1
|
Li F, Peng X, Li W. The interaction between various food components and intestinal microbiota improves human health through the gut-X axis: independently or synergistically. Food Funct 2025; 16:2172-2193. [PMID: 39996355 DOI: 10.1039/d4fo04430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Food contains various components that improve health by affecting the gut microbiota, primarily by modulating its abundance or altering its diversity. Active substances in food have different effects on the gut microbiota when they act alone or in synergy, resulting in varying impacts on health. The bioactive compounds in food exert different effects on various gut microbiota through multiple pathways, thereby delaying or preventing different kinds of disease. The combination of two or more active compounds may have a synergistic effect, which can more effectively alter the gut microbiota and alleviate diseases through the microbiota-gut-organ axis. According to reports, multiple different food components have similar effects, some of which have been shown to have a synergistic effect on the gut microbiota to promote health. However, there is currently no systematic review of its synergistic effects and mechanisms. There may be more compounds with synergistic effects that have not yet been discovered, while their mechanisms of synergy and ways of impacting host health through the gut microbiota deserve further investigation. The purpose of this review is to systematically summarize the effects of different food components on intestinal flora and health, and further analyze the potential synergies between different food components. PubMed and Google Scholar databases were searched in this review.
Collapse
Affiliation(s)
- Fenfa Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenzhi Li
- Infinitus (China) Company Ltd, Guangzhou 510405, China.
| |
Collapse
|
2
|
Okunlola FO, Okunlola AR, Adetuyi BO, Soliman MES, Alexiou A, Papadakis M, Fawzy MN, El-Saber Batiha G. Beyond the gut: Unraveling the multifaceted influence of microbiome on cardiovascular health. Clin Nutr ESPEN 2025; 67:71-89. [PMID: 40064239 DOI: 10.1016/j.clnesp.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.
Collapse
Affiliation(s)
- Felix Oladele Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Abimbola Rafiat Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Babatunde Oluwafemi Adetuyi
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
3
|
Wilson HE, Moe SM. You are what you eat-should it be all meat?: Impact of the carnivore diet on the risk of kidney stone development. Am J Clin Nutr 2025; 121:197-202. [PMID: 39753382 DOI: 10.1016/j.ajcnut.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 02/07/2025] Open
Affiliation(s)
- Hannah E Wilson
- Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Sharon M Moe
- Indiana University School of Medicine, Division of Nephrology, Indianapolis, IN, United States
| |
Collapse
|
4
|
Gray SM, Wood MC, Mulkeen SC, Ahmed S, Thaker SD, Chen B, Sander WR, Bibeva V, Zhang X, Yang J, Herzog JW, Zhang S, Dogan B, Simpson KW, Balfour Sartor R, Montrose DC. Dietary protein source mediates colitis pathogenesis through bacterial modulation of bile acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634824. [PMID: 39896483 PMCID: PMC11785241 DOI: 10.1101/2025.01.24.634824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Evidence-based dietary recommendations for individuals with inflammatory bowel diseases (IBD) are limited. Red meat consumption is associated with increased IBD incidence and relapse in patients, suggesting that switching to a plant-based diet may limit gut inflammation. However, the mechanisms underlying the differential effects of these diets remain poorly understood. Feeding diets containing plant- or animal-derived proteins to murine colitis models revealed that mice given a beef protein (BP) diet exhibited the most severe colitis, while mice fed pea protein (PP) developed mild inflammation. The colitis-promoting effects of BP were microbially-mediated as determined by bacterial elimination or depletion and microbiota transplant studies. In the absence of colitis, BP-feeding reduced abundance of Lactobacillus johnsonii and Turicibacter sanguinis and expanded Akkermansia muciniphila, which localized to the mucus in association with decreased mucus thickness and quality. BP-fed mice had elevated primary and conjugated fecal bile acids (BAs), and taurocholic acid administration to PP-fed mice worsened colitis. Dietary psyllium protected against BP-mediated inflammation, restored BA-modulating commensals and normalized BA ratios. Collectively, these data suggest that the protein component of red meat may be responsible, in part, for the colitis-promoting effects of this food source and provide insight into dietary factors that may influence IBD severity.
Collapse
Affiliation(s)
- Simon M. Gray
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Michael C. Wood
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Samantha C. Mulkeen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Sunjida Ahmed
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Shrey D. Thaker
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Bo Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - William R. Sander
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Vladimira Bibeva
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Xiaoyue Zhang
- Biostatistical Consulting Core, Renaissance School of Medicine, Stony Brook University
| | - Jie Yang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY
| | - Jeremy W. Herzog
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Shiying Zhang
- Department of Clinical Sciences, Cornell University, Ithaca, NY
| | - Belgin Dogan
- Department of Clinical Sciences, Cornell University, Ithaca, NY
| | | | - R. Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
- National Gnotobiotic Rodent Resource Center, University of North Carolina, Chapel Hill, NC
| | - David C. Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
- Stony Brook Cancer Center, Stony Brook, NY
| |
Collapse
|
5
|
Preusse K, Cochran K, Dai Q, Kopan R. Notch dimerization provides robustness against environmental insults and is required for vascular integrity. PLoS One 2025; 20:e0311353. [PMID: 39854367 DOI: 10.1371/journal.pone.0311353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/18/2024] [Indexed: 01/26/2025] Open
Abstract
The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding). However, compound heterozygote NDD mice (N1RA/-; N2RA/-) in hypo-allergenic conditions subsequently develop severe hydrocephalus and hemorrhages. Further analysis revealed multiple vascular phenotypes in NDD mice including leakage, malformations of brain vasculature, and vasodilation in kidneys, leading to demise around P21. This mouse model is thus a hypomorphic allele useful to analyze vascular phenotypes and gene-environment interactions. The possibility of a non-canonical Notch signal regulating barrier formation in the gut, skin, and blood systems is discussed.
Collapse
Affiliation(s)
- Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kim Cochran
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Quanhui Dai
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
6
|
Qin L, Lv W. Dietary content and eating behavior in ulcerative colitis: a narrative review and future perspective. Nutr J 2025; 24:12. [PMID: 39849464 PMCID: PMC11755847 DOI: 10.1186/s12937-025-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Ulcerative colitis (UC) has experienced a steady increase in global incidence and prevalence recently. Current research into UC pathogenesis focuses on the complex interplay of genetic and environmental factors with the immune system and gut microbiome, leading to disruption of the intestinal barrier. Normally, the microbiome, intestinal epithelium, and immune system interact to maintain intestinal homeostasis. However, when this equilibrium is disturbed, a harmful cycle of dysbiosis, immune dysregulation, and inflammation emerges, resulting in intestinal barrier dysfunction and UC progression. Among various risk factors, diet significantly influences epithelial barrier integrity and architectural stability through both direct and indirect mechanisms, shaping the entire UC continuum from pre-clinical prevention to active phase treatment and remission maintenance. This review provides insights into the impact of dietary content and eating behaviors on UC, focusing on specific food, food groups, nutrients, and intermittent fasting, while providing a detailed explanation of why the gut microbiota may mediate the sustained effects of diet across all stages of UC. Additionally, it addresses the limitations of current studies, explores underexamined areas in UC dietary research and proposes potential directions for future research and expansion.
Collapse
Affiliation(s)
- Lingxi Qin
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenliang Lv
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Awan A, Bartlett A, Blakeley-Ruiz JA, Richie T, Ziegler A, Kleiner M. Source of dietary protein alters the abundance of proteases, intestinal epithelial and immune proteins both directly and via interactions with the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632171. [PMID: 39829768 PMCID: PMC11741435 DOI: 10.1101/2025.01.09.632171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dietary protein has been shown to impact long-term health outcomes differentially depending on its amount and source. It has been suggested that interactions of the gut microbiota with dietary proteins mediate some of the effects of dietary protein on health outcomes. However, it remains unclear what specific host responses drive the health effects of dietary proteins from different plant and animal sources. Additionally, which specific host responses are mediated by interactions of dietary protein source with the gut microbiota and which host responses are caused by dietary proteins directly is not well understood. We used metaproteomics to quantify dietary, host, and microbial proteins in fecal samples of conventional and germ-free mice fed purified dietary protein from six different plant and animal sources, including casein, egg-white, soy, brown rice, pea, and yeast. We characterized differences in the host fecal proteome across the six dietary protein sources as well as between the conventional and germ-free mice for each source to determine how the host responds to the different dietary protein sources and the role of the gut microbiota in mediating these responses. We found that both the source of dietary protein and the presence or absence of the gut microbiota drive the host response to dietary protein source in the fecal host proteome. Host proteins pertaining to immune response, digestion, and barrier function were differentially abundant in different protein sources with and without the gut microbiota. These changes in the host response correlated with changes in microbial composition and differences in protein digestibility. Our results show how dietary protein sources, through their interactions with the gut microbiota, impact several aspects of host physiology.
