1
|
Wedemeyer H, Leus M, Battersby TR, Glenn J, Gordien E, Kamili S, Kapoor H, Kessler HH, Lenz O, Lütgehetmann M, Mixson-Hayden T, Simon CO, Thomson M, Westman G, Miller V, Terrault N, Lampertico P. HDV RNA assays: Performance characteristics, clinical utility, and challenges. Hepatology 2025; 81:637-650. [PMID: 37640384 PMCID: PMC11289715 DOI: 10.1097/hep.0000000000000584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
Coinfection with HBV and HDV results in hepatitis D, the most severe form of chronic viral hepatitis, frequently leading to liver decompensation and HCC. Pegylated interferon alpha, the only treatment option for chronic hepatitis D for many years, has limited efficacy. New treatments are in advanced clinical development, with one recent approval. Diagnosis and antiviral treatment response monitoring are based on detection and quantification of HDV RNA. However, the development of reliable HDV RNA assays is challenged by viral heterogeneity (at least 8 different genotypes and several subgenotypes), intrahost viral diversity, rapid viral evolution, and distinct secondary structure features of HDV RNA. Different RNA extraction methodologies, primer/probe design for nucleic acid tests, lack of automation, and overall dearth of standardization across testing laboratories contribute to substantial variability in performance characteristics of research-based and commercial HDV RNA assays. A World Health Organization (WHO) standard for HDV RNA, available for about 10 years, has been used by many laboratories to determine the limit of detection of their assays and facilitates comparisons of RNA levels across study centers. Here we review challenges for robust pan genotype HDV RNA quantification, discuss particular clinical needs and the importance of reliable HDV RNA quantification in the context of drug development and patient monitoring. We summarize distinct technical features and performance characteristics of available HDV RNA assays. Finally, we provide considerations for the use of HDV RNA assays in the context of drug development and patient monitoring.
Collapse
Affiliation(s)
- Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Excellence Cluster RESIST, Hannover Medical School, Hannover, Germany
- D-SOLVE: EU-funded Network on Individualized Management of Hepatitis D
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Mitchell Leus
- Forum for Collaborative Research, School of Public Health, University of California, Berkeley, Washington DC Campus, Washington, District of Columbia, USA
| | | | - Jeffrey Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Emmanuel Gordien
- Laboratoire de microbiologie clinique, Centre National de Référence pour les virus des hépatites B, C et Delta, Hôpital Avicenne Assistance Publique – Hôpitaux de Paris, Bobigny, France
| | - Saleem Kamili
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hema Kapoor
- Ex Quest Diagnostics, HK Healthcare Consultant LLC, Secaucus, New Jersey, USA
| | - Harald H. Kessler
- Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Oliver Lenz
- Clinical Microbiology and Immunology, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Lütgehetmann
- Institute for Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Lübeck, Kiel, Germany
| | - Tonya Mixson-Hayden
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christian O. Simon
- Clinical Development and Medical Affairs, Roche Diagnostics Solutions, Rotkreuz, Switzerland
| | - Michael Thomson
- Division of Antivirals, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gabriel Westman
- Swedish Medical Products Agency, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Veronica Miller
- Forum for Collaborative Research, School of Public Health, University of California, Berkeley, Washington DC Campus, Washington, District of Columbia, USA
| | - Norah Terrault
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, CRC “A. M. and A. Migliavacca” Center for Liver Disease, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Angelice GP, Barros TM, Marques VA, Villar LM, Lago BV, Mello FCA. Exploring genetic diversity of hepatitis D virus full-length genome in Brazil: Discovery of a novel HDV-8 subgenotype beyond African borders. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105671. [PMID: 39299539 DOI: 10.1016/j.meegid.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Hepatitis D virus (HDV) is currently classified into 8 genotypes (1 to 8) and several subgenotypes, with distinct distribution worldwide. However, due to the scarcity of complete genome sequences in databases, this classification is constantly being updated and tends to be regularly revisited in upcoming years as more sequence data becomes available. Aiming to increase knowledge about the genetic variability of HDV, this study presents the full-length genomes of 11 HDV samples collected in Brazil in endemic and non-endemic regions, including the first complete genomes of the genotypes 5 and 8 obtained outside Africa. We also determined the co-infecting HBV genotypes to investigate their prevalence among the HDV-infected individuals throughout the country. Whole genome sequencing confirmed our previous findings based on a partial fragment of the HDV genome, in which HDV subgenoypes 3c (9/11; 81.8 %), 5b (1/11; 9.1 %) and one HDV-8 sequence (1/11; 9.1 %) were detected. As previously observed, HDV-8 formed a distinct branch apart from subgenotypes 8a and 8b, a monophyletic clade representing a novel HDV-8 subgenotype, designated as 8c. Among HDV-3 samples, the main co-infecting HBV genotype found was HBV-F (4/8; 50 %), reflecting the higher incidence of this native South American genotype in the endemic Amazon Basin. Both samples infected with HDV-5 and HDV-8 were coinfected with HBV genotype E, also a genotype with African origin. Our findings based on complete genome sequence of HDV corroborated our results based on a partial region of the HDV genome of a novel HDV-8 subgenotype and reinforced the need to use full-length genomes to properly subdivide genotypes with very low intragroup genetic variability, such as HDV-3. The provision of these complete genomes is expected to contribute to the enrichment of sequence databases for future molecular and evolutionary investigations of HDV.
Collapse
Affiliation(s)
- Giovana P Angelice
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Tairine M Barros
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa A Marques
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Livia M Villar
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara V Lago
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco C A Mello
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Baruti K, Choga WT, Motshosi PC, Phinius BB, Phakedi B, Bhebhe LN, Mpebe GGA, Tsayang CD, Ratsoma T, Gaolathe T, Mosepele M, Makhema J, Shapiro R, Lockman S, Moyo S, Jongman M, Anderson M, Gaseitsiwe S. Hepatitis Delta Virus Clade 8 Is the Predominant Clade Circulating in Botswana amongst People Living with HIV. Viruses 2024; 16:1568. [PMID: 39459902 PMCID: PMC11512356 DOI: 10.3390/v16101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis delta virus (HDV) co-infections more often result in severe hepatitis compared to hepatitis B virus (HBV) infections alone. Despite a high HDV prevalence (7.1%), information regarding circulating HDV clades is very limited in Botswana. We extracted total nucleic acid from confirmed HDV-positive samples and quantified their viral load. We then sequenced the large hepatitis delta antigen (L-HDAg) using Oxford Nanopore Technology (ONT). Genotyping was performed using the HDV Database, and HDV mutation profiling was performed on AliView. All participants with HBV genotypic information belonged to sub-genotype A1, and 80% (4/5) of them had a higher HDV viral load and a lower HBV viral load. We sequenced 75% (9/12) of the HDV-positive samples, which belonged to HDV clade 8. A total of 54 mutations were discovered, with the most prevalent being Q148R (16%), D149P (16%) and G151D (16%). Known mutations such as S117A, K131R, R139K and G151D were detected, while the other mutations were novel. Our results reveal that HDV clade 8 is the predominant clade in Botswana. The significance of all mutations remains unclear. Future studies with a larger sample size to detect other HDV clades that might be circulating in Botswana and functionally characterize the detected mutations are warranted.
Collapse
Affiliation(s)
- Kabo Baruti
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Wonderful T. Choga
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Patience C. Motshosi
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Bonolo B. Phinius
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Basetsana Phakedi
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Lynnette N. Bhebhe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
| | - Gorata G. A. Mpebe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
| | - Chanana D. Tsayang
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
| | - Tsholofelo Ratsoma
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Tendani Gaolathe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Faculty of Medicine, University of Botswana, Gaborone Private Bag UB 0022, Botswana
| | - Mosepele Mosepele
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Faculty of Medicine, University of Botswana, Gaborone Private Bag UB 0022, Botswana
| | - Joseph Makhema
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roger Shapiro
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shahin Lockman
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sikhulile Moyo
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Pathology, Division of Medical Virology, Stellenbosch University, Cape Town 7535, South Africa
- School of Health Systems and Public Health, University of Pretoria, Pretoria 0002, South Africa
| | - Mosimanegape Jongman
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Motswedi Anderson
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Africa Health Research Institute (AHRI), Durban 4013, South Africa
- The Francis Crick Institute, London NW1 2BE, UK
| | - Simani Gaseitsiwe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (P.C.M.); (B.P.); (L.N.B.); (G.G.A.M.); (C.D.T.); (T.R.); (T.G.); (M.M.); (J.M.); (R.S.); (S.L.); (S.M.); (M.J.); (M.A.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
4
|
Quirino A, Marascio N, Branda F, Ciccozzi A, Romano C, Locci C, Azzena I, Pascale N, Pavia G, Matera G, Casu M, Sanna D, Giovanetti M, Ceccarelli G, Alaimo di Loro P, Ciccozzi M, Scarpa F, Maruotti A. Viral Hepatitis: Host Immune Interaction, Pathogenesis and New Therapeutic Strategies. Pathogens 2024; 13:766. [PMID: 39338957 PMCID: PMC11435051 DOI: 10.3390/pathogens13090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Viral hepatitis is a major cause of liver illness worldwide. Despite advances in the understanding of these infections, the pathogenesis of hepatitis remains a complex process driven by intricate interactions between hepatitis viruses and host cells at the molecular level. This paper will examine in detail the dynamics of these host-pathogen interactions, highlighting the key mechanisms that regulate virus entry into the hepatocyte, their replication, evasion of immune responses, and induction of hepatocellular damage. The unique strategies employed by different hepatitis viruses, such as hepatitis B, C, D, and E viruses, to exploit metabolic and cell signaling pathways to their advantage will be discussed. At the same time, the innate and adaptive immune responses put in place by the host to counter viral infection will be analyzed. Special attention will be paid to genetic, epigenetic, and environmental factors that modulate individual susceptibility to different forms of viral hepatitis. In addition, this work will highlight the latest findings on the mechanisms of viral persistence leading to the chronic hepatitis state and the potential implications for the development of new therapeutic strategies. Fully understanding the complex host-pathogen interactions in viral hepatitis is crucial to identifying new therapeutic targets, developing more effective approaches for treatment, and shedding light on the mechanisms underlying progression to more advanced stages of liver damage.
