1
|
Frost Z, Bakhit S, Amaefuna CN, Powers RV, Ramana KV. Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression. Int J Mol Sci 2025; 26:1967. [PMID: 40076592 PMCID: PMC11900642 DOI: 10.3390/ijms26051967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Water-soluble B vitamins, mainly obtained through dietary intake of fruits, vegetables, grains, and dairy products, act as co-factors in various biochemical processes, including DNA synthesis, repair, methylation, and energy metabolism. These vitamins include B1 (Thiamine), B2 (Riboflavin), B3 (Niacin), B5 (Pantothenic Acid), B6 (Pyridoxine), B7 (Biotin), B9 (Folate), and B12 (Cobalamin). Recent studies have shown that besides their fundamental physiological roles, B vitamins influence oncogenic metabolic pathways, including glycolysis (Warburg effect), mitochondrial function, and nucleotide biosynthesis. Although deficiencies in these vitamins are associated with several complications, emerging evidence suggests that excessive intake of specific B vitamins may also contribute to cancer progression and interfere with therapy due to impaired metabolic and genetic functions. This review discusses the tumor-suppressive and tumor-progressive roles of B vitamins in cancer. It also explores the recent evidence on a comprehensive understanding of the relationship between B vitamin metabolism and cancer progression and underscores the need for further research to determine the optimal balance of B vitamin intake for cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
2
|
Hassanein MM, Hagyousif YA, Zenati RA, Al-Hroub HM, Khan FM, Abuhelwa AY, Alzoubi KH, Soares NC, El-Huneidi W, Abu-Gharbieh E, Omar H, Zaher DM, Bustanji Y, Semreen MH. Metabolomics insights into doxorubicin and 5-fluorouracil combination therapy in triple-negative breast cancer: a xenograft mouse model study. Front Mol Biosci 2025; 11:1517289. [PMID: 39872164 PMCID: PMC11769812 DOI: 10.3389/fmolb.2024.1517289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Background Breast cancer is one of the most prevalent malignancies and a leading cause of death among women worldwide. Among its subtypes, triple-negative breast cancer (TNBC) poses significant clinical challenges due to its aggressive behavior and limited treatment options. This study aimed to investigate the effects of doxorubicin (DOX) and 5-fluorouracil (5-FU) as monotherapies and in combination using an established MDA-MB-231 xenograft model in female BALB/C nude mice employing advanced metabolomics analysis to identify molecular alterations induced by these treatments. Methods We conducted comprehensive plasma and tumor tissue sample profiling using ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). Results Each treatment group exhibited unique metabolic profiles in plasma and tumor analysis. Univariate and enrichment analyses identified alterations in metabolic pathways. The combination treatment of DOX + 5-FU induced the most extensive metabolic alterations disrupting key pathways including purine, pyrimidine, beta-alanine, and sphingolipid metabolism. It significantly reduced critical metabolites such as guanine, xanthine, inosine, L-fucose, and sphinganine, demonstrating enhanced cytotoxic effects compared to individual treatments. The DOX treatment uniquely increased ornithine levels, while 5-FU altered sphingolipid metabolism, promoting apoptosis. Significance This in vivo study highlights TNBC's metabolic alterations to chemotherapeutics, identifying potential biomarkers like L-fucose and beta-alanine, and provides insights for improving treatment strategies.
Collapse
Affiliation(s)
- Mai M. Hassanein
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yousra A. Hagyousif
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ruba A. Zenati
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamza M. Al-Hroub
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Farman Matloob Khan
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C. Soares
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Hany Omar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M. Zaher
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Valentino S, Ortega-Sandoval K, Houston KD, Houston JP. Correlating NAD(P)H lifetime shifts to tamoxifen resistance in breast cancer cells: A metabolic screening study with time-resolved flow cytometry. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2025; 18:2450020. [PMID: 39980603 PMCID: PMC11841857 DOI: 10.1142/s1793545824500202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Time-resolved flow cytometry (TRFC) was used to measure metabolic differences in estrogen receptor-positive breast cancer cells. This specialty cytometry technique measures fluorescence lifetimes as a single-cell parameter thereby providing a unique approach for high-throughput cell counting and screening. Differences in fluorescence lifetime were detected and this was associated with sensitivity to the commonly prescribed therapeutic tamoxifen. Differences in fluorescence lifetime are attributed to the binding states of the autofluorescent metabolite NAD(P)H. The function of NAD(P)H is well described and in general involves cycling from a reduced to oxidized state to facilitate electron transport for the conversion of pyruvate to lactate. NAD(P)H fluorescence lifetimes depend on the bound or unbound state of the metabolite, which also relates to metabolic transitions between oxidative phosphorylation and glycolysis. To determine if fundamental metabolic profiles differ for cells that are sensitive to tamoxifen compared to those that are resistant, large populations of MCF-7 breast cancer cells were screened and fluorescence lifetimes were quantified. Additionally, metabolic differences associated with tamoxifen sensitivity were measured with a Seahorse HS mini metabolic analyzer (Agilent Technologies Inc. Santa Clara, CA) and confocal imaging. Results show that tamoxifen-resistant breast cancer cells have increased utilization of glycolysis for energy production compared to tamoxifen-sensitive breast cancer cells. This work is impacting because it establishes an early step toward developing a reliable screening technology in which large cell censuses can be differentiated for drug sensitivity in a label-free fashion.
