1
|
Akbari G, Abasi MR, Gharaghani M, Nouripoor S, Shakerinasab N, Azizi M, Salahi M, Karimi F, Eftekhari M, Razmjoue D, Doustimotlagh AH. Antioxidant and hepatoprotective activities of Juniperus excelsa M. Bieb against bile duct ligation-induced cholestasis. Res Pharm Sci 2024; 19:217-227. [PMID: 39035584 PMCID: PMC11257206 DOI: 10.4103/rps.rps_52_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 03/12/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Cholestasis is caused by a malfunction of the biliary liver system. Oxidative stress plays an essential role in the progression of cholestasis. This study aimed to investigate the antioxidant and hepatoprotective effects of ethanolic extract of Juniperus excelsa M. Bieb (JE) fruits on hepatic impairment induced by bile duct ligation (BDL) in rats. Experimental approach Forty male Wistar rats were randomly divided into 4 groups; sham control + vehicle (SC), BDL + vehicle (BDL), BDL + JE extract (BDL + JE), and SC + extract (SC + JE). One day after surgery, the animals were treated with vehicle or ethanolic extract of JE (500 mg/kg/day) for 7 days. Finally, the blood was taken for biochemical and oxidative stress analysis. Furthermore, the liver tissue of rats was removed for histological examination. Findings/Results Treatment with the extract of JE decreased the ALP level, whereas it enhanced total protein content compared to the BDL group. Also, JE increased the activity of SOD and GPx, as well as FRAP content compared to the BDL group; while it did not significantly affect the levels of MDA and inflammation markers. However, JE could not improve BDL-induced histopathological alterations in hepatic tissue. Conclusion and implication This study demonstrated that JE may be useful as an adjuvant therapy by attenuating ALP activity, increasing serum total protein and FRAP content, as well as improving the antioxidant enzymes activity of SOD and GPx. However, further research is warranted to explore the other underlying mechanisms of action.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Reza Abasi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maral Gharaghani
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sadegh Nouripoor
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasrin Shakerinasab
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdokht Azizi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marjan Salahi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Doustimotlagh
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
2
|
Wu M, Li T, Li G, Niu B, Wu T, Yan L, Wang S, He S, Huang C, Tong W, Li N, Jiang J. LncRNA DANCR deficiency promotes high glucose-induced endothelial to mesenchymal transition in cardiac microvascular cells via the FoxO1/DDAH1/ADMA signaling pathway. Eur J Pharmacol 2023; 950:175732. [PMID: 37116560 DOI: 10.1016/j.ejphar.2023.175732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Cardiac fibrosis is the main pathological basis of diabetic cardiomyopathy (DCM), and endothelial-to-meschenymal transition (EndMT) is a key driver to cardiac fibrosis and plays an important role in the pathogenesis of DCM. Asymmetric dimethylarginine (ADMA), a crucial pathologic factor in diabetes mellitus, is involved in organ fibrosis. This study aims to evaluate underlying mechanisms of ADMA in DCM especially for EndMT under diabetic conditions. A diabetic rat model was induced by streptozotocin (STZ) injection, and human cardiac microvascular endothelial cells (HCMECs) were stimulated with high glucose to induce EndMT. Subsequently, the role of ADMA in EndMT was detected either by exogenous ADMA or by over-expressing dimethylarginine dimethylaminohydrolase 1 (DDAH1, degradation enzyme for ADMA) before high glucose stimulation. Furthermore, the relationships among forkhead box protein O1 (FoxO1), DDAH1 and ADMA were evaluated by FoxO1 over-expression or FoxO1 siRNA. Finally, we examined the roles of LncRNA DANCR in FoxO1/DDAH1/ADMA pathway and EndMT of HCMECs. Here, we found that EndMT in HCMECs was induced by high glucose, as evidenced by down-regulated expression of CD31 and up-regulated expression of FSP-1 and collagen Ⅰ. Importantly, ADMA induced EndMT in HCMECs, and over-expressing DDAH1 protected from developing EndMT by high glucose. Furthermore, we demonstrated that over-expression of FoxO1-ADA with mutant phosphorylation sites of T24A, S256D, and S316A induced EndMT of HCMECs by down-regulating of DDAH1 and elevating ADMA, and that EndMT of HCMECs induced by high glucose was reversed by FoxO1 siRNA. We also found that LncRNA DANCR siRNA induced EndMT of HCMECs, activated FoxO1, and inhibited DDAH1 expression. Moreover, over-expression of LncRNA DANCR could markedly attenuated high glucose-mediated EndMT of HCMECs by inhibiting the activation of FoxO1 and increasing the expression of DDAH1. Collectively, our results indicate that LncRNA DANCR deficiency promotes high glucose-induced EndMT in HCMECs by regulating FoxO1/DDAH1/ADMA pathway.