Collapse
Affiliation(s)
- Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, GO, Brazil
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Antonello Maruotti
- Department GEPLI, Libera Università Maria Ss Assunta, 00193 Rome, Italy;
| |
Collapse
|
5
|
Basimane-Bisimwa P, Koyaweda GW, Ngaïganam E, Vickos U, Sibiro OAD, Yambiyo BM, Sombié BS, Pélembi P, Moussa S, Bekondi C, Giles-Vernick T, Manirakiza A, Vray M, Komas NPJ. Seroprevalence and molecular characterization of viral hepatitis and HIV co-infection in the Central African Republic. PLoS One 2024; 19:e0291155. [PMID: 38722944 PMCID: PMC11081248 DOI: 10.1371/journal.pone.0291155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The Central African Republic (CAR) is one of the countries with the highest prevalence of viral hepatitis infection in the world. Coinfection with HIV increases the morbidity and mortality beyond that of mono-infection with either hepatitis or HIV. The present study describes the geographic distribution of viral hepatitis infections and molecular characterization of these viruses in the CAR. METHODOLOGY Out of 12,599 persons enrolled during the fourth Multiple Indicator Cluster Survey of 2010 in the CAR, 10,621 Dried Blood Spot (DBS) samples were obtained and stored at -20°C. Of these DBS, 4,317 samples were randomly selected to represent all regions of the CAR. Serological tests for hepatitis B, D, and C viruses were performed using the ELISA technique. Molecular characterization was performed to identify strains. RESULTS Of the 4,317 samples included, 53.2% were from men and 46.8% from women. The HBsAg prevalence among participants was 12.9% and that HBc-Ab was 19.7%. The overall prevalence of HCV was 0.6%. Co-infection of HIV/HBV was 1.1% and that of HBV/HDV was 16.6%. A total of 77 HBV, 6 HIV, and 6 HDV strains were successfully sequenced, with 72 HBV (93.5%) strains belonging to genotype E and 5 (6.5%) strains belonging to genotype D. The 6 HDV strains all belonged to clade 1, while 4 recombinants subtype were identified among the 6 strains of HIV. CONCLUSION Our study found a high prevalence of HBV, HBV/HDV and HBV/HIV co-infection, but a low prevalence of HCV. CAR remains an area of high HBV endemicity. This study's data and analyses would be useful for establishing an integrated viral hepatitis and HIV surveillance program in the CAR.
Collapse
Affiliation(s)
- Parvine Basimane-Bisimwa
- Institut Pasteur de Bangui, Viral Hepatitis Laboratory, Bangui, Central African Republic
- Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
- International Center Advanced for Research and Training (ICART), Bukavu, Democratic Republic of Congo
- Hôpital Général de Référence de Panzi, Bukavu, Democratic Republic of Congo
| | | | - Edgarthe Ngaïganam
- Institut Pasteur de Bangui, Viral Hepatitis Laboratory, Bangui, Central African Republic
| | - Ulrich Vickos
- Laboratory of Arbovirus, Haemorrhagic Fevers, Institut Pasteur de Bangui, Emerging Virus and Zoonosis, Bangui, Central African Republic
| | | | | | - Benjamin Seydou Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Pulchérie Pélembi
- Institut Pasteur de Bangui, Service des Retrovirus-VIH, Bangui, Central African Republic
| | - Sandrine Moussa
- Institut Pasteur de Bangui, Service des Retrovirus-VIH, Bangui, Central African Republic
| | - Claudine Bekondi
- Institut Pasteur de Bangui, Centre de Ressources Biologiques, Bangui, Central African Republic
| | - Tamara Giles-Vernick
- Institut Pasteur-Université Paris Cité, Anthropology & Ecology of Disease Emergence Unit, INSERM, Paris, France
| | - Alexandre Manirakiza
- Institut Pasteur de Bangui, Epidemiology Service, Bangui, Central African Republic
| | - Muriel Vray
- Institut Pasteur-Université Paris Cité, Unit of Epidemiology of Emergent Infections, INSERM, Paris, France
| | | |
Collapse
|
6
|
Gopalakrishna H, Mironova M, Dahari H, Koh C, Heller T. Advances and Challenges in Managing Hepatitis D Virus: Evolving Strategies. CURRENT HEPATOLOGY REPORTS 2024; 23:32-44. [PMID: 38533303 PMCID: PMC10965034 DOI: 10.1007/s11901-024-00643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 03/28/2024]
Abstract
Purpose of Review Hepatitis D Virus (HDV), although a small defective virus, poses a substantial public health challenge due to lack of awareness, underrecognized prevalence, and limited treatment options. Universal HDV screening within hepatitis B virus (HBV) cohorts is essential to address this issue. Despite its aggressive nature, effective HDV therapies have remained elusive for over four decades. Recent Findings Advances in understanding HDV's biology and clinical behavior offer potential therapeutic breakthroughs, fostering optimism. As insights grow, effective and targeted therapies are being developed to improve HDV management. Summary This review delves into HDV's intricate structure and biology, highlighting formidable hurdles in antiviral development. It emphasizes the importance of widespread screening, exploring noninvasive diagnostics, and examining current and emerging innovative therapeutic strategies. Moreover, the review explores models for monitoring treatment response. In essence, this review simplifies the complexities of effectively combating HDV.
Collapse
Affiliation(s)
- Harish Gopalakrishna
- Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria Mironova
- Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Christopher Koh
- Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theo Heller
- Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Building 10, Room 4-5722, Bethesda, MD 20892-1800, USA
| |
Collapse
|
7
|
d'Arminio Monforte A, Tavelli A, Salpini R, Piermatteo L, D'Anna S, Carrara S, Malagnino V, Mazzotta V, Brancaccio G, Marchetti GC, Rosselli Del Turco E, Rossotti R, Mussini C, Antinori A, Lo Caputo S, Ceccherini Silberstein F, Gaeta GB, Svicher V, Puoti M. Determinants of worse liver-related outcome according to HDV infection among HBsAg positive persons living with HIV: Data from the ICONA cohort. Liver Int 2024; 44:603-613. [PMID: 38100128 DOI: 10.1111/liv.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES We aimed to study hepatitis D virus (HDV) prevalence and risk of progression to severe liver-related events (SLRE) in HBsAg positive people living with HIV (PLWH) in Italy; role of HDV-RNA copy levels, HCV coinfection and nadir CD4 counts were also investigated. METHODS People living with HIV (PLWH) from Italian Foundation cohort Naïve antiretrovirals (ICONA) with available HBsAg and HDV Ab were enrolled. HBsAg, HDV Ab, HDV-RNA and HDV genotypes were tested. PRIMARY END-POINT time from first HDV screening to Severe Liver Related Events (SLRE: decompensated cirrhosis, liver transplantation, HCC). Fine-grey regression models were used to evaluate the association of HDV Ab, HDV-RNA, HDV/HCV coinfection, CD4 nadir and outcome. Secondary end-points: time to SLRE or death; HDV Ab and HDV-RNA prevalence. RESULTS A total of 152/809 (18.8%) HBsAg positive PLWH showed HDV Ab reactivity; 63/93 (67.7%) were HDV-RNA positive. Being male, persons who inject drugs (PWID), HCV Ab positive, with FIB-4 > 3.25 were independent factors of HDV Ab positivity. In a median follow-up of 5 years, 37 PLWH (4.1% at 5-year) developed SLRE and 97 (12.0%) reached the SLRE or death end-point. HDV-RNA positive (independently from HDV-RNA copy level) PLWH had a 4.6-fold (95%CI 2.0-10.5) higher risk of SLRE than HDV negatives. PLWH positive for both HCV Ab and HDV Ab showed the highest independent risk of SLRE (ASHR: 11.9, 95%CI: 4.6-30.9 vs. HCV neg/HDV neg). Nadir CD4 < 200/mL was associated with SLRE (ASHR: 3.9, 95% 1.0-14.5). CONCLUSIONS One-fifth of the HBsAg positive PLWH harbour HDV infection, and are at high risk of progression to advanced liver disease. HCV contributes to worse outcomes. This population needs urgently effective treatments.