Collapse
Affiliation(s)
- Samantha Valentino
- Chemical and Materials Engineering, New Mexico State University 1040 S Horseshoe Dr., Las Cruces, NM 88003, USA
| | - Karla Ortega-Sandoval
- Chemical and Materials Engineering, New Mexico State University 1040 S Horseshoe Dr., Las Cruces, NM 88003, USA
| | - Kevin D. Houston
- Chemistry and Biochemistry, New Mexico State University 1175 N Horseshoe Dr., Las Cruces, NM 88003, USA
| | - Jessica P. Houston
- Chemical and Materials Engineering, New Mexico State University 1040 S Horseshoe Dr., Las Cruces, NM 88003, USA
| |
Collapse
|
4
|
Mokhtari M, Khoshbakht S, Akbari ME, Moravveji SS. BMC3PM: bioinformatics multidrug combination protocol for personalized precision medicine and its application in cancer treatment. BMC Med Genomics 2023; 16:328. [PMID: 38087279 PMCID: PMC10717810 DOI: 10.1186/s12920-023-01745-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In recent years, drug screening has been one of the most significant challenges in the field of personalized medicine, particularly in cancer treatment. However, several new platforms have been introduced to address this issue, providing reliable solutions for personalized drug validation and safety testing. In this study, we developed a personalized drug combination protocol as the primary input to such platforms. METHODS To achieve this, we utilized data from whole-genome expression profiles of 6173 breast cancer patients, 312 healthy individuals, and 691 drugs. Our approach involved developing an individual pattern of perturbed gene expression (IPPGE) for each patient, which was used as the basis for drug selection. An algorithm was designed to extract personalized drug combinations by comparing the IPPGE and drug signatures. Additionally, we employed the concept of drug repurposing, searching for new benefits of existing drugs that may regulate the desired genes. RESULTS Our study revealed that drug combinations obtained from both specialized and non-specialized cancer medicines were more effective than those extracted from only specialized medicines. Furthermore, we observed that the individual pattern of perturbed gene expression (IPPGE) was unique to each patient, akin to a fingerprint. CONCLUSIONS The personalized drug combination protocol developed in this study offers a methodological interface between drug repurposing and combination drug therapy in cancer treatment. This protocol enables personalized drug combinations to be extracted from hundreds of drugs and thousands of drug combinations, potentially offering more effective treatment options for cancer patients.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | | | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
5
|
Tarakhovskaya E, Marcillo A, Davis C, Milkovska-Stamenova S, Hutschenreuther A, Birkemeyer C. Matrix Effects in GC–MS Profiling of Common Metabolites after Trimethylsilyl Derivatization. Molecules 2023; 28:molecules28062653. [PMID: 36985624 PMCID: PMC10053008 DOI: 10.3390/molecules28062653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Metabolite profiling using gas chromatography coupled to mass spectrometry (GC–MS) is one of the most frequently applied and standardized methods in research projects using metabolomics to analyze complex samples. However, more than 20 years after the introduction of non-targeted approaches using GC–MS, there are still unsolved challenges to accurate quantification in such investigations. One particularly difficult aspect in this respect is the occurrence of sample-dependent matrix effects. In this project, we used model compound mixtures of different compositions to simplify the study of the complex interactions between common constituents of biological samples in more detail and subjected those to a frequently applied derivatization protocol for GC–MS analysis, namely trimethylsilylation. We found matrix effects as signal suppression and enhancement of carbohydrates and organic acids not to exceed a factor of ~2, while amino acids can be more affected. Our results suggest that the main reason for our observations may be an incomplete transfer of carbohydrate and organic acid derivatives during the injection process and compound interaction at the start of the separation process. The observed effects were reduced at higher target compound concentrations and by using a more suitable injection-liner geometry.
Collapse
Affiliation(s)
- Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Vavilov Institute of General Genetics RAS, St. Petersburg Branch, 199034 St. Petersburg, Russia
| | - Andrea Marcillo
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Institute of Energy and Climate Research (IEK-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Caroline Davis
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Waters GmbH, 1130 Vienna, Austria
| | - Sanja Milkovska-Stamenova
- Bioanalytics Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- AP Diagnostics GmbH, 04103 Leipzig, Germany
| | - Antje Hutschenreuther
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Claudia Birkemeyer
- Mass Spectrometry Research Group, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Glutamine Starvation Affects Cell Cycle, Oxidative Homeostasis and Metabolism in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030683. [PMID: 36978930 PMCID: PMC10045305 DOI: 10.3390/antiox12030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer cells adjust their metabolism to meet energy demands. In particular, glutamine addiction represents a distinctive feature of several types of tumors, including colorectal cancer. In this study, four colorectal cancer cell lines (Caco-2, HCT116, HT29 and SW480) were cultured with or without glutamine. The growth and proliferation rate, colony-forming capacity, apoptosis, cell cycle, redox homeostasis and metabolomic analysis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT), flow cytometry, high-performance liquid chromatography and gas chromatography/mass spectrometry techniques. The results show that glutamine represents an important metabolite for cell growth and that its deprivation reduces the proliferation of colorectal cancer cells. Glutamine depletion induces cell death and cell cycle arrest in the GO/G1 phase by modulating energy metabolism, the amino acid content and antioxidant defenses. Moreover, the combined glutamine starvation with the glycolysis inhibitor 2-deoxy-D-glucose exerted a stronger cytotoxic effect. This study offers a strong rationale for targeting glutamine metabolism alone or in combination with glucose metabolism to achieve a therapeutic benefit in the treatment of colon cancer.