Collapse
Affiliation(s)
- Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Ting Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ge Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, 526020, China
| | - Bingxuan Niu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Collage of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shiming Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Chuyi Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Weiqiang Tong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Niansheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
3
|
Hsu MH, Chang KA, Chen YC, Lin IC, Sheen JM, Huang LT. Resveratrol prevented spatial deficits and rescued disarrayed hippocampus asymmetric dimethylarginine and brain-derived neurotrophic factor levels in young rats with increased circulating asymmetric dimethylarginine. Neuroreport 2021; 32:1091-1099. [PMID: 34284453 DOI: 10.1097/wnr.0000000000001698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increased plasma levels of asymmetric dimethylarginine can be encountered in chronic inflammatory disease, liver damage, renal failure, and multiple organ failure. In addition, an association between circulating asymmetric dimethylarginine levels and all-cause mortality has been reported. Male Sprague-Dawley rats, postnatal day 17 ± 1, received continuous asymmetric dimethylarginine infusion via an intraperitoneal pump. Spatial performance and dorsal hippocampal asymmetric dimethylarginine and brain-derived neurotrophic factor (BDNF) levels were examined, and the effect of resveratrol was tested. A 4-week continuous asymmetric dimethylarginine infusion in young male rats caused spatial deficits, increased asymmetric dimethylarginine levels, and decreased BDNF expression in the dorsal hippocampus. Increased oxidative stress and altered molecules in the dorsal hippocampus linked to asymmetric dimethylarginine and BDNF functions were detected. Resveratrol protected against these effects, reversing spatial deficits, and reducing the changes in the dorsal hippocampal asymmetric dimethylarginine and BDNF levels.
Collapse
Affiliation(s)
| | - Kow-Aung Chang
- Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | | | | | - Jiunn-Ming Sheen
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi County, Puzi City, Taiwan
| | | |
Collapse
|
4
|
Dragičević M, Košuta I, Kruezi E, Lovrenčić MV, Mrzljak A. Association of Asymmetric Dimethylarginine and Nitric Oxide with Cardiovascular Risk in Patients with End-Stage Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:622. [PMID: 33218157 PMCID: PMC7698953 DOI: 10.3390/medicina56110622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Endothelial dysfunction has been proposed to be an underlying mechanism of the pronounced cardiovascular morbidity in end-stage liver disease (ESLD), but clinical evidence is still limited. In this study, we investigated the association of circulating levels of asymmetric dimethylarginine (ADMA) and nitric oxide (NO) with estimated cardiovascular risk in patients with ESLD awaiting liver transplantation. MATERIALS AND METHODS ADMA and NO levels were measured in the sera of 160 adult ESLD patients. The severity of hepatic dysfunction was assessed by the model for end-stage liver disease (MELD) score. The cardiovascular risk was estimated with the European Society of Cardiology Systematic Coronary Risk Estimation (SCORE) index, which was used to dichotomize patients in the subgroups depicting higher and lower cardiovascular risk. RESULTS Severe hepatic dysfunction (MELD ≥ 18) was present in 38% of the patients, and a higher cardiovascular risk was present in almost half of the patients (N = 74). ADMA and NO both significantly increased with the progression of liver disease and were independently associated with higher cardiovascular risk. Fasting glucose also independently predicted a higher cardiovascular risk, while HDL cholesterol and the absence of concomitant hepatocellular carcinoma were protective factors. CONCLUSIONS These results suggest a remarkable contribution of the deranged arginine/NO pathway to cardiovascular risk in patients with end-stage liver disease.
