1
|
Wei ZX, Jiang SH, Qi XY, Cheng YM, Liu Q, Hou XY, He J. scRNA-seq of the intestine reveals the key role of mast cells in early gut dysfunction associated with acute pancreatitis. World J Gastroenterol 2025; 31:103094. [PMID: 40182603 PMCID: PMC11962851 DOI: 10.3748/wjg.v31.i12.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Intestinal barrier dysfunction is a prevalent and varied manifestation of acute pancreatitis (AP). Molecular mechanisms underlying the early intestinal barrier in AP remain poorly understood. AIM To explore the biological processes and mechanisms of intestinal injury associated with AP, and to find potential targets for early prevention or treatment of intestinal barrier injury. METHODS This study utilized single-cell RNA sequencing of the small intestine, alongside in vitro and in vivo experiments, to examine intestinal barrier function homeostasis during the early stages of AP and explore involved biological processes and potential mechanisms. RESULTS Seventeen major cell types and 33232 cells were identified across all samples, including normal, AP1 (4x caerulein injections, animals sacrificed 2 h after the last injection), and AP2 (8x caerulein injections, animals sacrificed 4 h after the last injection). An average of 980 genes per cell was found in the normal intestine, compared to 927 in the AP1 intestine and 1382 in the AP2 intestine. B cells, dendritic cells, mast cells (MCs), and monocytes in AP1 and AP2 showed reduced numbers compared to the normal intestine. Enterocytes, brush cells, enteroendocrine cells, and goblet cells maintained numbers similar to the normal intestine, while cytotoxic T cells and natural killer (NK) cells increased. Enterocytes in early AP exhibited elevated programmed cell death and intestinal barrier dysfunction but retained absorption capabilities. Cytotoxic T cells and NK cells showed enhanced pathogen-fighting abilities. Activated MCs, secreted chemokine (C-C motif) ligand 5 (CCL5), promoted neutrophil and macrophage infiltration and contributed to barrier dysfunction. CONCLUSION These findings enrich our understanding of biological processes and mechanisms in AP-associated intestinal injury, suggesting that CCL5 from MCs is a potential target for addressing dysfunction.
Collapse
Affiliation(s)
- Zu-Xing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Shi-He Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xiao-Yan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yi-Miao Cheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xu-Yang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jun He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
2
|
Li K, Zhu Y, Fang Z, Geng M, Zhang J, Zheng Y, Cao Y, Wei X, Yang J. Fish requires FasL to facilitate CD8+ T-cell function and antimicrobial immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf022. [PMID: 40073091 DOI: 10.1093/jimmun/vkaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 03/14/2025]
Abstract
Although bony fish have CD8+ T cells, the mechanisms by which these early-evolved cytotoxic cells combat intracellular pathogens remain unclear. In the present study, using Nile tilapia as a model, we investigated the detailed function, mechanism, and evolutionary pattern concerning CD8+ T cells. By depleting CD8+ T cells, they are found essential in combating Edwardsiella piscicida infection. Using siRNA interference, we propose that unlike the strategy predominantly relying on perforin/granzyme in mammals, CD8+ T-cell effector function is mediated by both FasL and perforin/granzyme in fish. Upon E. piscicida infection, FasL is induced to express in CD8+ T cells; both recombinant FasL and adoptively transferred FasL+CD8+ T cells facilitate the apoptosis of target cells. Meanwhile, tilapia FasL also triggers the apoptosis of T cells to archive homeostasis. Since advances in mammals highlight the indispensable role of FasL in maintaining CD8+ T-cell homeostasis, rather than in effector function or anti-infective immunity, we therefore propose the unique dual function of FasL in executing effector function and maintaining homeostasis in fish. Mechanistically, tilapia T cells utilize mTORC1/c-Myc axis to regulate pathogen-induced FasL expression, which binds to Fas and activates caspase-8/caspase-3 pathway, mediating apoptosis in target cells and T cells themselves. This represents a novel mechanism underpinning CD8+ T-cell function in fish. Our findings demonstrate that CD8+ T cells reshaped the FasL-dependent strategy throughout evolution, thereby enhancing the precision and specificity of adaptive immunity.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yating Zhu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhichao Fang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
3
|