Collapse
|
7
|
Hussein S, Khanna P, Yunus N, Gatza ML. Nuclear Receptor-Mediated Metabolic Reprogramming and the Impact on HR+ Breast Cancer. Cancers (Basel) 2021; 13:cancers13194808. [PMID: 34638293 PMCID: PMC8508306 DOI: 10.3390/cancers13194808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer is the most commonly diagnosed and second leading cause of cancer-related deaths in women in the United States, with hormone receptor positive (HR+) tumors representing more than two-thirds of new cases. Recent evidence has indicated that dysregulation of multiple metabolic programs, which can be driven through nuclear receptor activity, is essential for tumor genesis, progression, therapeutic resistance and metastasis. This study will review the current advances in our understanding of the impact and implication of altered metabolic processes driven by nuclear receptors, including hormone-dependent signaling, on HR+ breast cancer. Abstract Metabolic reprogramming enables cancer cells to adapt to the changing microenvironment in order to maintain metabolic energy and to provide the necessary biological macromolecules required for cell growth and tumor progression. While changes in tumor metabolism have been long recognized as a hallmark of cancer, recent advances have begun to delineate the mechanisms that modulate metabolic pathways and the consequence of altered signaling on tumorigenesis. This is particularly evident in hormone receptor positive (HR+) breast cancers which account for approximately 70% of breast cancer cases. Emerging evidence indicates that HR+ breast tumors are dependent on multiple metabolic processes for tumor progression, metastasis, and therapeutic resistance and that changes in metabolic programs are driven, in part, by a number of key nuclear receptors including hormone-dependent signaling. In this review, we discuss the mechanisms and impact of hormone receptor mediated metabolic reprogramming on HR+ breast cancer genesis and progression as well as the therapeutic implications of these metabolic processes in this disease.
Collapse
Affiliation(s)
- Shaimaa Hussein
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
| | - Neha Yunus
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
| | - Michael L. Gatza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
- Correspondence: ; Tel.: +1-732-235-8751
| |
Collapse
|
8
|
Identification of Possible Salivary Metabolic Biomarkers and Altered Metabolic Pathways in South American Patients Diagnosed with Oral Squamous Cell Carcinoma. Metabolites 2021; 11:metabo11100650. [PMID: 34677365 PMCID: PMC8537096 DOI: 10.3390/metabo11100650] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents 90% of oral malignant neoplasms. The search for specific biomarkers for OSCC is a very active field of research contributing to establishing early diagnostic methods and unraveling underlying pathogenic mechanisms. In this work we investigated the salivary metabolites and the metabolic pathways of OSCC aiming find possible biomarkers. Salivary metabolites samples from 27 OSCC patients and 41 control individuals were compared through a gas chromatography coupled to a mass spectrometer (GC-MS) technique. Our results allowed identification of pathways of the malate-aspartate shuttle, the beta-alanine metabolism, and the Warburg effect. The possible salivary biomarkers were identified using the area under receiver-operating curve (AUC) criterion. Twenty-four metabolites were identified with AUC > 0.8. Using the threshold of AUC = 0.9 we find malic acid, maltose, protocatechuic acid, lactose, 2-ketoadipic, and catechol metabolites expressed. We notice that this is the first report of salivary metabolome in South American oral cancer patients, to the best of our knowledge. Our findings regarding these metabolic changes are important in discovering salivary biomarkers of OSCC patients. However, additional work needs to be performed considering larger populations to validate our results.
Collapse
|
9
|
Pappa KI, Daskalakis G, Anagnou NP. Metabolic rewiring is associated with HPV-specific profiles in cervical cancer cell lines. Sci Rep 2021; 11:17718. [PMID: 34489482 PMCID: PMC8421399 DOI: 10.1038/s41598-021-96038-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Both HPV-positive and HPV-negative cervical cancers are associated with aberrant metabolism, although the oncogenic drivers remain elusive. Here we show the assessment of the metabolomic profiles of four distinct cervical cell lines, a normal and three cancer cell lines, one HPV-negative (C33A) and two HPV-positive (SiHa HPV16+, HeLa HPV18+), employing an ultra performance liquid chromatography and a high resolution mass spectrometry. Out of the total 462 metabolites, 248 to 326 exhibited statistically significant differences, while Random Forests analysis identified unique molecules for each cell line. The two HPV+ cell lines exhibited features of Warburg metabolism, consistent with the role of the HPV E6 protein. SiHa and HeLa cells displayed purine salvage pathway activity, while C33A cells revealed synthesis of cytidine, via a novel mechanism. These data document a highly dynamic HPV-specific rewiring of metabolic pathways occurring in cervical cancer. Therefore, this approach can eventually provide novel mechanistic insights into cervical carcinogenesis.
Collapse
Affiliation(s)
- Kalliopi I Pappa
- Cell and Gene Therapy Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,First Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - George Daskalakis
- First Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Nicholas P Anagnou
- Cell and Gene Therapy Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece. .,Laboratory of Biology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
10
|
Cobbold SA, V Tutor M, Frasse P, McHugh E, Karnthaler M, Creek DJ, Odom John A, Tilley L, Ralph SA, McConville MJ. Non-canonical metabolic pathways in the malaria parasite detected by isotope-tracing metabolomics. Mol Syst Biol 2021; 17:e10023. [PMID: 33821563 PMCID: PMC8022201 DOI: 10.15252/msb.202010023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
The malaria parasite, Plasmodium falciparum, proliferates rapidly in human erythrocytes by actively scavenging multiple carbon sources and essential nutrients from its host cell. However, a global overview of the metabolic capacity of intraerythrocytic stages is missing. Using multiplex 13 C-labelling coupled with untargeted mass spectrometry and unsupervised isotopologue grouping, we have generated a draft metabolome of P. falciparum and its host erythrocyte consisting of 911 and 577 metabolites, respectively, corresponding to 41% of metabolites and over 70% of the metabolic reaction predicted from the parasite genome. An additional 89 metabolites and 92 reactions were identified that were not predicted from genomic reconstructions, with the largest group being associated with metabolite damage-repair systems. Validation of the draft metabolome revealed four previously uncharacterised enzymes which impact isoprenoid biosynthesis, lipid homeostasis and mitochondrial metabolism and are necessary for parasite development and proliferation. This study defines the metabolic fate of multiple carbon sources in P. falciparum, and highlights the activity of metabolite repair pathways in these rapidly growing parasite stages, opening new avenues for drug discovery.