Collapse
Affiliation(s)
- Maro Dragičević
- Department of Cardiology, Merkur University Hospital, 10000 Zagreb, Croatia;
| | - Iva Košuta
- Department of Internal Medicine, University Hospital Centre, 10000 Zagreb, Croatia;
| | - Egon Kruezi
- Department of Gynaecology and Obstetrics, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia;
| | - Marijana Vučić Lovrenčić
- Department of Clinical Chemistry and Laboratory Medicie, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Anna Mrzljak
- Department of Gastroenterology, Merkur University Hospital, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Ghoreshi ZAS, Kabirifar R, Khodarahmi A, Karimollah A, Moradi A. The preventive effect of atorvastatin on liver fibrosis in the bile duct ligation rats via antioxidant activity and down-regulation of Rac1 and NOX1. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:30-35. [PMID: 32395205 PMCID: PMC7206847 DOI: 10.22038/ijbms.2019.33663.8047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives Atorvastatin is a cholesterol-lowering agent capable of inhibiting 3-hydroxy-3-methylglutaryl coenzyme A reductase. Recent studies have demonstrated new facets of atorvastatin, such as antioxidant and anti-fibrotic properties. We investigated the effect of atorvastatin on hepatic injury via the measurement of the antioxidant capacity and protein expression of NOX1, Rac1-GTP, and Rac1 in a rat biliary duct ligation (BDL) model. Materials and Methods This study is regarded as experimental interventional research in which a total of 32 adult male Wistar rats (200-250 g) were assigned to 4 groups (eight rats per group) as follows: Control group; Control + At group (15 mg\kg\day atorvastatin); BDL group, and BDL+ At group (15 mg\kg\day atorvastatin). Expression levels of Rac1, NOX1, and Rac1-GTP were determined by western blot analysis. Besides, specific biomarkers of oxidative stress in hepatic tissues of all animals were also analyzed. Results Atorvastatin reduced liver injury via a decrease in the expression of NOX1, Rac1-GTP, and Rac1 in the BDL group (P<0.05), while the increased contents of protein thiol groups were observed, and the protein carbonylation was decreased in atorvastatin-treated BDL rats compared to the BDL group (P<0.05). Also, administration of atorvastatin in the BDL group significantly lowered oxidative stress through increasing the activity of catalase and superoxide dismutase in comparison with the BDL group (P<0.05). Conclusion It seems that atorvastatin has potential advantages in mitigation of liver fibrosis by a decrease in the expression of NOX1, Rac1-GTP, and Rac1, along with, a reduction in oxidative stress of liver tissues in rats induced by BDL.
