatty acids β-oxidation by enhancing liver CPT1A activity. MT and OMT may be the main active compounds contributing to the lipid-lowering activity provided by STR.
Collapse
Affiliation(s)
- Qing Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaobo Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
43
|
Vesković M, Labudović-Borović M, Mladenović D, Jadžić J, Jorgačević B, Vukićević D, Vučević D, Radosavljević T. Effect of Betaine Supplementation on Liver Tissue and Ultrastructural Changes in Methionine-Choline-Deficient Diet-Induced NAFLD. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:997-1006. [PMID: 32782033 DOI: 10.1017/s1431927620024265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a hepatic manifestation of metabolic syndrome. The aim of this study was to examine the effect of betaine on ultrastructural changes in the mouse liver with methionine- and choline-deficient (MCD) diet-induced NAFLD. Male C57BL/6 mice were divided into groups: Control-fed with standard chow, BET-standard chow supplemented with betaine (1.5% w/v drinking water), MCD-fed with MCD diet, and MCD + BET-MCD diet with betaine supplementation for 6 weeks. Liver samples were taken for pathohistology and transmission electron microscopy. The MCD diet-induced steatosis, inflammation, and balloon-altered hepatocytes were alleviated by betaine. MCD diet induced an increase in mitochondrial size versus the control group (p < 0.01), which was decreased in the betaine-treated group. In the MCD diet-fed group, the total mitochondrial count decreased versus the control group (p < 0.01), while it increased in the MCD + BET group versus MCD (p < 0.01). Electron microscopy showed an increase in the number of autophagosomes in the MCD and MCD + BET group versus control, and a significant difference in autophagosomes number was detected in the MCD + BET group by comparison with the MCD diet-treated group (p < 0.05). Betaine decreases the number of enlarged mitochondria, alleviates steatosis, and increases the number of autophagosomes in the liver of mice with NAFLD.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
| | - Milica Labudović-Borović
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade11000, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
| | - Jelena Jadžić
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade11000, Serbia
| | - Bojan Jorgačević
- Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
| | - Dušan Vukićević
- Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
| | - Danijela Vučević
- Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
| | - Tatjana Radosavljević
- Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
| |
Collapse
|
44
|
Prevention of Nonalcoholic Hepatic Steatosis by Shenling Baizhu Powder: Involvement of Adiponectin-Induced Inhibition of Hepatic SREBP-1c. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9701285. [PMID: 33062150 PMCID: PMC7533788 DOI: 10.1155/2020/9701285] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/30/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, and its incidence is increasing annually, but there is currently no specific drug for treating NAFLD. Shenling Baizhu powder (SL) is a safe herbal compound commonly used in clinical practice. Our previous research has shown that SL has the effect of preventing NAFLD, but its specific mechanism has not been determined. In this study, the potential mechanism of SL on NAFLD was explored by in vivo experiments. Methods Wistar rats fed a choline-deficient amino acid-defined diet (CDAA) were treated with SL for 8 weeks. Then, serum samples were collected to obtain biochemical indicators; adipose tissue and liver samples were collected for pathological detection; a moorFLPI-2 blood flow imager was used to measure liver microcirculation blood flow, and a rat cytokine array was used to screen potential target proteins. The expression of liver adiponectin/SREBP-1c pathway-related proteins was determined by Western blotting. Results SL effectively reduced the liver wet weight, as well as the levels of total cholesterol (TC) and triglyceride (TG) in the liver, and ameliorated liver injury in CDAA-fed rats. Pathological examinations showed that SL markedly reduced liver lipid droplets and improved liver lipid accumulation. In addition, the detection of liver blood flow showed that SL increased liver microcirculation in CDAA-fed rats. Through the cytokine array, a differentially expressed cytokine, namely, adiponectin, was screened in the liver. Western blotting assays showed that SL increased the expression of adiponectin and phosphoacetyl-CoA Carboxylase (p-ACC) in the liver and decreased the expression of steroid regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS). Conclusion These results suggest that SL can increase the levels of adiponectin in the liver and serum and can inhibit the expression of SREBP-1c, thereby regulating systemic lipid metabolism and reducing liver lipid accumulation.
