1
|
Del Castillo Falconi VM, Godinez Rodriguez JA, Fragoso-Ontiveros V, Contreras-Espinosa L, Pedroza-Torres A, Díaz-Chávez J, Herrera LA. Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review). Mol Med Rep 2025; 31:144. [PMID: 40183399 PMCID: PMC11979574 DOI: 10.3892/mmr.2025.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/17/2024] [Indexed: 04/05/2025] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer globally, with epithelial ovarian cancer (EOC) comprising up to 90% of cases. A molecular characterization linking the histological subtypes with tumor grade in EOC has been suggested. Variations in genetic biomarkers such as BRCA1/2, MSH2, MLH1/6, BRIP1, and RAD51C/D have been studied in EOC. In addition, molecular characteristics, including DNA methylation and RNA transcription, are being explored as potential new biomarkers for the diagnosis and prognosis of this type of neoplasia. The present review focused on the role of DNA methylation and non‑coding RNA expression in the development of ovarian carcinomas and their association with diagnosis, prognosis, and the resistance of cancer cells to radiotherapy and chemotherapy. The present review considered the transition from the DNA structure to the RNA expression in ovarian carcinoma.
Collapse
Affiliation(s)
- Victor M. Del Castillo Falconi
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
| | | | - Verónica Fragoso-Ontiveros
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
| | - Laura Contreras-Espinosa
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
- Biological Sciences Postgrade, UNAM, Mexico City 04510, Mexico
| | - Abraham Pedroza-Torres
- Investigadores por México Program - SECIHTI, Hereditary Cancer Clinic, INCan, Mexico City 14080, Mexico
| | - José Díaz-Chávez
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
- School of Medicine and Health Sciences, Mexico-Monterrey Institute of Technology, Mexico City 14380, Mexico
| | - Luis A. Herrera
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
- School of Medicine and Health Sciences, Mexico-Monterrey Institute of Technology, Mexico City 14380, Mexico
| |
Collapse
|
2
|
Lan X, Zhang H, Chen ZY, Wang J, Zhang SC, Li Q, Ke JY, Wei W, Huang R, Tang X, Chen SP, Huang TT, Zhou YW. Suppressor of cytokine signaling 2 modulates regulatory T cell activity to suppress liver hepatocellular carcinoma growth and metastasis. World J Gastroenterol 2025; 31:100566. [PMID: 40248063 PMCID: PMC12001165 DOI: 10.3748/wjg.v31.i13.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is a highly aggressive cancer with poor prognosis due to its complex tumor microenvironment (TME) and immune evasion. Regulatory T cells (Tregs) play a critical role in tumor progression. Suppressor of cytokine signaling 2 (SOCS2), a key immune regulator, may modulate Treg activity and impact LIHC growth and metastasis. AIM To explore how the SOCS2 affects Treg activity in LIHC and its impact on tumor growth and metastasis. METHODS LIHC transcriptome data from The Cancer Genome Atlas database were analyzed using Gene Set Enrichment Analysis, Estimation of Stromal and Immune Cells in Malignant Tumors Using Expression Data, and Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts to evaluate immune pathways and Treg infiltration. Key prognostic genes were identified using Weighted Gene Co-expression Network Analysis and machine learning. In vitro, co-culture experiments, migration assays, apoptosis detection, and enzyme-linked immunosorbent assay were conducted. In vivo, tumor growth, metastasis, and apoptosis were assessed using subcutaneous and lung metastasis mouse models with hematoxylin and eosin staining, Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling, and immunohistochemistry analyses. RESULTS SOCS2 overexpression inhibited Treg cell activity, reducing LIHC cell migration and invasion while increasing apoptosis. In vivo, SOCS2 suppressed tumor growth and metastasis, confirming its therapeutic potential. CONCLUSION SOCS2 modulates CD4+ T function in the TME, contributing to LIHC progression. Targeting SOCS2 presents a potential therapeutic strategy for treating LIHC.