Collapse
Affiliation(s)
- Ayesha Awan
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexandria Bartlett
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - J. Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Tanner Richie
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda Ziegler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Ma X, Fan M, Hannachi K, Qian H, Li Y, Wang L. Unveiling the microbiota-mediated impact of different dietary proteins on post-digestive processes: A simulated in vitro approach. Food Res Int 2024; 198:115381. [PMID: 39643348 DOI: 10.1016/j.foodres.2024.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/19/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Protein digestion and microbial metabolism play crucial roles in overall health. However, the mechanisms that differentiate the digestion and metabolism of dietary proteins from different sources in the organism remain poorly understood. This study investigated the digestive properties and microbial fermentation of various animal proteins (chicken, pork, beef, and casein) and plant proteins (soy bean, mung bean, kidney bean, rice, and wheat) in an in vitro simulation. The results indicated that animal-derived proteins had higher essential amino acid content (33.97-37.12 g/100 g) and digestibility levels (49.15-60.94 %), and provided more small molecule peptides upon digestion. Nevertheless, soy bean and wheat proteins also exhibited higher digestibility (54.70 % and 60.94 %), probably due to the extraction process. The fermentation results showed that distinct metabolic profiles that emerged for different protein sources. Plant-derived proteins (especially kidney bean, rice and wheat) promoted the proliferation of beneficial bacteria and microbial diversification and stimulated short-chain fatty acids (SCFA) production. Conversely, meat proteins (pork, chicken, beef) had significantly lower microbial diversity and SCFA than these plant proteins. These findings provide valuable insights into the effects of dietary protein sources on digestion and gut microbiome, and offer scientific guidance for optimizing dietary choices to improve health.
Collapse
Affiliation(s)
- Xuedan Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kanza Hannachi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
9
|
Klobučar S, Kenđel Jovanović G, Kryczyk-Kozioł J, Cigrovski Berković M, Vučak Lončar J, Morić N, Peljhan K, Rahelić D, Mudri D, Bilić-Ćurčić I, Bogović Crnčić T. Association of Dietary Inflammatory Index and Thyroid Function in Patients with Hashimoto's Thyroiditis: An Observational Cross-Sectional Multicenter Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1454. [PMID: 39336495 PMCID: PMC11434592 DOI: 10.3390/medicina60091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: The available research suggests that dietary patterns with high inflammatory potential, as indicated by a high DII score, may exacerbate inflammation and potentially influence thyroid function. Therefore, the aim of this study was to investigate the associations between the inflammatory potential of a diet and thyroid function in adults with Hashimoto's thyroiditis (HT). Materials and Methods: A total of 149 adults diagnosed with Hashimoto's thyroiditis were enrolled in this observational, cross-sectional, multicenter study. The Dietary Inflammatory Index (DII®) was calculated using a 141-item food frequency questionnaire (FFQ). The serum levels of the thyroid-stimulating hormone (TSH), free thyroxine (fT4), thyroid peroxidase antibodies (TPO-Ab), and high-sensitivity C-reactive protein (hsCRP) were determined. Results: The DII® scores ranged from -3.49 (most anti-inflammatory) to +4.68 (most pro-inflammatory), whereas three DII® tertile ranges were defined as <-1.4, -1.39 to +1.20, and >+1.21, respectively. Participants in tertile 1 (more anti-inflammatory diet) had significantly higher levels of fT4 than those adhering to a more pro-inflammatory diet (p = 0.007). The levels of hsCRP and TSH appeared to increase with increasing the DII® score, but without statistical significance. A significant association was found between the DII® and TSH (β = 0.42, p < 0.001) and between DII® and free thyroxine (β = 0.19, p < 0.001). After adjustment for age, gender, energy intake, and physical activity, a significant positive correlation remained between the DII® and TSH (β = 0.33, p = 0.002) and between the DII® and body mass index (BMI) (β = 0.14, p = 0.04). Conclusions: Adherence to an anti-inflammatory diet appears to be beneficial in patients with Hashimoto's thyroiditis, suggesting that dietary modification aimed at lowering DII® levels may be a valuable strategy to improve clinical outcomes in these patients.
Collapse
Affiliation(s)
- Sanja Klobučar
- Department of Endocrinology, Diabetes and Metabolic Diseases, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Gordana Kenđel Jovanović
- Department of Health Ecology, Teaching Institute of Public Health of Primorje—Gorski Kotar County, 51000 Rijeka, Croatia;
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 31-008 Kraków, Poland;
| | - Maja Cigrovski Berković
- Department for Sport and Exercise Medicine, University of Zagreb, Faculty of Kinesiology, 10000 Zagreb, Croatia;
| | - Jelena Vučak Lončar
- Department of Health Studies, University of Zadar, 23000 Zadar, Croatia;
- Department of Endocrinology, Zadar General Hospital, 23000 Zadar, Croatia
| | - Nikolina Morić
- Health Center of Primorje—Gorski Kotar County, 51000 Rijeka, Croatia;
| | - Katarina Peljhan
- Department of Dermatology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| | - Dario Rahelić
- Faculty of Medicine, J.J. Strossmayer University Osijek, 31000 Osijek, Croatia; (D.R.)
- Endocrinology and Metabolic Diseases, Vuk Vrhovac University Clinic for Diabetes, Merkur University Hospital, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Dunja Mudri
- Faculty of Medicine, J.J. Strossmayer University Osijek, 31000 Osijek, Croatia; (D.R.)
- Clinical Institute for Nuclear Medicine and Radiation Protection, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
| | - Ines Bilić-Ćurčić
- Faculty of Medicine, J.J. Strossmayer University Osijek, 31000 Osijek, Croatia; (D.R.)
- Department of Endocrinology, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tatjana Bogović Crnčić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Clinical Department of Nuclear Medicine, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
10
|
Ma Y, Cheng C, Jian Z, Wen J, Xiang L, Li H, Wang K, Jin X. Risk factors for nephrolithiasis formation: an umbrella review. Int J Surg 2024; 110:5733-5744. [PMID: 38814276 PMCID: PMC11392093 DOI: 10.1097/js9.0000000000001719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE Nephrolithiasis is prevalent and burdensome worldwide. At present, evidence on the risk factors for nephrolithiasis is unconsolidated and the associations remain uncertain. The authors systematically evaluate the robustness of the meta-analytic evidence and aid more reliable interpretations of the epidemiological relationships. METHODS The authors conducted a comprehensive review of the meta-analyses, screened the included studies with the aid of the AMSTAR 2 evaluation tool, and then used R (4.1.1) software to perform data analysis to evaluate the association between candidate risk factors and kidney stones, and evaluated the credibility of the evidence of the association between risk factors and kidney stones according to the GRADE classification, and finally obtained the strength and effectiveness of the association. RESULTS The authors finally included 17 meta-analyses regarding 46 risk factors, 34 of which (73.9%) showed statistically significant association with nephrolithiasis. Among the significant associations, the authors found that waist circumference, BMI, dietary intake and fructose intake were positively correlated with the occurrence and development of nephrolithiasis. Caffeine, dietary fiber and DASH-diet showed a tendency to reduce kidney stones. Interestingly, calcium supplementation, dietary calcium, and vitamin D, which are widely believed to be responsible for stone formation, made no difference or even reduced the risk of nephrolithiasis. CONCLUSIONS The authors' study demonstrates the suggestive causal (central obesity, type 2 diabetes, gout, dietary sodium, fructose intake and higher temperatures) risk factors of nephrolithiasis. The authors also demonstrate the suggestive causal (coffee/alcohol/beer intake, dietary calcium and DASH-diet) protective factors of nephrolithiasis. To provide epidemiological basis for the treatment and prevention of nephrolithiasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
11
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
12
|
Kirkik D, Kalkanli Tas S, Tanoglu A. Unraveling the blood microbiome: novel insights into inflammasome responses in Crohn's disease. Eur J Gastroenterol Hepatol 2024; 36:975-984. [PMID: 38251441 DOI: 10.1097/meg.0000000000002695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVE Crohn's disease (CD), an inflammatory bowel disease with unknown etiology, is influenced by genetic, environmental, and immunological factors. This study aimed to analyze the blood microbiome and inflammasome responses, emphasizing NLRP3 protein expression and IL-1β and IL-18 plasma levels, between Crohn's patients and healthy subjects. METHODS A total of 40 volunteers were included in this study. The 16S rRNA technique was used to sequence the V3-V4 regions of the blood sample. NLRP3 protein levels in plasma were ascertained through Western Blot, and IL-1β and IL-18 plasma profiles were examined using ELISA. RESULTS Analysis highlighted five unique phyla in patients' plasma, emphasizing the role of the blood microbiome in CD. Compared to controls, Crohn's patients exhibited elevated NLRP3 protein expression. Plasma IL-1β levels were diminished in patients ( P = 0.0041), whereas IL-18 levels were comparably higher ( P = 0.8209). In patients with CD, the presence of Staphylococcus sciuri in blood samples highlights its potential role in the disease's onset. The study also underscored the interplay between dietary habits, specifically increased meat consumption, and the progression of CD. CONCLUSION Our pioneering research discerns the variations in the blood microbiome and inflammasome responses between Crohn's patients and healthy individuals. Significant microbiome alterations and the detection of the Staphylococcus sciuri pathogen in Crohn's patients were notable. The pronounced NLRP3 protein in patients suggests its potential as a diagnostic biomarker. Future explorations into IL-1β and IL-18 pathways promise to unveil innovative insights into CD.
Collapse
Affiliation(s)
- Duygu Kirkik
- Hamidiye Medicine Faculty, Department of Medical Biology, University of Health Sciences, Turkey
| | - Sevgi Kalkanli Tas
- Hamidiye Medicine Faculty, Department of Immunology, University of Health Sciences, Turkey
| | - Alpaslan Tanoglu
- Department of Internal Medicine, Division of Gastroenterology, Bahcesehir University and School of Medicine, Istanbul, Turkey
| |
Collapse
|
13
|
Li Q, Wang J. The Effect of Protein Nutritional Support on Inflammatory Bowel Disease and Its Potential Mechanisms. Nutrients 2024; 16:2302. [PMID: 39064745 PMCID: PMC11280054 DOI: 10.3390/nu16142302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a complex chronic inflammatory bowel disorder that includes Crohn's disease (CD) and Ulcerative Colitis (UC), has become a globally increasing health concern. Nutrition, as an important factor influencing the occurrence and development of IBD, has attracted more and more attention. As the most important nutrient, protein can not only provide energy and nutrition required by patients, but also help repair damaged intestinal tissue, enhance immunity, and thus alleviate inflammation. Numerous studies have shown that protein nutritional support plays a significant role in the treatment and remission of IBD. This article presents a comprehensive review of the pathogenesis of IBD and analyzes and summarizes the potential mechanisms of protein nutritional support in IBD. Additionally, it provides an overview of the clinical effects of protein nutritional support in IBD and its impact on clinical complications. Research findings reveal that protein nutritional support demonstrates significant benefits in improving clinical symptoms, reducing the risk of complications, and improving quality of life in IBD patients. Therefore, protein nutritional support is expected to provide a new approach for the treatment of IBD.