Collapse
Affiliation(s)
- Simon A Cobbold
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Madel V Tutor
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Philip Frasse
- Department of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Emma McHugh
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Markus Karnthaler
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Audrey Odom John
- The Children’s Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Leann Tilley
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
11
|
Chen X, Shao B, Yu C, Yao Q, Ma P, Li H, Li B, Sun C. Energy disorders caused by mitochondrial dysfunction contribute to α-amatoxin-induced liver function damage and liver failure. Toxicol Lett 2021; 336:68-79. [PMID: 33098907 DOI: 10.1016/j.toxlet.2020.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/06/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Mushroom toxicity is the main branch of foodborne poisoning, and liver damage caused by amatoxin poisoning accounts for more than 90 % of deaths due to mushroom poisoning. Alpha-amatoxin (α-AMA) has been considered the primary toxin from amatoxin-containing mushrooms, which is responsible for hepatotoxicity and death. However, the mechanism underlying liver failure due to α-AMA remains unclear. This study constructed animal and cell models. In the animal experiments, we investigated liver injury in BALB/c mice at different time points after α-AMA treatment, and explored the process of inflammatory infiltration using immunohistochemistry and western blotting. Then, a metabonomics method based on gas chromatography mass spectrometry (GCMS) was established to study the effect of α-AMA on liver metabonomics. The results showed a significant difference in liver metabolism between the exposed and control mice groups that coincided with pathological and biochemical indicators. Moreover, 20 metabolites and 4 metabolic pathways related to its mechanism of action were identified, which suggested that energy disorders related to mitochondrial dysfunction may be one of the causes of death. The significant changes of trehalose and the fluctuation of LC3-II and sqstm1 p62 protein levels indicated that autophagy was also involved in the damage process, suggesting that autophagy may participate in the clearance process of damaged mitochondria after poisoning. Then, we constructed an α-AMA-induced human normal liver cells (L-02 cells) injury model. The above hypothesis was further verified by detecting cell necrosis, mitochondrial reactive oxygen species (mtROS), mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (Δψ m), and cellular ATP level. Collectively, our results serve as direct evidence of elevated in vivo hepatic mitochondrial metabolism in α-AMA-exposed mice and suggest that mitochondrial dysfunction plays an important role in the early stage of α-AMA induced liver failure.
Collapse
Affiliation(s)
- Xiao Chen
- Chinese Center for Disease Control and Prevention, Beijing, Beijing, China.
| | - Bing Shao
- Beijing Center for Disease Control and Prevention Beijing, China.
| | - Chengmin Yu
- Yunnan Chuxiong People's Hospital, Chuxiong, Yunnan, China.
| | - Qunmei Yao
- Yunnan Chuxiong People's Hospital, Chuxiong, Yunnan, China.
| | - Peibin Ma
- Chinese Center for Disease Control and Prevention, Beijing, Beijing, China.
| | - Haijiao Li
- Chinese Center for Disease Control and Prevention, Beijing, Beijing, China.
| | - Bin Li
- Chinese Center for Disease Control and Prevention, Beijing, Beijing, China.
| | - Chengye Sun
- Chinese Center for Disease Control and Prevention, 29th Nanwei Road, Xicheng District, Beijing, 102206, China.
| |
Collapse
|
12
|
Yuan F, Kim S, Yin X, Zhang X, Kato I. Integrating Two-Dimensional Gas and Liquid Chromatography-Mass Spectrometry for Untargeted Colorectal Cancer Metabolomics: A Proof-of-Principle Study. Metabolites 2020; 10:E343. [PMID: 32854360 PMCID: PMC7569982 DOI: 10.3390/metabo10090343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Untargeted metabolomics is expected to lead to a better mechanistic understanding of diseases and thus applications of precision medicine and personalized intervention. To further increase metabolite coverage and achieve high accuracy of metabolite quantification, the present proof-of-principle study was to explore the applicability of integration of two-dimensional gas and liquid chromatography-mass spectrometry (GC × GC-MS and 2DLC-MS) platforms to characterizing circulating polar metabolome extracted from plasma collected from 29 individuals with colorectal cancer in comparison with 29 who remained cancer-free. After adjustment of multiple comparisons, 20 metabolites were found to be up-regulated and 8 metabolites were found to be down-regulated, which pointed to the dysregulation in energy metabolism and protein synthesis. While integrating the GC × GC-MS and 2DLC-MS data can dramatically increase the metabolite coverage, this study had a limitation in analyzing the non-polar metabolites. Given the small sample size, these results need to be validated with a larger sample size and with samples collected prior to diagnostic and treatment. Nevertheless, this proof-of-principle study demonstrates the potential applicability of integration of these advanced analytical platforms to improve discrimination between colorectal cancer cases and controls based on metabolite profiles in future studies.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (F.Y.); (X.Y.); (X.Z.)
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Biostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (F.Y.); (X.Y.); (X.Z.)
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (F.Y.); (X.Y.); (X.Z.)