Collapse
Affiliation(s)
- Zohreh-Al-Sadat Ghoreshi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Razieh Kabirifar
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ameneh Khodarahmi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Alireza Karimollah
- Department of Pharmacology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Moradi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
6
|
Nasehi M, Torabinejad S, Hashemi M, Vaseghi S, Zarrindast MR. Effect of cholestasis and NeuroAid treatment on the expression of Bax, Bcl-2, Pgc-1α and Tfam genes involved in apoptosis and mitochondrial biogenesis in the striatum of male rats. Metab Brain Dis 2020; 35:183-192. [PMID: 31773435 DOI: 10.1007/s11011-019-00508-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
Cholestasis means impaired bile synthesis or secretion. In fact, it is a bile flow reduction following Bile Duct Ligation (BDL). Cholestasis has a main role in necrosis and apoptosis. Apoptosis is a form of programmed cell death that has intrinsic and extrinsic pathways. The intrinsic pathway is mediated by Bcl-2 (B cell lymphoma-2) proteins which integrate death and survival signals. Bcl-2 has anti-apoptotic and Bax has pro-apoptotic effects. Also, striatum is one of the brain regions that has high expressions of Bcl-2 proteins. Moreover, Tfam and Pgc-1α are involved in mitochondrial biogenesis. On the other hand, NeuroAid, is a drug that has neuroprotective and anti-apoptosis effects. In this study, using quantitative PCR, we measured the expression of all these genes in the striatum of male rats following BDL and NeuroAid administration. Results showed, BDL increased the expression of Bax and Tfam and decreased the expression of Bcl-2. NeuroAid restored the effect of BDL on the expression of Bax, while did not alter the effect of BDL on Bcl-2. In addition, it increased the expression of Tfam that was previously elevated by BDL and raised the expression of Tfam in normal rats. Both BDL and NeuroAid, had no effect on Pgc-1α. In conclusion, cholestasis increased the expression of Bax and decreased the expression of Bcl-2, and this effect may have related to enhanced susceptibility of mitochondrial pathways following oxidative stress. Tfam expression was increased following cholestasis and this effect may have related to cellular compensatory mechanisms against high accumulation of free radicals or mitochondrial biogenesis failure. Furthermore, NeuroAid may play a role against apoptosis and can be used to increase mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| | - Sepehr Torabinejad
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Metabolic Signature of Hepatic Fibrosis: From Individual Pathways to Systems Biology. Cells 2019; 8:cells8111423. [PMID: 31726658 PMCID: PMC6912636 DOI: 10.3390/cells8111423] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a major cause of morbidity and mortality worldwide, as it ultimately leads to cirrhosis, which is estimated to affect up to 2% of the global population. Hepatic fibrosis is confirmed by liver biopsy, and the erroneous nature of this technique necessitates the search for noninvasive alternatives. However, current biomarker algorithms for hepatic fibrosis have many limitations. Given that the liver is the largest organ and a major metabolic hub in the body, probing the metabolic signature of hepatic fibrosis holds promise for the discovery of new markers and therapeutic targets. Regarding individual metabolic pathways, accumulating evidence shows that hepatic fibrosis leads to alterations in carbohydrate metabolism, as aerobic glycolysis is aggravated in activated hepatic stellate cells (HSCs) and the whole fibrotic liver; in amino acid metabolism, as Fischer’s ratio (branched-chain amino acids/aromatic amino acids) decreases in patients with hepatic fibrosis; and in lipid metabolism, as HSCs lose vitamin A-containing lipid droplets during transdifferentiation, and cirrhotic patients have decreased serum lipids. The current review also summarizes recent findings of metabolic alterations relevant to hepatic fibrosis based on systems biology approaches, including transcriptomics, proteomics, and metabolomics in vitro, in animal models and in humans.
Collapse
|
8
|
Young rats with increased circulatory asymmetric dimethylarginine exhibited spatial deficit and alterations in dorsal hippocampus brain‐derived neurotrophic factor and asymmetric dimethylarginine: Effects of melatonin. Int J Dev Neurosci 2019; 78:83-89. [DOI: 10.1016/j.ijdevneu.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023] Open
|
9
|
Melatonin prevented spatial deficits and increases in brain asymmetric dimethylarginine in young bile duct ligation rats. Neuroreport 2019; 29:541-546. [PMID: 29384993 PMCID: PMC6023590 DOI: 10.1097/wnr.0000000000000972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bile duct ligation (BDL) in young rats can cause impaired liver function and cognition deficits. Nitric oxide is implicated in hepatic encephalopathy and is also involved in cognition. In this study, we examined the role of brain asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, in young BDL rats with spatial deficits. Young male Sprague-Dawley rats aged 17 days were assigned to four groups: laparotomy (SHAM), laparotomy plus 5 mg melatonin delivered through a pellet (SHAMM) for 4 weeks, BDL for 4 weeks, and BDL plus 5 mg melatonin delivered through a pellet (BDLM) for 4 weeks. Their spatial memory was assessed using a Morris water-maze task. Plasma and brains were collected for biochemical and ADMA analyses. We found that the BDL group had significantly elevated levels of ADMA in the plasma, the prefrontal cortex, and the dorsal hippocampus, and worse spatial performance than that of the control groups. Melatonin administration prevented an increase in the ADMA levels in the plasma, prefrontal cortex, and dorsal hippocampus, and prevented spatial deficits in BDL rats. In addition, melatonin maintained brain-derived neurotrophic factor in the dorsal hippocampus at a level comparable with controls. We concluded that melatonin is effective in preventing spatial deficits and decreasing ADMA levels in the plasma, prefrontal cortex, and dorsal hippocampus in young BDL rats. Brain ADMA levels might play a role in BDL-induced spatial deficits.