Collapse
Affiliation(s)
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| |
Collapse
|
14
|
Soni D, Upadhayay S, Dhureja M, Arthur R, Kumar P. Crosstalk between gut-brain axis: unveiling the mysteries of gut ROS in progression of Parkinson's disease. Inflammopharmacology 2024:10.1007/s10787-024-01510-2. [PMID: 38992324 DOI: 10.1007/s10787-024-01510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
"Path to a good mood lies through the gut." This statement seems to imply that it has long been believed that the gut is connected with the brain. Research has shown that eating food activates the reward system and releases dopamine (DA), establishing a link between the peripheral and central nervous system. At the same time, researchers also trust that the gut is involved in the onset of many diseases, including Parkinson's disease (PD), in which gastrointestinal dysfunction is considered a prevalent symptom. Reports suggest that PD starts from the gut and reaches the brain via the vagus nerve. Recent studies have revealed an intriguing interaction between the gut and brain, which links gut dysbiosis to the etiology of PD. This review aims to explore the mechanistic pathway how reactive oxygen species (ROS) generation in the gut affects the makeup and operation of the dopamine circuitry in the brain. Our primary concern is ROS generation in the gut, which disrupts the gut microbiome (GM), causing α-synuclein accumulation and inflammation. This trio contributes to the loss of DA neurons in the brain, resulting in PD development. This review also compiles pre-clinical and clinical studies on antioxidants, demonstrating that antioxidants reduce ROS and increase DA levels. Collectively, the study highlights the necessity of comprehending the gut-brain axis for unraveling the riddles of PD pathogenesis and considering new therapeutic approaches.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
15
|
Donadio JLS, Fabi JP. Comparative analysis of pectin and prebiotics on human microbiota modulation in early life stages and adults. Food Funct 2024; 15:6825-6846. [PMID: 38847603 DOI: 10.1039/d4fo01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The gut microbiota is essential in human health, influencing various physiological processes ranging from digestion and metabolism to immune function and mental health. Dietary fiber pectins and prebiotics have emerged as key modulators of gut microbiota composition and function, offering potential therapeutic implications for promoting gut health and preventing intestinal inflammatory diseases. In this review, we explore the modulation of gut microbiota by dietary fiber pectins and prebiotics in infants and adults. We begin with an overview of the gut microbiota composition and function in different age groups, highlighting the factors in shaping microbial communities in both age groups, especially the effect of diet. We then delve into the impact of dietary fiber pectins and prebiotics on gut microbiota composition and function, examining their effects on digestive health, intestinal barrier integrity, immune function, metabolic health, and mental health across different life stages. We further compare how aging affects the gut function and immune system, and we discuss the main health outcomes associated with dietary fiber intake and prebiotics, including the impact on digestive health, improvement in immune function, improvement in cholesterol and glucose metabolism, weight management, mental health, and prevention of diseases. Finally, we highlight the challenges and future directions for research. By advancing the understanding of gut microbiota dynamics and translating scientific insights into clinical practice, it could harness the full potential of dietary fiber pectins and prebiotics to optimize gut health, improve overall well-being across the lifespan, and increase longevity.
Collapse
Affiliation(s)
- Janaina Lombello Santos Donadio
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Awan A, Bartlett A, Blakeley-Ruiz JA, Richie T, Theriot CM, Kleiner M. Dietary protein from different sources escapes host digestion and is differentially modified by the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600830. [PMID: 38979297 PMCID: PMC11230375 DOI: 10.1101/2024.06.26.600830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Protein is an essential macronutrient and variations in its source and quantity have been shown to impact long-term health outcomes. Differential health impacts of dietary proteins from various sources are likely driven by differences in their digestibility by the host and subsequent availability to the intestinal microbiota. However, our current understanding regarding the fate of dietary proteins from different sources in the gut, specifically how component proteins within these sources interact with the host and the gut microbiota, is limited. To determine which dietary proteins are efficiently digested by the host and which proteins escape host digestion and are used by the gut microbiota, we used high-resolution mass spectrometry to quantify the proteins that make up different dietary protein sources before and after digestion in germ-free and conventionally raised mice. Contrary to expectation, we detected proteins from all sources in fecal samples of both germ-free and conventional mice suggesting that even protein sources with a high digestive efficiency make it in part to the colon where they can serve as a substrate for the microbiota. Additionally, we found clear patterns where specific component proteins of the dietary protein sources were used as a preferred substrate by the microbiota or were not as accessible to the microbiota. We found that specific proteins with functions that could impact host health and physiology were differentially enriched in germ-free or conventionally raised mice. These findings reveal large differences in the fate of dietary protein from various sources in the gut that could explain some of their differential health impacts.
Collapse
Affiliation(s)
- Ayesha Awan
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexandria Bartlett
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - J. Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Tanner Richie
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
17
|
Cheng Y, Zheng G, Song Z, Zhang G, Rao X, Zeng T. Association between dietary protein intake and risk of chronic kidney disease: a systematic review and meta-analysis. Front Nutr 2024; 11:1408424. [PMID: 38946781 PMCID: PMC11212527 DOI: 10.3389/fnut.2024.1408424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Objective There is suggestive data indicating a correlation among dietary protein intake and the progression of chronic kidney disease (CKD). Nonetheless, the exact associations between dietary protein intake and the incidence of CKD have remained uncertain. We performed the first meta-analysis to explore the correlation among total protein, plant protein, animal protein intake and CKD risk. Methods The study conformed the PRISMA statement guidelines. We comprehensively searched PubMed, Web of Science, and Embase until to December 2023. The retrieved studies underwent rigorous evaluation for eligibility, and relevant data were meticulously extracted. The Newcastle-Ottawa Scale (NOS) tool was applied to evaluate the risk of bias. Subsequently, relevant data were extracted and pooled to evaluate the relations among dietary protein intake and CKD incidence. Results Totally, 6,191 articles were identified, six studies were eligible. A total of 148,051 participants with 8,746 CKD cases were included. All studies had a low overall risk of bias. Higher total, plant and animal protein intake were all correlated with decreased CKD incidence, pooled risk ratios (RRs) and 95% confidence intervals (CIs) were as follows: (RR = 0.82, 95% CI = 0.71-0.94, p = 0.005; I2 = 38%, p = 0.17); (RR = 0.77, 95% CI = 0.61-0.97, p = 0.03; I2 = 77%, p = 0.001); (RR = 0.86, 95% CI = 0.76-0.97, p = 0.02; I2 = 0%, p = 0.59), respectively. For fish and seafood within animal protein: RR = 0.84, 95% CI = 0.74-0.94. Subgroup analysis showed that geographical region, sample size, follow-up time, not assessing protein by food frequency questionnaire, using %energy as the measurement index, not adjusting for several covariates may be the sources of heterogeneity for plant protein. A significant non-linear relation among plant protein and incident CKD was observed by dose-response analysis. Conclusion The data showed a lower CKD risk significantly associated higher-level dietary total, plant or animal protein (especially for fish and seafood) intake. Further prospective studies demonstrating the correlations of precise sources, intake and duration of dietary protein and incident CKD are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Zeng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Bouchard J, Raj P, Yu L, Sobhi B, Malalgoda M, Malunga L, Netticadan T, Joseph Thandapilly S. Oat protein modulates cholesterol metabolism and improves cardiac systolic function in high fat, high sucrose fed rats. Appl Physiol Nutr Metab 2024; 49:738-750. [PMID: 38477294 DOI: 10.1139/apnm-2023-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Oats are recognized to provide many health benefits that are mainly associated with its dietary fibre, β-glucan. However, the protein derived from oats is largely understudied with respect to its ability to maintain health and attenuate risk factors of chronic diseases. The goal of the current study was to investigate the metabolic effects of oat protein consumption in lieu of casein as the protein source in high fat, high sucrose (HF/HS) fed Wistar rats. Four-week-old rats were divided into three groups and were fed three different experimental diets: a control diet with casein as the protein source, an HF/HS diet with casein, or an HF/HS diet with oat protein for 16 weeks. Heart structure and function were determined by echocardiography. Blood pressure measurements, an oral glucose tolerance test, and markers of cholesterol metabolism, oxidative stress, inflammation, and liver and kidney damage were also performed. Our study results show that incorporation of oat protein in the diet was effective in preserving systolic heart function in HF/HS fed rats. Oat protein significantly reduced serum total and low-density lipoprotein cholesterol levels. Furthermore, oat protein normalized liver HMG-CoAR activity, which, to our knowledge, is the first time this has been reported in the literature. Therefore, our research suggests that oat protein can provide hypocholesterolemic and cardioprotective benefits in a diet-induced model of metabolic syndrome.