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Chen ZY, Jiang N, Guo S, Li BB, Yang JQ, Chai SB, Yan HF, Sun PM, Zhang T, Sun HW, Yang HM, Zhou JL, Cui Y. Effect of simulated microgravity on metabolism of HGC-27 gastric cancer cells. Oncol Lett 2020; 19:3439-3450. [PMID: 32269617 PMCID: PMC7115135 DOI: 10.3892/ol.2020.11451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
The understanding into the pathogenesis and treatment of gastric cancer has improved in recent years; however, a number of limitations have delayed the development of effective treatment. Cancer cells can undergo glycolysis and inhibit oxidative phosphorylation in the presence of oxygen (Warburg effect). Previous studies have demonstrated that a rotary cell culture system (RCCS) can induce glycolytic metabolism. In addition, the potential of regulating cancer cells by targeting their metabolites has led to the rapid development of metabolomics. In the present study, human HGC-27 gastric cancer cells were cultured in a RCCS bioreactor, simulating weightlessness. Subsequently, liquid chromatography-mass spectrometry was used to examine the effects of simulated microgravity (SMG) on the metabolism of HGC-27 cells. A total of 67 differentially regulated metabolites were identified, including upregulated and downregulated metabolites. Compared with the normal gravity group, phosphatidyl ethanolamine, phosphatidyl choline, arachidonic acid and sphinganine were significantly upregulated in SMG conditions, whereas sphingomyelin, phosphatidyl serine, phosphatidic acid, L-proline, creatine, pantothenic acid, oxidized glutathione, adenosine diphosphate and adenosine triphosphate were significantly downregulated. The Human Metabolome Database compound analysis revealed that lipids and lipid-like metabolites were primarily affected in an SMG environment in the present study. Overall, the findings of the present study may aid our understanding of gastric cancer by identifying the underlying mechanisms of metabolism of the disease under SMG.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China
| | - Nan Jiang
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Song Guo
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Bin-Bin Li
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Clinical Hospital of Anhui Medical University, Beijing 100101, P.R. China
| | - Jia-Qi Yang
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Shao-Bin Chai
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Hong-Feng Yan
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Pei-Ming Sun
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Tao Zhang
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Hong-Wei Sun
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - He-Ming Yang
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Jin-Lian Zhou
- Department of Pathology, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Yan Cui
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| |
Collapse
|
14
|
Hong YJ, Kim J, Lee HY, Rim CH. Development of the anti-cancer food scoring system 2.0: Validation and nutritional analyses of quantitative anti-cancer food scoring model. Nutr Res Pract 2020; 14:32-44. [PMID: 32042372 PMCID: PMC6997147 DOI: 10.4162/nrp.2020.14.1.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND/OBJECTIVES We have previously designed the anti-cancer food scoring model (ACFS) 1.0, an evidence-based quantitative tool analyzing the anti-cancer or carcinogenic potential of diets. Analysis was performed using simple quantitative indexes divided into 6 categories (S, A, B, C, D, and E). In this study, we applied this scoring model to wider recipes and evaluated its nutritional relevance. MATERIALS/METHODS National or known regional databases were searched for recipes from 6 categories: Korean out-dining, Korean home-dining, Western, Chinese, Mediterranean, and vegetarian. These recipes were scored using the ACFS formula and the nutrition profiles were analyzed. RESULTS Eighty-eight international recipes were analyzed. All S-graded recipes were from vegetarian or Mediterranean categories. The median code values of each category were B (Korean home-dining), C (Korean out-dining), B (Chinese), A (Mediterranean), S (vegetarian), and D (Western). The following profiles were correlated (P < 0.05) with ACFS grades in the univariate trend analysis: total calories, total fat, animal fat, animal protein, total protein, vitamin D, riboflavin, niacin, vitamin B12, pantothenic acid, sodium, animal iron, zinc, selenium, and cholesterol (negative trends), and carbohydrate rate, fiber, water-soluble fiber, vitamin K, vitamin C, and plant calcium (positive trends). Multivariate analysis revealed that animal fat, animal iron, and niacin (negative trends) and animal protein, fiber, and vitamin C (positive trends) were statistically significant. Pantothenic acid and sodium showed non-significant negative trends (P < 0.1), and vitamin B12 showed a non-significant positive trend. CONCLUSION This study provided a nutritional basis and extended the utility of ACFS, which is a bridgehead for future cancer-preventive clinical trials using ACFS.
Collapse
Affiliation(s)
- Yeo-Jin Hong
- Department of Nutrition, Yonsei University, Seoul 03722, Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi 10408, Korea
| | - Hye Yoon Lee
- Department of Surgery, Korea University Medical College, Seoul 02841, Korea
| | - Chai Hong Rim
- Department of Radiation Oncology, Korea University Medical College and Korea University Ansan hospital, Gyeonggi 15355, Korea
| |
Collapse
|
15
|
Bartucci R, Salvati A, Olinga P, Boersma YL. Vanin 1: Its Physiological Function and Role in Diseases. Int J Mol Sci 2019; 20:E3891. [PMID: 31404995 PMCID: PMC6719204 DOI: 10.3390/ijms20163891] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
The enzyme vascular non-inflammatory molecule-1 (vanin 1) is highly expressed at gene and protein level in many organs, such as the liver, intestine, and kidney. Its major function is related to its pantetheinase activity; vanin 1 breaks down pantetheine in cysteamine and pantothenic acid, a precursor of coenzyme A. Indeed, its physiological role seems strictly related to coenzyme A metabolism, lipid metabolism, and energy production. In recent years, many studies have elucidated the role of vanin 1 under physiological conditions in relation to oxidative stress and inflammation. Vanin's enzymatic activity was found to be of key importance in certain diseases, either for its protective effect or as a sensitizer, depending on the diseased organ. In this review, we discuss the role of vanin 1 in the liver, kidney, intestine, and lung under physiological as well as pathophysiological conditions. Thus, we provide a more complete understanding and overview of its complex function and contribution to some specific pathologies.