Collapse
Affiliation(s)
- Xi Lan
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Heng Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ze-Yan Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Jing Wang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Shi-Chang Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Qing Li
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Juan-Yu Ke
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Wei Wei
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Rong Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Xi Tang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Si-Ping Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ting-Ting Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Yi-Wen Zhou
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| |
Collapse
|
3
|
Abbas M, Gaye A. Emerging roles of noncoding RNAs in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2025; 328:H603-H621. [PMID: 39918596 DOI: 10.1152/ajpheart.00681.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
This review comprehensively examines the diverse roles of noncoding RNAs (ncRNAs) in the pathogenesis and treatment of cardiovascular disease (CVD), focusing on microRNA (miRNA), long noncoding RNA (lncRNA), piwi-interacting RNA (piRNA), small-interfering RNA (siRNA), circular RNA (circRNA), and vesicle-associated RNAs. These ncRNAs are integral regulators of key cellular processes, including gene expression, inflammation, and fibrosis, and they hold great potential as both diagnostic biomarkers and therapeutic targets. The review highlights novel insights into how these RNA species, particularly miRNAs, lncRNAs, and piRNAs, contribute to various CVDs such as hypertension, atherosclerosis, and myocardial infarction. In addition, it explores the emerging role of extracellular vesicles (EVs) in intercellular communication and their therapeutic potential in cardiovascular health. The review underscores the need for continued research into ncRNAs and RNA-based therapies, with a focus on advancing delivery systems and expanding personalized medicine approaches to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Malak Abbas
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical School, Nashville, Tennessee, United States
| |
Collapse
|
4
|
Márton É, Varga A, Domoszlai D, Buglyó G, Balázs A, Penyige A, Balogh I, Nagy B, Szilágyi M. Non-Coding RNAs in Cancer: Structure, Function, and Clinical Application. Cancers (Basel) 2025; 17:579. [PMID: 40002172 PMCID: PMC11853212 DOI: 10.3390/cancers17040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
We are on the brink of a paradigm shift in both theoretical and clinical oncology. Genomic and transcriptomic profiling, alongside personalized approaches that account for individual patient variability, are increasingly shaping discourse. Discussions on the future of personalized cancer medicine are mainly dominated by the potential of non-coding RNAs (ncRNAs), which play a prominent role in cancer progression and metastasis formation by regulating the expression of oncogenic or tumor suppressor proteins at transcriptional and post-transcriptional levels; furthermore, their cell-free counterparts might be involved in intercellular communication. Non-coding RNAs are considered to be promising biomarker candidates for early diagnosis of cancer as well as potential therapeutic agents. This review aims to provide clarity amidst the vast body of literature by focusing on diverse species of ncRNAs, exploring the structure, origin, function, and potential clinical applications of miRNAs, siRNAs, lncRNAs, circRNAs, snRNAs, snoRNAs, eRNAs, paRNAs, YRNAs, vtRNAs, and piRNAs. We discuss molecular methods used for their detection or functional studies both in vitro and in vivo. We also address the challenges that must be overcome to enter a new era of cancer diagnosis and therapy that will reshape the future of oncology.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Dóra Domoszlai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Anita Balázs
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary;
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| |
Collapse
|
5
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
6
|
Bardan CR, Ioniță I, Iordache M, Călămar-Popovici D, Todorescu V, Popescu R, Bernad BC, Bardan R, Bernad ES. Epigenetic Biomarkers in Thrombophilia-Related Pregnancy Complications: Mechanisms, Diagnostic Potential, and Therapeutic Implications: A Narrative Review. Int J Mol Sci 2024; 25:13634. [PMID: 39769397 PMCID: PMC11728153 DOI: 10.3390/ijms252413634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/14/2025] Open
Abstract
Pregnancy complications associated with thrombophilia represent significant risks for maternal and fetal health, leading to adverse outcomes such as pre-eclampsia, recurrent pregnancy loss, and intra-uterine growth restriction (IUGR). They are caused by disruptions in key physiological processes, including the coagulation cascade, trophoblast invasion, angiogenesis, and immune control. Recent advancements in epigenetics have revealed that non-coding RNAs, especially microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and extracellular vesicles (EVs) carrying these RNAs, play crucial roles in the regulation of these biological processes. This review aims to identify the epigenetic biomarkers that are the best candidates for evaluating thrombophilia-related pregnancy complications and for assessing the efficacy of anticoagulant and antiaggregant therapies. We emphasize their potential integration into personalized treatment plans, aiming to improve the risk assessment and therapy strategies for thrombophilic pregnancies. Future research should focus on validating these epigenetic biomarkers and establishing standardized protocols to enable their integration into clinical practice, paving the way for a precision medicine approach in obstetric care.
Collapse
Affiliation(s)
- Claudia Ramona Bardan
- Doctoral School, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.R.B.); (B.C.B.)
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
| | - Ioana Ioniță
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Maria Iordache
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Despina Călămar-Popovici
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Violeta Todorescu
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Division of Cell and Molecular Biology, Department of Microscopic Morphology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Brenda Cristiana Bernad
- Doctoral School, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.R.B.); (B.C.B.)