Collapse
|
45
|
Korolenko TA, Bgatova NP, Ovsyukova MV, Shintyapina A, Vetvicka V. Hypolipidemic Effects of β-Glucans, Mannans, and Fucoidans: Mechanism of Action and Their Prospects for Clinical Application. Molecules 2020; 25:molecules25081819. [PMID: 32316136 PMCID: PMC7221696 DOI: 10.3390/molecules25081819] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
The search for lipid-lowering drugs is important for clinical medicine. This review summarizes our research findings regarding the hypolipidemic activity of polysaccharides. There are several validated agents altering lipid levels which reduce the risk of atherosclerotic cardiovascular events. Nonetheless, for many people, the risk of such an event remains unacceptably high despite treatment with these agents. This situation has prompted the search for new therapies to reduce the residual cardiovascular risk. The lipid-lowering effect of β-glucans consumed with food was demonstrated in patients with atherosclerosis. The mechanism of the protective effect of β-glucans is poorly studied. The effects of β-glucans are mediated by Toll-like receptors, by dectin-1, and possibly by other receptors. Nevertheless, the mechanism of the protective action of β-glucan in lipemic mice has been studied insufficiently. This review will present up-to-date information regarding experimental hypolipidemic polysaccharide compounds that hold promise for medicine. Phagocyte-specific chitotriosidase in humans contributes to innate immune responses against chitin-containing fungi. This enzyme has been first described in patients with Gaucher disease and serves as an important diagnostic biomarker. It has been reported that, in mice, chitin particles of certain size are recognized by macrophages through Toll-like receptors, dectin-1, and to a lesser extent through mannose receptor.
Collapse
Affiliation(s)
- Tatiana A. Korolenko
- Department of Clinical Neuroscience, Behavior and Neurotechnologies, Institute of Physiology and Basic Medicine, Timakov St. 4, Novosibirsk 630117, Russia; (T.A.K.); (M.V.O.)
| | - Nataliya P. Bgatova
- Laboratory of Ultrastructural Research, Department of Experimental Pharmacology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630117, Russia;
| | - Marina V. Ovsyukova
- Department of Clinical Neuroscience, Behavior and Neurotechnologies, Institute of Physiology and Basic Medicine, Timakov St. 4, Novosibirsk 630117, Russia; (T.A.K.); (M.V.O.)
| | - Alexandra Shintyapina
- Institute of Molecular Biology and Biophysics, Federal Research Center, Timakov St. 2, Novosibirsk 630117, Russia;
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
46
|
Shi T, Wu L, Ma W, Ju L, Bai M, Chen X, Liu S, Yang X, Shi J. Nonalcoholic Fatty Liver Disease: Pathogenesis and Treatment in Traditional Chinese Medicine and Western Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8749564. [PMID: 31998400 PMCID: PMC6969649 DOI: 10.1155/2020/8749564] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide and probably destined to become the leading cause of end-stage liver disease in the coming decades, affecting both adults and children. Faced with the severe challenges for the prevention and control of NAFLD, this article discusses the understanding and mechanism of NAFLD from Chinese and Western medicine. Moreover, the progress regarding its treatment in both Chinese and Western medicine is also summarized. Both Chinese medicine and Western medicine have their own characteristics and clinical efficacy advantages in treating diseases. The purpose of this article is to hope that Chinese and Western medicine have complementary advantages, complementing each other to improve clinical NAFLD therapy prevention and treatment methods to receive more and more attention throughout the global medical community.