Wang Z, Yang Q, Wu G, Ma J, Luo L, Yin W, Wu M. Structural analysis and adjuvant activity of a polysaccharide from Urtica macrorrhiza. Int J Biol Macromol 2024; 283:137433. [PMID: 39542334 DOI: 10.1016/j.ijbiomac.2024.137433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Developing new vaccine adjuvants for clinical use remains a significant challenge. Herein, we reported a polysaccharide (UMRG) from Urtica macrorrhiza. It has a molecular weight of 743.35 kDa and is composed of rhamnose (Rha), glucuronic acid (GlcA), galacturonic acid (GalA), and galactose (Gal) in a molar ratio of 1.94: 1.00: 4.17: 1.79. Structural analysis revealed that UMRG contains a rhamnogalacturonan I backbone with short side chains of β-Galp-(1→4)-β-GlcAp-(1→4)-β-Glap-(1→ linked at the C-4 position of →2,4)-α-Rhap-(1→. In vivo, UMRG significantly increased the production of antigen-specific IgG, IgG1, and IgG2a by 1.91-, 2.09-, and 3.43-fold, respectively, on day 42 post-immunization. It also promoted the proliferation of splenic lymphocytes, increasing the proportion of CD3+ and CD3+CD4+ T lymphocytes from 32.63 ± 1.13 % to 38.13 ± 2.03 % and from 21.05 ± 0.93 % to 24.34 ± 1.21 %, respectively. Further investigation demonstrated that UMRG promoted the phagocytosis of antigens by dendritic cells, improved their maturation, and stimulated the secretion of the cytokines TNF-α, IL-12, and IL-6. Additionally, both in vitro and in vivo experiments demonstrated that UMRG displayed good biosafety. Our results suggested the Urtica macrorrhiza polysaccharide may exhibit the potential to be developed as a highly efficient and low-toxicity immune adjuvant.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Yang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; School of Pharmacy, Dali University, Dali 671003, China.; Yunnan Baiyao Group CO.LTD, Kunming 650500, China
| | - Genrui Wu
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; School of Pharmacy, Dali University, Dali 671003, China
| | - Jiancheng Ma
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; School of Pharmacy, Dali University, Dali 671003, China
| | - Lan Luo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenjie Yin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China.
| | - Mingyi Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.; University of Chinese Academy of Sciences, Beijing 100049, China..
| |
Collapse
|
4
|
Zhou Y, Gong J, Deng X, Shen L, Liu L. Novel insights: crosstalk with non-puerperal mastitis and immunity. Front Immunol 2024; 15:1431681. [PMID: 39148739 PMCID: PMC11324573 DOI: 10.3389/fimmu.2024.1431681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
The two primary types of non-puerperal mastitis (NPM) are granulomatous lobular mastitis (GLM) and plasma cell mastitis (PCM). Existing research indicates that immune inflammatory response is considered to be the core of the pathogenesis of GLM and PCM, and both innate and adaptive immune responses play an important role in the pathophysiology of PCM and GLM. However, the regulatory balance between various immune cells in these diseases is still unclear. Consequently, we present a comprehensive summary of the immune-related variables and recent advances in GLM and PCM.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Gong
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xianguang Deng
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lele Shen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
Liu L, Cai P, Gu W, Duan X, Gao S, Ma X, Ma Y, Ma S, Li G, Wang X, Cai K, Wang Y, Cai T, Zhao H. Evaluation of vaccine candidates against Rhodococcus equi in BALB/c mice infection model: cellular and humoral immune responses. BMC Microbiol 2024; 24:249. [PMID: 38977999 PMCID: PMC11229254 DOI: 10.1186/s12866-024-03408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that mainly causes fatal lung and extrapulmonary abscesses in foals and immunocompromised individuals. To date, no commercial vaccine against R. equi exists. We previously screened all potential vaccine candidates from the complete genome of R. equi using a reverse vaccinology approach. Five of these candidates, namely ABC transporter substrate-binding protein (ABC transporter), penicillin-binding protein 2 (PBD2), NlpC/P60 family protein (NlpC/P60), esterase family protein (Esterase), and M23 family metallopeptidase (M23) were selected for the evaluation of immunogenicity and immunoprotective effects in BALB/c mice model challenged with R. equi. The results showed that all five vaccine candidate-immunized mice experienced a significant increase in spleen antigen-specific IFN-γ- and TNF-α-positive CD4 + and CD8 + T lymphocytes and generated robust Th1- and Th2-type immune responses and antibody responses. Two weeks after the R. equi challenge, immunization with the five vaccine candidates reduced the bacterial load in the lungs and improved the pathological damage to the lungs and livers compared with those in the control group. NlpC/P60, Esterase, and M23 were more effective than the ABC transporter and PBD2 in inducing protective immunity against R. equi challenge in mice. In addition, these vaccine candidates have the potential to induce T lymphocyte memory immune responses in mice. In summary, these antigens are effective candidates for the development of protective vaccines against R. equi. The R. equi antigen library has been expanded and provides new ideas for the development of multivalent vaccines.