Collapse
Affiliation(s)
- Jenny Bouchard
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| | - Liping Yu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| | - Babak Sobhi
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
| | - Maneka Malalgoda
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lovemore Malunga
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Netticadan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sijo Joseph Thandapilly
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
19
|
Wei S, Li M, Wang Q, Zhao Y, Du F, Chen Y, Deng S, Shen J, Wu K, Yang J, Sun Y, Gu L, Li X, Li W, Chen M, Ling X, Yu L, Xiao Z, Dong L, Wu X. Mesenchymal Stromal Cells: New Generation Treatment of Inflammatory Bowel Disease. J Inflamm Res 2024; 17:3307-3334. [PMID: 38800593 PMCID: PMC11128225 DOI: 10.2147/jir.s458103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which has a high recurrence rate and is incurable due to a lack of effective treatment. Mesenchymal stromal cells (MSCs) are a class of pluripotent stem cells that have recently received a lot of attention due to their strong self-renewal ability and immunomodulatory effects, and a large number of experimental and clinical models have confirmed the positive therapeutic effect of MSCs on IBD. In preclinical studies, MSC treatment for IBD relies on MSCs paracrine effects, cell-to-cell contact, and its mediated mitochondrial transfer for immune regulation. It also plays a therapeutic role in restoring the intestinal mucosal barrier through the homing effect, regulation of the intestinal microbiome, and repair of intestinal epithelial cells. In the latest clinical trials, the safety and efficacy of MSCs in the treatment of IBD have been confirmed by transfusion of autologous or allogeneic bone marrow, umbilical cord, and adipose MSCs, as well as their derived extracellular vesicles. However, regarding the stable and effective clinical use of MSCs, several concerns emerge, including the cell sources, clinical management (dose, route and frequency of administration, and pretreatment of MSCs) and adverse reactions. This article comprehensively summarizes the effects and mechanisms of MSCs in the treatment of IBD and its advantages over conventional drugs, as well as the latest clinical trial progress of MSCs in the treatment of IBD. The current challenges and future directions are also discussed. This review would add knowledge into the understanding of IBD treatment by applying MSCs.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Qin Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| |
Collapse
|
20
|
Xu D, Peng Z, Li Y, Hou Q, Peng Y, Liu X. Progress and Clinical Applications of Crohn's Disease Exclusion Diet in Crohn's Disease. Gut Liver 2024; 18:404-413. [PMID: 37842728 PMCID: PMC11096903 DOI: 10.5009/gnl230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 10/17/2023] Open
Abstract
Crohn's disease is a chronic intestinal inflammatory disorder of unknown etiology. Although the pharmacotherapies for Crohn's disease are constantly updating, nutritional support and adjuvant therapies have recently gained more attention. Due to advancements in clinical nutrition, various clinical nutritional therapies are used to treat Crohn's disease. Doctors treating inflammatory bowel disease can now offer several diets with more flexibility than ever. The Crohn's disease exclusion diet is a widely used diet for patients with active Crohn's disease. The Crohn's disease exclusion diet requires both exclusion and inclusion. Periodic exclusion of harmful foods and inclusion of wholesome foods gradually improves a patient's nutritional status. This article reviews the Crohn's disease exclusion diet, including its structure, mechanisms, research findings, and clinical applications.
Collapse
Affiliation(s)
- Duo Xu
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Ziheng Peng
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Yong Li
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Qian Hou
- Departments of Clinical Nutrition, Xiangya Hospital of Central South University, Changsha, China
| | - Yu Peng
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Xiaowei Liu
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
21
|
Pantalos G, Vaou N, Papachristidou S, Stavropoulou E, Tsigalou C, Voidarou C, Bezirtzoglou E. Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review. APPLIED SCIENCES 2024; 14:2177. [DOI: 10.3390/app14052177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Inflammatory bowel disease (IBD) remains a burden for patients with increasing prevalence in industrialized countries. Phytochemicals are non-nutrient plant derived bioactive substances with antioxidant and anti-inflammatory effects that may prove beneficial to IBD patients. This review aims to overview current evidence on the application and impact of isolated phytochemicals or phytochemicals contained in plant extracts and essential oils on patients suffering from IBD. A systematic literature search was conducted for studies relating to the use of phytochemicals for the treatment of IBD. Ultimately, 37 human clinical trials and 3 systematic reviews providing human IBD patient data relevant to phytochemicals as therapeutic agents were included. Phytochemicals in the form of curcumin, Plantago ovata seeds, polyphenon E, silymarin, resveratrol supplements or an herbal preparation of myrrh, chamomile and coffee charcoal have evidence from human clinical trials supporting their safety and beneficial effects. Cannabinoids improve quality of life but not IBD outcomes. The addition of probiotics like B. longum to fructo-oligosaccharides promote healthy composition of the gut microbiome. Phytochemicals like mastiha, anthocyanins, berberine, tormentil, T2, ecabet sodium and Pycnogenol need more well-designed trials. Systematic research on phytochemicals can lead to the discovery of useful therapeutics. These secondary metabolites can be incorporated in current IBD treatment strategies to limit side effects, promote mucosal healing and provide higher quality of life to patients.
Collapse
Affiliation(s)
- George Pantalos
- Pediatric Surgery Department, Penteli General Children’s Hospital, 15236 Athens, Greece
| | - Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Smaragda Papachristidou
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, P.&A. Kyriakou Children’s Hospital, 11527 Athens, Greece
| | - Elisavet Stavropoulou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Chrysa Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| |
Collapse
|
22
|
Tian QB, Chen SJ, Xiao LJ, Xie JQ, Zhao HB, Zhang X. Potential effects of nutrition-induced alteration of gut microbiota on inflammatory bowel disease: A review. J Dig Dis 2024; 25:78-90. [PMID: 38450936 DOI: 10.1111/1751-2980.13256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Inflammatory bowel disease (IBD), mainly comprising ulcerative colitis and Crohn's disease, is a group of gradually progressive diseases bringing significant mental anguish and imposes serious economic burdens. Interplay of genetic, environmental, and immunological factors have been implicated in its pathogenesis. Nutrients, as crucial environmental determinants, mainly encompassing carbohydrates, fats, proteins, and micronutrients, are closely related to the pathogenesis and development of IBD. Nutrition is essential for maintaining the dynamic balance of intestinal eco-environments to ensure intestinal barrier and immune homeostasis, while this balance can be disrupted easily by maladjusted nutrition. Research has firmly established that nutrition has the potential to shape the composition and function of gut microbiota to affect the disease course. Unhealthy diet and eating disorders lead to gut microbiota dysbiosis and further destroy the function of intestinal barrier such as the disruption of membrane integrity and increased permeability, thereby triggering intestinal inflammation. Notably, appropriate nutritional interventions, such as the Mediterranean diet, can positively modulate intestinal microecology, which may provide a promising strategy for future IBD prevention. In this review, we provide insights into the interplay between nutrition and gut microbiota and its effects on IBD and present some previously overlooked lines of evidence regarding the role of derived metabolites in IBD processes, such as trimethylamine N-oxide and imidazole propionate. Furthermore, we provide some insights into reducing the risk of onset and exacerbation of IBD by modifying nutrition and discuss several outstanding challenges and opportunities for future study.
Collapse
Affiliation(s)
- Qi Bai Tian
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Shui Jiao Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li Jun Xiao
- Guangdong Corps Hospital of Chinese People's Armed Police Forces, Guangzhou, Guangdong Province, China
| | - Jia Qi Xie
- Hunan Food and Drug Vocational College, Changsha, Hunan Province, China
| | - Hong Bo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan Province, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
23
|
Yadav A, Yadav R, Sharma V, Dutta U. A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease. Indian J Gastroenterol 2024; 43:112-128. [PMID: 38409485 DOI: 10.1007/s12664-023-01510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
Inflammatory bowel disease (IBD) is an immune mediated chronic inflammatory disorder of gastrointestinal tract, which has underlying multifactorial pathogenic determinants such as environmental factors, susceptibility genes, gut microbial dysbiosis and a dysregulated immune response. Human gut is a frequent inhabitant of complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi and other microorganisms that have an undisputable role in maintaining balanced homeostasis. All of these microbes interact with immune system and affect human gut physiology either directly or indirectly with interaction of each other. Intestinal fungi represent a smaller but crucial component of the human gut microbiome. Besides interaction with bacteriome and virome, it helps in balancing homoeostasis between pathophysiological and physiological processes, which is often dysregulated in patients with IBD. Understanding of gut mycobiome and its clinical implications are still in in its infancy as opposed to bacterial component of gut microbiome, which is more often focused. Modulation of gut mycobiome represents a novel and promising strategy in the management of patients with IBD. Emerging mycobiome-based therapies such as diet interventions, fecal microbiota transplantation (FMT), probiotics (both fungal and bacterial strains) and antifungals exhibit substantial effects in calibrating the gut mycobiome and restoring dysbalanced immune homeostasis by restoring the core gut mycobiome. In this review, we summarized compositional and functional diversity of the gut mycobiome in healthy individuals and patients with IBD, gut mycobiome dysbiosis in patients with IBD, host immune-fungal interactions and therapeutic role of modulation of intestinal fungi in patients with IBD.