Collapse
Affiliation(s)
| | | | - Romina Salpini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano D'Anna
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Vincenzo Malagnino
- Department of Medicine of Systems, University of Rome Tor Vergata, Rome, Italy
| | | | - Giuseppina Brancaccio
- Infectious Diseases, Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Giulia Carla Marchetti
- Department of Health Sciences, ASST Santi Paolo e Carlo, Clinic of Infectious Diseases, University of Milan, Milan, Italy
| | - Elena Rosselli Del Turco
- Department of Medical and Surgical Sciences, Alma Mater Studiorum Bologna University, Bologna, Italy
| | - Roberto Rossotti
- Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Cristina Mussini
- Clinic of Infectious Diseases, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, INMI, Rome, Italy
| | - Sergio Lo Caputo
- Clinic of Infectious Diseases, University of Foggia, Foggia, Italy
| | | | | | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Puoti
- Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, Niguarda Ca' Granda Hospital, Milan, Italy
| |
Collapse
|
8
|
Dong J, Ismail N, Fitts E, Walker DH. Molecular testing in emerging infectious diseases. DIAGNOSTIC MOLECULAR PATHOLOGY 2024:175-198. [DOI: 10.1016/b978-0-12-822824-1.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
Ananchuensook P, Suksawatamnuay S, Thaimai P, Siripon N, Sriphoosanaphan S, Thanapirom K, Poovorawan Y, Komolmit P. Prevalence of hepatitis D virus infection among patients with chronic hepatitis B infection in a tertiary care centre in Thailand. Sci Rep 2023; 13:22633. [PMID: 38114689 PMCID: PMC10730816 DOI: 10.1038/s41598-023-49819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Knowledge about the epidemiology of hepatitis D virus (HDV) is essential for effective screening and management. Our study aimed to update the prevalence of HDV infection among patients with hepatitis B virus (HBV) infection at hepatology clinics in Thailand. We enrolled HBV-infected patients from hepatology clinics at King Chulalongkorn Memorial Hospital, Bangkok, Thailand, between June 2022 and November 2023. Demographic, biochemical characteristics, and liver-related complications (LRC), including cirrhosis and hepatocellular carcinoma, were reviewed. The competitive enzyme and chemiluminescence immunoassays were used to detect anti-HDV antibodies. Real-time polymerase chain reaction (RT-PCR) was used to test for HDV RNA in anti-HDV-positive patients. The HDV genotype was identified in detectable HDV RNA samples. Of the 702 enrolled patients, four (0.6%) had positive and equivocal for both anti-HDV tests. Two (50.0%) of the four patients tested positive for HDV RNA and genotype 1 was identified; one had multiple risk factors. Anti-HDV seroprevalence was not significantly different between patients with and without LRC. In conclusion, HDV co-infection is less common in Thailand than globally. Additionally, our study identified genotype 1, the predominant HDV genotype worldwide, and observed co-infection even without LRC.
Collapse
Affiliation(s)
- Prooksa Ananchuensook
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama4 Road, Patumwan, Bangkok, 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Academic Affair, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirinporn Suksawatamnuay
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama4 Road, Patumwan, Bangkok, 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Panarat Thaimai
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama4 Road, Patumwan, Bangkok, 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipaporn Siripon
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama4 Road, Patumwan, Bangkok, 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Supachaya Sriphoosanaphan
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama4 Road, Patumwan, Bangkok, 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kessarin Thanapirom
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama4 Road, Patumwan, Bangkok, 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawat Komolmit
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama4 Road, Patumwan, Bangkok, 10330, Thailand.
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Beghin J, Meier-Stephenson V. Does hepatitis delta virus have a preference for hepatitis B virus genotype? A systematic review of the literature. J Viral Hepat 2023; 30:906-913. [PMID: 37786351 DOI: 10.1111/jvh.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Hepatitis delta virus (HDV) is a deficient virus that requires the surface proteins of Hepatitis B virus (HBV) to complete its replication. HDV is thus only found in those already infected with HBV (~5% worldwide). There are eight different HDV genotypes (1-8) and 10 HBV genotypes (A-J), each having fairly distinct geographic distributions. While their pairings may be coincidental based on epidemiological occurrence, some evidence exists regarding possible virologic basis for genotype dominance and patterns. Here we sought to determine which HBV genotype is most often linked with active HDV infection and speculate on whether this may represent a viral 'preference'. Electronic databases with OVID Medline were comprehensively searched for studies published between 1977 and 2022 indexing the word 'genotype' and all permutations of 'HDV' (hepatitis D virus, hepatitis delta, etc.). Primary studies of patient samples reporting genotype data for either or both of HDV and HBV were tabulated. The initial search revealed 419 articles and was narrowed to 133 studies reporting genotype data for either or both HBV and HDV. We limited our search to cases with detectable HDV RNA. These represented over 5800 samples from over 70 countries. Of these, 1947 samples had paired genotype data for both viruses. The most common pairing was HDV-1 with HBV-D, but it remains unclear whether this represents a viral 'preference' or mere co-endemicity of the two viruses. Determining if there is a virologic link between HBV and HDV genotypes may have important implications for emerging HDV and HBV research.
Collapse
Affiliation(s)
- Justine Beghin
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Vanessa Meier-Stephenson
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Tian Y, Fan Z, Zhang X, Xu L, Cao Y, Pan Z, Mo Y, Gao Y, Zheng S, Huang J, Zou H, Duan Z, Li H, Ren F. CRISPR/Cas13a-Assisted accurate and portable hepatitis D virus RNA detection. Emerg Microbes Infect 2023; 12:2276337. [PMID: 37882492 PMCID: PMC10796118 DOI: 10.1080/22221751.2023.2276337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Hepatitis delta virus (HDV) infection accelerates the progression of chronic hepatitis B virus (HBV) infection, posing a large economic and health burden to patients. At present, there remains a lack of accurate and portable detection methods for HDV RNA. Here, we aim to establish a convenient, rapid, highly sensitive and specific method to detect HDV RNA using CRISPR-Cas13a technology. METHODS We established fluorescence (F) and lateral flow strip (L) assays based on CRISPR-Cas13a combined with RT-PCR and RT-RAA for HDV RNA detection, respectively. we conducted a cohort study of 144 patients with HDV-IgG positive to evaluate the CRISPR-Cas13a diagnostic performance for identifying HDV in clinical samples, compared to RT-qPCR and RT-ddPCR. RESULTS For synthetic HDV RNA plasmids, the sensitivity of RT-PCR-CRISPR-based fluorescence assays was 1 copy/μL, higher than that of RT-qPCR (10 copies/μL) and RT-ddPCR (10 copies/μL); for HDV RNA-positive samples, the sensitivity of RT-RAA-CRISPR-based fluorescence and lateral flow strip assays was 10 copies/μL, as low as that of RT-qPCR and RT-ddPCR, and the assay took only approximately 85 min. Additionally, the positivity rates of anti-HDV IgG-positive samples detected by the RT-qPCR, RT-ddPCR, RT-PCR-CRISPR fluorescence and RT-RAA-CRISPR lateral flow strip methods were 66.7% (96/144), 76.4% (110/144), 81.9% (118/144), and 72.2% (104/144), respectively. CONCLUSIONS We developed a highly sensitive and specific, as well as a portable and easy CRISPR-based assay for the detection of HDV RNA, which could be a prospective measure for monitoring the development of HDV infection and evaluating the therapeutic effect.
Collapse
Affiliation(s)
- Yuan Tian
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zihao Fan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ling Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yaling Cao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhenzhen Pan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yinkang Mo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yao Gao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sujun Zheng
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Huang
- Department of Infection Control, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huaibin Zou
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Ferrante ND, Kallan MJ, Sukkestad S, Kodani M, Kitahata MM, Cachay ER, Bhattacharya D, Heath S, Napravnik S, Moore RD, Yendewa G, Mayer KH, Reddy KR, Hayden T, Kamili S, Martin JN, Kim HN, Lo Re V. Prevalence and determinants of hepatitis delta virus infection among HIV/hepatitis B-coinfected adults in care in the United States. J Viral Hepat 2023; 30:879-888. [PMID: 37488783 PMCID: PMC10592429 DOI: 10.1111/jvh.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
Hepatitis delta virus (HDV) infection increases the risk of liver complications compared to hepatitis B virus (HBV) alone, particularly among persons with human immunodeficiency virus (HIV). However, no studies have evaluated the prevalence or determinants of HDV infection among people with HIV/HBV in the US. We performed a cross-sectional study among adults with HIV/HBV coinfection receiving care at eight sites within the Center for AIDS Research Network of Integrated Clinical Systems (CNICS) between 1996 and 2019. Among patients with available serum/plasma specimens, we selected the first specimen on or after their initial HBV qualifying test. All samples were tested for HDV IgG antibody and HDV RNA. Multivariable log-binomial generalized linear models were used to estimate prevalence ratios (PRs) with 95% CIs of HDV IgG antibody-positivity associated with determinants of interest (age, injection drug use [IDU], high-risk sexual behaviour). Among 597 adults with HIV/HBV coinfection in CNICS and available serum/plasma samples (median age, 43 years; 89.9% male; 52.8% Black; 42.4% White), 24/597 (4.0%; 95% CI, 2.4%-5.6%) were HDV IgG antibody-positive, and 10/596 (1.7%; 95% CI, 0.6%-2.7%) had detectable HDV RNA. In multivariable analysis, IDU was associated with exposure to HDV infection (adjusted PR = 2.50; 95% CI, 1.09-5.74). In conclusion, among a sample of adults with HIV/HBV coinfection in care in the US, 4.0% were HDV IgG antibody-positive, among whom 41.7% had detectable HDV RNA. History of IDU was associated with exposure to HDV infection. These findings emphasize the importance of HDV testing among persons with HIV/HBV coinfection, especially those with a history of IDU.
Collapse
Affiliation(s)
- Nicole D. Ferrante
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
| | - Michael J. Kallan
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sophia Sukkestad
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA
| | - Maja Kodani
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA
| | - Mari M. Kitahata
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Edward R. Cachay
- Department of Medicine, Division of Infectious Diseases and Global Public Health University of California, San Diego, CA
| | - Debika Bhattacharya
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Sonya Heath
- Division of Infectious Disease, Department of Medicine, University of Alabama, Birmingham, AL
| | - Sonia Napravnik
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Richard D. Moore
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - George Yendewa
- Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Kenneth H. Mayer
- The Fenway Institute, Fenway Health, Boston, MA; Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - K. Rajender Reddy
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tonya Hayden
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA
| | - Saleem Kamili
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - H. Nina Kim
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Vincent Lo Re
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Abstract
Hepatitis delta virus (HDV) only infects patients with hepatitis B virus (HBV) due to its reliance on HBV surface proteins to form its envelope. With shared routes of transmission, HDV coinfection is estimated to occur in 15% of patients with HIV and HBV. However, HDV is often underdiagnosed and may be missed particularly in people living with HIV (PLWH) who are already on antiretroviral therapy with anti-HBV activity and coincidental HBV suppression. At the same time, HDV causes the most severe form of chronic viral hepatitis and leads to faster progression of liver disease and hepatocellular carcinoma. Thus, increased recognition and effective treatment are paramount, and as novel treatment options approach global markets, the study of their efficacy in PLWH should be pursued.
