1
|
Yang H, Lin Z, Wu B, Xu J, Tao SC, Zhou S. Deciphering disease through glycan codes: leveraging lectin microarrays for clinical insights. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1145-1155. [PMID: 39099413 PMCID: PMC11399442 DOI: 10.3724/abbs.2024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024] Open
Abstract
Glycosylation, a crucial posttranslational modification, plays a significant role in numerous physiological and pathological processes. Lectin microarrays, which leverage the high specificity of lectins for sugar binding, are ideally suited for profiling the glycan spectra of diverse and complex biological samples. In this review, we explore the evolution of lectin detection technologies, as well as the applications and challenges of lectin microarrays in analyzing the glycome profiles of various clinical samples, including serum, saliva, tissues, sperm, and urine. This review not only emphasizes significant advancements in the high-throughput analysis of polysaccharides but also provides insight into the potential of lectin microarrays for diagnosing and managing diseases such as tumors, autoimmune diseases, and chronic inflammation. We aim to provide a clear, concise, and comprehensive overview of the use of lectin microarrays in clinical settings, thereby assisting researchers in conducting clinical studies in glycobiology.
Collapse
Affiliation(s)
- Hangzhou Yang
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Zihan Lin
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Bo Wu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Jun Xu
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Sheng-Ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People’s HospitalShanghai200233China
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X, Wang JH, Lv J. Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:2638-2656. [PMID: 38855150 PMCID: PMC11154680 DOI: 10.3748/wjg.v30.i20.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Meng-Yao Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Xi Qi
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Ji-Han Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
4
|
Chen W, Ma T, Liu S, Zhong Y, Yu H, Shu J, Wang X, Li Z. N-Glycan Profiles of Neuraminidase from Avian Influenza Viruses. Viruses 2024; 16:190. [PMID: 38399967 PMCID: PMC10893399 DOI: 10.3390/v16020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The cleavage of sialic acids by neuraminidase (NA) facilitates the spread of influenza A virus (IV) descendants. Understanding the enzymatic activity of NA aids research into the transmission of IVs. An effective method for purifying NA was developed using p-aminophenyloxamic acid-modified functionalized hydroxylated magnetic particles (AAMPs), and from 0.299 to 0.401 mg of NA from eight IV strains was isolated by 1 mg AAMP. A combination of lectin microarrays and MALDI-TOF/TOF-MS was employed to investigate the N-glycans of isolated NAs. We found that more than 20 N-glycans were identified, and 16 glycan peaks were identical in the strains derived from chicken embryo cultivation. Multi-antennae, bisected, or core-fucosylated N-glycans are common in all the NAs. The terminal residues of N-glycans are predominantly composed of galactose and N-acetylglucosamine residues. Meanwhile, sialic acid residue was uncommon in these N-glycans. Further computational docking analysis predicted the interaction mechanism between NA and p-aminophenyloxamic acid.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an 710069, China; (W.C.); (J.S.)
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an 710069, China; (W.C.); (J.S.)
| | - Sinuo Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an 710069, China; (W.C.); (J.S.)
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an 710069, China; (W.C.); (J.S.)
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an 710069, China; (W.C.); (J.S.)
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an 710069, China; (W.C.); (J.S.)
| | - Xiurong Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin 150001, China;
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an 710069, China; (W.C.); (J.S.)
| |
Collapse
|
5
|
Dang J, Shu J, Wang R, Yu H, Chen Z, Yan W, Zhao B, Ding L, Wang Y, Hu H, Li Z. The glycopatterns of Pseudomonas aeruginosa as a potential biomarker for its carbapenem resistance. Microbiol Spectr 2023; 11:e0200123. [PMID: 37861315 PMCID: PMC10714932 DOI: 10.1128/spectrum.02001-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Bacterial surface glycans are an attractive therapeutic target in response to antibiotics; however, current knowledge of the corresponding mechanisms is rather limited. Antimicrobial susceptibility testing, genome sequencing, and MALDI-TOF MS, commonly used in recent years to analyze bacterial resistance, are unable to rapidly and efficiently establish associations between glycans and resistance. The discovery of new antimicrobial strategies still requires the introduction of promising analytical methods. In this study, we applied lectin microarray technology and a machine-learning model to screen for important glycan structures associated with carbapenem-resistant P. aeruginosa. This work highlights that specific glycopatterns can be important biomarkers associated with bacterial antibiotic resistance, which promises to provide a rapid entry point for exploring new resistance mechanisms in pathogens.