Collapse
Affiliation(s)
- Amit Yadav
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Renu Yadav
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| |
Collapse
|
24
|
Paudel D, Nair DVT, Tian S, Hao F, Goand UK, Joseph G, Prodes E, Chai Z, Robert CE, Chassaing B, Patterson AD, Singh V. Dietary fiber guar gum-induced shift in gut microbiota metabolism and intestinal immune activity enhances susceptibility to colonic inflammation. Gut Microbes 2024; 16:2341457. [PMID: 38630030 PMCID: PMC11028019 DOI: 10.1080/19490976.2024.2341457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
With an increasing interest in dietary fibers (DFs) to promote intestinal health and the growth of beneficial gut bacteria, there is a continued rise in the incorporation of refined DFs in processed foods. It is still unclear how refined fibers, such as guar gum, affect the gut microbiota activity and pathogenesis of inflammatory bowel disease (IBD). Our study elucidated the effect and underlying mechanisms of guar gum, a fermentable DF (FDF) commonly present in a wide range of processed foods, on colitis development. We report that guar gum containing diet (GuD) increased the susceptibility to colonic inflammation. Specifically, GuD-fed group exhibited severe colitis upon dextran sulfate sodium (DSS) administration, as evidenced by reduced body weight, diarrhea, rectal bleeding, and shortening of colon length compared to cellulose-fed control mice. Elevated levels of pro-inflammatory markers in both serum [serum amyloid A (SAA), lipocalin 2 (Lcn2)] and colon (Lcn2) and extensive disruption of colonic architecture further affirmed that GuD-fed group exhibited more severe colitis than control group upon DSS intervention. Amelioration of colitis in GuD-fed group pre-treated with antibiotics suggest a vital role of intestinal microbiota in GuD-mediated exacerbation of intestinal inflammation. Gut microbiota composition and metabolite analysis in fecal and cecal contents, respectively, revealed that guar gum primarily enriches Actinobacteriota, specifically Bifidobacterium. Guar gum also altered multiple genera belonging to phyla Bacteroidota and Firmicutes. Such shift in gut microbiota composition favored luminal accumulation of intermediary metabolites succinate and lactate in the GuD-fed mice. Colonic IL-18 and tight junction markers were also decreased in the GuD-fed group. Importantly, GuD-fed mice pre-treated with recombinant IL-18 displayed attenuated colitis. Collectively, unfavorable changes in gut microbiota activity leading to luminal accumulation of lactate and succinate, reduced colonic IL-18, and compromised gut barrier function following guar gum feeding contributed to increased colitis susceptibility.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V. T. Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eleni Prodes
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhi Chai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chloé E.M. Robert
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
25
|
Heo GY, Koh HB, Kim HJ, Kim KW, Jung CY, Kim HW, Chang TI, Park JT, Yoo TH, Kang SW, Han SH. Association of Plant Protein Intake With Risk of Incident CKD: A UK Biobank Study. Am J Kidney Dis 2023; 82:687-697.e1. [PMID: 37517545 DOI: 10.1053/j.ajkd.2023.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 08/01/2023]
Abstract
RATIONALE & OBJECTIVE Data suggest that various dietary interventions slow kidney disease progression and improve clinical outcomes for those with chronic kidney disease (CKD). However, the association between plant protein intake and incident CKD has been uncertain. STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS 117,809 participants who completed at least 1 dietary questionnaire and had an estimated glomerular filtration rate (eGFR) ≥ 60mL/min/1.73m2, a urinary albumin-creatinine ratio (UACR)<30mg/g, and no history of CKD. EXPOSURE Daily plant protein intake in g/kg/day. OUTCOME Incident CKD based on the International Classification of Diseases, 10th Revision (ICD-10) or the Office of Population Censuses and Surveys Classification of Interventions and Procedures, version 4 (OPCS-4) codes. ANALYTICAL APPROACH A cause-specific proportional hazards analysis incorporating competing risks that treated death occurring before incident CKD as a competing event. RESULTS During a median follow-up period of 9.9 years, incident CKD occurred in 3,745 participants (3.2%; incidence rate, 3.2 per 1,000 person-years). In a multivariable model, the adjusted hazard ratio (AHR) for the second, third, and highest quartiles of plant protein intake was 0.90 (95% CI, 0.82-0.99), 0.83 (95% CI, 0.75-0.92), and 0.82 (95% CI, 0.73-0.93), respectively, compared with the lowest quartile. Modeled as a continuous variable, the AHR per 0.1g/kg/day plant protein intake increase was 0.96 (95% CI, 0.93-0.99). This beneficial association was also consistent in secondary analyses for which CKD was defined based on codes or 2 consecutive measures of eGFR<60mL/min/1.73m2 or UACR>30mg/g. Various sensitivity analyses demonstrated consistent findings. LIMITATIONS Potential incomplete dietary assessments; limited generalizability due to the characteristics of participants in the UK Biobank Study. CONCLUSIONS In this large, prospective cohort study, greater dietary plant protein intake was associated with a lower risk of incident CKD. Further interventional studies demonstrating the kidney-protective benefits of plant protein intake are warranted. PLAIN-LANGUAGE SUMMARY Plant-based diets confer various health benefits, including lowering the risk of cardiovascular disease and certain cancers. However, the relationship between plant protein intake and the risk of chronic kidney disease (CKD) remains unclear. Our study investigated the association between plant protein intake and the development of CKD. Using the UK Biobank Study data, we found that participants with a higher plant protein intake had a lower risk of developing CKD. Our finding suggests that a higher dietary intake of plant-based protein may be beneficial for kidney health and provides insight into dietary interventions to prevent CKD in primary care settings.
Collapse
Affiliation(s)
- Ga Young Heo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul
| | - Hee Byung Koh
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul
| | - Hyo Jeong Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul
| | - Kyung Won Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul
| | - Chan Young Jung
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul
| | - Hyung Woo Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul
| | - Tae Ik Chang
- Department of Internal Medicine, National Health Insurance Service Medical Center, Ilsan Hospital, Goyangshi, Gyeonggi-do, South Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul.
| |
Collapse
|
26
|
Blubaugh CK, Jones CR, Josefson C, Scoles GA, Snyder WE, Owen JP. Omnivore diet composition alters parasite resistance and host condition. J Anim Ecol 2023; 92:2175-2188. [PMID: 37732627 DOI: 10.1111/1365-2656.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Diet composition modulates animals' ability to resist parasites and recover from stress. Broader diet breadths enable omnivores to mount dynamic responses to parasite attack, but little is known about how plant/prey mixing might influence responses to infection. Using omnivorous deer mice (Peromyscus maniculatus) as a model, we examine how varying plant and prey concentrations in blended diets influence resistance and body condition following infestation by Rocky Mountain wood ticks (Dermacentor andersoni). In two repeated experiments, deer mice fed for 4 weeks on controlled diets that varied in proportions of seeds and insects were then challenged with 50 tick larvae in two sequential infestations. The numbers of ticks successfully feeding on mice declined by 25% and 66% after the first infestation (in the first and second experiments, respectively), reflecting a pattern of acquired resistance, and resistance was strongest when plant/prey ratios were more equally balanced in mouse diets, relative to seed-dominated diets. Diet also dramatically impacted the capacity of mice to cope with tick infestations. Mice fed insect-rich diets lost 15% of their body weight when parasitized by ticks, while mice fed seed-rich diets lost no weight at all. While mounting/maintaining an immune response may be energetically demanding, mice may compensate for parasitism with fat and carbohydrate-rich diets. Altogether, these results suggest that a diverse nutritional landscape may be key in enabling omnivores' resistance and resilience to infection and immune stressors in their environments.
Collapse
Affiliation(s)
- Carmen K Blubaugh
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cami R Jones
- Department of Entomology, Washington State University, Pullman, Washington, USA
| | - Chloe Josefson
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Glen A Scoles
- Invasive Insect Biocontrol & Behavior Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - William E Snyder
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jeb P Owen
- Department of Entomology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
27
|
Han D, Wu Y, Lu D, Pang J, Hu J, Zhang X, Wang Z, Zhang G, Wang J. Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation. Cell Death Dis 2023; 14:656. [PMID: 37813835 PMCID: PMC10562418 DOI: 10.1038/s41419-023-06190-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Dietary phenolic acids alleviate intestinal inflammation through altering gut microbiota composition and regulating macrophage activation. However, it is unclear how individual phenolic acids affect the interactions between intestinal microbiota and macrophages in the context of inflammatory bowel disease (IBD). Here, we aim to elucidate the mechanism by which phenolic acids alleviate gut inflammation. Mice with or without depletion of macrophages were administered with four individual phenolic acids including chlorogenic, ferulic, caffeic, and ellagic acids, following dextran sulfate sodium (DSS) treatment. Gut microbiota depletion and fecal microbiota transplantation were further performed in mice to investigate the role of the gut microbiota in phenolic acid-mediated protective effect. Colitis severity was evaluated using histological, serological, and immunological measurements. Absence of intestinal microbiota and macrophage deteriorate the epithelial injury in DSS colitis. Chlorogenic acid mitigated colitis by reducing M1 macrophage polarization through suppression of pyruvate kinase M 2 (Pkm2)-dependent glycolysis and inhibition of NOD-like receptor protein 3 (Nlrp3) activation. However, ferulic acid-mediated reduction of colitis was neutrophil-dependent through diminishing the formation of neutrophil extracellular traps. On the other hand, the beneficial effects of caffeic acid and ellagic acid were dependent upon the gut microbiota. In fact, urolithin A (UroA), a metabolite transformed from ellagic acid by the gut microbiota, was found to alleviate colitis and enhance gut barrier function in an IL22-dependent manner. Overall, our findings demonstrated that the mechanisms by which phenolic acid protected against colitis were resulted from the interaction between gut microbiota and macrophage-neutrophil.