Collapse
Affiliation(s)
- Debra W Yen
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Vicente Soriano
- Health Sciences School & Medical Center, Universidad Internacional La Rioja (UNIR), Madrid, Spain
| | - Pablo Barreiro
- Public Health Regional Laboratory, Hospital Isabel Zendal, Universidad Rey Juan Carlos, Madrid, Spain
| | - Kenneth E Sherman
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
14
|
Salichos L, Minosse C, Visco-Comandini U, Taibi C, Zulian V, D’Offizi G, Pallothu N, McPhee F, Garbuglia AR. Phylogenetic and Phylodynamic Analysis of Delta Strains Circulating in Italy. Viruses 2023; 15:1791. [PMID: 37766200 PMCID: PMC10537423 DOI: 10.3390/v15091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The hepatitis delta virus (HDV) exhibits high genetic and evolutionary variability and is classified into eight genotypes (HDV-1 to -8). HDV-1 is the most widespread genotype worldwide and includes several subtypes. It predominates mainly in Europe, the Middle East, North America, and Northern Africa, and is associated with both severe and mild forms of liver disease. In this study, we performed phylogenetic and phylodynamic analyses of HDV strains circulating in Regione Lazio, Italy, to understand when these strains were introduced into the Lazio region and to define their genetic variability in Italy. Fifty HDV RNA positive patient samples were amplified using a nested RT-PCR approach targeting the HDV R0 region and sequenced. A phylogenetic tree of patient-derived sequences and reference sequences representing HDV-1 to -8 was constructed using the GTRGAMMA model in RAxML v8. The results indicated that HDV-1 was the predominant genotype with HDV-1d being the most frequently inferred subtype. HDV-1 sequences clustering with subtypes 1b and 1e were also identified. A phylodynamic analysis of HDV-1 sequences employing a Bayesian birth-death model inferred a clock rate of 3.04 × 10-4 substitutions per site per million years, with a 95% Highest Posterior Density (HPD) interval of 3.45 × 10-5 to 5.72 × 10-4. A Bayesian birth-death analysis with tree calibration based on a sample dating approach indicated multiple original sources of infection (from the late 1950s to late 1980s). Overall, these results suggest that HDV sequences from the native Italian and non-Italian patients analyzed in this study represent multiple lineages introduced across a wide period. A common ancestral origin should be excluded.
Collapse
Affiliation(s)
- Leonidas Salichos
- Biological and Chemical Sciences, New York Institute of Technology, Manhattan, NY 10023, USA; (L.S.); (N.P.)
| | - Claudia Minosse
- Virology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (C.M.); (V.Z.)
| | - Ubaldo Visco-Comandini
- Infectious Diseases and Hepatology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (U.V.-C.); (C.T.); (G.D.)
| | - Chiara Taibi
- Infectious Diseases and Hepatology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (U.V.-C.); (C.T.); (G.D.)
| | - Verdiana Zulian
- Virology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (C.M.); (V.Z.)
| | - Gianpiero D’Offizi
- Infectious Diseases and Hepatology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (U.V.-C.); (C.T.); (G.D.)
| | - Nayan Pallothu
- Biological and Chemical Sciences, New York Institute of Technology, Manhattan, NY 10023, USA; (L.S.); (N.P.)
| | | | - Anna Rosa Garbuglia
- Virology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (C.M.); (V.Z.)
| |
Collapse
|
15
|
Soriano V, de Mendoza C, Treviño A, Ramos-Rincón JM, Moreno-Torres V, Corral O, Barreiro P. Treatment of hepatitis delta and HIV infection. Liver Int 2023; 43 Suppl 1:108-115. [PMID: 35748639 DOI: 10.1111/liv.15345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/20/2022] [Indexed: 01/18/2023]
Abstract
Hepatitis delta virus (HDV) is a defective agent that only infects individuals with hepatitis B virus (HBV). Around 5-10% of chronic hepatitis B patients worldwide are superinfected with HDV, which means 15-25 million people. Hepatitis delta is the most severe of all chronic viral hepatitis, leading to cirrhosis, liver cancer and/or transplantation in most patients. Despite it, many HDV patients remain undiagnosed. The only treatment available until recently was peginterferon alfa, with poor results and significant side effects. The recent approval of bulevirtide, a lipopeptide that blocks HBV/HDV entry, has revolutionized the field. Another drug, lonafarnib, already approved to treat progeria, is expected to be available soon as HDV therapy. Since there is no cell reservoir for the HDV RNA genome, hypothetically viral clearance could be achieved if complete blocking of viral replication occurs for a minimum time frame. This is what happens in hepatitis C using direct-acting antivirals, with the achievement of cure in nearly all treated patients. We envision the cure of hepatitis delta using combination antiviral therapy. Given that sexual and parenteral transmission routes are the most frequent for the acquisition of HBV and HDV, shared with HIV infection and HBV/HDV and HIV coinfection. The clinical outcome of hepatitis delta is worst in the HIV setting, with more frequent liver complications. Since most persons infected with HIV are on regular health care follow-up, we propose that HIV-HDV patients should be prioritized for moving forward new and potentially curative treatments for hepatitis delta.
Collapse
Affiliation(s)
| | - Carmen de Mendoza
- Department of Internal Medicine, Puerta de Hierro Research Institute & University Hospital, Madrid, Spain
| | - Ana Treviño
- UNIR Health Sciences School & Medical Center, Madrid, Spain
| | - José Manuel Ramos-Rincón
- Medicine Department, Alicante University Hospital & Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Víctor Moreno-Torres
- Department of Internal Medicine, Puerta de Hierro Research Institute & University Hospital, Madrid, Spain
| | - Octavio Corral
- UNIR Health Sciences School & Medical Center, Madrid, Spain
| | - Pablo Barreiro
- Public Health Regional Laboratory, Hospital Isabel Zendal, Madrid, Spain
| |
Collapse
|
16
|
Heller T, Buti M, Lampertico P, Wedemeyer H. Hepatitis D: Looking Back, Looking Forward, Seeing the Reward and the Promise. Clin Gastroenterol Hepatol 2023; 21:2051-2064. [DOI: 10.1016/j.cgh.2023.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Mello FCA, Barros TM, Angelice GP, Costa VD, Mello VM, Pardini MIMC, Lampe E, Lago BV, Villar LM. Circulation of HDV Genotypes in Brazil: Identification of a Putative Novel HDV-8 Subgenotype. Microbiol Spectr 2023; 11:e0396522. [PMID: 37074189 PMCID: PMC10269522 DOI: 10.1128/spectrum.03965-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/09/2023] [Indexed: 04/20/2023] Open
Abstract
Hepatitis D virus (HDV) is classified into 8 genotypes (1 to 8) and several subgenotypes. In Brazil, HDV-3 and HDV-1 predominate; however, most of the diagnosis efforts and molecular studies are directed to the area of endemicity of the Amazon Basin. Here, we determined the molecular epidemiological profile of circulating HDV in Brazilian HBsAg-positive patients between 2013 and 2015 in areas of endemicity and non-areas of endemicity. From 38 anti-HDV-positive individuals, 13 (34.2%) had detectable HDV-RNA and 11 (28.9%) were successfully sequenced. Partial HDAg (~320 nt) sequencing followed by phylogenetic analysis with reference sequences resulted in the identification of HDV-3 (9/11; 81.8%), HDV-5 (1/11; 9.1%), and HDV-8 (1/11; 9.1%). Most HDV-3 samples (8/9; 88.9%) were found in the endemic North region, while one was found in Central-West Brazil, a non-area of endemicity. HDV-5 and 8, genotypes native from African countries, were found in São Paulo, a cosmopolitan city from Southeast Brazil with a high circulation of immigrants. Phylogenetic analysis of HDV-8 strains indicated that the sample determined in our study, along with previously reported sequences from Brazil, formed a highly supported monophyletic clade, likely representing a putative novel HDV-8 subgenotype. IMPORTANCE Considered a neglected pathogen until the last 2 decades, an increase in the availability of genetic data of hepatitis D virus (HDV) strains around the world has been noticed recently, resulting in the proposition of different classifications. Our study aimed to determine the molecular epidemiological profile of HDV isolates circulating in areas of endemicity and non-areas of endemicity in Brazil. Based on the analyzed fragment, HDV-8 sequences clustered out of the clades formed by subgenotypes 8a and 8b might suggest the identification of a novel subgenotype, putatively designated subgenotype 8c. Our findings demonstrate the importance of continuous epidemiological surveillance to map HDV spread pathways and the introduction of imported variants. It also reinforces that as the amount of HDV genomes generated and reported increases, we will have changes in viral classification and, consequently, in our understanding of the dynamics of variability of this viral agent.