Collapse
Affiliation(s)
- Roberta Bartucci
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Division of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anna Salvati
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ykelien L Boersma
- Division of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
16
|
Discovery of Metabolic Biomarkers Predicting Radiation Therapy Late Effects in Prostate Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:141-150. [PMID: 31576546 DOI: 10.1007/978-3-030-22254-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Patients presenting with prostate cancers undergo clinical staging evaluations to determine the extent of disease to guide therapeutic recommendations. Management options may include watchful waiting, surgery, or radiation therapy. Thus, initial risk stratification of prostate cancer patients is important for achieving optimal therapeutic results or cancer cure and preservation of quality of life. Predictive biomarkers for risks of complications or late effects of treatment are needed to inform clinical decisions for treatment selection. Here, we analyzed pre-treatment plasma metabolites in a cohort of prostate cancer patients (N = 99) treated with Stereotactic Body Radiation Therapy (SBRT) at Medstar-Georgetown University Hospital in a longitudinal, quality-of-life study to determine if individuals experiencing radiation toxicities can be identified by a molecular profile in plasma prior to treatment. We used a multiple reaction mass spectrometry-based molecular phenotyping of clinically annotated plasma samples in a retrospective outcome analysis to identify candidate biomarker panels correlating with adverse clinical outcomes following radiation therapy. We describe the discovery of candidate biomarkers, based on small molecule metabolite panels, showing high correlations (AUCs ≥ 95%) with radiation toxicities, suitable for validation studies in an expanded cohort of patients.
Collapse
|
17
|
Rapid discrimination of pediatric brain tumors by mass spectrometry imaging. J Neurooncol 2018; 140:269-279. [PMID: 30128689 PMCID: PMC6244779 DOI: 10.1007/s11060-018-2978-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/11/2018] [Indexed: 01/10/2023]
Abstract
Purpose Medulloblastoma, the most common primary pediatric malignant brain tumor, originates in the posterior fossa of the brain. Pineoblastoma, which originates within the pineal gland, is a rarer malignancy that also presents in the pediatric population. Medulloblastoma and pineoblastoma exhibit overlapping clinical features and have similar histopathological characteristics. Histopathological similarities confound rapid diagnoses of these two tumor types. We have conducted a pilot feasibility study analyzing the molecular profile of archived frozen human tumor specimens using mass spectrometry imaging (MSI) to identify potential biomarkers capable of classifying and distinguishing between medulloblastoma and pineoblastoma. Methods We performed matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry imaging on eight medulloblastoma biopsy specimens and three pineoblastoma biopsy specimens. Multivariate statistical analyses were performed on the MSI dataset to generate classifiers that distinguish the two tumor types. Lastly, the molecules that were discriminative of tumor type were queried against the Lipid Maps database and identified. Results In this pilot study we show that medulloblastoma and pineoblastoma can be discriminated using molecular profiles determined by MSI. The highest-ranking discriminating classifiers of medulloblastoma and pineoblastoma were glycerophosphoglycerols and sphingolipids, respectively. Conclusion We demonstrate proof-of-concept that medulloblastoma and pineoblastoma can be rapidly distinguished by using MSI lipid profiles. We identified biomarker candidates capable of distinguishing these two histopathologically similar tumor types. This work expands the current molecular knowledge of medulloblastoma and pineoblastoma by characterizing their lipidomic profiles, which may be useful for developing novel diagnostic, prognostic and therapeutic strategies. Electronic supplementary material The online version of this article (10.1007/s11060-018-2978-2) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Xu D, Xu Y, Ning N, Cui Q, Liu Z, Wang X, Liu D, Chen H, Kong MG. Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells. Cancer Cell Int 2018; 18:42. [PMID: 29568236 PMCID: PMC5859683 DOI: 10.1186/s12935-018-0541-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Background Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. Methods In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. Results By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. Conclusions Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment. Electronic supplementary material The online version of this article (10.1186/s12935-018-0541-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dehui Xu
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Yujing Xu
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Ning Ning
- 2The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Qingjie Cui
- 2The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Zhijie Liu
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Xiaohua Wang
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Dingxin Liu
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Hailan Chen
- 3Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - Michael G Kong
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China.,3Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA.,4Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
19
|
Yu LM, Zhao KJ, Wang SS, Wang X, Lu B. Gas chromatography/mass spectrometry based metabolomic study in a murine model of irritable bowel syndrome. World J Gastroenterol 2018; 24:894-904. [PMID: 29491683 PMCID: PMC5829153 DOI: 10.3748/wjg.v24.i8.894] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To study the role of microbial metabolites in the modulation of biochemical and physiological processes in irritable bowel syndrome (IBS). METHODS In the current study, using a metabolomic approach, we analyzed the key metabolites differentially excreted in the feces of control mice and mice with IBS, with or without Clostridium butyricum (C. butyricum) treatment. C57BL/6 mice were divided into control, IBS, and IBS + C. butyricum groups. In the IBS and IBS + C. butyricum groups, the mice were subjected to water avoidance stress (WAS) for 1 h/d for ten days. Gas chromatography/mass spectrometry (GC-MS) together with multivariate analysis was employed to compare the fecal samples between groups. RESULTS WAS exposure established an appropriate model of IBS in mice, with symptoms of visceral hyperalgesia and diarrhea. The differences in the metabolite profiles between the control group and IBS group significantly changed with the progression of IBS (days 0, 5, 10, and 17). A total of 14 differentially excreted metabolites were identified between the control and IBS groups, and phenylethylamine was a major metabolite induced by stress. In addition, phenylalanine metabolism was found to be the most relevant metabolic pathway. Between the IBS group and IBS + C. butyricum group, 10 differentially excreted metabolites were identified. Among these, pantothenate and coenzyme A (CoA) biosynthesis metabolites, as well as steroid hormone biosynthesis metabolites were identified as significantly relevant metabolic pathways. CONCLUSION The metabolic profile of IBS mice is significantly altered compared to control mice. Supplementation with C. butyricum to IBS mice may provide a considerable benefit by modulating host metabolism.