Collapse
|
10
|
Serum and Hepatic Autofluorescence as a Real-Time Diagnostic Tool for Early Cholestasis Assessment. Int J Mol Sci 2018; 19:ijms19092634. [PMID: 30189659 PMCID: PMC6165295 DOI: 10.3390/ijms19092634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
While it is well established that various factors can impair the production and flow of bile and lead to cholestatic disease in hepatic and extrahepatic sites, an enhanced assessment of the biomarkers of the underlying pathophysiological mechanisms is still needed to improve early diagnosis and therapeutic strategies. Hence, we investigated fluorescing endogenous biomolecules as possible intrinsic biomarkers of molecular and cellular changes in cholestasis. Spectroscopic autofluorescence (AF) analysis was performed using a fiber optic probe (366 nm excitation), under living conditions and in serum, on the livers of male Wistar rats submitted to bile duct ligation (BDL, 24, 48, and 72 h). Biomarkers of liver injury were assayed biochemically. In the serum, AF analysis distinctly detected increased bilirubin at 24 h BDL. A continuous, significant increase in red-fluorescing porphyrin derivatives indicated the subversion of heme metabolism, consistent with an almost twofold increase in the serum iron at 72 h BDL. In the liver, changes in the AF of NAD(P)H and flavins, as well as lipopigments, indicated the impairment of mitochondrial functionality, oxidative stress, and the accumulation of oxidative products. A serum/hepatic AF profile can be thus proposed as a supportive diagnostic tool for the in situ, real-time study of bio-metabolic alterations in bile duct ligation (BDL) in experimental hepatology, with the potential to eventually translate to clinical diagnosis.
Collapse
|
11
|
Onalan AK, Tuncal S, Kilicoglu S, Celepli S, Durak E, Kilicoglu B, Devrim E, Barlas AM, Kismet K. Effect of sılymarın on oxıdatıve stress and lıver hıstopathology ın experımental obstructıve jaundıce model. Acta Cir Bras 2017; 31:801-806. [PMID: 28076503 DOI: 10.1590/s0102-865020160120000004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/18/2016] [Indexed: 02/14/2023] Open
Abstract
PURPOSE: To investigate the effect of silymarin on oxidative stress and hepatic injury induced by obstructive jaundice in an experimental model. METHODS: Thirty Wistar-Albino type female rats were divided into 3 groups each including 10 rats. Only laparotomy was performed in group 1. Bile duct ligation was performed in group 2. In group 3, bile duct ligation was performed and orogastic silymarin 300 mg/kg/day dose was given for seven days. At the end of seven days, rats were sacrificed. The blood and liver tissue samples were taken to be examined biochemically and histopathologically. RESULTS: The plasma and liver levels of malondialdehyde were significantly lower in silymarin group than in the bile duct ligated group. Although liver levels of GSH were significantly higher in silymarin group than in the bile duct ligated group, there was no significant difference between the plasma GSH levels of these groups. In silymarin group; the enlargement of hepatocytes, dilatation of canaliculi and the edema were regressed. CONCLUSION: Silymarin diminished the harmful effects of obstructive jaundice on liver.