Collapse
Affiliation(s)
- Francisco C. A. Mello
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tairine M. Barros
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovana P. Angelice
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa D. Costa
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius M. Mello
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Inês M. C. Pardini
- Universidade Estadual Paulista (Unesp), Faculdade de Medicina (FMB), Divisão Hemocentro, Laboratório de Biologia Molecular, Campus de Botucatu, Botucatu, São Paulo, Brazil
| | - Elisabeth Lampe
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara V. Lago
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Livia M. Villar
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Hermanussen L, Lampalzer S, Bockmann JH, Ziegler AE, Piecha F, Dandri M, Pischke S, Haag F, Lohse AW, Lütgehetmann M, Weiler-Normann C, zur Wiesch JS. Non-organ-specific autoantibodies with unspecific patterns are a frequent para-infectious feature of chronic hepatitis D. Front Med (Lausanne) 2023; 10:1169096. [PMID: 37387781 PMCID: PMC10300640 DOI: 10.3389/fmed.2023.1169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Infections with hepatotropic viruses are associated with various immune phenomena. Hepatitis D virus (HDV) causes the most severe form of viral hepatitis. However, few recent data are available on non-disease-specific and non-organ-specific antibody (NOSA) titers and immunoglobulin G (IgG) levels in chronic hepatitis D (CHD) patients. Here, we examined the NOSA titers and IgG levels of 40 patients with CHD and different disease courses and compared them to 70 patients with chronic hepatitis B (CHB) infection. 43% of CHD patients had previously undergone treatment with pegylated interferon-α (IFN-α). The antibody display of 46 untreated patients diagnosed with autoimmune hepatitis (AIH) was used as a reference. The frequency of elevated NOSA titers (CHD 69% vs. CHB 43%, p < 0.01), and the median IgG levels (CHD 16.9 g/L vs. CHB 12.7 g/L, p < 0.01) were significantly higher in CHD patients than in patients with CHB, and highest in patients with AIH (96%, 19.5 g/L). Also, the antinuclear antibody pattern was homogeneous in many patients with AIH and unspecific in patients with viral hepatitis. Additionally, f-actin autoantibodies were only detectable in patients with AIH (39% of SMA). In CHD patients, IgG levels correlated with higher HDV viral loads, transaminases, and liver stiffness values. IgG levels and NOSA were similar in CHD patients irrespective of a previous IFN-α treatment. In summary, autoantibodies with an unspecific pattern are frequently detected in CHD patients with unclear clinical relevance.
Collapse
Affiliation(s)
- Lennart Hermanussen
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sibylle Lampalzer
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jan-Hendrik Bockmann
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Annerose E. Ziegler
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felix Piecha
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Maura Dandri
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Sven Pischke
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W. Lohse
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christina Weiler-Normann
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Medicine and Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Mangia A, Squillante MM, Fraticelli F, Cavorsi MC, Paroni G, Zaffarano L, Piazzolla AV. HDV RNA Levels and Progression of Hepatitis Delta Infection: A 14 Year Follow Up Experience in Italy. Cells 2023; 12:1413. [PMID: 37408247 DOI: 10.3390/cells12101413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Identification of outcome predictors is one of the unmet needs in chronic HDV infection. Until recently, no reliable quantitative assays for HDV RNA were available. AIMS To evaluate the impact of baseline viremia on natural history of HDV infection in a cohort of patients whose serum samples were stored at their first visit 15 years ago. METHODS Quantitative HBsAg, HBeAg, HBeAb, HBV DNA, HDV RNA, genotypes, and liver disease severity were assessed at baseline. Patients who were no longer on active follow-up were recalled and re-evaluated in August 2022. RESULTS The majority of patients were male (64.9%); the median age was 50.1 years; and all patients were Italian, with only three born in Romania. All were HBeAg negative with HBV genotype D infection. Patients were subdivided three groups: 23 were in active follow-up (Group 1), 21 were recalled due to no longer being in follow-up (Group 2), and 11 died (Group 3). Liver cirrhosis was diagnosed in 28 subjects at the first visit; 39.3% of diagnosed patients were in Group 3, 32.1% were in Group 1 and 28.6% were in Group 2 (p = 0.001). Baseline HBV DNA IU/mL Log10 were 1.6 (1.0-5.9) in Group 1, 1.3 (1.0-4.5) in Group 2, and 4.1 (1.5-4.5) in Group 3; median baseline HDV RNA Log10 levels were 4.1 (0.7-6.7) in Group 1, 3.2 (0.7-6.2) in Group 2, and 5.2 (0.7-6.7) in Group 3, resulting significantly higher rates among patients in Group 3 compared to the other groups (p = 0.038). Eighteen patients in Group 2, as compared to 7 in Group 1, had undetectable HDV RNA at the follow-up evaluation (p = 0.001). CONCLUSIONS HDV chronic infection is a heterogeneous disease. It may not only progress but also improve over time in patients, who eventually become HDV RNA-undetectable. HDV RNA levels may help identify the subgroup of patients with less progressive liver disease.
Collapse
Affiliation(s)
- Alessandra Mangia
- Liver Unit, IRCCS Fondazione "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | | | - Filippo Fraticelli
- Liver Unit, IRCCS Fondazione "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Maria Chiara Cavorsi
- Liver Unit, IRCCS Fondazione "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Giulia Paroni
- Blood Bank, IRCCS Fondazione "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Lucia Zaffarano
- Blood Bank, IRCCS Fondazione "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | | |
Collapse
|
20
|
Strain-specific responsiveness of hepatitis D virus to interferon-alpha treatment. JHEP Rep 2023; 5:100673. [PMID: 36908749 PMCID: PMC9996322 DOI: 10.1016/j.jhepr.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Background & Aims Pegylated interferon alpha (pegIFNα) is commonly used for the treatment of people infected with HDV. However, its mode of action in HDV-infected cells remains elusive and only a minority of people respond to pegIFNα therapy. Herein, we aimed to assess the responsiveness of three different cloned HDV strains to pegIFNα. We used a previously cloned HDV genotype 1 strain (dubbed HDV-1a) that appeared insensitive to interferon-α in vitro, a new HDV strain (HDV-1p) we isolated from an individual achieving later sustained response to IFNα therapy, and one phylogenetically distant genotype 3 strain (HDV-3). Methods PegIFNα was administered to human liver chimeric mice infected with HBV and the different HDV strains or to HBV/HDV infected human hepatocytes isolated from chimeric mice. Virological parameters and host responses were analysed by qPCR, sequencing, immunoblotting, RNA in situ hybridisation and immunofluorescence staining. Results PegIFNα treatment efficiently reduced HDV RNA viraemia (∼2-log) and intrahepatic HDV markers both in mice infected with HBV/HDV-1p and HBV/HDV-3. In contrast, HDV parameters remained unaffected by pegIFNα treatment both in mice (up to 9 weeks) and in isolated cells infected with HBV/HDV-1a. Notably, HBV viraemia was efficiently lowered (∼2-log) and human interferon-stimulated genes similarly induced in all three HBV/HDV-infected mouse groups receiving pegIFNα. Genome sequencing revealed highly conserved ribozyme and L-hepatitis D antigen post-translational modification sites among all three isolates. Conclusions Our comparative study indicates the ability of pegIFNα to lower HDV loads in stably infected human hepatocytes in vivo and the existence of complex virus-specific determinants of IFNα responsiveness. Impact and implications Understanding factors counteracting HDV infections is paramount to develop curative therapies. We compared the responsiveness of three different cloned HDV strains to pegylated interferon alpha in chronically infected mice. The different responsiveness of these HDV isolates to treatment highlights a previously underestimated heterogeneity among HDV strains.
Collapse
Key Words
- ADAR, adenosine deaminase
- ADF, adefovir
- AG, antigenomic
- Actb, actin beta
- Antiviral
- BSA, bovine serum albumin
- CHD, chronic hepatitis D
- CK18, cytokeratin 18
- CXCL10, C-X-C motif chemokine ligand 10
- Eef2, eukaryotic elongation factor
- FCS, foetal calf serum
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Genotype
- HBsAg, hepatitis B virus surface antigen
- HDAg, hepatitis delta antigen (S, small, L, large)
- HDV
- HLA, human leucocyte antigen
- HSA, uman serum albumin
- Human liver chimeric mice
- IFNα, interferon α
- ISGs, interferon stimulated genes
- LAM, lamivudine
- LLoD, lower limit of detection
- MDA5, melanoma differentiation-associated protein 5
- MOI, multiplicity of infection
- Mavs, mitochondrial antiviral-signalling protein
- MoA, mode of action
- MxA, myxovirus resistance gene A
- NTCP, sodium (Na+) taurocholate co-transporting polypeptide
- NUCs, nucleos(t)ide analogues
- OAS1, 2′-5′-oligoadenylatsynthetase 1
- PEG, polyethylene glycol
- PHHs, primary human hepatocytes
- RNP, ribonucleoprotein
- Resistance
- Rig-I, retinoic acid-inducible gene I
- SCID, severe combined immunodeficiency
- STAT1, signal transducers and activators of transcription 1
- TGFβ, transforming growth factor-β
- USG, uPA/SCID/beige/IL2RG-/-
- casp, caspase
- hAAT, human alpha antitrypsin
- pegIFNα, pegylated interferon alpha
- pgRNA, pregenomic RNA
- qPCR, quantitative real time polymerase chain reaction
- uPA, urokinase plasminogen activator
Collapse
|
21
|
Tassachew Y, Belyhun Y, Abebe T, Mihret A, Teffera T, Ababi G, Shewaye A, Desalegn H, Aseffa A, Mulu A, Howe R, Liebert UG, Maier M. Magnitude and genotype of hepatitis delta virus among chronic hepatitis B carriers with a spectrum of liver diseases in Ethiopia. Ann Hepatol 2023; 28:100770. [PMID: 36220615 DOI: 10.1016/j.aohep.2022.100770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Chronic hepatitis D infection contributes substantially to the progression of chronic liver disease, especially in most low and middle-income countries, where hepatitis B virus-related chronic liver disease is endemic. Therefore, this study aimed to determine the magnitude and genotype of hepatitis delta virus (HDV) among patients with chronic hepatitis B (CHB)-related liver diseases in Ethiopia. PATIENTS AND METHODS In this cross-sectional study, 323 known HBsAg positive individuals comprising 220 patients with CHB-related liver diseases [121 advanced liver diseases (hepatocellular carcinoma /HCC/ and non-HCC) and 99 chronic hepatitis (CH)], and 103 symptomless blood donors (BD) were enrolled. An ELISA kit was employed to determine HDV infection, and quantitative real-time PCR was used to detect HDV RNA. In addition, a non-coding genomic RNA region was sequenced for genotyping and phylogenetic analysis. RESULTS Irrespective of the stage of liver disease, the overall magnitude of HDV was 7.7% (25/323). The frequency of anti-HDV increases with the severity of liver disease, 1.9%, 4%, 10%, and 21.3% among BD, CH, non-HCC, and HCC patients, respectively. HDV RNA has been detected in 1.54 %(5/323) cases with a mean viral load of 4,010,360 IU/ml. All isolates were found to be HDV genotype 1. CONCLUSIONS The magnitude of HDV infection increased with the severity of liver disease, indicating HDV infection is more common among patients with CHB-related liver diseases in Ethiopia.
