1
|
Thapa D, Patil M, Warne LN, Carlessi R, Falasca M. Enhancing Tetrahydrocannabinol's Therapeutic Efficacy in Inflammatory Bowel Disease: The Roles of Cannabidiol and the Cannabinoid 1 Receptor Allosteric Modulator ZCZ011. Pharmaceuticals (Basel) 2025; 18:148. [PMID: 40005963 PMCID: PMC11858241 DOI: 10.3390/ph18020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Current inflammatory bowel disease (IBD) treatments focus on symptomatic relief, highlighting the need for innovative approaches. Dysregulation of the cannabinoid 1 (CB1) receptor, part of the endocannabinoid system, is linked to colitis. While tetrahydrocannabinol (THC) alleviates colitis via CB1 activation, its psychotropic effects limit clinical use. ZCZ011, a CB1R allosteric modulator, and cannabidiol (CBD), a non-psychoactive cannabinoid, offer alternatives. This study investigated combining sub-therapeutic THC doses with ZCZ011 or CBD in a murine model of dextran sodium sulphate (DSS)-induced colitis. Methods: Acute colitis was induced with 4% DSS for 7 days, followed by 3 days of water. Chronic colitis was modelled over 24 days with alternating DSS concentrations. The combination of 2.5 mg/kg THC with 20 mg/kg ZCZ011 or 10 mg/kg CBD was evaluated. Key markers were assessed to determine efficacy and safety, including disease activity index (DAI), inflammation, cytokine levels, GLP-1, and organ health. Results: DSS-induced colitis resulted in increased DAI scores, cytokines, organ inflammation and dysregulation of GLP-1 and ammonia. THC at 10 mg/kg significantly improved colitis markers but was ineffective at 2.5 and 5 mg/kg. ZCZ011 alone showed transient effects. However, combining 2.5 mg/kg THC with either 20 mg/kg ZCZ011 or 10 mg/kg CBD significantly alleviated colitis markers, restored colon integrity and reestablished GLP-1 homeostasis. This combination also maintained favourable haematological and biochemical profiles, including a notable reduction in colitis-induced elevated ammonia levels. Conclusions: This study demonstrates the synergistic potential of low-dose THC combined with CBD or ZCZ011 as a novel, effective and safer therapeutic strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Dinesh Thapa
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Mohan Patil
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Leon N Warne
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Rodrigo Carlessi
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| |
Collapse
|
2
|
Thapa D, Patil M, Warne LN, Carlessi R, Falasca M. Comprehensive Assessment of Cannabidiol and HU308 in Acute and Chronic Colitis Models: Efficacy, Safety, and Mechanistic Innovations. Cells 2024; 13:2013. [PMID: 39682761 PMCID: PMC11640522 DOI: 10.3390/cells13232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Cannabinoids are emerging as promising treatments for inflammatory diseases such as ulcerative colitis. Specifically, cannabinoid 2 (CB2) receptors, which are upregulated during inflammation, have been distinctively linked to anti-inflammatory and analgesic effects. HU308, a synthetic cannabinoid developed to activate CB2 receptors selectively, aims to minimize unwanted off-target side effects. This study evaluated the effectiveness of both cannabidiol (CBD) and HU308 in mouse models of dextran sodium sulphate (DSS)-induced colitis, which mimic the acute and chronic phases of ulcerative colitis. Mice were treated with DSS in drinking water (four percent for the acute model and one to two percent for the chronic model) to induce colitis, as indicated by increased disease activity index (DAI) scores and inflammatory markers. Treatment with 60 mg/kg of CBD, but not lower doses, significantly reduced colitis symptoms, such as inflammation, cytokine levels, and MPO activity, while also normalizing glucagon-like peptide-1 (GLP-1) levels. HU308 showed comparable efficacy to high-dose CBD (60 mg/kg) but at a much lower dose (2.5 mg/kg), without observable toxicity. HU308 effectively normalized DAI scores, colon inflammation, ammonia levels, and GLP-1 expression in both colitis models. These results suggest that both CBD and HU308 are promising treatments for ulcerative colitis. However, HU308 demonstrates enhanced therapeutic potential by achieving similar outcomes at a fraction of the dose required for CBD, reducing the risk of off-target side effects. The ability of HU308 to modulate GLP-1, a biomarker of gut endocrine function, further underscores its promise as a novel treatment option.