- Center for Neuropsychology and Behavioral Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Răzvan Bardan
- Department of Urology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Urology, “Pius Brînzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Elena Silvia Bernad
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Clinic of Obstetrics and Gynecology, “Pius Brînzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
8
|
Luo X, Wen W. MicroRNA in prostate cancer: from biogenesis to applicative potential. BMC Urol 2024; 24:244. [PMID: 39506720 PMCID: PMC11539483 DOI: 10.1186/s12894-024-01634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Prostate cancer is the most common solid malignant tumor in men, characterized by high morbidity and mortality. While current screening tools, such as prostate-specific antigen (PSA) testing and digital rectal examination, are available for early detection of prostate cancer, their sensitivity and specificity are limited. Tissue puncture biopsy, although capable of offering a definitive diagnosis, has poor positive predictive rates and burdens the patient more. Therefore, more reliable molecular diagnostic tools for prostate cancer urgently need to be developed. In recent years, microRNAs (miRNAs) have attracted much attention in prostate cancer research. miRNAs are extensively engaged in biological processes such as cell proliferation, differentiation, apoptosis, migration, and invasion by modulating gene expression post-transcriptionally. Dysregulation of miRNA expression in cancer is considered a critical factor in tumorigenesis and progression. This review first briefly introduces the biogenesis of miRNAs and their functions in cancer, then focuses on tumor-promoting miRNAs and tumor-suppressor miRNAs in prostate cancer. Finally, the potential application of miRNAs as multifunctional tools for cancer diagnosis, prognostic assessment, and therapy is discussed in detail. The concluding section summarizes the major points of the review and the challenges ahead.
Collapse
Affiliation(s)
- Xu Luo
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Wen
- Department of Urology, West China Tianfu Hospital, Sichuan University, Chengdu, 610213, P.R. China.
| |
Collapse
|
9
|
Canovi C, Stojkovič K, Benítez AA, Delhomme N, Egertsdotter U, Street NR. A resource of identified and annotated lincRNAs expressed during somatic embryogenesis development in Norway spruce. PHYSIOLOGIA PLANTARUM 2024; 176:e14537. [PMID: 39319989 DOI: 10.1111/ppl.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators of many biological processes, although their regulatory roles remain poorly characterized in woody plants, especially in gymnosperms. A major challenge of working with lncRNAs is to assign functional annotations, since they have a low coding potential and low cross-species conservation. We utilised an existing RNA-Sequencing resource and performed short RNA sequencing of somatic embryogenesis developmental stages in Norway spruce (Picea abies L. Karst). We implemented a pipeline to identify lncRNAs located within the intergenic space (lincRNAs) and generated a co-expression network including protein coding, lincRNA and miRNA genes. To assign putative functional annotation, we employed a guilt-by-association approach using the co-expression network and integrated these results with annotation assigned using semantic similarity and co-expression. Moreover, we evaluated the relationship between lincRNAs and miRNAs, and identified which lincRNAs are conserved in other species. We identified lincRNAs with clear evidence of differential expression during somatic embryogenesis and used network connectivity to identify those with the greatest regulatory potential. This work provides the most comprehensive view of lincRNAs in Norway spruce and is the first study to perform global identification of lincRNAs during somatic embryogenesis in conifers. The data have been integrated into the expression visualisation tools at the PlantGenIE.org web resource to enable easy access to the community. This will facilitate the use of the data to address novel questions about the role of lincRNAs in the regulation of embryogenesis and facilitate future comparative genomics studies.
Collapse
Affiliation(s)
- Camilla Canovi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Katja Stojkovič
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Aarón Ayllón Benítez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ulrika Egertsdotter
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Renewable Bioproducts Institute, Georgia Institute of Technology Atlanta, USA
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- SciLifeLab, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Wang J, Luo H, Yang L, Yuan H. ARAP1-AS1: a novel long non-coding RNA with a vital regulatory role in human cancer development. Cancer Cell Int 2024; 24:270. [PMID: 39090630 PMCID: PMC11295494 DOI: 10.1186/s12935-024-03435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have garnered significant attention in biomedical research due to their pivotal roles in gene expression regulation and their association with various human diseases. Among these lncRNAs, ArfGAP With RhoGAP Domain, Ankyrin Repeat, And PH Domain 1 - Antisense RNA 1 (ARAP1-AS1) has recently emerged as an novel oncogenic player. ARAP1-AS1 is prominently overexpressed in numerous solid tumors and wields influence by modulating gene expression and signaling pathways. This regulatory impact is realized through dual mechanisms, involving both competitive interactions with microRNAs and direct protein binding. ARAP1-AS1 assumes an important role in driving tumorigenesis and malignant tumor progression, affecting biological characteristics such as tumor expansion and metastasis. This paper provides a concise review of the regulatory role of ARAP1-AS1 in malignant tumors and discuss its potential clinical applications as a biomarker and therapeutic target. We also address existing knowledge gaps and suggest avenues for future research. ARAP1-AS1 serves as a prototypical example within the burgeoning field of lncRNA studies, offering insights into the broader landscape of non-coding RNA molecules. This investigation enhances our comprehension of the complex mechanisms that govern the progression of cancer.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Lu Yang
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Huazhao Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi Province, 332007, P.R. China.