Collapse
Affiliation(s)
- Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Urumqi, China
| | - Peng Cai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Weifang Gu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xingxun Duan
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shiwen Gao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Urumqi, China
| | - Yuhui Ma
- Zhaosu Xiyu Horse Industry Co., Ltd., Yining, China
| | - Siyuan Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Guoqing Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xiangyu Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Kuojun Cai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yanfeng Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Tao Cai
- Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Hongqiong Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Urumqi, China.
| |
Collapse
|
6
|
Benyamini P. Phylogenetic Tracing of Evolutionarily Conserved Zonula Occludens Toxin Reveals a "High Value" Vaccine Candidate Specific for Treating Multi-Strain Pseudomonas aeruginosa Infections. Toxins (Basel) 2024; 16:271. [PMID: 38922165 PMCID: PMC11209546 DOI: 10.3390/toxins16060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
7
|
Luan X, Fan X, Li G, Li M, Li N, Yan Y, Zhao X, Liu H, Wan K. Exploring the immunogenicity of Rv2201-519: A T-cell epitope-based antigen derived from Mycobacterium tuberculosis AsnB with implications for tuberculosis infection detection and vaccine development. Int Immunopharmacol 2024; 129:111542. [PMID: 38342063 DOI: 10.1016/j.intimp.2024.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Research dedicated to diagnostic reagents and vaccine development for tuberculosis (TB) is challenging due to the paucity of immunodominant antigens that can predict disease risk and exhibit protective potential. Therefore, it is crucial to identify T-cell epitope-based Mycobacterium tuberculosis (MTB) antigens characterized by specific and prominent recognition by the immune system. In this study, we constructed a T-cell epitope-rich tripeptide-splicing fragment (nucleotide positions 131-194, 334-377, and 579-643) of Rv2201 (also known as the 72 kDa AsnB)from the MTB genome, ultimately yielding the recombinant protein Rv2201-519 in Escherichia coli BL21 (DE3). Subsequently, we gauged the recombinant protein's ability to detect tuberculosis infection through ELISpot and assessed its immunostimulatory effect on mouse models using flow cytometry and ELISA. Our results indicated that Rv2201-519 possessed promising sensitivity; however, the sensitivity was lower than that of a commercial diagnostic kit containing ESAT-6, CFP-10, and Rv3615c (80.56 % vs. 94.44 %). The Rv2201-519 group exhibited a propensity for a CD4+ Th1 cell immune response in inoculated BALB/c mice that manifested as higher levels of antigen-specific IgG production (IgG2a/IgG1 > 1). In comparison to Ag85B, Rv2201-519 induced a more robust Th1-type cellular immune response as evidenced by a notable rise in the ratio of IFN-γ/IL-4 and IL-12 cytokine production and increased CD4+ T cell activation with a higher percentage of CD4+IFN-γ+ T cells. Rv2201-519 also induced a higher level of IL-6 compared with Ag85B, a higher percentage of CD8+ T cells specific for Rv2201-519, and a lower percentage of CD8+IL-4+ T cells. Collectively, the current evidence suggests that Rv2201-519 could potentially serve as an immunodominant protein for tuberculosis infection screening, laying the groundwork for further evaluation in recombinant Bacillus Calmette-Guérin (BCG) and subunit vaccines against MTB challenges in future studies.
