1
|
Cui ZJ. Deep-sea photodynamic vision at low light level - Which is more important, prosthetic retinal or apo-rhodopsin moiety? FASEB J 2025; 39:e70470. [PMID: 40100047 DOI: 10.1096/fj.202500213r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
The special case of far-red vision of mesopelagic dragonfish Malacosteus niger facilitated by the presence in the rod outer segment of photosensitizer chlorin e6 from diet has drawn considerable attention both in vision research and in photodynamic action. Rhodopsin binding of Ce6 from either the extracellular or intracellular loops may exert different effects. Theoretical works predict that the extracellularly bound Ce6 upon absorption of red light produces a singlet oxygen, which could via an oxygen tunnel reach the Lys-tethered 11-cis-retinal, by way of peroxy-dioxetane intermediates, to enhance 11-cis- to all-trans-retinal isomerization, therefore triggering the ultrafast phototransduction process. Recent works on the permanent photodynamic activation of some A-class G protein-coupled receptors suggest that the singlet oxygen generated by Ce6 photodynamic action might also oxidize the scotopsin moiety of rhodopsin, leading to direct oxidative rhodopsin activation. More attention needs to be paid to the latter respects of the far-red vision process of the deep-sea dragonfish, with potential translational values.
Collapse
Affiliation(s)
- Zong Jie Cui
- Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- Ministry of Education Laboratory of Cell Proliferation and Regulation, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Cui ZJ. To activate a G protein-coupled receptor permanently with cell surface photodynamic action in the gastrointestinal tract. World J Gastroenterol 2025; 31:102423. [PMID: 40182590 PMCID: PMC11962841 DOI: 10.3748/wjg.v31.i12.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 03/26/2025] Open
Abstract
Different from reversible agonist-stimulated receptor activation, singlet oxygen oxidation activates permanently G protein-coupled receptor (GPCR) cholecystokinin 1 (CCK1R) in type II photodynamic action, with soluble photosensitizer dyes (sulphonated aluminum phthalocyanine, λmax 675 nm) or genetically encoded protein photosensitizers (KillerRed λmax 585 nm; mini singlet oxygen generator λmax 450 nm), together with a pulse of light (37 mW/cm2, 1-2 minutes). Three lines of evidence shed light on the mechanism of GPCR activated by singlet oxygen (GPCR-ABSO): (1) CCK1R is quantitatively converted from dimer to monomer; (2) Transmembrane domain 3, a pharmacophore for permanent photodynamic CCK1R activation, can be transplanted to non-susceptible M3 acetylcholine receptor; and (3) Larger size of disordered region in intracellular loop 3 correlates with higher sensitivity to photodynamic CCK1R activation. GPCR-ABSO will add to the arsenal of engineered designer GPCR such as receptors activated solely by synthetic ligands and designer receptors exclusively activated by designer drugs, but show some clear advantages: Enhanced selectivity (double selectivity of localized photosensitizer and light illumination), long-lasting activation with no need for repeated drug administration, antagonist-binding site remains intact when needed, ease to apply to multiple GPCR. This type of permanent photodynamic activation may be applied to functional proteins other than GPCR.
Collapse
Affiliation(s)
- Zong-Jie Cui
- Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- The Ministry of Education Laboratory for Cell Proliferation and Regulation, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Xie XB, Shu Y, Cui ZJ. To activate NAD(P)H oxidase with a brief pulse of photodynamic action. FASEB J 2024; 38:e70246. [PMID: 39655710 PMCID: PMC11629461 DOI: 10.1096/fj.202402292r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidases (NOX) are a major cellular source of reactive oxygen species, regulating vital physiological functions, whose dys-regulation leads to a plethora of major diseases. Much effort has been made to develop varied types of NOX inhibitors, but biotechnologies for spatially and temporally controlled NOX activation, however, are not readily available. We previously found that ultraviolet A (UVA) irradiation activates NOX2 in rodent mast cells, to elicit persistent calcium spikes. NOX2 is composed of multiple subunits, making studies of its activation rather complicated. Here we show that the single-subunit nonrodent-expressing NOX5, when expressed ectopically in CHO-K1 cells, is activated by UVA irradiation (380 nm, 0.1-12 mW/cm2, 1.5 min) inducing repetitive calcium spikes, as monitored by Fura-2 fluorescent calcium imaging. UVA-elicited calcium oscillations are inhibited by NOX inhibitor diphenyleneiodonium chloride (DPI) and blocked by singlet oxygen (1O2) quencher Trolox-C (300 μM). A brief pulse of photodynamic action (1.5 min) with photosensitizer sulfonated aluminum phthalocyanine (SALPC 2 μM, 675 nm, 85 mW/cm2) in NOX5-CHO-K1 cells, or with genetically encoded protein photosensitizer miniSOG fused to N-terminus of NOX5 (450 nm, 85 mW/cm2) in miniSOG-NOX5-CHO-K1 cells, induces persistent calcium oscillations, which are blocked by DPI. In the presence of Trolox-C, miniSOG photodynamic action no longer induces any calcium increases in miniSOG-NOX5-CHO-K1 cells. DUOX2 in human thyroid follicular cells SW579 and in DUOX2-CHO-K1 cells is similarly activated by UVA irradiation and SALPC photodynamic action. These data together suggest that NOX is activated with a brief pulse of photodynamic action.