Collapse
Affiliation(s)
- Dinesh Thapa
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Mohan Patil
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
| | - Leon N Warne
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Rodrigo Carlessi
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia; (M.P.); (L.N.W.); (R.C.)
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| |
Collapse
|
3
|
Fiorucci S, Urbani G, Biagioli M, Sepe V, Distrutti E, Zampella A. Bile acids and bile acid activated receptors in the treatment of Covid-19. Biochem Pharmacol 2024; 228:115983. [PMID: 38081371 DOI: 10.1016/j.bcp.2023.115983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 09/20/2024]
Abstract
Since its first outbreak in 2020, the pandemic caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) has caused the death of almost 7 million people worldwide. Vaccines have been fundamental in disease prevention and to reduce disease severity especially in patients with comorbidities. Nevertheless, treatment of COVID-19 has been proven difficult and several approaches have failed to prevent disease onset or disease progression, particularly in patients with comorbidities. Interrogation of drug data bases has been widely used since the beginning of pandemic to repurpose existing drugs/natural substances for the prevention/treatment of COVID-19. Steroids, including bile acids such as ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) have shown to be promising for their potential in modulating SARS-CoV-2/host interaction. Bile acids have proven to be effective in preventing binding of spike protein with the Angiotensin Converting Enzyme II (ACE2), thus preventing virus uptake by the host cells and inhibiting its replication, as well as in indirectly modulating immune response. Additionally, the two main bile acid activated receptors, GPBAR1 and FXR, have proven effective in modulating the expression of ACE2, suggesting an indirect role for these receptors in regulating SARS-CoV-2 infectiveness and immune response. In this review we have examined how the potential of bile acids and their receptors as anti-COVID-19 therapies and how these biochemical mechanisms translate into clinical efficacy.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Biagioli M, Di Giorgio C, Morretta E, Bellini R, Massa C, Urbani G, Bordoni M, Marchianò S, Lachi G, Sepe V, Monti MC, Distrutti E, Zampella A, Fiorucci S. Development of dual GPBAR1 agonist and RORγt inverse agonist for the treatment of inflammatory bowel diseases. Pharmacol Res 2024; 208:107403. [PMID: 39265668 DOI: 10.1016/j.phrs.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are chronic disorders characterized by dysregulated immune response and persistent inflammation. Recent studies suggest that bile acid receptors, particularly GPBAR1, and the transcription factor RORγt play critical roles in modulating intestinal inflammation. This study evaluates the therapeutic potential of PBT002, a dual GPBAR1 agonist and RORγt inverse agonist, in IBD models. The effects of PBT002 were assessed through in vitro and in vivo experiments. Macrophages and T lymphocytes obtained from the buffy coat were exposed to PBT002 to evaluate its immunomodulatory activity. The beneficial effects in vivo were evaluated in mouse models of colitis induced by TNBS, DSS or DSS + IL-23 using also a Gpbar1 knock-out male mice. PBT002 exhibited an EC50 of 1.2 µM for GPBAR1 and an IC50 of 2.8 µM for RORγt. In in vitro, PBT002 modulated macrophage polarization towards an anti-inflammatory M2 phenotype and reduced Th17 cell markers while increasing Treg markers. In the TNBS-induced colitis model, PBT002 reduced weight loss, CDAI, and colon damage, while it modulated cytokine gene expression towards an anti-inflammatory profile. In GPBAR1-/-, the anti-inflammatory effects of PBT002 were attenuated, indicating partial GPBAR1 dependence. RNA sequencing revealed significant modulation of inflammatory pathways by PBT002. In DSS+IL-23 induced colitis, PBT002 mitigated disease exacerbation, reducing pro-inflammatory cytokine levels and immune cell infiltration. In conclusion, PBT002, a GPBAR1 agonist and RORγt inverse agonist, modulates both the innate and adaptive immune responses to reduce inflammation and disease severity in models of IBD.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | | | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Lachi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Salerno, Italy; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Arvanitakis K, Germanidis G. Editorial: GLP-1 receptor agonists in inflammatory bowel disease-Is it time? Aliment Pharmacol Ther 2024. [PMID: 39034605 DOI: 10.1111/apt.18152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
LINKED CONTENTThis article is linked to Desai et al papers. To view this article, visit https://doi.org/10.1111/apt.18138
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Liu S, Yang S, Blazekovic B, Li L, Zhang J, Wang Y. Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases. ENGINEERING 2024; 38:13-26. [DOI: 10.1016/j.eng.2023.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