Collapse
Affiliation(s)
- Yayehyirad Tassachew
- Department of Microbiology, Immunology, and Parasitology, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Institute of Virology, University of Leipzig, 04103 Leipzig, Germany; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia; School of Medicine, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia.
| | - Yeshambel Belyhun
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany; School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Department of Microbiology, Immunology, and Parasitology, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Tezazu Teffera
- School of Medicine, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Girma Ababi
- School of Medicine, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia; Yanet Specialized Clinic, Hawassa, Ethiopia
| | - Abate Shewaye
- Department of Internal Medicine, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Adera Medical Center PLC, Addis Ababa, Ethiopia
| | - Hailemichael Desalegn
- Department of Internal Medicine, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Andargachew Mulu
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Uwe G Liebert
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Melanie Maier
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antiviral Res 2023; 209:105461. [PMID: 36396025 DOI: 10.1016/j.antiviral.2022.105461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France
| | - Patrick T Kennedy
- The Blizard Institute, Queen Mary University of London, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France.
| | - Tarik Asselah
- Université de Paris, Cité CRI, INSERM UMR 1149, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
23
|
Lange M, Zaret D, Kushner T. Hepatitis Delta: Current Knowledge and Future Directions. Gastroenterol Hepatol (N Y) 2022; 18:508-520. [PMID: 36397990 PMCID: PMC9666792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hepatitis delta virus (HDV) infection is caused by a unique circular RNA virus that relies on both the hepatitis B virus (HBV) antigen and human host polymerases for its transmission and replication. HDV infection can be acquired simultaneously with HBV as a coinfection or as a superinfection in patients already chronically infected with HBV. Chronic HDV is the most severe and progressive form of viral hepatitis-induced liver disease, accounting for significant morbidity and mortality worldwide. Despite the severity of disease and poor clinical outcomes, there are few therapeutic options for the treatment of HDV infection. This article discusses the epidemiology of HDV globally and in the United States, the diagnosis and clinical course of HDV infection, and the current and future therapeutic options for the management of HDV infection.
Collapse
Affiliation(s)
- Marcia Lange
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dina Zaret
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tatyana Kushner
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
24
|
Bahoussi AN, Wang PH, Guo YY, Rabbani N, Wu C, Xing L. Global Distribution and Natural Recombination of Hepatitis D Virus: Implication of Kyrgyzstan Emerging HDVs in the Clinical Outcomes. Viruses 2022; 14:v14071467. [PMID: 35891448 PMCID: PMC9323457 DOI: 10.3390/v14071467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Discrepancies in human hepatitis delta virus (HDV) genotypes impact the virus’ biological behavior, clinical manifestation, and treatment response. Herein, this report aims to explore the role of recombination in the worldwide genotypic distribution and genetic diversity of HDV. Three-hundred-forty-eight human HDV full-length genomic sequences of ~1678 nt in length, isolated in twenty-eight countries worldwide between 1986 and 2018, were analysed. Similarity analysis and recombination mapping were performed, and forty-eight recombination events were identified, twenty-nine of which were isolated from Kyrgyzstan and determined to be involved in the diversity and extension of HDV sub-genotypes. HDV recombination occurred only between the genetically close genotypes (genotype 5 and genotype 2) or mainly within genotype 1, suggesting the complex replicative molecular mechanisms of HDV-RNA. The global distribution and classification of HDV genotypes have been updated, indicating that HDV recombination is one of the driving forces behind the biodiversity and the evolution of human HDV genomes. The outcome analysis suggests that the expansion of HDV sub-genotypes and the complex recombination networks might be related to the genomic character of Kyrgyzstan circulating strains and extensive mobility within countries and across borders. These findings will be of great importance in formulating more effective public health HDV surveillance strategies and guiding future molecular and epidemiological research to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Nighat Rabbani
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- Correspondence: ; Tel.: +86-351-701-025
| |
Collapse
|
25
|
Usai C, Gill US, Riddell AC, Asselah T, Kennedy P. Review article: emerging insights into the immunopathology, clinical and therapeutic aspects of hepatitis delta virus. Aliment Pharmacol Ther 2022; 55:978-993. [PMID: 35292991 PMCID: PMC9314912 DOI: 10.1111/apt.16807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hepatitis delta virus (HDV), which causes the most severe form of viral hepatitis, is an obligated hepatitis B (HBV) satellite virus that can either infect naïve subjects simultaneously with HBV (co-infection), or chronically infect HBV carriers (super-infection). An estimated 12 million people are infected by HDV worldwide. AIMS To summarise the most relevant aspects of the molecular biology of HDV, and to discuss the latest understanding of the induced pathology, interactions with the immune system, as well as both approved and investigational treatment options. METHODS References for this review were identified through searches of PubMed with the terms "HDV" "viral hepatitis" "co-infection" and "super-infection," published between 1980 and October 2021 RESULTS: The limited access to the HDV-infected liver has hampered the investigation of the intrahepatic compartment and our understanding of the mechanisms of HDV pathogenesis. In the absence of standardised and sensitive diagnostic tools, HDV is often underdiagnosed and owing to its strong dependence on host cellular factors, the development of direct antiviral agents has been challenging. New therapeutic agents targeting different steps of the viral cycle have recently been investigated, among which bulevirtide (which was conditionally approved by EMA in July 2020) and lonafarnib; both drugs having received orphan drug designation from both the EMA and FDA. CONCLUSIONS The HBV cure programme potentially offers a unique opportunity to enhance HDV treatment strategies. In addition, a more comprehensive analysis of the intrahepatic compartment is mandated to better understand any liver-confined interaction of HDV with the host immune system.
Collapse
Affiliation(s)
- Carla Usai
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK,Present address:
Unitat mixta d’Investigació IRTA‐UAB en Sanitat AnimalCentre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)Bellaterra08193Spain
| | - Upkar S. Gill
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK,The Royal London HospitalBarts Health NHS TrustLondonUK
| | - Anna C. Riddell
- Division of Infection, Virology DepartmentBarts Health NHS TrustLondonUK
| | - Tarik Asselah
- Centre de recherche sur l'inflammation, Inserm U1149Université́ de ParisParisFrance,Department of Hepatology, AP‐HPHôpital BeaujonClichyFrance
| | - Patrick T. Kennedy
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK,The Royal London HospitalBarts Health NHS TrustLondonUK
| |
Collapse
|
26
|
Abstract
Hepatitis D virus (HDV) infection causes the most severe form of viral hepatitis with rapid progression to cirrhosis, hepatic decompensation, and hepatocellular carcinoma. Although discovered > 40 years ago, little attention has been paid to this pathogen from both scientific and public communities. However, effectively combating hepatitis D requires advanced scientific knowledge and joint efforts from multi-stakeholders. In this review, we emphasized the recent advances in HDV virology, epidemiology, clinical feature, treatment, and prevention. We not only highlighted the remaining challenges but also the opportunities that can move the field forward.
Collapse
|
27
|
Pacin-Ruiz B, Cortese MF, Tabernero D, Sopena S, Gregori J, García-García S, Casillas R, Najarro A, Aldama U, Palom A, Rando-Segura A, Galán A, Vila M, Riveiro-Barciela M, Quer J, González-Aseguinolaza G, Buti M, Rodríguez-Frías F. Inspecting the Ribozyme Region of Hepatitis Delta Virus Genotype 1: Conservation and Variability. Viruses 2022; 14:v14020215. [PMID: 35215809 PMCID: PMC8877431 DOI: 10.3390/v14020215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
The hepatitis delta virus (HDV) genome has an autocatalytic region called the ribozyme, which is essential for viral replication. The aim of this study was to use next-generation sequencing (NGS) to analyze the ribozyme quasispecies (QS) in order to study its evolution and identify highly conserved regions potentially suitable for a gene-silencing strategy. HDV RNA was extracted from 2 longitudinal samples of chronic HDV patients and the ribozyme (nucleotide, nt 688-771) was analyzed using NGS. QS conservation, variability and genetic distance were analyzed. Mutations were identified by aligning sequences with their specific genotype consensus. The main relevant mutations were tested in vitro. The ribozyme was conserved overall, with a hyper-conserved region between nt 715-745. No difference in QS was observed over time. The most variable region was between nt 739-769. Thirteen mutations were observed, with three showing a higher frequency: T23C, T69C and C64 deletion. This last strongly reduced HDV replication by more than 1 log in vitro. HDV Ribozyme QS was generally highly conserved and was maintained during follow-up. The most conserved portion may be a valuable target for a gene-silencing strategy. The presence of the C64 deletion may strongly impair viral replication, as it is a potential mechanism of viral persistence.
Collapse
Affiliation(s)
- Beatriz Pacin-Ruiz
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
| | - María Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
- Correspondence: (M.F.C.); (D.T.)