Collapse
Affiliation(s)
- Xiao Bing Xie
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yu Shu
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Zong Jie Cui
- College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
4
|
Wang J, Cui ZJ. Photodynamic Activation of Cholecystokinin 1 Receptor Is Conserved in Mammalian and Avian Pancreatic Acini. Biomedicines 2023. [DOI: https:/doi.org/10.3390/biomedicines11030885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Cholecystokinin 1 receptor (CCK1R) is the only G protein coupled receptor that is activated in type II photodynamic action, but whether this is a property common to both mammalian and avian species is not known. In this work, pancreatic acini were isolated from the rat, mouse, and Peking duck, and photodynamic CCK1R activation was examined. Isolated pancreatic acini were exposed to photosensitizer sulphonated aluminum phthalocyanine (SALPC) and photodynamic action elicited by a brief light-emitting diode (LED 675 nm) pulse (1.5 min); photodynamic CCK1R activation was assessed by Fura-2 fluorescent calcium imaging. Photodynamic action was found to induce persistent calcium oscillations in rat, mouse, and Peking duck pancreatic acini, with the sensitivity order of mouse > rat > Peking duck. Photodynamically-activated CCK1R could be inhibited reversibly by CCK1R antagonist devazepide (1 μM); photodynamic CCK1R activation was blocked by pre-incubation with 1O2 quencher Trolox C (300 µM). The sensitivity of photodynamic CCK1R activation was correlated with the increasing size of the disordered region in intracellular loop 3. These data suggest that photodynamic CCK1R activation is conserved in both mammalian and avian species, as evidenced by the presence of the photodynamic activation motif “YFM” in transmembrane domain 3.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Wang J, Cui ZJ. Photodynamic Activation of Cholecystokinin 1 Receptor Is Conserved in Mammalian and Avian Pancreatic Acini. Biomedicines 2023; 11:biomedicines11030885. [PMID: 36979864 PMCID: PMC10046250 DOI: 10.3390/biomedicines11030885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cholecystokinin 1 receptor (CCK1R) is the only G protein coupled receptor that is activated in type II photodynamic action, but whether this is a property common to both mammalian and avian species is not known. In this work, pancreatic acini were isolated from the rat, mouse, and Peking duck, and photodynamic CCK1R activation was examined. Isolated pancreatic acini were exposed to photosensitizer sulphonated aluminum phthalocyanine (SALPC) and photodynamic action elicited by a brief light-emitting diode (LED 675 nm) pulse (1.5 min); photodynamic CCK1R activation was assessed by Fura-2 fluorescent calcium imaging. Photodynamic action was found to induce persistent calcium oscillations in rat, mouse, and Peking duck pancreatic acini, with the sensitivity order of mouse > rat > Peking duck. Photodynamically-activated CCK1R could be inhibited reversibly by CCK1R antagonist devazepide (1 μM); photodynamic CCK1R activation was blocked by pre-incubation with 1O2 quencher Trolox C (300 µM). The sensitivity of photodynamic CCK1R activation was correlated with the increasing size of the disordered region in intracellular loop 3. These data suggest that photodynamic CCK1R activation is conserved in both mammalian and avian species, as evidenced by the presence of the photodynamic activation motif “YFM” in transmembrane domain 3.
Collapse
|
6
|
Vysotski ES. Bioluminescent and Fluorescent Proteins: Molecular Mechanisms and Modern Applications. Int J Mol Sci 2022; 24:ijms24010281. [PMID: 36613724 PMCID: PMC9820413 DOI: 10.3390/ijms24010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Light emission by living organisms in the visible spectrum range is called bioluminescence [...].