Collapse
Affiliation(s)
- Ali Kemal Onalan
- MD, General Surgeon, Ankara Education and Research Hospital, Department of General Surgery, Ankara, Turkey. Design of the study, acquisition of data, technical procedures
| | - Salih Tuncal
- MD, General Surgeon, Ankara Education and Research Hospital, Department of General Surgery, Ankara, Turkey. Design of the study, analysis of data, technical procedures
| | - Sibel Kilicoglu
- MD, Histopathologist, Professor, Ufuk University, Faculty of Medicine, Department of Histology and Embriology, Ankara, Turkey. Histopathological examinations
| | - Salih Celepli
- MD, General Surgeon, Ministry of Health, Turkish Medicines and Medical Devices Agency, Ankara, Turkey. Conception of the study, interpretation of data
| | - Esra Durak
- PhD, Biochemistrian, Ankara University, Faculty of Medicine, Department of Biochemistry, Ankara, Turkey. Biochemical analyses
| | - Bulent Kilicoglu
- Associate Professor, General Surgeon, Ankara Education and Research Hospital, Department of General Surgery, Ankara, Turkey. MManuscript preparation and writing, technical procedures
| | - Erdinc Devrim
- MD, Biochemistrian, Professor, Ankara University, Faculty of Medicine, Department of Biochemistry, Ankara, Turkey. Biochemical analyses
| | - Aziz Mutlu Barlas
- MD, General Surgeon, Ankara Education and Research Hospital, Department of General Surgery, Ankara, Turkey. Statistical analysis
| | - Kemal Kismet
- Associate Professor, General Surgeon, Ankara Education and Research Hospital, Department of General Surgery, Ankara, Turkey. Critical revision, final approval
| |
Collapse
|
12
|
The asymmetric dimethylarginine-mediated inhibition of nitric oxide in the rostral ventrolateral medulla contributes to regulation of blood pressure in hypertensive rats. Nitric Oxide 2017; 67:58-67. [PMID: 28392446 DOI: 10.1016/j.niox.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) contributes to the central control of cardiovascular activity. The rostral ventrolateral medulla (RVLM) has been recognized as a pivotal region for maintaining basal blood pressure (BP) and sympathetic tone. It is reported that asymmetric dimethylarginine (ADMA), characterized as a cardiovascular risk marker, is an endogenous inhibitor of nitric oxide synthesis. The present was designed to determine the role of ADMA in the RVLM in the central control of BP in hypertensive rats. In Sprague Dawley (SD) rats, microinjection of ADMA into the RVLM dose-dependently increased BP, heart rate (HR), and renal sympathetic never activity (RSNA), but also reduced total NO production in the RVLM. In central angiotensin II (Ang II)-induced hypertensive rats and spontaneously hypertensive rat (SHR), the level of ADMA in the RVLM was increased and total NO production was decreased significantly, compared with SD rats treated vehicle infusion and WKY rats, respectively. These hypertensive rats also showed an increased protein level of protein arginine methyltransferases1 (PRMT1, which generates ADMA) and a decreased expression level of dimethylarginine dimethylaminohydrolases 1 (DDAH1, which degrades ADMA) in the RVLM. Furthermore, increased AMDA content and PRMT1 expression, and decreased levels of total NO production and DDAH1 expression in the RVLM in SHR were blunted by intracisternal infusion of the angiotensin II type 1 receptor (AT1R) blocker losartan. The current data indicate that the ADMA-mediated NO inhibition in the RVLM plays a critical role in involving in the central regulation of BP in hypertension, which may be associated with increased Ang II.