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
- Correspondence: (M.F.C.); (D.T.)
| | - Sara Sopena
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Josep Gregori
- Liver Unit, Liver Disease, Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.G.); (J.Q.)
| | - Selene García-García
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
| | - Rosario Casillas
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Adrián Najarro
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Unai Aldama
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Adriana Palom
- Liver Unit, Department of Internal Medicine, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Ariadna Rando-Segura
- Department of Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Anna Galán
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Marta Vila
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
- Liver Unit, Department of Internal Medicine, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Josep Quer
- Liver Unit, Liver Disease, Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.G.); (J.Q.)
| | | | - María Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
- Liver Unit, Department of Internal Medicine, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (B.P.-R.); (S.S.); (S.G.-G.); (R.C.); (A.N.); (U.A.); (A.G.); (M.V.); (F.R.-F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.R.-B.); (M.B.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Plaça Cívica, 08193 Bellaterra, Spain
| |
Collapse
|
28
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
29
|
Nagata S, Kiyohara R, Toh H. Constraint of Base Pairing on HDV Genome Evolution. Viruses 2021; 13:v13122350. [PMID: 34960619 PMCID: PMC8708965 DOI: 10.3390/v13122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The hepatitis delta virus is a single-stranded circular RNA virus, which is characterized by high self-complementarity. About 70% of the genome sequences can form base-pairs with internal nucleotides. There are many studies on the evolution of the hepatitis delta virus. However, the secondary structure has not been taken into account in these studies. In this study, we developed a method to examine the effect of base pairing as a constraint on the nucleotide substitutions during the evolution of the hepatitis delta virus. The method revealed that the base pairing can reduce the evolutionary rate in the non-coding region of the virus. In addition, it is suggested that the non-coding nucleotides without base pairing may be under some constraint, and that the intensity of the constraint is weaker than that by the base pairing but stronger than that on the synonymous site.
Collapse
|
30
|
[Delta hepatitis: Epidemiology, diagnostic, natural history and treatment]. Rev Med Interne 2021; 43:160-169. [PMID: 34799189 DOI: 10.1016/j.revmed.2021.10.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/17/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022]
Abstract
Hepatitis B virus is a small enveloped RNA virus, which replicates independently but requires the hepatitis B virus (HBV) to provide the envelope proteins necessary for the assembly of its own viral particles. Approximately 5% of chronic hepatitis B virus carriers are infected with HDV. HBV vaccination remains the best preventive treatment for HDV. All HBV patients should be screened for HDV (anti-HDV serology). In case of positive HDV serology, HDV replication (HDV RNA) should be investigated using a sensitive and specific technique. Hepatitis Delta is often complicated by cirrhosis and hepatocellular carcinoma (HCC). For this reason, every patient with Delta cirrhosis should be screened for HCC by abdominal ultrasound every 6 months. The historical treatment was based on PEG-IFN with many side effects. A new treatment has been approved, Bulevirtide (Hepcludex®) an HDV/HBV entry inhibitor, for any patient with chronic hepatitis Delta infection (CHD) with active replication (except in decompensated cirrhosis), at a dose of 2mg/day by subcutaneous injection. The exact duration on-treatment is unknown, thus treatment should be continued if clinical benefit is observed.
Collapse
|
31
|
Chen LY, Pang XY, Goyal H, Yang RX, Xu HG. Hepatitis D: challenges in the estimation of true prevalence and laboratory diagnosis. Gut Pathog 2021; 13:66. [PMID: 34717740 PMCID: PMC8557527 DOI: 10.1186/s13099-021-00462-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective single negative chain RNA virus, as its envelope protein synthesis is dependent on hepatitis B virus (HBV). Studies have consistently shown that coinfection of HBV and HDV is the most serious form of viral hepatitis, with accelerated progression to liver cirrhosis and hepatocellular carcinoma. About 74 million of HBV surface antigen (HBsAg) positive patients worldwide are also co-infected with HDV. Besides, patients with intravenous drug use and high-risk sexual behavior are at higher risk of HDV infection. Therapeutic schedules for HDV are limited, and relapse of HDV has been observed after treatment with pegylated interferon alpha. To reduce the transmission of HDV, all people infected with HBV should be screened for HDV. At present, several serological and molecular detection methods are widely used in the diagnosis of HDV. However, due to the lack of international standards diagnostic results from different laboratories are often not comparable. Therefore, the true prevalence of HDV is still unclear. In this manuscript, we have analyzed various factors influencing the estimation of HDV prevalence. We have also discussed about the advantages and disadvantages of currently available HDV laboratory diagnostic methods, in order to provide some ideas for improving the detection of HDV.
Collapse
Affiliation(s)
- Lin-Yuan Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Yu Pang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hemant Goyal
- Department of Internal Medicine Macon, Mercer University School of Medicine, Georgia, USA
| | - Rui-Xia Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Hayashi T, Takeshita Y, Hutin YJF, Harmanci H, Easterbrook P, Hess S, van Holten J, Oru EO, Kaneko S, Yurdaydin C, Bulterys M. The global hepatitis delta virus (HDV) epidemic: what gaps to address in order to mount a public health response? Arch Public Health 2021; 79:180. [PMID: 34663473 PMCID: PMC8525025 DOI: 10.1186/s13690-021-00693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Co-infection between hepatitis B virus (HBV) and hepatitis delta virus (HDV) causes the severest chronic hepatitis and is associated with a high risk of cirrhosis and hepatocellular carcinoma (HCC). The Global Health Sector Strategy on Viral Hepatitis called for the elimination of hepatitis (- 65% mortality and - 90% incidence) by 2030. Our aims were to summarize key points of knowledge and to identify the gaps that need to be addressed to mount a public health response to HDV. METHODS We performed a current literature review in terms of epidemiology by WHO regions, genotypes distribution and their pathogenicity, factors associated with HDV infection, mortality due to HDV infection, testing strategies and treatment. RESULTS Prevalence of infection and genotypes are heterogeneous distributed, with highest prevalence in foci around the Mediterranean, in the Middle East, and in Central, Northern Asia and Eastern Asia. Persons who inject drugs (PWID) and migrants from highly endemic areas are highly affected. While antibody detection tests are available, HDV RNA tests of current infection are not standardized nor widely available. The few therapeutic options, including lofartinib, are not widely available; however several new and promising agents have entered clinical trials. CONCLUSION HDV infection is an poorly known cause of chronic liver disease. To mount a public health response, we need a better description of the HDV epidemic, standardized testing strategies and better treatment options.
Collapse
Affiliation(s)
- Tomoyuki Hayashi
- Global Hepatitis Programme, World Health Organization, Geneva, Switzerland.
- Department of Gastroenterology, Kanazawa University and WHO Collaborating Center for Chronic Hepatitis and Liver Cancer, Kanazawa, Ishikawa, Japan.
| | - Yumie Takeshita
- Global Hepatitis Programme, World Health Organization, Geneva, Switzerland
- Department of Gastroenterology, Kanazawa University and WHO Collaborating Center for Chronic Hepatitis and Liver Cancer, Kanazawa, Ishikawa, Japan
| | - Yvan J-F Hutin
- Global Hepatitis Programme, World Health Organization, Geneva, Switzerland
| | - Hande Harmanci
- Global Hepatitis Programme, World Health Organization, Geneva, Switzerland
| | | | - Sarah Hess
- Global Hepatitis Programme, World Health Organization, Geneva, Switzerland
| | - Judith van Holten
- Global Hepatitis Programme, World Health Organization, Geneva, Switzerland
| | - Ena Oghenekaro Oru
- Global Hepatitis Programme, World Health Organization, Geneva, Switzerland
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University and WHO Collaborating Center for Chronic Hepatitis and Liver Cancer, Kanazawa, Ishikawa, Japan
| | - Cihan Yurdaydin
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
- Hepatology Institute, University of Ankara, Ankara, Turkey
| | - Marc Bulterys
- Global Hepatitis Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
33
|
Giersch K, Hermanussen L, Volz T, Volmari A, Allweiss L, Sureau C, Casey J, Huang J, Fischer N, Lütgehetmann M, Dandri M. Strong Replication Interference Between Hepatitis Delta Viruses in Human Liver Chimeric Mice. Front Microbiol 2021; 12:671466. [PMID: 34305837 PMCID: PMC8297590 DOI: 10.3389/fmicb.2021.671466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hepatitis D Virus (HDV) is classified into eight genotypes with distinct clinical outcomes. Despite the maintenance of highly conserved functional motifs, it is unknown whether sequence divergence between genotypes, such as HDV-1 and HDV-3, or viral interference mechanisms may affect co-infection in the same host and cell, thus hindering the development of HDV inter-genotypic recombinants. We aimed to investigate virological differences of HDV-1 and HDV-3 and assessed their capacity to infect and replicate within the same liver and human hepatocyte in vivo. Methods Human liver chimeric mice were infected with hepatitis B virus (HBV) and with one of the two HDV genotypes or with HDV-1 and HDV-3 simultaneously. In a second set of experiments, HBV-infected mice were first infected with HDV-1 and after 9 weeks with HDV-3, or vice versa. Also two distinct HDV-1 strains were used to infect mice simultaneously and sequentially. Virological parameters were determined by strain-specific qRT-PCR, RNA in situ hybridization and immunofluorescence staining. Results HBV/HDV co-infection studies indicated faster spreading kinetics and higher intrahepatic levels of HDV-3 compared to HDV-1. In mice that simultaneously received both HDV strains, HDV-3 became the dominant genotype. Interestingly, antigenomic HDV-1 and HDV-3 RNA were detected within the same liver but hardly within the same cell. Surprisingly, sequential super-infection experiments revealed a clear dominance of the HDV strain that was inoculated first, indicating that HDV-infected cells may acquire resistance to super-infection. Conclusion Infection with two largely divergent HDV genotypes could be established in the same liver, but rarely within the same hepatocyte. Sequential super-infection with distinct HDV genotypes and even with two HDV-1 isolates was strongly impaired, suggesting that virus interference mechanisms hamper productive replication in the same cell and hence recombination events even in a system lacking adaptive immune responses.