Collapse
Affiliation(s)
- Tingting Shi
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Li Wu
- Center of Clinical Evaluation, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, Zhejiang, China
| | - Wenjun Ma
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Liping Ju
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Minghui Bai
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xiaowei Chen
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Shourong Liu
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xingxin Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Kunming 650500, Yunnan, China
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Grefhorst A, van de Peppel IP, Larsen LE, Jonker JW, Holleboom AG. The Role of Lipophagy in the Development and Treatment of Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2020; 11:601627. [PMID: 33597924 PMCID: PMC7883485 DOI: 10.3389/fendo.2020.601627] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction) associated liver disease (MAFLD), is, with a global prevalence of 25%, the most common liver disorder worldwide. NAFLD comprises a spectrum of liver disorders ranging from simple steatosis to steatohepatitis, fibrosis, cirrhosis and eventually end-stage liver disease. The cause of NAFLD is multifactorial with genetic susceptibility and an unhealthy lifestyle playing a crucial role in its development. Disrupted hepatic lipid homeostasis resulting in hepatic triglyceride accumulation is an hallmark of NAFLD. This disruption is commonly described based on four pathways concerning 1) increased fatty acid influx, 2) increased de novo lipogenesis, 3) reduced triglyceride secretion, and 4) reduced fatty acid oxidation. More recently, lipophagy has also emerged as pathway affecting NAFLD development and progression. Lipophagy is a form of autophagy (i.e. controlled autolysosomal degradation and recycling of cellular components), that controls the breakdown of lipid droplets in the liver. Here we address the role of hepatic lipid homeostasis in NAFLD and specifically review the current literature on lipophagy, describing its underlying mechanism, its role in pathophysiology and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
- *Correspondence: Aldo Grefhorst,
| | - Ivo P. van de Peppel
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lars E. Larsen
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johan W. Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
| |
Collapse
|
48
|
Chen Y, Bi Q, Zhu Z, Zhang S, Xu J, Dou X, Mao W. Lycium barbarum polysaccharides exert an antioxidative effect on rat chondrocytes by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Arch Med Sci 2020; 16:964-973. [PMID: 32542100 PMCID: PMC7286333 DOI: 10.5114/aoms.2018.77036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Oxidative stress is the main cause of osteoarthritis (OA). Lycium barbarum polysaccharides (LBP) have antioxidant properties. Thus, the potential effect of LBP on H2O2-stimulated chondrocytes was examined. MATERIAL AND METHODS The cell viability was detected by CCK-8. The reactive oxygen species (ROS) production and apoptosis rates were determined by flow cytometric analysis. The DNA damage was detected by comet assay. Real-time polymerase chain reaction (qPCR) and Western blot assays were performed to examine the expression of histone 2A family member X (γH2AX), checkpoint kinase 1 (Chk1), poly ADP-ribose polymerase (PARP), cysteinyl aspartate specific proteinase (caspase)-3/8/9, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its antioxidant-response element (ARE) dependent factors including heme oxygenase-1 (HO-1) and quinine oxidoreductase-1 (NQO-1). RESULTS Compared to the H2O2 group, LBP inhibited the ROS production and DNA damage caused by H2O2 (p < 0.05), respectively. LBP inhibited the mRNA and protein expressions of γH2AX and Chk1 (p < 0.05). Meanwhile, LBP significantly decreased apoptosis (p < 0.05). And LBP inhibited the expression levels of PARP and Caspase-3/8/9 (p < 0.05). Moreover, LBP increased the expression of Nrf2, HO-1and NQO-1 (p < 0.05). Furthermore, the depletion of Nrf2 that mediated by RNA interference reversed the apoptosis and DNA damage inhibition effect of LBP (p < 0.05). CONCLUSIONS LBP protected chondrocytes through inhibiting DNA damage and apoptosis caused by H2O2, in which the Nrf2/ARE signaling pathway played a positive role. It provided an inspiration for clinical application - developing LBP as a therapeutic agent and Nrf2 as a promising candidate.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ziguan Zhu
- Department of Hand Surgery and Reconstruction Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shuijun Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jifeng Xu
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaofan Dou
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weihuan Mao
- Department of Orthopedics, The Fifth People’s Hospital of Yuhang District, Hangzhou, China
- Corresponding author: Weihuan Mao, Department of Orthopedics, The Fifth People’s, Hospital of 60 Healthcare Road, Linping St, Yuhang District, Hangzhou City, Zhejiang Province, 311100 Hangzhou, China, Phone: +86 0571 86222034, E-mail:
| |
Collapse
|
49
|