Collapse
Affiliation(s)
- Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongdong Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Guan L, Liu R. The Role of Diet and Gut Microbiota Interactions in Metabolic Homeostasis. Adv Biol (Weinh) 2023; 7:e2300100. [PMID: 37142556 DOI: 10.1002/adbi.202300100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Diet is a pivotal determinant in shaping the structure and function of resident microorganisms in the gut through different food components, nutritive proportion, and calories. The effects of diet on host metabolism and physiology can be mediated through the gut microbiota. Gut microbiota-derived metabolites have been shown to regulate glucose and lipid metabolism, energy consumption, and the immune system. On the other hand, emerging evidence indicates that baseline gut microbiota could predict the efficacy of diet intervention, highlighting gut microbiota can be harnessed as a biomarker in personalized nutrition. In this review, the alterations of gut microbiota in different dietary components and dietary patterns, and the potential mechanisms in the diet-microbiota crosstalk are summarized to understand the interactions of diet and gut microbiota on the impact of metabolic homeostasis.
Collapse
Affiliation(s)
- Lizhi Guan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
29
|
Yao S, Zhao Y, Chen H, Sun R, Chen L, Huang J, Yu Z, Chen S. Exploring the Plasticity of Diet on Gut Microbiota and Its Correlation with Gut Health. Nutrients 2023; 15:3460. [PMID: 37571397 PMCID: PMC10420685 DOI: 10.3390/nu15153460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Dietary habits have been proven to help alter the composition of gut microbiota, and exploring the impact of nutritional patterns on gut microbiota changes can help protect gut health. However, few studies have focused on the dietary impact on the gut microbiota over an experimental timeframe. In this study, 16S rRNA gene sequencing was employed to investigate the gut microbiota of mice under different dietary patterns, including AIN-93G diet (Control), high protein diet (HPD), high fiber diet (HFD), and switch diet (Switch). The alpha diversity of the HPD group significantly decreased, but HFD can restore this decline. During HPD, some genera were significantly upregulated (e.g., Feacalibaculum) and downregulated (e.g., Parabacteroides). However, after receiving HFD, other genera were upregulated (e.g., Akkermansia) and downregulated (e.g., Lactobacillus). In addition, the interaction between pathogenic bacteria was more pronounced during HPD, while the main effect was probiotics during HFD. In conclusion, the plasticity exhibited by the gut microbiota was subject to dietary influences, wherein disparate dietary regimens hold pivotal significance in upholding the well-being of the host. Therefore, our findings provide new ideas and references for the relationship between diets and gut microbiota.
Collapse
Affiliation(s)
- Siqi Yao
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha 410008, China;
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Yiming Zhao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410078, China; (H.C.); (J.H.)
| | - Ruizheng Sun
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410078, China; (H.C.); (J.H.)
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
30
|
Šik Novak K, Bogataj Jontez N, Petelin A, Hladnik M, Baruca Arbeiter A, Bandelj D, Pražnikar J, Kenig S, Mohorko N, Jenko Pražnikar Z. Could Gut Microbiota Composition Be a Useful Indicator of a Long-Term Dietary Pattern? Nutrients 2023; 15:2196. [PMID: 37432336 DOI: 10.3390/nu15092196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the known effects of diet on gut microbiota composition, not many studies have evaluated the relationship between distinct dietary patterns and gut microbiota. The aim of our study was to determine whether gut microbiota composition could be a useful indicator of a long-term dietary pattern. We collected data from 89 subjects adhering to omnivorous, vegetarian, vegan, and low-carbohydrate, high-fat diet that were equally distributed between groups and homogenous by age, gender, and BMI. Gut microbiota composition was analyzed with a metabarcoding approach using V4 hypervariable region of the 16S rRNA gene. K-means clustering of gut microbiota at the genus level was performed and the nearest neighbor classifier was applied to predict microbiota clustering classes. Our results suggest that gut microbiota composition at the genus level is not a useful indicator of a subject's dietary pattern, with the exception of a vegan diet that is represented by a high abundance of Prevotella 9. Based on our model, a combination of 26 variables (anthropometric measurements, serum biomarkers, lifestyle factors, gastrointestinal symptoms, psychological factors, specific nutrients intake) is more important to predict an individual's microbiota composition cluster, with 91% accuracy, than the dietary intake alone. Our findings could serve to develop strategies to educate individuals about changes of some modifiable lifestyle factors, aiming to classify them into clusters with favorable health markers, independent of their dietary pattern.
Collapse
Affiliation(s)
- Karin Šik Novak
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Nives Bogataj Jontez
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Jure Pražnikar
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Saša Kenig
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Nina Mohorko
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Zala Jenko Pražnikar
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| |
Collapse
|
31
|
Pi Y, Wu Y, Zhang X, Lu D, Han D, Zhao J, Zheng X, Zhang S, Ye H, Lian S, Bai Y, Wang Z, Tao S, Ni D, Zou X, Jia W, Zhang G, Li D, Wang J. Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization. MICROBIOME 2023; 11:19. [PMID: 36721210 PMCID: PMC9887892 DOI: 10.1186/s40168-022-01458-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Low birth weight (LBW) is associated with intestinal inflammation and dysbiosis after birth. However, the underlying mechanism remains largely unknown. OBJECTIVE In the present study, we aimed to investigate the metabolism, therapeutic potential, and mechanisms of action of bile acids (BAs) in LBW-induced intestinal inflammation in a piglet model. METHODS The fecal microbiome and BA profile between LBW and normal birth weight (NBW) neonatal piglets were compared. Fecal microbiota transplantation (FMT) was employed to further confirm the linkage between microbial BA metabolism and intestinal inflammation. The therapeutic potential of ursodeoxycholic acid (UDCA), a highly differentially abundant BA between LBW and NBW piglets, in alleviating colonic inflammation was evaluated in both LBW piglets, an LBW-FMT mice model, and a DSS-induced colitis mouse model. The underlying cellular and molecular mechanisms by which UDCA suppresses intestinal inflammation were also investigated in both DSS-treated mice and a macrophage cell line. Microbiomes were analyzed by using 16S ribosomal RNA sequencing. Fecal and intestinal BA profiles were measured by using targeted BA metabolomics. Levels of farnesoid X receptor (FXR) were knocked down in J774A.1 cells with small interfering RNAs. RESULTS We show a significant difference in both the fecal microbiome and BA profiles between LBW and normal birth weight animals in a piglet model. Transplantation of the microbiota of LBW piglets to antibiotic-treated mice leads to intestinal inflammation. Importantly, oral administration of UDCA, a major BA diminished in the intestinal tract of LBW piglets, markedly alleviates intestinal inflammation in LBW piglets, an LBW-FMT mice model, and a mouse model of colitis by inducing M2 macrophage polarization. Mechanistically, UDCA reduces inflammatory cytokine production by engaging BA receptor FXR while suppressing NF-κB activation in macrophages. CONCLUSIONS These findings establish a causal relationship between LBW-associated intestinal abnormalities and dysbiosis, suggesting that restoring intestinal health and postnatal maldevelopment of LBW infants may be achieved by targeting intestinal microbiota and BA metabolism. Video Abstract.
Collapse
Affiliation(s)
- Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. LTD, Ganzhou, 341000, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongdong Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shiyi Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, The Netherlands
| | - Hao Ye
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, The Netherlands
| | - Shuai Lian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongjiao Ni
- State Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. LTD, Ganzhou, 341000, China
| | - Xinhua Zou
- State Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. LTD, Ganzhou, 341000, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Defa Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
32
|
Li X, Shan K, Li C, Zhou G. Intermittent Protein Diets Alter Hepatic Lipid Accumulation by Changing Tryptophan Metabolism in a Fast-Response Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3261-3272. [PMID: 36634216 DOI: 10.1021/acs.jafc.2c06576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In modern life, the fluctuation of dietary protein levels is common, in particular, for low-income populations. However, its effect on human health is little known. Alternating changes of low and high casein or pork protein were used to simulate the fluctuation of dietary protein content in mice. Hepatic lipid accumulation showed a fast response to alternating changes of low- and high-protein diets. Correspondingly, some gut microbiota and tryptophan metabolite composition also showed a fast response to dietary protein changes. The fast response of 3-hydroxykynurenine (3-HK) was proven to inhibit hepatic lipid accumulation in vitro. Therefore, intermittent protein diets modulated hepatic lipid accumulation through 3-HK. These findings highlighted the sensitivity of hepatic lipid accumulation to dietary protein levels.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095Nanjing, P. R. China
| | - Kai Shan
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095Nanjing, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095Nanjing, P. R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095Nanjing, P. R. China
| |
Collapse
|
33
|
Alzahrani A, Alzahrani AJ, Shori AB. Inflammatory Bowel Disease: A focus on the Role of Probiotics in Ulcerative Colitis. Open Access Maced J Med Sci 2023. [DOI: 10.3889/oamjms.2023.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a cluster of disorders of the gastrointestinal tract characterized by chronic inflammation and imbalance of the gut microbiota in a genetically vulnerable host. Crohn’s disease and ulcerative colitis (UC) are well-known types of IBD, and due to its high prevalence, IBD has attracted the attention of researchers globally. The exact etiology of IBD is still unknown; however, various theories have been proposed to provide some explanatory clues that include gene-environment interactions and dysregulated immune response to the intestinal microbiota. These diseases are manifested by several clinical symptoms that depend on the affected segment of the intestine such as diarrhea, abdominal pain, and rectal bleeding. In this era of personalized medicine, various options are developing starting from improved intestinal microecology, small molecules, exosome therapy, to lastly stem cell transplantation. From another aspect, and in parallel to pharmacological intervention, nutrition, and dietary support have shown effectiveness in IBD management. There is an increasing evidence supporting the benefit of probiotics in the prophylaxis and treatment of IBD. There are several studies that have demonstrated that different probiotics alleviate UC. The present review summarizes the progress in the IBD studies focusing and exploring more on the role of probiotics as a potential adjunct approach in UC management.