Collapse
Affiliation(s)
- Jing Dang
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jian Shu
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Ruiying Wang
- Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, China
| | - Hanjie Yu
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Zhuo Chen
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Wenbo Yan
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Bingxiang Zhao
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Li Ding
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yuzi Wang
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Huizheng Hu
- Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, China
| | - Zheng Li
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Shu J, Ren X, Cheng H, Wang S, Yue L, Li X, Yin M, Chen X, Zhang T, Hui Z, Bao X, Song W, Yu H, Dang L, Zhang C, Wang J, Zhao Q, Li Z. Beneficial or detrimental: Recruiting more types of benign cases for cancer diagnosis based on salivary glycopatterns. Int J Biol Macromol 2023; 252:126354. [PMID: 37591435 DOI: 10.1016/j.ijbiomac.2023.126354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
With the advantages of convenient, painless and non-invasive collection, saliva holds great promise as a valuable biomarker source for cancer detection, pathological assessment and therapeutic monitoring. Salivary glycopatterns have shown significant potential for cancer screening in recent years. However, the understanding of benign lesions at non-cancerous sites in cancer diagnosis has been overlooked. Clarifying the influence of benign lesions on salivary glycopatterns and cancer screening is crucial for advancing the development of salivary glycopattern-based diagnostics. In this study, 2885 samples were analyzed using lectin microarrays to identify variations in salivary glycopatterns according to the number, location, and type of lesions. By utilizing our previously published data of tumor-associated salivary glycopatterns, the performance of machine learning algorithm for cancer screening was investigated to evaluate the effect of adding benign disease cases to the control group. The results demonstrated that both the location and number of lesions had discernible effects on salivary glycopatterns. And it was also revealed that incorporating a broad range of benign diseases into the controls improved the classifier's performance in distinguishing cancer cases from controls. This finding holds guiding significance for enhancing salivary glycopattern-based cancer screening and facilitates their practical implementation in clinical settings.
Collapse
Affiliation(s)
- Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China; School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Hongwei Cheng
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Shiyi Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lixin Yue
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xia Li
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Mengqi Yin
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xiangqin Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Tiantian Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ziye Hui
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xiaojuan Bao
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Wanghua Song
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Jun Wang
- University Hospital, Northwest University, Xi'an, China
| | - Qi Zhao
- University Hospital, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
7
|
Zhang L, Wang W, Yang Y, Zhu W, Li P, Wang S, Liu X. Site-specific, covalent immobilization of PNGase F on magnetic particles mediated by microbial transglutaminase. Anal Chim Acta 2023; 1250:340972. [PMID: 36898812 DOI: 10.1016/j.aca.2023.340972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
In the workflow of global N-glycosylation analysis, endoglycosidase-mediated removal of glycans from glycoproteins is an essential and rate-limiting step. Peptide-N-glycosidase F (PNGase F) is the most appropriate and efficient endoglycosidase for the removal of N-glycans from glycoproteins prior to analysis. Due to the high demand for PNGase F in both basic and industrial research, convenient and efficient methods are urgently needed to generate PNGase F, preferably in the immobilized form to solid phases. However, there is no integrated approach to implement both efficient expression, and site-specific immobilization of PNGase F. Herein, efficient production of PNGase F with a glutamine tag in Escherichia coli and site-specific covalent immobilization of PNGase F with this special tag via microbial transglutaminase (MTG) is described. PNGase F was fused with a glutamine tag to facilitate the co-expression of proteins in the supernatant. The glutamine tag was covalently and site-specifically transformed to primary amine-containing magnetic particles, mediated by MTG, to immobilize PNGase F. Immobilized PNGase F could deglycosylate substrates with identical enzymatic performance to that of the soluble counterpart, and exhibit good reusability and thermal stability. Moreover, the immobilized PNGase F could also be applied to clinical samples, including serum and saliva.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Wenhui Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yueqin Yang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, 430079, China
| | - Wenjie Zhu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengjie Li
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Xin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
8
|
Koopaie M, Ghafourian M, Manifar S, Younespour S, Davoudi M, Kolahdooz S, Shirkhoda M. Evaluation of CSTB and DMBT1 expression in saliva of gastric cancer patients and controls. BMC Cancer 2022; 22:473. [PMID: 35488257 PMCID: PMC9055774 DOI: 10.1186/s12885-022-09570-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/19/2022] [Indexed: 01/07/2023] Open
Abstract
Background Gastric cancer (GC) is the fifth most common cancer and the third cause of cancer deaths globally, with late diagnosis, low survival rate, and poor prognosis. This case-control study aimed to evaluate the expression of cystatin B (CSTB) and deleted in malignant brain tumor 1 (DMBT1) in the saliva of GC patients with healthy individuals to construct diagnostic algorithms using statistical analysis and machine learning methods. Methods Demographic data, clinical characteristics, and food intake habits of the case and control group were gathered through a standard checklist. Unstimulated whole saliva samples were taken from 31 healthy individuals and 31 GC patients. Through ELISA test and statistical analysis, the expression of salivary CSTB and DMBT1 proteins was evaluated. To construct diagnostic algorithms, we used the machine learning method. Results The mean salivary expression of CSTB in GC patients was significantly lower (115.55 ± 7.06, p = 0.001), and the mean salivary expression of DMBT1 in GC patients was significantly higher (171.88 ± 39.67, p = 0.002) than the control. Multiple linear regression analysis demonstrated that GC was significantly correlated with high levels of DMBT1 after controlling the effects of age of participants (R2 = 0.20, p < 0.001). Considering salivary CSTB greater than 119.06 ng/mL as an optimal cut-off value, the sensitivity and specificity of CSTB in the diagnosis of GC were 83.87 and 70.97%, respectively. The area under the ROC curve was calculated as 0.728. The optimal cut-off value of DMBT1 for differentiating GC patients from controls was greater than 146.33 ng/mL (sensitivity = 80.65% and specificity = 64.52%). The area under the ROC curve was up to 0.741. As a result of the machine learning method, the area under the receiver-operating characteristic curve for the diagnostic ability of CSTB, DMBT1, demographic data, clinical characteristics, and food intake habits was 0.95. The machine learning model’s sensitivity, specificity, and accuracy were 100, 70.8, and 80.5%, respectively. Conclusion Salivary levels of DMBT1 and CSTB may be accurate in diagnosing GCs. Machine learning analyses using salivary biomarkers, demographic, clinical, and nutrition habits data simultaneously could provide affordability models with acceptable accuracy for differentiation of GC by a cost-effective and non-invasive method.