Collapse
|
13
|
Asymmetric Dimethylarginine and Hepatic Encephalopathy: Cause, Effect or Association? Neurochem Res 2016; 42:750-761. [PMID: 27885576 PMCID: PMC5357500 DOI: 10.1007/s11064-016-2111-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/07/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
The methylated derivative of l-arginine, asymmetric dimethylarginine (ADMA) is synthesized in different mammalian tissues including the brain. ADMA acts as an endogenous, nonselective, competitive inhibitor of all three isoforms of nitric oxide synthase (NOS) and may limit l-arginine supply from the plasma to the enzyme via reducing its transport by cationic amino acid transporters. Hepatic encephalopathy (HE) is a relatively frequently diagnosed complex neuropsychiatric syndrome associated with acute or chronic liver failure, characterized by symptoms linked with impaired brain function leading to neurological disabilities. The l-arginine—nitric oxide (NO) pathway is crucially involved in the pathomechanism of HE via modulating important cerebral processes that are thought to contribute to the major HE symptoms. Specifically, activation of this pathway in acute HE leads to an increase in NO production and free radical formation, thus, contributing to astrocytic swelling and cerebral edema. Moreover, the NO-cGMP pathway seems to be involved in cerebral blood flow (CBF) regulation, altered in HE. For this reason, depressed NO-cGMP signaling accompanying chronic HE and ensuing cGMP deficit contributes to the cognitive and motor failure. However, it should be remembered that ADMA, a relatively little known element limiting NO synthesis in HE, may also influence the NO-cGMP pathway regulation. In this review, we will discuss the contribution of ADMA to the regulation of the NO-cGMP pathway in the brain, correlation of ADMA level with CBF and cognitive alterations observed during HE progression in patients and/or animal models of HE.
Collapse
|
14
|
Melatonin Alleviates Liver Apoptosis in Bile Duct Ligation Young Rats. Int J Mol Sci 2016; 17:ijms17081365. [PMID: 27556445 PMCID: PMC5000760 DOI: 10.3390/ijms17081365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/01/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Bile duct ligation (BDL)-treated rats display cholestasis and liver damages. The potential protective activity of melatonin in young BDL rats in terms of apoptosis, mitochondrial function, and endoplasmic reticulum (ER) homeostasis has not yet been evaluated. Three groups of young male Sprague-Dawley rats were used: one group received laparotomy (Sham), a second group received BDL for two weeks (BDL), and a third group received BDL and intraperitoneal melatonin (100 mg/day) for two weeks (BDL + M). BDL group rats showed liver apoptosis, increased pro-inflamamtory mediators, caspases alterations, anti-apoptotic factors changes, and dysfunction of ER homeostasis. Melatonin effectively reversed apoptosis, mainly through intrinsic pathway and reversed ER stress. In addition, in vitro study showed melatonin exerted its effect mainly through the melatonin 2 receptor (MT2) in HepG2 cells. In conclusion, BDL in young rats caused liver apoptosis. Melatonin rescued the apoptotic changes via the intrinsic pathway, and possibly through the MT2 receptor. Melatonin also reversed ER stress induced by BDL.
Collapse
|
15
|
Sheen JM, Chen YC, Hsu MH, Tain YL, Yu HR, Huang LT. Combined Intraperitoneal and Intrathecal Etanercept Reduce Increased Brain Tumor Necrosis Factor-Alpha and Asymmetric Dimethylarginine Levels and Rescues Spatial Deficits in Young Rats after Bile Duct Ligation. Front Cell Neurosci 2016; 10:167. [PMID: 27445694 PMCID: PMC4917524 DOI: 10.3389/fncel.2016.00167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Rats subjected to bile duct ligation (BDL) exhibit increased systemic oxidative stress and brain dysfunction characteristic of hepatic encephalopathy (HE), including fatigue, neurotransmitter alterations, cognitive and motor impairment, and brain inflammation. The levels of tumor necrosis factor-alpha (TNF-α) and asymmetric dimethylarginine (ADMA) are both increased in plasma and brain in encephalopathy induced by chronic liver failure. This study first determined the temporal profiles of TNF-α and ADMA in the plasma, brain cortex, and hippocampus in young BDL rats. Next, we examined whether etanercept was beneficial in preventing brain damage. METHODS Young rats underwent sham ligation or BDL at day 17 ± 1 for 4 weeks. Treatment group rats were administered etanercept (10 mg/kg) intraperitoneally (IP) three times per week with or without etanercept (100 μg) intrathecally (IT) three times in total. RESULTS We found increased plasma TNF-α, soluble tumor necrosis factor receptor 1 (sTNFR1), soluble tumor necrosis factor receptor 2 (sTNFR2), and ADMA levels, increased cortical TNF-α mRNA and protein and ADMA, and hippocampal TNF-α mRNA and protein, and spatial defects in young BDL rats. The increase in cortex TNF-α mRNA and ADMA were reduced by IP etanercept or combined IP and IT etanercept. Dually IP/IT etanercept administration reduced the increased cortical and hippocampal TNF-α mRNA and protein level as well as spatial deficits. CONCLUSIONS We conclude that combined intraperitoneal and intrathecal etanercept reduce increased brain TNF-α and ADMA levels and rescues spatial deficits in young rats after BDL.