Collapse
Affiliation(s)
- Xiuli Luan
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101100, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mchao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Na Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhan Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
8
|
Jiang H, Li L, Li Z, Chu X. Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. Biomed Microdevices 2024; 26:12. [PMID: 38261085 PMCID: PMC10806003 DOI: 10.1007/s10544-023-00686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.
Collapse
Affiliation(s)
- Hao Jiang
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingzhi Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhong Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xiang Chu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Emergency, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
9
|
Santacroce L, Topi S, Charitos IA, Lovero R, Luperto P, Palmirotta R, Jirillo E. Current Views about the Inflammatory Damage Triggered by Bacterial Superantigens and Experimental Attempts to Neutralize Superantigen-Mediated Toxic Effects with Natural and Biological Products. PATHOPHYSIOLOGY 2024; 31:18-31. [PMID: 38251046 PMCID: PMC10801599 DOI: 10.3390/pathophysiology31010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Superantigens, i.e., staphylococcal enterotoxins and toxic shock syndrome toxin-1, interact with T cells in a different manner in comparison to conventional antigens. In fact, they activate a larger contingent of T lymphocytes, binding outside the peptide-binding groove of the major histocompatibility complex class II. Involvement of many T cells by superantigens leads to a massive release of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-2, IL-6, tumor necrosis factor-alpha and interferon-gamma. Such a storm of mediators has been shown to account for tissue damage, multiorgan failure and shock. Besides conventional drugs and biotherapeutics, experiments with natural and biological products have been undertaken to attenuate the toxic effects exerted by superantigens. In this review, emphasis will be placed on polyphenols, probiotics, beta-glucans and antimicrobial peptides. In fact, these substances share a common functional denominator, since they skew the immune response toward an anti-inflammatory profile, thus mitigating the cytokine wave evoked by superantigens. However, clinical applications of these products are still scarce, and more trials are needed to validate their usefulness in humans.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Ioannis Alexandros Charitos
- Division of Pneumology and Respiratory Rehabilitation, Maugeri Clinical Scientific Research Institutes (IRCCS) of Pavia—Scientific Institute of Bari, 70124 Bari, Italy
| | - Roberto Lovero
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy
| | | | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| |
Collapse
|
10
|
Martens-Koop A, Thakur A. Intracellular Pathogens: Infection, Immunity, and Intervention. Methods Mol Biol 2024; 2813:1-17. [PMID: 38888767 DOI: 10.1007/978-1-0716-3890-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Intracellular pathogens comprise a diverse group of pathogens that all share a required location in a host cell to infect, survive, and replicate. Intracellular location allows pathogens to hide from host immune responses, avoid competition with other pathogens, mediate host cellular functions, replicate safely, and cause infection that is difficult to target with therapeutics. All intracellular pathogens have varying routes of infiltration into host cells and different host cell preferences. For example, bacteria Mycobacterium tuberculosis chooses to invade antigen-presenting cells, which allows them to moderate host antigen presentation to memory cells, whereas rabies virus prefers to invade neurons because they have pre-existing innate immunity protection systems. Regardless of the pathway that each intracellular pathogen follows, all share the capacity to cause disease if they succeed in entering host cells. Here, we give an overview of selected intracellular pathogens and infections they cause, immune responses they induce, and intervention strategies used to treat and control them.
