1
|
Zheng T, Huang KY, Tang XD, Wang FY, Lv L. Endoplasmic reticulum stress in gut inflammation: Implications for ulcerative colitis and Crohn's disease. World J Gastroenterol 2025; 31:104671. [PMID: 40248056 PMCID: PMC12001174 DOI: 10.3748/wjg.v31.i13.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Eukaryotic cells contain the endoplasmic reticulum (ER), a prevalent and intricate membranous structural system. During the development of inflammatory bowel disease (IBD), the stress on the ER and the start of the unfolded protein response are very important. Some chemicals, including 4μ8C, small molecule agonists of X-box binding protein 1, and ISRIB, work on the inositol-requiring enzyme 1, turn on transcription factor 6, and activate protein kinase RNA-like ER kinase pathways. This may help ease the symptoms of IBD. Researchers investigating the gut microbiota have discovered a correlation between ER stress and it. This suggests that changing the gut microbiota could help make new medicines for IBD. This study looks at how ER stress works and how it contributes to the emergence of IBD. It also talks about its possible clinical importance as a therapeutic target and looks into new ways to treat this condition.
Collapse
Affiliation(s)
- Ting Zheng
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Kai-Yue Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feng-Yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lin Lv
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca 2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin 2025; 46:271-291. [PMID: 39117969 PMCID: PMC11756407 DOI: 10.1038/s41401-024-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Dawoody Nejad L, Pioro EP. Modeling ALS with Patient-Derived iPSCs: Recent Advances and Future Potentials. Brain Sci 2025; 15:134. [PMID: 40002468 PMCID: PMC11852857 DOI: 10.3390/brainsci15020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal complex neurodegenerative disease, with 10-15% of cases being familial and the majority being sporadic with no known cause. There are no animal models for the 85-90% of sporadic ALS cases. More creative, sophisticated models of ALS disease are required to unravel the mysteries of this complicated disease. While ALS patients urgently require new medications and treatments, suitable preclinical in vitro models for drug screening are lacking. Therefore, human-derived induced pluripotent stem cell (hiPSC) technology offers the opportunity to model diverse and unreachable cell types in a culture dish. In this review, we focus on recent hiPSC-derived ALS neuronal and non-neuronal models to examine the research progress of current ALS 2D monocultures, co-cultures, and more complex 3D-model organoids. Despite the challenges inherent to hiPSC-based models, their application to preclinical drug studies is enormous.
Collapse
Affiliation(s)
| | - Erik P. Pioro
- Djavad Mowafaghian Centre for Brain Health, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
4
|
Noori H, Alazzeh ZJ, Rehman OU, Idrees M, Marsool MDM, Abdul Rehman K, Gohil KM, Ahmad SS, Subash T, Dixon K. Endoplasmic reticulum's role in multiple sclerosis, exploring potential biomarkers, and pioneering therapeutic strategies: a comprehensive review of literature. Neurol Sci 2025; 46:113-123. [PMID: 39269572 DOI: 10.1007/s10072-024-07766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a complex and chronic autoimmune disease that affects the central nervous system. Inflammation and demyelination characterize it, which results in a range of neurological impairments. The increasing worldwide occurrence of MS, affecting an estimated 2.8 million individuals in 2020, highlights the urgent requirement for further research to tackle the significant impact it has on individuals and healthcare systems globally. OBJECTIVE In this study, we wanted to explore the complex function of the endoplasmic reticulum (ER) in the origin, development, and resolution of MS, emphasizing its importance in neuroinflammatory illnesses. The ER has become a central focus in comprehending the pathogenesis of MS. Upon reviewing the literature, we observed a lack of thorough analysis that explores the involvement of endoplasmic reticulum stress in multiple sclerosis. Thus, we aimed through this research to examine the correlations between ER stress and its influence on immunological dysregulation, demyelination, and neurodegeneration in MS. FINDINGS Based on the latest clinical trials, we suggested theories that explore possible biomarkers linked to ER stress and the unfolded protein response. Identifying molecules that are suggestive of early stages of illness and can serve as prognostic tools for improving our understanding of the heterogeneity of MS and offering novel approaches for managing the disease. Finally, through our comprehensive search, we wanted to offer a plan for future research, suggesting new and creative methods for managing MS and encouraging the creation of specific treatments that aim to reduce the impact of MS on individuals worldwide.