Collapse
Affiliation(s)
- Lei-Min Yu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Ke-Jia Zhao
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shuang-Shuang Wang
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Bin Lu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
20
|
Guo H, Zhong Y, Jackson AL, Clark LH, Kilgore J, Zhang L, Han J, Sheng X, Gilliam TP, Gehrig PA, Zhou C, Bae-Jump VL. Everolimus exhibits anti-tumorigenic activity in obesity-induced ovarian cancer. Oncotarget 2018; 7:20338-56. [PMID: 26959121 PMCID: PMC4991459 DOI: 10.18632/oncotarget.7934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/24/2016] [Indexed: 01/21/2023] Open
Abstract
Everolimus inhibits mTOR kinase activity and its downstream targets by acting on mTORC1 and has anti-tumorigenic activity in ovarian cancer. Clinical and epidemiologic data find that obesity is associated with worse outcomes in ovarian cancer. In addition, obesity leads to hyperactivation of the mTOR pathway in epithelial tissues, suggesting that mTOR inhibitors may be a logical choice for treatment in obesity-driven cancers. However, it remains unclear if obesity impacts the effect of everolimus on tumor growth in ovarian cancer. The present study was aimed at evaluating the effects of everolimus on cytotoxicity, cell metabolism, apoptosis, cell cycle, cell stress and invasion in human ovarian cancer cells. A genetically engineered mouse model of serous ovarian cancer fed a high fat diet or low fat diet allowed further investigation into the inter-relationship between everolimus and obesity in vivo. Everolimus significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, reduced invasion and caused cellular stress via inhibition of mTOR pathways in vitro. Hypoglycemic conditions enhanced the sensitivity of cells to everolimus through the disruption of glycolysis. Moreover, everolimus was found to inhibit ovarian tumor growth in both obese and lean mice. This reduction coincided with a decrease in expression of Ki-67 and phosphorylated-S6, as well as an increase in cleaved caspase 3 and phosphorylated-AKT. Metabolite profiling revealed that everolimus was able to alter tumor metabolism through different metabolic pathways in the obese and lean mice. Our findings support that everolimus may be a promising therapeutic agent for obesity-driven ovarian cancers.
Collapse
Affiliation(s)
- Hui Guo
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan University, Jinan, P.R. China.,Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Shandong, P.R. China
| | - Yan Zhong
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Department of Gynecologic Oncology, Linyi Cancer Hospital, Linyi, P.R. China
| | - Amanda L Jackson
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Leslie H Clark
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Josh Kilgore
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Lu Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan University, Jinan, P.R. China.,Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Shandong, P.R. China
| | - Jianjun Han
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Jinan, P.R. China
| | - Xiugui Sheng
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan University, Jinan, P.R. China
| | - Timothy P Gilliam
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Paola A Gehrig
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Unraveling the gut microbiome of the long-lived naked mole-rat. Sci Rep 2017; 7:9590. [PMID: 28852094 PMCID: PMC5575099 DOI: 10.1038/s41598-017-10287-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/07/2017] [Indexed: 01/16/2023] Open
Abstract
The naked mole-rat (Heterocephalus glaber) is a subterranean mouse-sized African mammal that shows astonishingly few age-related degenerative changes and seems to not be affected by cancer. These features make this wild rodent an excellent model to study the biology of healthy aging and longevity. Here we characterize for the first time the intestinal microbial ecosystem of the naked mole-rat in comparison to humans and other mammals, highlighting peculiarities related to the specific living environment, such as the enrichment in bacteria able to utilize soil sulfate as a terminal electron acceptor to sustain an anaerobic oxidative metabolism. Interestingly, some compositional gut microbiota peculiarities were also shared with human gut microbial ecosystems of centenarians and Hadza hunter-gatherers, considered as models of a healthy gut microbiome and of a homeostatic and highly adaptive gut microbiota-host relationship, respectively. In addition, we found an enrichment of short-chain fatty acids and carbohydrate degradation products in naked mole-rat compared to human samples. These data confirm the importance of the gut microbial ecosystem as an adaptive partner for the mammalian biology and health, independently of the host phylogeny.
Collapse
|
22
|
Pandurangan M, Enkhtaivan G, Mistry B, Patel RV, Moon S, Kim DH. β-Alanine intercede metabolic recovery for amelioration of human cervical and renal tumors. Amino Acids 2017; 49:1373-1380. [PMID: 28516269 DOI: 10.1007/s00726-017-2437-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
Abstract
β-Alanine is a non-essential amino acid and presents as a major component of various sports supplements. It is a non-proteogenic amino acid, formed in vivo by degradation of carnosine, anserine, balenine, and dihydrouracil. The present study was aimed at investigating the anti-tumor effects of β-alanine in renal and cervical tumor cells. Sulforhodamine-B assay and flow cytometric analysis were used to measure cell viability. Lactate dehydrogenase (LDH) expression was analyzed using FITC-conjugated fluorescent antibody. The cellular adenosine triphosphate (ATP) content was measured using bioluminescence method. Cell migration was determined by the simple standard-scratch method. β-Alanine reduced renal and cervical cell growth significantly. Percentage of inhibition of renal and cervical tumor cells was increased at higher concentration of β-alanine. LDH expression and ATP content were significantly reduced in renal and cervical tumor cells in a dose-dependent manner. Renal and cervical tumor cell migration were significantly reduced following 10 and 100 mM of β-alanine treatment. In our study, β-alanine exerts no significant effect on normal MDCK cells except a marginal effect at the highest concentration (100 mM). In summary, our experimental data suggest that β-alanine may be a potential anti-tumor agent exhibiting several anti-cancer effects in renal and cervical tumor cells.