Collapse
Affiliation(s)
- Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia
| |
Collapse
|
7
|
Tran QT, Sendler M, Wiese ML, Doller J, Zierke L, Gischke M, Glaubitz J, Tran VH, Lalk M, Bornscheuer UT, Weiss FU, Lerch MM, Aghdassi AA. Systemic Bile Acids Affect the Severity of Acute Pancreatitis in Mice Depending on Their Hydrophobicity and the Disease Pathogenesis. Int J Mol Sci 2022; 23:13592. [PMID: 36362379 PMCID: PMC9655547 DOI: 10.3390/ijms232113592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2023] Open
Abstract
Acute pancreatitis (AP) is a major, globally increasing gastrointestinal disease and a biliary origin is the most common cause. However, the effects of bile acids (BAs), given systemically, on the pancreas and on disease severity remains elusive. In this study, we have investigated the roles of different circulating BAs in animal models for AP to elucidate their impact on disease severity and the underlying pathomechanisms. BAs were incubated on isolated acini and AP was induced through repetitive injections of caerulein or L-arginine; pancreatic duct ligation (PDL); or combined biliopancreatic duct ligation (BPDL). Disease severity was assessed using biochemical and histological parameters. Serum cholecystokinin (CCK) concentrations were determined via enzyme immunoassay. The binding of the CCK1 receptor was measured using fluorescence-labeled CCK. In isolated acini, hydrophobic BAs mitigated the damaging effects of CCK. The same BAs further enhanced pancreatitis in L-arginine- and PDL-based pancreatitis, whereas they ameliorated pancreatic damage in the caerulein and BPDL models. Mechanistically, the binding affinity of the CCK1 receptor was significantly reduced by hydrophobic BAs. The hydrophobicity of BAs and the involvement of CCK seem to be relevant in the course of AP. Systemic BAs may affect the severity of AP by interfering with the CCK1 receptor.
Collapse
Affiliation(s)
- Quang Trung Tran
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Matthias Sendler
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Mats L. Wiese
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Julia Doller
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Lukas Zierke
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Marcel Gischke
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Juliane Glaubitz
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Van Huy Tran
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Michael Lalk
- Institute of Biochemistry, University Greifswald, 17489 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, University Greifswald, 17489 Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Markus M. Lerch
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Ludwig Maximilian University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Ali A. Aghdassi
- Department of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
8
|
Li Y, Cui ZJ. Photodynamic Activation of the Cholecystokinin 1 Receptor with Tagged Genetically Encoded Protein Photosensitizers: Optimizing the Tagging Patterns. Photochem Photobiol 2022; 98:1215-1228. [PMID: 35211987 DOI: 10.1111/php.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated photodynamically. For this to happen in situ, genetically encoded protein photosensitizers (GEPP) may be tagged to natively expressed CCK1R, but how to best tag GEPP has not been examined. Therefore, GEPP (miniSOG or KillerRed) was tagged to CCK1R and light-driven photodynamic CCK1R activation was monitored by Fura-2 fluorescent calcium imaging, to screen for optimized tagging patterns. Blue light-emitting diode irradiation of CHO-K1 cells expressing miniSOG fused to N- or C-terminus of CCK1R was found to both trigger persistent calcium oscillations-a hallmark of permanent photodynamic CCK1R activation. Photodynamic CCK1R activation was accomplished also with miniSOG fused to N-terminus of CCK1R via linker (GlySerGly)4 or 8 , but not linker (GSG)12 or an internal ribosomal entry site insert. KillerRed fused to N- or C-terminus of CCK1R after white light irradiation resulted in similar activation of in-frame CCK1R. Photodynamic CCK1R activation in miniSOG-CCK1R-CHO-K1 cells was blocked by singlet oxygen (1 O2 ) quencher uric acid or Trolox C, corroborating the role of 1 O2 as the reactive intermediate. It is concluded that photodynamic CCK1R activation can be achieved either with direct GEPP fusion to CCK1R or fusion via a short linker, fusion via long linkers might serve as the internal control.