Collapse
Affiliation(s)
- Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Ghafourian
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Manifar
- Department of Oral Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, North Kargar St, P.O.Box:14395-433, Tehran, 14399-55991, Iran.
| | - Shima Younespour
- Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Davoudi
- Department of Computer Science and Engineering and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Sajad Kolahdooz
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Shirkhoda
- Department of General Oncology, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Shu J, Yu H, Ren X, Wang Y, Zhang K, Tang Z, Dang L, Chen W, Li B, Xie H, Li Z. Role of salivary glycopatterns for oral microbiota associated with gastric cancer. Int J Biol Macromol 2022; 209:1368-1378. [PMID: 35461868 DOI: 10.1016/j.ijbiomac.2022.04.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022]
Abstract
Microbiota in the oral cavity plays an important role in maintaining human health. Our previous studies have revealed significant alterations of salivary glycopatterns in gastric cancer (GC) patients, but it is unclear whether these altered salivary glycopatterns can cause the dysbiosis of oral microbiota. In this study, the oral microbiome of healthy volunteers (HVs) and GC patients were detected. The neoglycoproteins were then synthesized according to the altered glycopatterns in GC patients and used to explore the effects of specific salivary glycopattern against oral microbiota. The results showed that five species were significantly increased (p < 0.05) while two species were significantly decreased (p < 0.01) in the saliva of GC patients compared with that of HVs. And the fucose-neoglycoproteins (30-100 μg/mL) could reduce the adhesion and toxicity of Aggregatibacter segnis (A. segnis) to oral cells (HOEC and CAL-27), change the glycan structures of lipopolysaccharide on the surface of A. segnis, and enhance the capacity of A. segnis to trigger innate immune responses. This study revealed that the changes of salivary protein glycopatterns in GC patients might contribute to the dysbiosis of oral microbiota, and had important implications in developing new carbohydrate drugs to maintain a balanced microbiota in the oral.
Collapse
Affiliation(s)
- Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yan Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Tang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Baozhen Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, 277 Yanta Xilu, Xi'an 710061, China
| | - Hailong Xie
- Institute of Cancer Research, University of South China, Hengyang, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
10
|
Glycan characteristics of human heart constituent cells maintaining organ function: relatively stable glycan profiles in cellular senescence. Biogerontology 2021; 22:623-637. [PMID: 34637040 PMCID: PMC8566412 DOI: 10.1007/s10522-021-09940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
Cell surface glycoproteins, which are good indicators of cellular types and biological function; are suited for cell evaluation. Tissue remodeling using various cells is a key feature of regenerative therapy. For artificial heart remodeling, a mixture of heart constituent cells has been investigated for organ assembly, however, the cellular characteristics remain unclear. In this study, the glycan profiles of human cardiomyocytes (HCMs), human cardiac fibroblasts (HCFs), and human vascular endothelial cells (ECs) were analyzed using evanescent-field lectin microarray analysis, a tool of glycan profiling, to clarify the required cellular characteristics. We found that ECs had more “α1-2fucose” and “core α1-6fucose” residues than other cells, and that “α2-6sialic acid” residue was more abundant in ECs and HCMs than in HCFs. HCFs showed higher abundance of “β-galactose” and “β-N-acetylgalactosamine” residues on N-glycan and O-glycan, respectively, compared to other cells. Interestingly, cardiac glycan profiles were insignificantly changed with cellular senescence. The residues identified in this study may participate in organ maintenance by contributing to the preservation of glycan components. Therefore, future studies should investigate the roles of glycans in optimal tissue remodeling since identifying cellular characteristics is important for the development of regenerative therapies.
Collapse
|