Collapse
Affiliation(s)
- Hamid Noori
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Level 6, West Wing, Oxford, OX3 9DU, UK
| | | | - Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | | | | | - Khawaja Abdul Rehman
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan.
| | - Krutika Mahendra Gohil
- Topiwala National Medical College & Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, India
| | | | | | - Kayla Dixon
- University of Birmingham Medical School, Birmingham, UK
| |
Collapse
|
5
|
Ameenudeen S, Waseem M, S H. Identification of potential phytochemicals and their inhibitory effect on the PERK receptor mediated UPR pathway for neuronal disease regulation: an in silico insight. J Biomol Struct Dyn 2024; 42:7838-7846. [PMID: 37528651 DOI: 10.1080/07391102.2023.2242495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
The endoplasmic reticulum (ER) has been considered as the key site of protein biosynthesis and maturation in the eukaryotic cell. In recent years, the sequence at the N-terminal region of translated protein has shown a particular emphasis as a signal responsible for site-specific translocation mediated by post-translational modification. Once the native conformation is not achieved, the degradation pathway is activated, and therefore the restoration of the homeostasis of ER function in UPR pathway is initiated. One of the transmembrane proteins, PKR-like ER kinase (PERK) plays a key role in the activation of UPR through the inhibition of the translation process, thus preventing the cells from apoptosis due to chronic ER stress. Dysregulation of the neuronal proteostasis often results in neuronal dysfunction and its crucially associated neurodegenerative diseases or its manifestation of neuropathic pain. The correlation between ER stress and its associated signaling cascade, namely UPR, is well established in context of neuropathological modifications. This furthermore suggests that the proteins of the signaling cascade such as PERK can serve as a potential target during the onset of neuronal damage. The aim of this study was to identify the potential phytocompounds by evaluating the physicochemical properties, Lipinski screening, ADMET and toxicity properties of the selected phytocompounds by using SwissADME, MolInspiration and pKCSM webservers, which could establish a comparatively better affinity and binding energy than the control drug as GSK2606414 in set up the treatment of the neuronal diseases through molecular docking via PyRx and validating their structural stability through simulation using the Sybyl software for over100ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shabnam Ameenudeen
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Mohammad Waseem
- School of Pharmacy, University of Maryland, College Park, MD, USA
| | - Hemalatha S
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
6
|
Umashankar B, Eliasson L, Ooi CY, Kim KW, Shaw JAM, Waters SA. Beyond insulin: Unraveling the complex interplay of ER stress, oxidative damage, and CFTR modulation in CFRD. J Cyst Fibros 2024; 23:842-852. [PMID: 38897882 DOI: 10.1016/j.jcf.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
CF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action. Studies indicate that ER stress and subsequent UPR activation play critical roles in both exocrine and endocrine pancreatic cell dysfunction, contributing to β-cell loss and insulin insufficiency. Additionally, oxidative stress and altered calcium flux, exacerbated by CFTR dysfunction, impair β-cell survival and function, highlighting the significance of antioxidant pathways in CFRD pathogenesis. Emerging evidence underscores the importance of exosomal microRNAs (miRNAs) in mediating inflammatory and stress responses, offering novel insights into CFRD's molecular landscape. Despite insulin therapy remaining the cornerstone of CFRD management, the variability in response to CFTR modulators underscores the need for personalized treatment approaches. The review advocates for further research into non-CFTR therapeutic targets, emphasizing the need to address the multifaceted pathophysiology of CFRD. Understanding the intricate mechanisms underlying CFRD will pave the way for innovative treatments, moving beyond insulin therapy to target the disease's root causes and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Chee Y Ooi
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital Randwick, NSW, Australia
| | - Ki Wook Kim
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Virology and Serology Division (SaViD), New South Wales Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Liu C, Ju R. Potential Role of Endoplasmic Reticulum Stress in Modulating Protein Homeostasis in Oligodendrocytes to Improve White Matter Injury in Preterm Infants. Mol Neurobiol 2024; 61:5295-5307. [PMID: 38180617 DOI: 10.1007/s12035-023-03905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Preterm white matter injury (WMI) is a demyelinating disease with high incidence and mortality in premature infants. Oligodendrocyte cells (OLs) are a specialized glial cell that produces myelin proteins and adheres to the axons providing energy and metabolic support which susceptible to endoplasmic reticulum protein quality control. Disruption of cellular protein homeostasis led to OLs dysfunction and cell death, immediately, the unfolded protein response (UPR) activated to attempt to restore the protein homeostasis via IRE1/XBP1s, PERK/eIF2α and ATF6 pathway that reduced protein translation, strengthen protein-folding capacity, and degraded unfolding/misfolded protein. Moreover, recent works have revealed the conspicuousness function of ER signaling pathways in regulating influenced factors such as calcium homeostasis, mitochondrial reactive oxygen generation, and autophagy activation to regulate protein hemostasis and improve the myelination function of OLs. Each of the regulation modes and their corresponding molecular mechanisms provides unique opportunities and distinct perspectives to obtain a deep understanding of different actions of ER stress in maintaining OLs' health and function. Therefore, our review focuses on summarizing the current understanding of ER stress on OLs' protein homeostasis micro-environment in myelination during white matter development, as well as the pathophysiology of WMI, and discussing the further potential experimental therapeutics targeting these factors that restore the function of the UPR in OLs myelination function.