Collapse
Affiliation(s)
- Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| |
Collapse
|
16
|
OKUYUCU A, ŞALIŞ O, ALICI Ö, GÜVENLİ A, TERZİ Y, KELEŞ ME, İLKAYA F, GÖREN İ, ALAÇAM H. The restorative effect of ascorbic acid on liver injury inducedby asymmetric dimethylarginine. Turk J Biol 2016. [DOI: 10.3906/biy-1508-49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
17
|
González-Peña D, Dudzik D, Colina-Coca C, de Ancos B, García A, Barbas C, Sánchez-Moreno C. Multiplatform metabolomic fingerprinting as a tool for understanding hypercholesterolemia in Wistar rats. Eur J Nutr 2015; 55:997-1010. [DOI: 10.1007/s00394-015-0914-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/25/2015] [Indexed: 02/08/2023]
|
18
|
Ferrigno A, Di Pasqua LG, Berardo C, Richelmi P, Vairetti M. Liver plays a central role in asymmetric dimethylarginine-mediated organ injury. World J Gastroenterol 2015; 21:5131-5137. [PMID: 25954086 PMCID: PMC4419053 DOI: 10.3748/wjg.v21.i17.5131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/24/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
Asymmetric-dimethylarginine (ADMA) competes with L-arginine for each of the three isoforms of nitric oxide synthase: endothelial; neuronal; inducible. ADMA is synthesized by protein methyltransferases followed by proteolytic degradation. ADMA is metabolized to citrulline and dimethylamine, by dimethylarginine dimethylaminohydrolase (DDAH) and enters cells through cationic amino-acid transporters extensively expressed in the liver. The liver plays a crucial role in ADMA metabolism by DDAH-1 and, as has been recently demonstrated, it is also responsible for ADMA biliary excretion. A correlation has been demonstrated between plasma ADMA levels and the degree of hepatic dysfunction in patients suffering from liver diseases with varying aetiologies: plasma ADMA levels are increased in patients with liver cirrhosis, alcoholic hepatitis and acute liver failure. The mechanism by which liver dysfunction results in raised ADMA concentrations is probably due to impaired activity of DDAH due to severe inflammation, oxidative stress, and direct damage to DDAH. High plasma ADMA levels are also relevant as they are associated with the onset of multi-organ failure (MOF). Increased plasma concentration of ADMA was identified as an independent risk factor for MOF in critically-ill patients causing enhanced Intensive Care Unit mortality: a significant reduction in nitric oxide synthesis, leading to malperfusion in various organs, eventually culminating in multi organs dysfunction.
Collapse
|
19
|
Bitencourt S, Stradiot L, Verhulst S, Thoen L, Mannaerts I, van Grunsven LA. Inhibitory effect of dietary capsaicin on liver fibrosis in mice. Mol Nutr Food Res 2015; 59:1107-16. [DOI: 10.1002/mnfr.201400649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/23/2014] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Shanna Bitencourt
- Liver Cell Biology Laboratory; Vrije Universiteit Brussel; Brussels Belgium
| | - Leslie Stradiot
- Liver Cell Biology Laboratory; Vrije Universiteit Brussel; Brussels Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Laboratory; Vrije Universiteit Brussel; Brussels Belgium
| | - Lien Thoen
- Liver Cell Biology Laboratory; Vrije Universiteit Brussel; Brussels Belgium
| | - Inge Mannaerts
- Liver Cell Biology Laboratory; Vrije Universiteit Brussel; Brussels Belgium
| | | |
Collapse
|