8
|
Buchynskyi M, Oksenych V, Kamyshna I, Vorobets I, Halabitska I, Kamyshnyi O. Modulatory Roles of AHR, FFAR2, FXR, and TGR5 Gene Expression in Metabolic-Associated Fatty Liver Disease and COVID-19 Outcomes. Viruses 2024; 16:985. [PMID: 38932276 PMCID: PMC11209102 DOI: 10.3390/v16060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a risk factor for severe COVID-19. This study explores the potential influence of gut hormone receptor and immune response gene expression on COVID-19 outcomes in MAFLD patients. METHODS We investigated gene expression levels of AHR, FFAR2, FXR, and TGR5 in patients with MAFLD and COVID-19 compared to controls. We examined associations between gene expression and clinical outcomes. RESULTS COVID-19 patients displayed altered AHR expression, potentially impacting immune response and recovery. Downregulated AHR in patients with MAFLD correlated with increased coagulation parameters. Elevated FFAR2 expression in patients with MAFLD was linked to specific immune cell populations and hospital stay duration. A significantly lower FXR expression was observed in both MAFLD and severe COVID-19. CONCLUSION Our findings suggest potential modulatory roles for AHR, FFAR2, and FXR in COVID-19 and MAFLD.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Ihor Vorobets
- Ophthalmology Clinic “Vizex”, Naukova St. 96B, 79060 Lviv, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine;
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
9
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
10
|
Di Ciaula A, Bonfrate L, Khalil M, Portincasa P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med 2023; 18:2181-2197. [PMID: 37515676 PMCID: PMC10635993 DOI: 10.1007/s11739-023-03343-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BA) are amphipathic molecules originating from cholesterol in the liver and from microbiota-driven biotransformation in the colon. In the gut, BA play a key role in fat digestion and absorption and act as potent signaling molecules on the nuclear farnesoid X receptor (FXR) and membrane-associated G protein-coupled BA receptor-1 (GPBAR-1). BA are, therefore, involved in the maintenance of gut barrier integrity, gene expression, metabolic homeostasis, and microbiota profile and function. Disturbed BA homeostasis can activate pro-inflammatory pathways in the gut, while inflammatory bowel diseases (IBD) can induce gut dysbiosis and qualitative and/or quantitative changes of the BA pool. These factors contribute to impaired repair capacity of the mucosal barrier, due to chronic inflammation. A better understanding of BA-dependent mechanisms paves the way to innovative therapeutic tools by administering hydrophilic BA and FXR agonists and manipulating gut microbiota with probiotics and prebiotics. We discuss the translational value of pathophysiological and therapeutic evidence linking BA homeostasis to gut inflammation in IBD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
11
|
Long XQ, Liu MZ, Liu ZH, Xia LZ, Lu SP, Xu XP, Wu MH. Bile acids and their receptors: Potential therapeutic targets in inflammatory bowel disease. World J Gastroenterol 2023; 29:4252-4270. [PMID: 37545642 PMCID: PMC10401658 DOI: 10.3748/wjg.v29.i27.4252] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease. As a result of the interaction between the liver and the gut microbiota, bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption. With the development of genomics and metabolomics, more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors. Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora, epithelial barrier function, and intestinal immunology. Inflammatory bowel disease can be treated in new ways by using these potential molecules. This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications. In addition, we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
Collapse
Affiliation(s)
- Xiong-Quan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Zhu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Zi-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Lv-Zhou Xia
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Shi-Peng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Xiao-Ping Xu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| |
Collapse
|
12
|
Arvanitakis K, Koufakis T, Popovic D, Maltese G, Mustafa O, Doumas M, Giouleme O, Kotsa K, Germanidis G. GLP-1 Receptor Agonists in Obese Patients with Inflammatory Bowel Disease: from Molecular Mechanisms to Clinical Considerations and Practical Recommendations for Safe and Effective Use. Curr Obes Rep 2023:10.1007/s13679-023-00506-3. [PMID: 37081371 DOI: 10.1007/s13679-023-00506-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF REVIEW To discuss current literature and provide practical recommendations for the safe and effective use of glucagon-like peptide 1 receptor agonists (GLP-1 RA) in people with inflammatory bowel disease (IBD) and type 2 diabetes (T2D) and/or obesity. The molecular mechanisms that justify the potential benefits of GLP-1 RA in IBD and the links between IBD, obesity, and cardiovascular disease are also discussed. RECENT