Collapse
Affiliation(s)
- Chang Liu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
8
|
Pazi MB, Belan DV, Komarova EY, Ekimova IV. Intranasal Administration of GRP78 Protein (HSPA5) Confers Neuroprotection in a Lactacystin-Induced Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:3951. [PMID: 38612761 PMCID: PMC11011682 DOI: 10.3390/ijms25073951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Maria B Pazi
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| | - Daria V Belan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| | - Elena Y Komarova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky pr., St. Petersburg 194064, Russia
| | - Irina V Ekimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| |
Collapse
|
9
|
Jin B, Wang M, Sun Y, Lee PAH, Zhang X, Lu Y, Zhao B. CHIP suppresses the proliferation and migration of A549 cells by mediating the ubiquitination of eIF2α and upregulation of tumor suppressor RBM5. J Biol Chem 2024; 300:105673. [PMID: 38272235 PMCID: PMC10877634 DOI: 10.1016/j.jbc.2024.105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.
Collapse
Affiliation(s)
- Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Mengran Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yiheng Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Priscilla Ann Hweek Lee
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangqi Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Hu R, Chen X, Su Q, Wang Z, Wang X, Gong M, Xu M, Le R, Gao Y, Dai P, Zhang ZN, Shao L, Li W. ISR inhibition reverses pancreatic β-cell failure in Wolfram syndrome models. Cell Death Differ 2024; 31:322-334. [PMID: 38321214 PMCID: PMC10923889 DOI: 10.1038/s41418-024-01258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Pancreatic β-cell failure by WFS1 deficiency is manifested in individuals with wolfram syndrome (WS). The lack of a suitable human model in WS has impeded progress in the development of new treatments. Here, human pluripotent stem cell derived pancreatic islets (SC-islets) harboring WFS1 deficiency and mouse model of β cell specific Wfs1 knockout were applied to model β-cell failure in WS. We charted a high-resolution roadmap with single-cell RNA-seq (scRNA-seq) to investigate pathogenesis for WS β-cell failure, revealing two distinct cellular fates along pseudotime trajectory: maturation and stress branches. WFS1 deficiency disrupted β-cell fate trajectory toward maturation and directed it towards stress trajectory, ultimately leading to β-cell failure. Notably, further investigation of the stress trajectory identified activated integrated stress response (ISR) as a crucial mechanism underlying WS β-cell failure, characterized by aberrant eIF2 signaling in WFS1-deficient SC-islets, along with elevated expression of genes in regulating stress granule formation. Significantly, we demonstrated that ISRIB, an ISR inhibitor, efficiently reversed β-cell failure in WFS1-deficient SC-islets. We further validated therapeutic efficacy in vivo with β-cell specific Wfs1 knockout mice. Altogether, our study provides novel insights into WS pathogenesis and offers a strategy targeting ISR to treat WS diabetes.
Collapse
Affiliation(s)
- Rui Hu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiangyi Chen
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiang Su
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhaoyue Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xushu Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Mengting Gong
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Minglu Xu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yawei Gao
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Peng Dai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhen-Ning Zhang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Li Shao
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, No. 1800 Yuntai Road, Pudong District, Shanghai, 200123, China.
| | - Weida Li
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai, 200120, China.