Collapse
|
34
|
Najmanová L, Vídeňská P, Cahová M. Healthy microbiome – a mere idea or a sound concept? Physiol Res 2022. [PMID: 36426891 DOI: 10.33549/physiolres.934967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hundreds of studies in last decades have aimed to compare the microbiome of patients suffering from diverse diseases with that of healthy controls. The microbiome-related component was additionally identified in pathophysiology of many diseases formerly considered to depend only on the host physiology. This, however, opens important questions like: “What is the healthy microbiome?” or “Is it possible to define it unequivocally?”. In this review, we describe the main hindrances complicating the definition of “healthy microbiome” in terms of microbiota composition. We discuss the human microbiome from the perspective of classical ecology and we advocate for the shift from the stress on microbiota composition to the functions that microbiome ensures for the host. Finally, we propose to leave the concept of ideal healthy microbiome and replace it by focus on microbiome advantageous for the host, which always depends on the specific context like the age, genetics, dietary habits, body site or physiological state.
Collapse
Affiliation(s)
| | | | - M Cahová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
35
|
Abstract
The diet and gut microbiota have been extensively interrogated as a fuel for gut inflammation in inflammatory bowel diseases (IBDs) in the last few years. Here, we review how specific nutrients, typically enriched in a Western diet, instigate or deteriorate experimental gut inflammation in a genetically susceptible host and we discuss microbiota-dependent and independent mechanisms. We depict the study landscape of nutritional trials in paediatric and adult IBD and delineate common grounds for dietary advice. Conclusively, the diet reflects a critical rheostat of microbial dysbiosis and gut inflammation in IBD. Dietary restriction by exclusive enteral nutrition, with or without a specific exclusion diet, is effectively treating paediatric Crohn's disease, while adult IBD trials are less conclusive. Insights into molecular mechanisms of nutritional therapy will change the perception of IBD and will allow us to enter the era of precision nutrition. To achieve this, we discuss the need for carefully designed nutritional trials with scientific rigour comparable to medical trials, which also requires action from stake holders. Establishing evidence-based dietary therapy for IBD does not only hold promise to avoid long-term immunosuppression, but to provide a widely accessible therapy at low cost. Identification of dietary culprits disturbing gut health also bears the potential to prevent IBD and allows informed decision making in food politics.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Medicine I, Gastroenterology, Hepatology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
36
|
Lappi J, Silventoinen-Veijalainen P, Vanhatalo S, Rosa-Sibakov N, Sozer N. The nutritional quality of animal-alternative processed foods based on plant or microbial proteins and the role of the food matrix. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Tan PY, Amini F, Mitra SR. Dietary protein interacts with polygenic risk scores and modulates serum concentrations of C-reactive protein in overweight and obese Malaysian adults. Nutr Res 2022; 107:75-85. [PMID: 36206635 DOI: 10.1016/j.nutres.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 12/27/2022]
Abstract
Dietary intake may interact with gene variants and modulate inflammatory status. This study aimed to investigate the combined effect of fat mass and obesity-associated rs9930501, rs9930506, and rs9932754 and beta-2 adrenergic receptor rs1042713 on C-reactive protein (CRP) concentrations using polygenic risk scores (PRS), and modulatory effect of dietary nutrients on these associations. We hypothesized that higher protein intake is associated with lower inflammatory status in individuals genetically predisposed to obesity. PRS was computed as the weighted sum of the risk alleles possessed and stratified into first (0-0.64), second (0.65-3.59), and third (3.60-8.18) tertiles. A total of 128 overweight and obese Malaysian adults were dichotomized into groups of low and elevated inflammatory status (CRP concentrations ≤3 and >3 mg/L, respectively). One-half of the study participants (51%) were found to have elevated inflammatory status. Second- and third-tertile PRS were significantly associated with increased odds of elevated inflammatory status, 7.56 (95% confidence interval [CI], 1.98-28.80; adjusted P = .003) and 3.87 (95% CI, 1.10-13.60; adjusted P = .035), respectively. Individuals in the third-tertile PRS had significantly lower CRP concentrations (4.61 ± 1.3 mg/L vs 9.60 ± 2.6 mg/L, P = .019) when consuming ≥14% energy from protein (with an average of 18.0% ± 2.4%, 43.0% ± 7.7%, and 39.0% ± 8.0% energy from protein, carbohydrate, and fat per day). In conclusion, third-tertile PRS was significantly associated with increased odds of elevated CRP; higher protein intake may alleviate inflammatory status and reduce CRP concentrations systemically in those individuals.
Collapse
Affiliation(s)
- Pui Yee Tan
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom.
| | - Farahnaz Amini
- School of Healthy Aging, Medical Aesthetics & Regenerative Medicine, UCSI University, KL Campus, Malaysia
| | - Soma Roy Mitra
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
38
|
Yan J, Wang L, Gu Y, Hou H, Liu T, Ding Y, Cao H. Dietary Patterns and Gut Microbiota Changes in Inflammatory Bowel Disease: Current Insights and Future Challenges. Nutrients 2022; 14:nu14194003. [PMID: 36235658 PMCID: PMC9572174 DOI: 10.3390/nu14194003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a result of a complex interplay between genes, host immune response, gut microbiota, and environmental factors. As one of the crucial environmental factors, diet plays a pivotal role in the modulation of gut microbiota community and the development of IBD. In this review, we present an overview of dietary patterns involved in the pathogenesis and management of IBD, and analyze the associated gut microbial alterations. A Westernized diet rich in protein, fats and refined carbohydrates tends to cause dysbiosis and promote IBD progression. Some dietary patterns have been found effective in obtaining IBD clinical remission, including Crohn's Disease Exclusion Diet (CDED), Mediterranean diet (MD), Anti-Inflammatory Diet (AID), the low-"Fermentable Oligo-, Di-, Mono-saccharides and Polyols" (FODMAP) diet, Specific Carbohydrate Diet (SCD), and plant-based diet, etc. Overall, many researchers have reported the role of diet in regulating gut microbiota and the IBD disease course. However, more prospective studies are required to achieve consistent and solid conclusions in the future. This review provides some recommendations for studies exploring novel and potential dietary strategies that prevent IBD.
Collapse
Affiliation(s)
- Jing Yan
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Nutrition, the Second Affiliated Hospital, Air Force Medical University, Xi’an 710038, China
| | - Lei Wang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Gastroenterology and Hepatology, the Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Yu Gu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huiqin Hou
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianyu Liu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yiyun Ding
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence:
| |
Collapse
|
39
|
Yang H, Qu Y, Gao Y, Sun S, Wu R, Wu J. Research Progress on the Correlation between the Intestinal Microbiota and Food Allergy. Foods 2022; 11:foods11182913. [PMID: 36141041 PMCID: PMC9498665 DOI: 10.3390/foods11182913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The increasing incidence of food allergy is becoming a substantial public health concern. Increasing evidence suggests that alterations in the composition of the intestinal microbiota play a part in the development of food allergy. Additionally, the application of probiotics to correct gut microbiota imbalances and regulate food allergy has become a research hotspot. However, the mechanism by which the gut microbiota regulates food allergy and the efficacy of probiotics are still in the preliminary exploration stage, and there are no clear and specific conclusions. The aim of this review is to provide information regarding the immune mechanism underlying food allergy, the correlation between the intestinal microbiota and food allergy, a detailed description of causation, and mechanisms by which the intestinal microbiota regulates food allergy. Subsequently, we highlight how probiotics modulate the gut microbiome–immune axis to alleviate food allergy. This study will contribute to the dovetailing of bacterial therapeutics with immune system in allergic individuals to prevent food allergy and ameliorate food allergy symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Rina Wu
- Correspondence: or ; Tel./Fax: +86-24-88487161
| | | |
Collapse
|
40
|
The Role of Diet in Regulation of Macrophages Functioning. Biomedicines 2022; 10:biomedicines10092087. [PMID: 36140188 PMCID: PMC9495355 DOI: 10.3390/biomedicines10092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The great importance of diet for health and high life-expectancy is established. The impact of nutrients on immune system is a point of growing research interest. Recent studies have found pro- and anti-inflammatory properties of some diet patterns and nutrients that can be used from the bench to the bedside for chronic low-grade inflammatory status correction. In this regard, the assessment of potential effects of nutrition on macrophage differentiation, proliferation, and functioning in health and disease is highly demanded. In this review, we present current data on the effects of nutrients on the macrophage functioning.
Collapse
|
41
|
Abstract
Systemic Lupus Erythematosus is a complex autoimmune disease and its etiology remains unknown. Increased gut permeability has been reported in lupus patients, yet whether it promotes or results from lupus progression is unclear. Recent studies indicate that an impaired intestinal barrier allows the translocation of bacteria and bacterial components into systemic organs, increasing immune cell activation and autoantibody generation. Indeed, induced gut leakage in a mouse model of lupus enhanced disease characteristics, including the production of anti-dsDNA antibody, serum IL-6 as well as cell apoptosis. Gut microbiota dysbiosis has been suggested to be one of the factors that decreases gut barrier integrity by outgrowing harmful bacteria and their products, or by perturbation of gut immune homeostasis, which in turn affects gut barrier integrity. The restoration of microbial balance eliminates gut leakage in mice, further confirming the role of microbiota in maintaining gut barrier integrity. In this review, we discuss recent advances on the association between microbiota dysbiosis and leaky gut, as well as their influences on the progression of lupus. The modifications on host microbiota and gut integrity may offer insights into the development of new lupus treatment.