FINDINGS Preliminary data suggest that GLP-1 RA can modulate crucial pathways in the pathogenesis of IBD, such as chronic inflammation circuits, intestinal tight junctions, and gut microbiome dysbiosis, setting the stage for human trials to investigate the role of these agents in the treatment of IBD among people with or without diabetes and obesity. However, gastrointestinal side effects related to GLP-1 RA need appropriate clinical management to mitigate risks and maximize the benefits of therapy in people with IBD. GLP-1 RA originally emerged as drugs for the treatment of hyperglycemia and are currently licensed for the management of T2D and/or overweight/obesity. However, their wealth of pleiotropic actions soon raised expectations that they might confer benefits on non-metabolic disorders. Future studies are expected to clarify whether GLP-1 RA deserve an adjunct place in the arsenal of drugs against IBD.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Djordje Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Giuseppe Maltese
- Department of Diabetes and Endocrinology, Epsom & St Helier University Hospitals, Surrey, SM5 1AA, UK
- Unit for Metabolic Medicine, Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College, London, UK
| | - Omar Mustafa
- Department of Diabetes, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
- King's College London, London, UK
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Giouleme
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece.
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece.
| |
Collapse
|
13
|
Luxenburger A, Harris LD, Ure EM, Jiao W, Woolhouse AD, Cameron SA, Weymouth-Wilson A, Furneaux RH, Pitman JL, Hinkley SFR. The discovery of 12β-methyl-17-epi-18-nor-bile acids as potent and selective TGR5 agonists. Eur J Med Chem 2023; 250:115143. [PMID: 36841086 DOI: 10.1016/j.ejmech.2023.115143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Recent discoveries have demonstrated that the physiological function of bile acids extends to the regulation of diverse signaling processes through interactions with nuclear and G protein-coupled receptors, most notably the Farnesoid-X nuclear receptor (FXR) and the G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). Targeting such signaling pathways pharmacologically, i.e. with bile acid-derived therapeutics, presents great potential for the treatment of various metabolic, inflammatory immune, liver, and neurodegenerative diseases. Here we report the discovery of two potent and selective TGR5 agonists (NZP196 and 917). These compounds are the taurine conjugates of 6α-ethyl-substituted 12β-methyl-18-nor-bile acids with the side chain being located on the α-face of the steroid scaffold. The compounds emerged from a screening effort of a diverse library of 12β-methyl-18-nor-bile acids that were synthesized from 12β-methyl-18-nor-chenodeoxycholic acid and its C17-epimer. Upon testing for FXR activity, both compounds were found to be inactive, thus revealing selectivity for TGR5.
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand.
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Elizabeth M Ure
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Anthony D Woolhouse
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | | | - Richard H Furneaux
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand
| | - Simon F R Hinkley
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| |
Collapse
|
14
|
Lo SW, Segal JP, Lubel JS, Garg M. What do we know about the renin angiotensin system and inflammatory bowel disease? Expert Opin Ther Targets 2022; 26:897-909. [PMID: 36484415 DOI: 10.1080/14728222.2022.2157261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) is an important homeostatic pathway, with emerging evidence for the impact of its components on inflammation and fibrosis in gastrointestinal tissues. This review aims to review current knowledge of the physiological mechanism of RAS in inflammatory bowel disease (IBD), and potential therapeutic implications. AREAS COVERED An extensive online literature review including Pubmed, Medline, and Google Scholar was undertaken. Discussion on the components of the RAS, localization, and physiological functions in the gastrointestinal tract, preclinical, and clinical data in IBD, and the relation with SARS-Cov-2 are covered in this review. EXPERT OPINION RAS inhibition may have a role as anti-fibrotic adjunct therapy. Targeting the local gastrointestinal RAS with novel modes of delivery may be a target for future therapeutics for IBD, given the widespread availability and safety of current options as utilized in other diseases. Further insight into the mechanism and downstream effects of gastrointestinal ACE2 may lead to a better understanding of the pathogenesis of IBD.
Collapse
Affiliation(s)
- Sheng Wei Lo
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia
| | - Jonathan P Segal
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - John S Lubel
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, Monash University
| | - Mayur Garg
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| |
Collapse
|