| |
Collapse
|
11
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Hu L, Ran J, Wang L, Wu M, Wang Z, Xiao H, Du K, Wang Y. Ginsenoside Rg1 attenuates D-galactose-induced neural stem cell senescence via the Sirt1-Nrf2-BDNF pathway. Eur J Neurosci 2023; 58:4084-4101. [PMID: 37753701 DOI: 10.1111/ejn.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
With the ageing of society's population, neurodegenerative diseases have become an important factor affecting the quality of life and mortality in the elderly. Since its physiopathological processes are complex and the authorized medications have recently been shown to have several adverse effects, the development of safe and efficient medications is urgently needed. In this study, we looked at how ginsenoside Rg1 works to postpone neural stem cell ageing and brain ageing, giving it a solid scientific foundation for use as a therapeutic therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Hu
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Jianhua Ran
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Neuroscience Research Center, College of basic medicine, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Mengna Wu
- Neuroscience Research Center, College of basic medicine, Chongqing Medical University, Chongqing, China
| | - Ziling Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Hanxianzhi Xiao
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Kunhang Du
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yaping Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Dhir N, Jain A, Sharma AR, Prakash A, Radotra BD, Medhi B. PERK inhibitor, GSK2606414, ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2ɑ/ATF4/CHOP signaling. Metab Brain Dis 2023; 38:1177-1192. [PMID: 36847967 DOI: 10.1007/s11011-023-01183-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
The protein kinase R-like endoplasmic reticulum kinase/eukaryotic initiation factor 2ɑ (PERK/eIF2α), the branch of unfolded protein response (UPR), is responsible for transient arrest in translation to counter the enhanced levels of misfolded or unfolded proteins in the endoplasmic reticulum (ER) following any acute condition. In neurological disorders, overactivation of PERK-P/eIF2-P signaling, leads to a prolonged decline in global protein synthesis resulting in synaptic failure and neuronal death. Our study has shown, PERK/ATF4/CHOP pathway gets activated following cerebral ischemia in rats. We have further demonstrated, PERK inhibitor, GSK2606414 ameliorates ischemia induced neuronal damage by preventing additional neuronal loss, minimizing brain infarct, reducing brain edema, and preventing neurological symptoms from appearing. GSK2606414 was found to improve the neurobehavioral deficits and reduce the pyknotic neurons in ischemic rats. Also, it decreased glial activation and apoptotic protein mRNA expression while enhanced the synaptic protein mRNA expression in rat brain following cerebral ischemia. In conclusion, our findings suggest that PERK/ATF4/CHOP activation play a vital role in cerebral ischemia. Thus, PERK inhibitor, GSK2606414 might be a potential neuroprotective agent in cerebral ischemia.
Collapse
Affiliation(s)
- Neha Dhir
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashish Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bishan Das Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
14
|
Fernandes MS, Pedroza AA, de Andrade Silva SC, de Lemos MDT, Bernardo EM, Pereira AR, Dos Santos TM, Lagranha C. Undernutrition during development modulates endoplasmic reticulum stress genes in the hippocampus of juvenile rats: Involvement of oxidative stress. Brain Res 2022; 1797:148098. [PMID: 36162496 DOI: 10.1016/j.brainres.2022.148098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
To evaluate whether exercise training mitigates the deleterious effects of undernutrition during the developmental period in juvenile Wistar rats. Pregnant Wistar rats were fed with a diet containing 17 % or 8 % casein during pregnancy and lactation. At 30 days of life, male offspring were divided into 4 groups: Low-Protein non-trained (LS), Low-Protein Trained (LT), Normoprotein non-trained (NS), and Normoprotein Trained (NT). Trained rats performed aerobic exercise training (AET) for 4 weeks, 5 days a week, 1 h a day. 24 h from the last day of training, the animals were sacrificed. The tissues were removed to analyze indicators of mitochondrial metabolism, oxidative stress, and gene expression of GRP78, PERK, ATF6 ER stress markers, and BDNF. The results showed that undernutrition during development promotes deleterious effects on mitochondrial oxidative metabolism and induces reticulum stress in the hippocampus of juvenile rats. On the other hand, AET improves mitochondrial function and increases enzymatic and non-enzymatic antioxidant capacity, as well as declines ER stress. AET at moderate intensity for 4 weeks in male juvenile Wistar rats acts as a lifestyle intervention opposing the negative effects induced by a protein-restricted maternal diet.
Collapse
Affiliation(s)
- Matheus Santos Fernandes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil; Physical Education and Sport Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Anderson Apolônio Pedroza
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Severina Cássia de Andrade Silva
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Maria Daniele Teixeira de Lemos
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Elenilson M Bernardo
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Allifer R Pereira
- Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Tony Meireles Dos Santos
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Physical Education and Sport Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Claudia Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil.