Collapse
Affiliation(s)
| | - Gansukh Enkhtaivan
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea
| | - Bhupendra Mistry
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-820, South Korea
| | - Rahul V Patel
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-820, South Korea
| | - Sohyun Moon
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Biomedical Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyenggi-do, South Korea
| | - Doo Hwan Kim
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea.
| |
Collapse
|
23
|
Sans M, Gharpure K, Tibshirani R, Zhang J, Liang L, Liu J, Young JH, Dood RL, Sood AK, Eberlin LS. Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry Imaging. Cancer Res 2017; 77:2903-2913. [PMID: 28416487 DOI: 10.1158/0008-5472.can-16-3044] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/10/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023]
Abstract
Ovarian high-grade serous carcinoma (HGSC) results in the highest mortality among gynecological cancers, developing rapidly and aggressively. Dissimilarly, serous borderline ovarian tumors (BOT) can progress into low-grade serous carcinomas and have relatively indolent clinical behavior. The underlying biological differences between HGSC and BOT call for accurate diagnostic methodologies and tailored treatment options, and identification of molecular markers of aggressiveness could provide valuable biochemical insights and improve disease management. Here, we used desorption electrospray ionization (DESI) mass spectrometry (MS) to image and chemically characterize the metabolic profiles of HGSC, BOT, and normal ovarian tissue samples. DESI-MS imaging enabled clear visualization of fine papillary branches in serous BOT and allowed for characterization of spatial features of tumor heterogeneity such as adjacent necrosis and stroma in HGSC. Predictive markers of cancer aggressiveness were identified, including various free fatty acids, metabolites, and complex lipids such as ceramides, glycerophosphoglycerols, cardiolipins, and glycerophosphocholines. Classification models built from a total of 89,826 individual pixels, acquired in positive and negative ion modes from 78 different tissue samples, enabled diagnosis and prediction of HGSC and all tumor samples in comparison with normal tissues, with overall agreements of 96.4% and 96.2%, respectively. HGSC and BOT discrimination was achieved with an overall accuracy of 93.0%. Interestingly, our classification model allowed identification of three BOT samples presenting unusual histologic features that could be associated with the development of low-grade carcinomas. Our results suggest DESI-MS as a powerful approach for rapid serous ovarian cancer diagnosis based on altered metabolic signatures. Cancer Res; 77(11); 2903-13. ©2017 AACR.
Collapse
Affiliation(s)
- Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Kshipra Gharpure
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Tibshirani
- Departments of Biomedical Data Sciences and Statistics, Stanford University, Stanford, California
| | - Jialing Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Li Liang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan H Young
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Robert L Dood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
24
|
Birkemeyer CS, Thomsen R, Jänig S, Kücklich M, Slama A, Weiß BM, Widdig A. Sampling the Body Odor of Primates: Cotton Swabs Sample Semivolatiles Rather Than Volatiles. Chem Senses 2016; 41:525-35. [PMID: 27121043 DOI: 10.1093/chemse/bjw056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We assessed the suitability of a frequently used sampling method employing cotton swabs for collecting animal body odor for gas chromatography-mass spectrometry (GC-MS) analysis of volatile organic compounds (VOCs). Our method validation showed that both sampling material and sampling protocols affect the outcome of the analyses. Thus, among the tested protocols swabs of pure viscose baked before use and extracted with hexane had the least blank interferences in GC-MS analysis. Most critical for the recovery of VOCs was the handling time: the significant recovery losses of volatiles experienced with this sampling procedure suggest that a rapid processing of such samples is required. In a second part, we used swab sampling to sample the body odor of rhesus macaques (Macaca mulatta), which lack scent glands. First results after GC-MS analysis of the samples collected from these nonhuman primates emphasize that proper analytical performance is an indispensable prerequisite for successful automated data evaluation of the complex GC-MS profiles. Moreover, the retention times and the nature of the identified chemical compounds in our samples suggest that the use of swabs is generally more appropriate for collecting semivolatile rather than VOCs.
Collapse
Affiliation(s)
- Claudia S Birkemeyer
- Research Group of Mass Spectrometry, Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnéstr. 3, 04103 Leipzig, Germany,
| | - Ruth Thomsen
- Research Group of Behavioural Ecology, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany, Department of Anthropology, University College London, Gower Street, London WC1E 6BT, UK
| | - Susann Jänig
- Research Group of Behavioural Ecology, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany, Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany and
| | - Marlen Kücklich
- Research Group of Behavioural Ecology, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany, Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany and
| | - Anna Slama
- Research Group of Behavioural Ecology, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany
| | - Brigitte M Weiß
- Research Group of Behavioural Ecology, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany, Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany and
| | - Anja Widdig
- Research Group of Behavioural Ecology, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany, Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany and German Center for Integrative Biodiversity Research (iDiv), Deutscher Platz 5E, 04103 Leipzig, Germany
| |
Collapse
|