| |
Collapse
|
11
|
Liu M, He C, Zhu T, Jia X, Zhang L, Jiang W, Chi C, Li X, Jiang G, Liu H, Zhang D. Characterizing and identifying of miRNAs involved in berberine modulating glucose metabolism of Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1667-1682. [PMID: 38963582 DOI: 10.1007/s10695-024-01362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024]
Abstract
The present study, as one part of a larger project that aimed to investigate the effects of dietary berberine (BBR) on fish growth and glucose regulation, mainly focused on whether miRNAs involve in BBR's modulation of glucose metabolism in fish. Blunt snout bream Megalobrama amblycephala (average weight of 20.36 ± 1.44 g) were exposed to the control diet (NCD, 30% carbohydrate), the high-carbohydrate diet (HCD, 43% carbohydrate) and the berberine diet (HCB, HCD supplemented with 50 mg/kg BBR). After 10 weeks' feeding trial, intraperitoneal injection of glucose was conducted, and then, the plasma and liver were sampled at 0 h, 1 h, 2 h, 6 h, and 12 h. The results showed the plasma glucose levels in all groups rose sharply and peaked at 1 h after glucose injection. Unlike the NCD and HCB groups, the plasma glucose in the HCD group did not decrease after 1 h, while remained high level until at 2 h. The NCD group significantly increased liver glycogen content at times 0-2 h compared to the other two groups and then liver glycogen decreased sharply until at times 6-12 h. To investigate the role of BBR that may cause the changes in plasma glucose and liver glycogen, miRNA high-throughput sequencing was performed on three groups of liver tissues at 2 h time point. Eventually, 20 and 12 differentially expressed miRNAs (DEMs) were obtained in HCD vs NCD and HCB vs HCD, respectively. Through function analyzing, we found that HCD may affect liver metabolism under glucose loading through the NF-κB pathway; and miRNAs regulated by BBR mainly play roles in adipocyte lipolysis, niacin and nicotinamide metabolism, and amino acid transmembrane transport. In the functional exploration of newly discovered novel:Chr12_18892, we found its target gene, adenylate cyclase 3 (adcy3), was widely involved in lipid decomposition, amino acid metabolism, and other pathways. Furthermore, a targeting relationship of novel:Chr12_18892 and adcy3 was confirmed by double luciferase assay. Thus, BBR may promote novel:Chr12_18892 to regulate the expression of adcy3 and participate in glucose metabolism.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Chang He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Zhu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hengtong Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Abubakar M, Hajjaj M, Naqvi ZEZ, Shanawaz H, Naeem A, Padakanti SSN, Bellitieri C, Ramar R, Gandhi F, Saleem A, Abdul Khader AHS, Faraz MA. Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. J Cardiovasc Transl Res 2024; 17:739-767. [PMID: 38092987 DOI: 10.1007/s12265-023-10469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, Punjab, Pakistan.