| |
Collapse
|
15
|
Yu Y, Li L, Yu W, Guan Z. Fluoride Exposure Suppresses Proliferation and Enhances Endoplasmic Reticulum Stress and Apoptosis Pathways in Hepatocytes by Downregulating Sirtuin-1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7380324. [PMID: 36046439 PMCID: PMC9420589 DOI: 10.1155/2022/7380324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the function and mechanism of Sirt-1 in fluorine-induced liver injury. Method Fluorosis rats were first established. The fluorine content, pathological structure, collagen fibers, and fibrosis in liver tissues were tested through the fluoride ion selective electrode method, H&E, Masson, and Sirius red staining; alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin 18 (IL-18), and tumor necrosis factor-α (TNF-α) levels in rat serum were also analyzed using ELISA kits. Then, the fluorosis cell model was built, which was also alleviated with NaF, Sirt-1 siRNAs, or endoplasmic reticulum stress (ERS) alleviator (4-PBA). CCK-8 also assessed cell proliferation; RT-qPCR or Western blots detect sirtuin-1 (Sirt-1), protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK), and endoplasmic reticulum stress (ERS) and apoptosis-related protein levels in liver tissue. Results Our results uncovered that fluorine exposure could aggravate the pathological damage and fibrosis of rat liver tissues and increase indicators related to liver injury. And fluoride exposure also could downregulate Sirt-1 and upregulate ERS-related proteins (PERK, 78-kD glucose-regulated protein (GRP-78), and activating transcription factor 6 (ATF6)) and apoptosis-related protein (caspase-3 and C/EBP-homologous protein (CHOP)) in rat liver tissues. Besides, we proved that fluoride exposure could suppress proliferation and enhances ERS and apoptotic pathways in AML12 cells by downregulating Sirt-1. Moreover, we revealed that ERS alleviator (4-PBA) could induce proliferation and prevent ERS and apoptosis in fluorine-exposed AML12 cells. Conclusions We suggested that fluorine exposure can induce hepatocyte ERS and apoptosis through downregulation of Sirt-1.
Collapse
Affiliation(s)
- Yanlong Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Ling Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Blas-Valdivia V, Rojas-Franco P, Serrano-Contreras JI, Sfriso AA, Garcia-Hernandez C, Franco-Colín M, Cano-Europa E. C-phycoerythrin from Phormidium persicinum Prevents Acute Kidney Injury by Attenuating Oxidative and Endoplasmic Reticulum Stress. Mar Drugs 2021; 19:md19110589. [PMID: 34822460 PMCID: PMC8624244 DOI: 10.3390/md19110589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/18/2022] Open
Abstract
C-phycoerythrin (C-PE) is a phycobiliprotein that prevents oxidative stress and cell damage. The aim of this study was to evaluate whether C-PE also counteracts endoplasmic reticulum (ER) stress as a mechanism contributing to its nephroprotective activity. After C-PE was purified from Phormidium persicinum by using size exclusion chromatography, it was characterized by spectrometry and fluorometry. A mouse model of HgCl2-induced acute kidney injury (AKI) was used to assess the effect of C-PE treatment (at 25, 50, or 100 mg/kg of body weight) on oxidative stress, the redox environment, and renal damage. ER stress was examined with the same model and C-PE treatment at 100 mg/kg. C-PE diminished oxidative stress and cell damage in a dose-dependent manner by impeding the decrease in expression of nephrin and podocin normally caused by mercury intoxication. It reduced ER stress by preventing the activation of the inositol-requiring enzyme-1α (IRE1α) pathway and avoiding caspase-mediated cell death, while leaving the expression of protein kinase RNA-like ER kinase (PERK) and activating transcription factor 6α (ATF6α) pathways unmodified. Hence, C-PE exhibited a nephroprotective effect on HgCl2-induced AKI by reducing oxidative stress and ER stress.
Collapse
Affiliation(s)
- Vanessa Blas-Valdivia
- Laboratorio de Neurobiología, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (V.B.-V.); (C.G.-H.)
| | - Plácido Rojas-Franco
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Jose Ivan Serrano-Contreras
- Department of Metabolism, Digestion and Reproduction, Division of Systems Medicine, Section of Biomolecular Medicine, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Andrea Augusto Sfriso
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Cristian Garcia-Hernandez
- Laboratorio de Neurobiología, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (V.B.-V.); (C.G.-H.)
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Margarita Franco-Colín
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
- Correspondence: (M.F.-C.); (E.C.-E.); Tel./Fax: +52-55-57-29-60-00 (ext. 52351) (M.F.-C. & E.C.-E.)
| | - Edgar Cano-Europa
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
- Correspondence: (M.F.-C.); (E.C.-E.); Tel./Fax: +52-55-57-29-60-00 (ext. 52351) (M.F.-C. & E.C.-E.)
| |
Collapse
|