Collapse
Affiliation(s)
- Anna Martens-Koop
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
11
|
Elkoshi Z. The Eradication of Carcinogenic Viruses in Established Solid Cancers. J Inflamm Res 2023; 16:6227-6239. [PMID: 38145011 PMCID: PMC10749098 DOI: 10.2147/jir.s430315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Carcinogenic viruses (oncoviruses) can initiate cancer, but their impact on established cancer varies. Some of these viruses prolong survival while others shorten it. This study classifies oncoviruses into two categories: viruses which induce a strong CD8+T cell reaction in non-cancerous tissues, and viruses which induce a weak CD8+ T cell reaction in non-cancerous tissues. The classification proves useful in predicting the effect of oncoviruses on the prognosis of solid cancers. Therefore, while eliminating carcinogenic viruses in healthy individuals (for example by immunization) may be important for cancer prevention, this study suggests that only viruses which induce a weak CD8+ T cell reaction should be eradicated in established solid tumors. The model correctly predicts the effect of oncoviruses on survival for six out of seven known oncoviruses, indicating that immune modulation by oncoviruses has a prominent effect on prognosis. It seems that CD8+ T cell response to oncoviruses observed in infected benign tissues is retained in infected tumors. Clinical significance: the effect of oncoviruses on solid cancer prognosis can be predicted with confidence based on immunological responses when clinical data are unavailable.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
12
|
Zhang S, Yang H, Wang M, Mantovani D, Yang K, Witte F, Tan L, Yue B, Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. Innovation (N Y) 2023; 4:100503. [PMID: 37732016 PMCID: PMC10507240 DOI: 10.1016/j.xinn.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial infectious diseases are one of the leading causes of death worldwide. Even with the use of multiple antibiotic treatment strategies, 4.95 million people died from drug-resistant bacterial infections in 2019. By 2050, the number of deaths will reach 10 million annually. The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants. In addition, the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the long-term treatment of chronic bacterial infections. The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells. Therefore, there is an urgent need for effective alternatives to treat bacterial infections. Accordingly, the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest; however, a comprehensive review of their research progress is lacking. In this review, we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection. First, we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections. Then, we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages. Moreover, we discuss biomaterial-mediated bacterial vaccines' potential applications and challenges for activating innate and adaptive immune memory. This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charite Medical University, Assmannshauser Strasse 4–6, 14197 Berlin, Germany
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
13
|
Shen X, Wu T, Ji X, Yang K, Wang L, Peng Y, Huang G, Shen H, Sha W. Mycobacterium tuberculosis infection depressed cytotoxic T cells activity owing to decreasing NKG2C and increasing NKG2A expression. Mol Immunol 2023; 162:133-142. [PMID: 37683324 DOI: 10.1016/j.molimm.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) play protective roles in immunity against tuberculosis (TB) infection by strongly inhibiting intracellular mycobacterial growth. In TB infection, the impairing mechanism of CTLs function remains unclear. In this study, we identified that the cytotoxic granule molecules expression levels of perforin (PRF) and granulysin (GNLY) in CD3+ and CD8+ CTL cells were significantly depressed in TB patients compared to those in healthy donors. The frequencies of T-CTLs, co-expressing granzyme B (GZMB), PRF and GNLY, were obviously decreased in TB patients. Moreover, NKG2C highly expressed in T-CTLs, was an effective activator of cytotoxic activity of CD3+ T cells. And, NKG2C+CD3+ T cells potently inhibited intracellular mycobacterial growth. The proportions of NKG2C+ cells in CD3+ and CD8+ T cells were dramatically decreased in TB patients. Contrarily, NKG2A, an inhibitor of T cells cytotoxic activities, was highly expressed in T-CTLs of CD3+ and CD8+ T cells in TB patients. Here, we successfully discovered that depressed CTLs activities in TB patients were attributed to low expression of cytotoxic granule molecules and high expression of inhibitory NKG2A receptor, suppression of agonist receptor NKG2C. Thus, NKG2 receptors were potential targets for immunotherapy of tuberculosis, especially for multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Xiaona Shen
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Tian Wu
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Xuejiao Ji
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Kunfeng Yang
- College of Marine Life Sciences, Ocean University of China, Shandong, China
| | - Lei Wang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Ying Peng
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.
| | - Guixian Huang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Hongbo Shen
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.
| | - Wei Sha
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|