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Zil E Zehra Naqvi
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Hameed Shanawaz
- Department of Internal Medicine, Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | - Ammara Naeem
- Department of Cardiology, Heart & Vascular Institute, Dearborn, Michigan, USA
| | | | | | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Fenil Gandhi
- Department of Family Medicine, Lower Bucks Hospital, Bristol, PA, USA
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Postgraduate Medical Institute, Lahore, Punjab, Pakistan
| |
Collapse
|
13
|
Ge J, Tao M, Zhang G, Cai J, Li D, Tao L. New HCC Subtypes Based on CD8 Tex-Related lncRNA Signature Could Predict Prognosis, Immunological and Drug Sensitivity Characteristics of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1331-1355. [PMID: 38983937 PMCID: PMC11232885 DOI: 10.2147/jhc.s459150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Purpose Hepatocellular carcinoma has become one of the severe diseases threatening human health. T cell exhaustion is deemed as a reason for immunotherapy resistance. However, little is known about the roles of CD8 Tex-related lncRNAs in HCC. Materials and Methods We processed single-cell RNA sequencing to identify CD8 Tex-related genes. CD8 Tex-related lncRNAs were identified based on their correlations with mRNAs. Unsupervised clustering approach was used to identify molecular clusters of CD8 Tex-related lncRNAs. Differences in prognosis and immune infiltration between the clusters were explored. Machine learning algorithms were used to construct a prognostic signature. Samples were classified as low- and high-risk groups based on their risk scores. We identified prognosis-related lncRNAs and constructed a ceRNA network. In vitro experiments were conducted to investigate the impacts of CD8 Tex-related lncRNAs on proliferation and apoptosis of HCC cells. Results We clarified cell types within two HCC single-cell datasets. We identified specific markers of CD8 Tex cells and analyzed their potential functions. Twenty-eight lncRNAs were identified as CD8 Tex-related. Based on CD8 Tex-related lncRNAs, samples were categorized into two distinct clusters, which exhibited significant differences in survival rates and immune infiltration. Ninety-six algorithm combinations were employed to establish a prognostic signature. RSF emerged as the one with the highest C-index. Patients in high- and low-risk groups exhibited marked differences in prognosis, enriched pathways, mutations and drug sensitivities. MCM3AP-AS1, MAPKAPK5-AS1 and PART1 were regarded as prognosis-related lncRNAs. A ceRNA network was constructed based on CD8 Tex-related lncRNAs and mRNAs. Experiments on cell lines and organoids indicated that downregulation of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 suppressed cell proliferation and induced apoptosis. Conclusion CD8 Tex-related lncRNAs played crucial roles in HCC progression. Our findings provided new insights into the regulatory mechanisms of CD8 Tex-related lncRNAs in HCC.
Collapse
Affiliation(s)
- Jiachen Ge
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, People's Republic of China
| | - Gaolei Zhang
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jianping Cai
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Deyu Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lianyuan Tao
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
14
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Chen Y, Shi K, Fu X, Guo H, Gao T, Yu H. Diagnostic and prognostic potential of exosome non-coding RNAs in bladder cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1336375. [PMID: 38500660 PMCID: PMC10944871 DOI: 10.3389/fonc.2024.1336375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Background Bladder cancer stands as the predominant malignant tumor in the urological system, presenting a significant challenge to public health and garnering extensive attention. Recently, with the deepening research into tumor molecular mechanisms, non-coding RNAs (ncRNAs) have emerged as potential biomarkers offering guidance for the diagnosis and prognosis of bladder cancer. However, the definitive role of ncRNAs in bladder cancer remains unclear. Hence, this study aims to elucidate the relevance and significance of ncRNAs through a Meta-analysis. Methods A systematic meta-analysis was executed, including studies evaluating the diagnostic performance of ncRNAs and their associations with overall survival (OS) and disease-free survival (DFS). Key metrics such as hazard ratios, sensitivity, specificity, and diagnostic odds ratios were extracted and pooled from these studies. Potential publication bias was assessed using Deeks' funnel plot, and the robustness of the results was ascertained through a sensitivity analysis. Results Elevated ncRNA expression showed a positive correlation with improved OS, evidenced by a hazard ratio (HR) of 0.82 (95% CI: 0.66-0.96, P<0.001). Similarly, a significant association was observed between heightened ncRNA expression and DFS, with an HR of 0.86 (95% CI: 0.73-0.99, P<0.001). Diagnostic performance analysis across 17 articles yielded a pooled sensitivity of 0.76 and a specificity of 0.83. The diagnostic odds ratio was recorded at 2.71, with the area under the ROC curve (AUC) standing at 0.85. Conclusion Exosome ncRNAs appear to possess potential significance in the diagnostic and prognostic discussions of bladder cancer. Their relationship with survival outcomes and diagnostic measures suggests a possible clinical utility. Comprehensive investigations are needed to fully determine their role in the ever-evolving landscape of bladder cancer management, especially within the framework of personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
16
|
Xu SM, Cheng Y, Fisher H, Janitz M. Recent advances in the investigation of fusion RNAs and their role in molecular pathology of cancer. Int J Biochem Cell Biol 2024; 168:106529. [PMID: 38246262 DOI: 10.1016/j.biocel.2024.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Gene fusions have had a significant role in the development of various types of cancer, oftentimes involved in oncogenic activities through dysregulation of gene expression or signalling pathways. Some cancer-associated chromosomal translocations can undergo backsplicing, resulting in fusion-circular RNAs, a more stable isoform immune to RNase degradation. This stability makes fusion circular RNAs a promising diagnostic biomarker for cancer. While the detection of linear fusion RNAs and their function in certain cancers have been described in literature, fusion circular RNAs lag behind due to their low abundance in cancer cells. This review highlights current literature on the role of linear and circular fusion transcripts in cancer, tools currently available for detecting of these chimeric RNAs and their function and how they play a role in tumorigenesis.