Collapse
Affiliation(s)
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
42
|
Xie Y, Ma Y, Cai L, Jiang S, Li C. Reconsidering Meat Intake and Human Health: A Review of Current Research. Mol Nutr Food Res 2022; 66:e2101066. [PMID: 35199948 DOI: 10.1002/mnfr.202101066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Meat consumption is gradually increasing and its impact on health has attracted widespread attention, resulting in epidemiological studies proposing a reduction in meat and processed meat intake. This review briefly summarizes recent advances in understanding the effects of meat or processed meat on human health, as well as the underlying mechanisms. Meat consumption varies widely among individuals, populations, and regions, with higher consumption in developed countries than in developing countries. However, increasing meat consumption may not be the main cause of increasing incidence of chronic disease, since the development of chronic disease is a complex physiological process that involves many factors, including excessive total energy intake and changes in food digestion processes, gut microbiota composition, and liver metabolism. In comparison, unhealthy dietary habits and a sedentary lifestyle with decreasing energy expenditure are factors more worthy of reflection. Meat and meat products provide high-value protein and many key essential micronutrients. In short, as long as excessive intake and overprocessing of meats are avoided, meat remains an indispensable source of nutrition for human health.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafang Ma
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linlin Cai
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
43
|
Calcuttawala F. Nutrition as a key to boost immunity against COVID-19. Clin Nutr ESPEN 2022; 49:17-23. [PMID: 35623808 PMCID: PMC9012504 DOI: 10.1016/j.clnesp.2022.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
The Coronavirus-disease 2019 (COVID-19) was declared as a global pandemic on March 11, 2020 by the World Health Organization. Since then, the scientific community has been actively engaged in developing a vaccine against the dreaded disease. Considerable research has also been performed for drugs that can directly interfere with the viral replication pathway. However, the production of these vaccines and drugs demands a lot of time and effort which is undesirable considering the pace at which the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is spreading across the continents. For this reason, the possible role of dietary nutrients in reducing the risk of SARS-CoV-2 infection as well as mitigating the symptoms, may be explored. These natural substances are readily available, have negligible side effects and confer several benefits to the immune system. Macronutrients like proteins are vital for antibody production. Dietary constituents such as omega-3-fatty acids, vitamin C, vitamin E, phytochemicals such as carotenoids and polyphenols exhibit anti-inflammatory and antioxidant properties. This review highlights the significance of relevant nutrients in boosting the immune system.
Collapse
|
44
|
Schwarzfischer M, Rogler G. The Intestinal Barrier-Shielding the Body from Nano- and Microparticles in Our Diet. Metabolites 2022; 12:223. [PMID: 35323666 PMCID: PMC8952728 DOI: 10.3390/metabo12030223] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Nano- and microparticles are an implicit part of the human diet. They are unknowingly ingested with our food that contains them as additives or pollutants. However, their impact on human health is not yet understood and controversially discussed. The intestinal epithelial barrier shields our body against exogenous influences, such as commensal bacteria, pathogens, and body-foreign particles and, therefore, protects our body integrity. Breakdown of the intestinal epithelial barrier and aberrant immune responses are key events in the pathogenesis of inflammatory bowel disease (IBD). Epithelial lesions might enable systemic translocation of nano- and microparticles into the system, eventually triggering an excessive immune response. Thus, IBD patients could be particularly vulnerable to adverse health effects caused by the ingestion of synthetic particles with food. The food-additive titanium dioxide (TiO2) serves as a coloring agent in food products and is omnipresent in the Western diet. TiO2 nanoparticles exacerbate intestinal inflammation by activation of innate and adaptive immune response. Because of serious safety concerns, the use of TiO2 as a food additive was recently banned from food production within the European Union. Due to environmental pollution, plastic has entered the human food chain, and plastic microparticles have been evidenced in the drinking water and comestible goods. The impact of plastic ingestion and its resulting consequences on human health is currently the subject of intense research. Focusing on TiO2 and plastic particles in the human diet and their impact on epithelial integrity, gut homeostasis, and intestinal inflammation, this review is addressing contemporary hot topics which are currently attracting a lot of public attention.
Collapse
Affiliation(s)
| | - Gerhard Rogler
- Department of Gastroenterology & Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
45
|
BARATI M, JABBARI M, FATHOLLAHI M, FATHOLLAHI A, KHAKI V, JAVANMARDI F, JAZAYERI SMHM, SHABANI M, DAVOODI SH, HUSEYN E, HADIAN Z, LORENZO JM, KHANEGHAH AM. Evaluation of different types of milk proteins-derived epitopes using in-silico tools: a primarily study to propose a new definition for bioactive peptides. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.102821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meisam BARATI
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | | | | - Vahid KHAKI
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | | - Mehdi SHABANI
- Shahid Beheshti University of Medical Sciences, Iran
| | - Sayed Hossein DAVOODI
- Shahid Beheshti University of Medical Sciences, Iran; Shahid Beheshti University of Medical Sciences, Iran
| | - Elcin HUSEYN
- Azerbaijan State Oil and Industry University, Azerbaijan
| | - Zahra HADIAN
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | |
Collapse
|
46
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
47
|
Ahn E, Jeong H, Kim E. Differential effects of various dietary proteins on dextran sulfate sodium-induced colitis in mice. Nutr Res Pract 2022; 16:700-715. [DOI: 10.4162/nrp.2022.16.6.700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Eunyeong Ahn
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Hyejin Jeong
- Gyeongsangbuk-do Institute of Health & Environment, Yeongcheon 38874, Korea
| | - Eunjung Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| |
Collapse
|
48
|
Murphy EA, Velázquez KT. The role of diet and physical activity in influencing the microbiota/microbiome. DIET, INFLAMMATION, AND HEALTH 2022:693-745. [DOI: 10.1016/b978-0-12-822130-3.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Hart L, Verburgt CM, Wine E, Zachos M, Poppen A, Chavannes M, Van Limbergen J, Pai N. Nutritional Therapies and Their Influence on the Intestinal Microbiome in Pediatric Inflammatory Bowel Disease. Nutrients 2021; 14:nu14010004. [PMID: 35010879 PMCID: PMC8746384 DOI: 10.3390/nu14010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, autoimmune disorder of the gastrointestinal tract with numerous genetic and environmental risk factors. Patients with Crohn’s disease (CD) or ulcerative colitis (UC) often demonstrate marked disruptions of their gut microbiome. The intestinal microbiota is strongly influenced by diet. The association between the increasing incidence of IBD worldwide and increased consumption of a westernized diet suggests host nutrition may influence the progression or treatment of IBD via the microbiome. Several nutritional therapies have been studied for the treatment of CD and UC. While their mechanisms of action are only partially understood, existing studies do suggest that diet-driven changes in microbial composition and function underlie the diverse mechanisms of nutritional therapy. Despite existing therapies for IBD focusing heavily on immune suppression, nutrition is an important treatment option due to its superior safety profile, potentially low cost, and benefits for growth and development. These benefits are increasingly important to patients. In this review, we will describe the clinical efficacy of the different nutritional therapies that have been described for the treatment of CD and UC. We will also describe the effects of each nutritional therapy on the gut microbiome and summarize the strength of the literature with recommendations for the practicing clinician.
Collapse
Affiliation(s)
- Lara Hart
- Department of Paediatrics, Division of Paediatric Gastroenterology & Nutrition, McMaster University, Hamilton, ON L8N 3Z5, Canada; (L.H.); (M.Z.)
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Charlotte M. Verburgt
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (J.V.L.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands
| | - Eytan Wine
- Edmonton Paediatric IBD Clinic, Division of Paediatric Gastroenterology and Nutrition, Departments of Paediatrics & Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Mary Zachos
- Department of Paediatrics, Division of Paediatric Gastroenterology & Nutrition, McMaster University, Hamilton, ON L8N 3Z5, Canada; (L.H.); (M.Z.)
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Alisha Poppen
- College of Medicine and Health, University College Cork, T12 K8AF Cork, Ireland;
| | - Mallory Chavannes
- Department of Paediatrics, Division of Paediatric Gastroenterology and Nutrition, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Johan Van Limbergen
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (J.V.L.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Paediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nikhil Pai
- Department of Paediatrics, Division of Paediatric Gastroenterology & Nutrition, McMaster University, Hamilton, ON L8N 3Z5, Canada; (L.H.); (M.Z.)
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Correspondence: ; Tel.: +905-521-2100 (ext. 73587); Fax: +905-521-2655
| |
Collapse
|
50
|
Wolter M, Grant ET, Boudaud M, Steimle A, Pereira GV, Martens EC, Desai MS. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol 2021; 18:885-902. [PMID: 34580480 DOI: 10.1038/s41575-021-00512-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases, including inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, have distinct clinical presentations but share underlying patterns of gut microbiome perturbation and intestinal barrier dysfunction. Their potentially common microbial drivers advocate for treatment strategies aimed at restoring appropriate microbiome function, but individual variation in host factors makes a uniform approach unlikely. In this Perspective, we consolidate knowledge on diet-microbiome interactions in local inflammation, gut microbiota imbalance and host immune dysregulation. By understanding and incorporating the effects of individual dietary components on microbial metabolic output and host physiology, we examine the potential for diet-based therapies for autoimmune disease prevention and treatment. We also discuss tools targeting the gut microbiome, such as faecal microbiota transplantation, probiotics and orthogonal niche engineering, which could be optimized using custom dietary interventions. These approaches highlight paths towards leveraging diet for precise engineering of the gut microbiome at a time of increasing autoimmune disease.
Collapse
Affiliation(s)
- Mathis Wolter
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Eric C Martens
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg. .,Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|