Chen N, Shan Q, Qi Y, Liu W, Tan X, Gu J. Transcriptome analysis in normal human liver cells exposed to 2, 3, 3', 4, 4', 5 - Hexachlorobiphenyl (PCB 156). CHEMOSPHERE 2020; 239:124747. [PMID: 31514003 DOI: 10.1016/j.chemosphere.2019.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/31/2019] [Accepted: 09/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUNDS Polychlorinated biphenyls are persistent environmental pollutants associated with the onset of non-alcoholic fatty liver disease in humans, but there is limited information on the underlying mechanism. In the present study, we investigated the alterations in gene expression profiles in normal human liver cells L-02 following exposure to 2, 3, 3', 4, 4', 5 - hexachlorobiphenyl (PCB 156), a potent compound that may induce non-alcoholic fatty liver disease. METHODS The L-02 cells were exposed to PCB 156 for 72 h and the contents of intracellular triacylglyceride and total cholesterol were subsequently measured. Microarray analysis of mRNAs and long non-coding RNAs (lncRNAs) in the cells was also performed after 3.4 μM PCB 156 treatment. RESULTS Exposure to PCB 156 (3.4 μM, 72 h) resulted in significant increases of triacylglyceride and total cholesterol concentrations in L-02 cells. Microarray analysis identified 222 differentially expressed mRNAs and 628 differentially expressed lncRNAs. Gene Ontology and pathway analyses associated the differentially expressed mRNAs with metabolic and inflammatory processes. Moreover, lncRNA-mRNA co-expression network revealed 36 network pairs comprising 10 differentially expressed mRNAs and 34 dysregulated lncRNAs. The results of bioinformatics analysis further indicated that dysregulated lncRNA NONHSAT174696, lncRNA NONHSAT179219, and lncRNA NONHSAT161887, as the regulators of EDAR, CYP1B1, and ALDH3A1 respectively, played an important role in the PCB 156-induced lipid metabolism disorder. CONCLUSION Our findings provide an overview of differentially expressed mRNAs and lncRNAs in L-02 cells exposed to PCB 156, and contribute to the field of polychlorinated biphenyl-induced non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China; State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yu Qi
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaojun Tan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
50
|
Cai C, Chen DZ, Ge LC, Chen WK, Ye SS, Ye WW, Tao Y, Wang R, Li J, Lin Z, Wang XD, Xu LM, Chen YP. Synergistic effects of Lactobacillus rhamnosus culture supernatant and bone marrow mesenchymal stem cells on the development of alcoholic steatohepatitis in mice. Am J Transl Res 2019; 11:5703-5715. [PMID: 31632541 PMCID: PMC6789285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The gut microbiota has been shown to play an important role in chronic liver disease. It has been found that both Lactobacillus rhamnosus and its culture supernatant have the potential to mitigate alcoholic steatohepatitis. However, the exact mechanism is still not fully understood. Bone marrow mesenchymal stem cells have immunosuppressive effects with few side effects. The synergistic effect between Lactobacillus rhamnosus culture supernatant and bone marrow mesenchymal stem cells (BMMSCs) deserves further observation. In this study, a mouse model of chronic alcoholic hepatitis was established by eight weeks of Lieber-DeCarli liquid diet feeding; and LGG-s, BMMSCs or a combination of the two were used to explore a new therapeutic method for alcoholic liver disease and to study the mechanism. The results showed that the combined LGG-s and BMMSC treatment might have a synergistic effect and could improve the symptoms of alcoholic hepatitis by regulating inflammation, autophagy and lymphocyte subsets through the PI3k/NF-kB and PI3K/mTOR pathways. With the treatment, the autophagy rate accelerated, and alcohol-induced natural killer B (NKB) cell and follicular helper T (TFH) cell numbers decreased. These findings suggest that the development of alcoholic hepatitis may occur via PI3K/NF-kB and PI3K/mTOR pathway overactivation as well as through NKB and TFH cell imbalances. Moreover, LGG-s and BMMSCs can regulate these factors and alleviate the disease.
Collapse
Affiliation(s)
- Chao Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| | - Da-Zhi Chen
- Department of Gastroenterology, The First Hospital of Peking UniversityBeijing, China
| | - Li-Chao Ge
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| | - Wen-Kai Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| | - Sha-Sha Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| | - Wei-Wei Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
- The Affiliated Yiwu Central Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, China
| | - Ying Tao
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| | - Rui Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| | - Ji Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| | - Zhuo Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| | - Xiao-Dong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| | - Lan-Man Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Eastern HospitalNingbo 315040, Zhejiang, China
- Department of Infectious Diseases and Liver Diseases, Taipei Medical University Ningbo Medical CenterNingbo 315040, Zhejiang, China
| | - Yong-Ping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of HepatologyWenzhou 325000, Zhejiang, China
| |
Collapse
|