Collapse
Affiliation(s)
- Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Harry Fisher
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Caponnetto A, Ferrara C, Fazzio A, Agosta N, Scribano M, Vento ME, Borzì P, Barbagallo C, Stella M, Ragusa M, Scollo P, Barbagallo D, Purrello M, Di Pietro C, Battaglia R. A Circular RNA Derived from the Pumilio 1 Gene Could Regulate PTEN in Human Cumulus Cells. Genes (Basel) 2024; 15:124. [PMID: 38275605 PMCID: PMC10815046 DOI: 10.3390/genes15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their involvement in female reproduction. This study aims to identify circRNAs potentially involved in reproductive women's health. Candidate circRNAs expressed in ovary and sponging miRNAs, already known to be expressed in the ovary, were selected by a computational approach. Using real time PCR, we verified their expression and identified circPUM1 as the most interesting candidate circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart in all the follicle compartments and, using a computational and experimental approach, identified circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in cumulus cells and point out the important role of circRNA inside the pathways related to follicle growth and oocyte maturation.
Collapse
Affiliation(s)
- Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Anna Fazzio
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Noemi Agosta
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Marianna Scribano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Maria Elena Vento
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Placido Borzì
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Paolo Scollo
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy;
- Maternal and Child Department, Obstetrics and Gynecology Unit, Cannizzaro Hospital, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| |
Collapse
|
18
|
Avila Santos AP, de Almeida BLS, Bonidia RP, Stadler PF, Stefanic P, Mandic-Mulec I, Rocha U, Sanches DS, de Carvalho AC. BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification. RNA Biol 2024; 21:1-12. [PMID: 38528797 PMCID: PMC10968306 DOI: 10.1080/15476286.2024.2329451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 03/27/2024] Open
Abstract
The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine learning approaches have been employed for distinguishing ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hybrid deep learning framework integrating convolutional neural networks (CNN) or bidirectional long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy. This framework employs a combination of k-mer one-hot, k-mer dictionary, and feature extraction techniques for input representation. Extracted features, when embedded into the deep network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences. Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification, underscoring the robustness of our tool in addressing complex ncRNA sequence data challenges. The effective melding of CNN or BiLSTM with external features heralds promising directions for future research, particularly in refining ncRNA classifiers and deepening insights into ncRNAs in cellular processes and disease manifestations. In addition to its original application in the context of bacterial organisms, the methodologies and techniques integrated into our framework can potentially render BioDeepFuse effective in various and broader domains.
Collapse
Affiliation(s)
- Anderson P. Avila Santos
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research – UFZ GmbH, Leipzig, Saxony, Germany
| | - Breno L. S. de Almeida
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil
| | - Robson P. Bonidia
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil
- Department of Computer Science, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Brazil
| | - Peter F. Stadler
- Department of Computer Science and Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Saxony, Germany
| | - Polonca Stefanic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ulisses Rocha
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research – UFZ GmbH, Leipzig, Saxony, Germany
| | - Danilo S. Sanches
- Department of Computer Science, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Brazil
| | | |
Collapse
|
19
|
Wang M, Yu F, Li P. Noncoding RNAs as an emerging resistance mechanism to immunotherapies in cancer: basic evidence and therapeutic implications. Front Immunol 2023; 14:1268745. [PMID: 37767098 PMCID: PMC10520974 DOI: 10.3389/fimmu.2023.1268745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing knowledge in the field of oncoimmunology has led to extensive research into tumor immune landscape and a plethora of clinical immunotherapy trials in cancer patients. Immunotherapy has become a clinically beneficial alternative to traditional treatments by enhancing the power of the host immune system against cancer. However, it only works for a minority of cancers. Drug resistance continues to be a major obstacle to the success of immunotherapy in cancer. A fundamental understanding of the detailed mechanisms underlying immunotherapy resistance in cancer patients will provide new potential directions for further investigations of cancer treatment. Noncoding RNAs (ncRNAs) are tightly linked with cancer initiation and development due to their critical roles in gene expression and epigenetic modulation. The clear appreciation of the role of ncRNAs in tumor immunity has opened new frontiers in cancer research and therapy. Furthermore, ncRNAs are increasingly acknowledged as a key factor influencing immunotherapeutic treatment outcomes. Here, we review the available evidence on the roles of ncRNAs in immunotherapy resistance, with an emphasis on the associated mechanisms behind ncRNA-mediated immune resistance. The clinical implications of immune-related ncRNAs are also discussed, shedding light on the potential ncRNA-based therapies to overcome the resistance to immunotherapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Moldogazieva NT, Zavadskiy SP, Astakhov DV, Sologova SS, Margaryan AG, Safrygina AA, Smolyarchuk EA. Differentially expressed non-coding RNAs and their regulatory networks in liver cancer. Heliyon 2023; 9:e19223. [PMID: 37662778 PMCID: PMC10474437 DOI: 10.1016/j.heliyon.2023.e19223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