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cell Biology, Beijing Normal University, Beijing, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Li Y, Cui ZJ. Transmembrane Domain 3 Is a Transplantable Pharmacophore in the Photodynamic Activation of Cholecystokinin 1 Receptor. ACS Pharmacol Transl Sci 2022; 5:539-547. [PMID: 35983279 PMCID: PMC9379944 DOI: 10.1021/acsptsci.2c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated in photodynamic action by singlet oxygen, but detailed molecular mechanisms are not elucidated. To identify the pharmacophore(s) in photodynamic CCK1R activation, we examined photodynamic activation of point mutants CCK1RM121/3.32A, CCK1RM121/3.32Q, and a chimeric receptor with CCK1R transmembrane domain 3 (TM3) transplanted to muscarinic ACh receptor 3 (M3R) which is unaffected by photodynamic action. These engineered receptors were tagged at the N-terminus with genetically encoded protein photosensitizer miniSOG, and their light-driven photodynamic activation was compared to wild type CCK1R and M3R, as monitored by Fura-2 fluorescent calcium imaging. Photodynamic activations of miniSOG-CCK1RM121/3.32A and miniSOG-CCK1RM121/3.32Q were found to be 55% and 73%, respectively, when compared to miniSOG-CCK1R (100%), whereas miniSOG-M3R was not affected (0% activation). Notably, the chimeric receptor miniSOG-M3R-TM3CCK1R was effectively activated photodynamically (65%). These data suggest that TM3 is an important pharmacophore in photodynamic CCK1R activation, readily transplantable to nonsusceptible M3R for photodynamic activation.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
CUI Z, SHU Y, XIE X, JIN Y. Light-driven activation of NADPH oxidases. SCIENTIA SINICA VITAE 2022. [DOI: 10.1360/ssv-2022-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Intracellular Ionic Strength Sensing Using NanoLuc. Int J Mol Sci 2021; 22:ijms22020677. [PMID: 33445497 PMCID: PMC7826950 DOI: 10.3390/ijms22020677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Intracellular ionic strength regulates myriad cellular processes that are fundamental to cellular survival and proliferation, including protein activity, aggregation, phase separation, and cell volume. It could be altered by changes in the activity of cellular signaling pathways, such as those that impact the activity of membrane-localized ion channels or by alterations in the microenvironmental osmolarity. Therefore, there is a demand for the development of sensitive tools for real-time monitoring of intracellular ionic strength. Here, we developed a bioluminescence-based intracellular ionic strength sensing strategy using the Nano Luciferase (NanoLuc) protein that has gained tremendous utility due to its high, long-lived bioluminescence output and thermal stability. Biochemical experiments using a recombinantly purified protein showed that NanoLuc bioluminescence is dependent on the ionic strength of the reaction buffer for a wide range of ionic strength conditions. Importantly, the decrease in the NanoLuc activity observed at higher ionic strengths could be reversed by decreasing the ionic strength of the reaction, thus making it suitable for sensing intracellular ionic strength alterations. Finally, we used an mNeonGreen–NanoLuc fusion protein to successfully monitor ionic strength alterations in a ratiometric manner through independent fluorescence and bioluminescence measurements in cell lysates and live cells. We envisage that the biosensing strategy developed here for detecting alterations in intracellular ionic strength will be applicable in a wide range of experiments, including high throughput cellular signaling, ion channel functional genomics, and drug discovery.
Collapse
|
12
|
Li Y, Cui ZJ. Photodynamic Activation of Cholecystokinin 1 Receptor with Different Genetically Encoded Protein Photosensitizers and from Varied Subcellular Sites. Biomolecules 2020; 10:biom10101423. [PMID: 33050050 PMCID: PMC7601527 DOI: 10.3390/biom10101423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated by singlet oxygen (1O2) generated in photodynamic action with sulphonated aluminum phthalocyanine (SALPC) or genetically encoded protein photosensitizer (GEPP) KillerRed or mini singlet oxygen generator (miniSOG). A large number of GEPP with varied 1O2 quantum yields have appeared recently; therefore, in the present work, the efficacy of different GEPP to photodynamically activate CCK1R was examined, as monitored by Fura-2 calcium imaging. KillerRed, miniSOG, miniSOG2, singlet oxygen protein photosensitizer (SOPP), flavin-binding fluorescent protein from Methylobacterium radiotolerans with point mutation C71G (Mr4511C71G), and flavin-binding fluorescent protein from Dinoroseobacter shibae (DsFbFP) were expressed at the plasma membrane (PM) in AR4-2J cells, which express endogenous CCK1R. Light irradiation (KillerRed: white light 85.3 mW‧cm-2, 4' and all others: LED 450 nm, 85 mW·cm-2, 1.5') of GEPPPM-expressing AR4-2J was found to all trigger persistent calcium oscillations, a hallmark of permanent photodynamic CCK1R activation; DsFbFP was the least effective, due to poor expression. miniSOG was targeted to PM, mitochondria (MT) or lysosomes (LS) in AR4-2J in parallel experiments; LED light irradiation was found to all induce persistent calcium oscillations. In miniSOGPM-AR4-2J cells, light emitting diode (LED) light irradiation-induced calcium oscillations were readily inhibited by CCK1R antagonist devazepide 2 nM; miniSOGMT-AR4-2J cells were less susceptible, but miniSOGLS-AR4-2J cells were not inhibited. In conclusion, different GEPPPM could all photodynamically activate CCK1R. Intracellular GEPP photodynamic action may prove particularly suited to study intracellular GPCR.
Collapse
|