The vast majority of human transcriptome is represented by various types of small RNAs with little or no protein-coding capability referred to as non-coding RNAs (ncRNAs). Functional ncRNAs include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which are expressed at very low, but stable and reproducible levels in a variety of cell types. ncRNAs regulate gene expression due to miRNA capability of complementary base pairing with mRNAs, whereas lncRNAs and circRNAs can sponge miRNAs off their target mRNAs to act as competitive endogenous RNAs (ceRNAs). Each miRNA can target multiple mRNAs and a single mRNA can interact with several miRNAs, thereby creating miRNA-mRNA, lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks. Over the past few years, a variety of differentially expressed miRNAs, lncRNAs, and circRNAs (DEMs, DELs, and DECs, respectively) have been linked to cancer pathogenesis. They can exert both oncogenic and tumor suppressor roles. In this review, we discuss the recent advancements in uncovering the roles of DEMs, DELs, and DECs and their networks in aberrant cell signaling, cell cycle, transcription, angiogenesis, and apoptosis, as well as tumor microenvironment remodeling and metabolic reprogramming during hepatocarcinogenesis. We highlight the potential and challenges in the use of differentially expressed ncRNAs as biomarkers for liver cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Sergey P. Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Dmitry V. Astakhov
- Department of Biochemistry, Institute of Biodesign and Complex Systems Modelling, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Susanna S. Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Arus G. Margaryan
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Anastasiya A. Safrygina
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Elena A. Smolyarchuk
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| |
Collapse
|
21
|
Abstract
PURPOSE OF THE REVIEW Angiogenesis plays a key role in bladder cancer (BC) pathogenesis. In the last two decades, an increasing number of publications depicting a multitude of novel angiogenic molecules and pathways have emerged. The growing complexity necessitates an evaluation of the breadth of current knowledge to highlight key findings and guide future research. RECENT FINDINGS Angiogenesis is a dynamic biologic process that is inherently difficult to assess. Clinical assessment of angiogenesis in BCs is advancing with the integration of image analysis systems and dynamic contrast-enhanced and magnetic resonance imaging (DCE-MRI). Tumour-associated macrophages (TAMs) significantly influence the angiogenic process, and further research is needed to assess their potential as therapeutic targets. A rapidly growing list of non-coding RNAs affect angiogenesis in BCs, partly through modulation of vascular endothelial growth factor (VEGF) activity. Vascular mimicry (VM) has been repeatedly associated with increased tumour aggressiveness in BCs. Standardised assays are needed for appropriate identification and quantification of VM channels. This article demonstrates the dynamic and complex nature of the angiogenic process and asserts the need for further studies to deepen our understanding.
Collapse
Affiliation(s)
- Ghada Elayat
- Department of Natural Science, Middlesex University, London, UK
- Department of Histopathology, Tanta University, Tanta, Egypt
| | - Ivan Punev
- Department of Natural Science, Middlesex University, London, UK
| | - Abdel Selim
- Histopathology Department, King’s Health Partners, King’s College Hospital, London, UK
| |
Collapse
|
22
|
Approaches for sRNA Analysis of Human RNA-Seq Data: Comparison, Benchmarking. Int J Mol Sci 2023; 24:ijms24044195. [PMID: 36835604 PMCID: PMC9959513 DOI: 10.3390/ijms24044195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Expression analysis of small noncoding RNA (sRNA), including microRNA, piwi-interacting RNA, small rRNA-derived RNA, and tRNA-derived small RNA, is a novel and quickly developing field. Despite a range of proposed approaches, selecting and adapting a particular pipeline for transcriptomic analysis of sRNA remains a challenge. This paper focuses on the identification of the optimal pipeline configurations for each step of human sRNA analysis, including reads trimming, filtering, mapping, transcript abundance quantification and differential expression analysis. Based on our study, we suggest the following parameters for the analysis of human sRNA in relation to categorical analyses with two groups of biosamples: (1) trimming with the lower length bound = 15 and the upper length bound = Read length - 40% Adapter length; (2) mapping on a reference genome with bowtie aligner with one mismatch allowed (-v 1 parameter); (3) filtering by mean threshold > 5; (4) analyzing differential expression with DESeq2 with adjusted p-value < 0.05 or limma with p-value < 0.05 if there is very little signal and few transcripts.
Collapse
|
23
|
Aguirre NC, Filippi CV, Vera PA, Puebla AF, Zaina G, Lia VV, Marcucci Poltri SN, Paniego NB. Double Digest Restriction-Site Associated DNA Sequencing (ddRADseq) Technology. Methods Mol Biol 2023; 2638:37-57. [PMID: 36781634 DOI: 10.1007/978-1-0716-3024-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Double digest restriction-site associated DNA sequencing (ddRADseq) technology combines genome reduced representation by digestion with two restriction enzymes and next generation sequencing (NGS) to obtain thousands of markers (SNP, SSR, and InDels) and genotype tens to hundreds of samples simultaneously. In this chapter, we describe a 96-plex derived ddRADseq protocol that can be set up to obtain different depth of coverage per locus and can be exploited to model and non-model plant species.
Collapse
Affiliation(s)
- Natalia Cristina Aguirre
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Unidad Ejecutora de Doble Dependencia Instituto Nacional de Tecnología Agropecuaria (INTA) - Consejo Nacional de Ciencia y Técnica (CONICET), Hurlingham, Argentina.
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Unidad Ejecutora de Doble Dependencia Instituto Nacional de Tecnología Agropecuaria (INTA) - Consejo Nacional de Ciencia y Técnica (CONICET), Hurlingham, Argentina.,Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Pablo Alfredo Vera
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Unidad Ejecutora de Doble Dependencia Instituto Nacional de Tecnología Agropecuaria (INTA) - Consejo Nacional de Ciencia y Técnica (CONICET), Hurlingham, Argentina
| | - Andrea Fabiana Puebla
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Unidad Ejecutora de Doble Dependencia Instituto Nacional de Tecnología Agropecuaria (INTA) - Consejo Nacional de Ciencia y Técnica (CONICET), Hurlingham, Argentina
| | - Giusi Zaina
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Verónica Viviana Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Unidad Ejecutora de Doble Dependencia Instituto Nacional de Tecnología Agropecuaria (INTA) - Consejo Nacional de Ciencia y Técnica (CONICET), Hurlingham, Argentina
| | - Susana Noemí Marcucci Poltri
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Unidad Ejecutora de Doble Dependencia Instituto Nacional de Tecnología Agropecuaria (INTA) - Consejo Nacional de Ciencia y Técnica (CONICET), Hurlingham, Argentina
| | - Norma Beatriz Paniego
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Unidad Ejecutora de Doble Dependencia Instituto Nacional de Tecnología Agropecuaria (INTA) - Consejo Nacional de Ciencia y Técnica (CONICET), Hurlingham, Argentina
| |
Collapse
|
24
|
Roganović J, Petrović N. Clinical Perspectives of Non-Coding RNA in Oral Inflammatory Diseases and Neuropathic Pain: A Narrative Review. Int J Mol Sci 2022; 23:8278. [PMID: 35955417 PMCID: PMC9368403 DOI: 10.3390/ijms23158278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) represent a research hotspot by playing a key role in epigenetic and transcriptional regulation of diverse biological functions and due to their involvement in different diseases, including oral inflammatory diseases. Based on ncRNAs' suitability for salivary biomarkers and their involvement in neuropathic pain and tissue regeneration signaling pathways, the present narrative review aims to highlight the potential clinical applications of ncRNAs in oral inflammatory diseases, with an emphasis on salivary diagnostics, regenerative dentistry, and precision medicine for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nina Petrović
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
- Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| |
Collapse
|
25
|
ITAS: Integrated Transcript Annotation for Small RNA. Noncoding RNA 2022; 8:ncrna8030030. [PMID: 35645337 PMCID: PMC9150019 DOI: 10.3390/ncrna8030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Transcriptomics analysis of various small RNA (sRNA) biotypes is a new and rapidly developing field. Annotations for microRNAs, tRNAs, piRNAs and rRNAs contain information on transcript sequences and loci that is vital for downstream analyses. Several databases have been established to provide this type of data for specific RNA biotypes. However, these sources often contain data in different formats, which makes the bulk analysis of several sRNA biotypes in a single pipeline challenging. Information on some transcripts may be incomplete or conflicting with other entries. To overcome these challenges, we introduce ITAS, or Integrated Transcript Annotation for Small RNA, a filtered, corrected and integrated transcript annotation containing information on several types of small RNAs, including tRNA-derived small RNA, for several species (Homo sapiens, Rattus norvegicus, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans). ITAS is presented in a format applicable for the vast majority of bioinformatic transcriptomics analysis, and it was tested in several case studies for human-derived data against existing alternative databases.
Collapse
|