Collapse
Affiliation(s)
- Katja Giersch
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Volmari
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - John Casey
- Georgetown University Medical Center, Washington, DC, United States
| | - Jiabin Huang
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| |
Collapse
|
34
|
HDV Pathogenesis: Unravelling Ariadne's Thread. Viruses 2021; 13:v13050778. [PMID: 33924806 PMCID: PMC8145675 DOI: 10.3390/v13050778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis Delta virus (HDV) lies in between satellite viruses and viroids, as its unique molecular characteristics and life cycle cannot categorize it according to the standard taxonomy norms for viruses. Being a satellite virus of hepatitis B virus (HBV), HDV requires HBV envelope glycoproteins for its infection cycle and its transmission. HDV pathogenesis varies and depends on the mode of HDV and HBV infection; a simultaneous HDV and HBV infection will lead to an acute hepatitis that will resolve spontaneously in the majority of patients, whereas an HDV super-infection of a chronic HBV carrier will mainly result in the establishment of a chronic HDV infection that may progress towards cirrhosis, liver decompensation, and hepatocellular carcinoma (HCC). With this review, we aim to unravel Ariadne’s thread into the labyrinth of acute and chronic HDV infection pathogenesis and will provide insights into the complexity of this exciting topic by detailing the different players and mechanisms that shape the clinical outcome.
Collapse
|
35
|
In Vivo Models of HDV Infection: Is Humanizing NTCP Enough? Viruses 2021; 13:v13040588. [PMID: 33807170 PMCID: PMC8065588 DOI: 10.3390/v13040588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
The discovery of sodium taurocholate co-transporting polypeptide (NTCP) as a hepatitis B (HBV) and delta virus (HDV) entry receptor has encouraged the development of new animal models of infection. This review provides an overview of the different in vivo models that are currently available to study HDV either in the absence or presence of HBV. By presenting new advances and remaining drawbacks, we will discuss human host factors which, in addition to NTCP, need to be investigated or identified to enable a persistent HDV infection in murine hepatocytes. Detailed knowledge on species-specific factors involved in HDV persistence also shall contribute to the development of therapeutic strategies.
Collapse
|
36
|
Sagnelli C, Sagnelli E, Russo A, Pisaturo M, Occhiello L, Coppola N. HBV/HDV Co-Infection: Epidemiological and Clinical Changes, Recent Knowledge and Future Challenges. Life (Basel) 2021; 11:life11020169. [PMID: 33671730 PMCID: PMC7926847 DOI: 10.3390/life11020169] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Several investigations have been published on Hepatitis Delta Virus (HDV) infection in recent years, from which we have drawn the salient data to provide readers with useful information to improve their knowledge on the subject. HDV genotypes 5–8 have been recently imported to Western countries from central Africa, whose clinical relevance deserves further investigation. Ongoing HDV replication has been identified as an independent predictor of progression to cirrhosis and HCC for patients with HDV chronic hepatitis (HDV-CH). Long-term treatments of HDV-CH with standard or pegylated interferon alfa (peg-IFN-α) have all been unsatisfactory, leading to a sustained virological response (SVR) only in 20–30% of patients treated, faced with a poor tolerability and frequent serious adverse reactions; the addition of HBV nucleo(s)tide analogues to peg-IFN- α did not improve the rate of SVR. The improved knowledge of the HDV life cycle has allowed the development of direct acting agents towards key-points of the HDV life cycle, namely bulevirtide, lonafarnib and nucleic acid polymers. Preliminary data have shown that these drugs are more effective than interferon-based therapies, but adverse reactions are also common, which however seem toned down in combination therapy with other antivirals.
Collapse
|
37
|
Hoan NX, Hoechel M, Tomazatos A, Anh CX, Pallerla SR, Linh LTK, Binh MT, Sy BT, Toan NL, Wedemeyer H, Bock CT, Kremsner PG, Meyer CG, Song LH, Velavan TP. Predominance of HBV Genotype B and HDV Genotype 1 in Vietnamese Patients with Chronic Hepatitis. Viruses 2021; 13:v13020346. [PMID: 33671832 PMCID: PMC7926858 DOI: 10.3390/v13020346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis delta virus (HDV) coinfection will additionally aggravate the hepatitis B virus (HBV) burden in the coming decades, with an increase in HBV-related liver diseases. Between 2018 and 2019, a total of 205 HBV patients clinically characterized as chronic hepatitis B (CHB; n = 115), liver cirrhosis (LC; n = 21), and hepatocellular carcinoma (HCC; n = 69) were recruited. HBV surface antigen (HBsAg), antibodies against surface antigens (anti-HBs), and core antigens (anti-HBc) were determined by ELISA. The presence of hepatitis B viral DNA and hepatitis delta RNA was determined. Distinct HBV and HDV genotypes were phylogenetically reconstructed and vaccine escape mutations in the “a” determinant region of HBV were elucidated. All HBV patients were HbsAg positive, with 99% (n = 204) and 7% (n = 15) of them being positive for anti-HBc and anti-HBs, respectively. Anti-HBs positivity was higher among HCC (15%; n = 9) compared to CHB patients. The HBV-B genotype was predominant (65%; n = 134), followed by HBV-C (31%; n = 64), HBV-D, and HBV-G (3%; n = 7). HCC was observed frequently among young individuals with HBV-C genotypes. A low frequency (2%; n = 4) of vaccine escape mutations was observed. HBV-HDV coinfection was observed in 16% (n = 33) of patients with the predominant occurrence of the HDV-1 genotype. A significant association of genotypes with alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzyme levels was observed in HBV monoinfections. The prevalence of the HDV-1 genotype is high in Vietnam. No correlation was observed between HDV-HBV coinfections and disease progression when compared to HBV monoinfections.
Collapse
Affiliation(s)
- Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, 72076 Tübingen, Germany; (N.X.H.); (M.H.); (A.T.); (S.R.P.); (L.T.K.L.); (M.T.B.); (P.G.K.); (C.G.M.)
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; (C.X.A.); (B.T.S.); (L.H.S.)
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Mirjam Hoechel
- Institute of Tropical Medicine, University of Tübingen, 72076 Tübingen, Germany; (N.X.H.); (M.H.); (A.T.); (S.R.P.); (L.T.K.L.); (M.T.B.); (P.G.K.); (C.G.M.)
| | - Alexandru Tomazatos
- Institute of Tropical Medicine, University of Tübingen, 72076 Tübingen, Germany; (N.X.H.); (M.H.); (A.T.); (S.R.P.); (L.T.K.L.); (M.T.B.); (P.G.K.); (C.G.M.)
| | - Chu Xuan Anh
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; (C.X.A.); (B.T.S.); (L.H.S.)
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Srinivas Reddy Pallerla
- Institute of Tropical Medicine, University of Tübingen, 72076 Tübingen, Germany; (N.X.H.); (M.H.); (A.T.); (S.R.P.); (L.T.K.L.); (M.T.B.); (P.G.K.); (C.G.M.)
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, University of Tübingen, 72076 Tübingen, Germany; (N.X.H.); (M.H.); (A.T.); (S.R.P.); (L.T.K.L.); (M.T.B.); (P.G.K.); (C.G.M.)
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; (C.X.A.); (B.T.S.); (L.H.S.)
| | - Mai Thanh Binh
- Institute of Tropical Medicine, University of Tübingen, 72076 Tübingen, Germany; (N.X.H.); (M.H.); (A.T.); (S.R.P.); (L.T.K.L.); (M.T.B.); (P.G.K.); (C.G.M.)
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; (C.X.A.); (B.T.S.); (L.H.S.)
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Bui Tien Sy
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; (C.X.A.); (B.T.S.); (L.H.S.)
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam;
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30623 Hannover, Germany;
| | - C.-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany;
| | - Peter G. Kremsner
- Institute of Tropical Medicine, University of Tübingen, 72076 Tübingen, Germany; (N.X.H.); (M.H.); (A.T.); (S.R.P.); (L.T.K.L.); (M.T.B.); (P.G.K.); (C.G.M.)
- Centre de Recherches Medicales de Lambarene, Lambaréné, Gabon
| | - Christian G. Meyer
- Institute of Tropical Medicine, University of Tübingen, 72076 Tübingen, Germany; (N.X.H.); (M.H.); (A.T.); (S.R.P.); (L.T.K.L.); (M.T.B.); (P.G.K.); (C.G.M.)
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; (C.X.A.); (B.T.S.); (L.H.S.)
| | - Le Huu Song
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; (C.X.A.); (B.T.S.); (L.H.S.)
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, 72076 Tübingen, Germany; (N.X.H.); (M.H.); (A.T.); (S.R.P.); (L.T.K.L.); (M.T.B.); (P.G.K.); (C.G.M.)
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; (C.X.A.); (B.T.S.); (L.H.S.)
- Correspondence: ; Tel.: +49-7071-2985981
| |
Collapse
|
38
|
Giersch K, Hermanussen L, Volz T, Kah J, Allweiss L, Casey J, Sureau C, Dandri M, Lütgehetmann M. Murine hepatocytes do not support persistence of Hepatitis D virus mono-infection in vivo. Liver Int 2021; 41:410-419. [PMID: 32997847 DOI: 10.1111/liv.14677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS & AIMS As a result of the limited availability of in vivo models for hepatitis D virus (HDV), treatment options for HDV chronically infected patients are still scant. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as HDV entry receptor has enabled the development of new infection models. AIM To comparatively assess the efficacy and persistence of HDV mono-infection in murine and human hepatocytes in vivo. METHODS Mice with humanized NTCP (hNTCPed84-87 mice) were generated by editing amino acid residues 84-87 of murine NTCP in C57BL/6J mice. HDV infection was assessed in hNTCPed84-87 mice and in immune deficient uPA/SCID/beige (USB) mice, whose livers were reconstituted with human or murine (hNTCPed84-87 ) hepatocytes. Livers were analysed between 5 and 42 days post-HDV inoculation by qRT-PCR, immunofluorescence and RNA in situ hybridization (ISH). RESULTS hNTCPed84-87 mice could be infected with HDV genotype 1 or 3. ISH analysis demonstrated the presence of antigenomic HDV RNA positive murine hepatocytes with both genotypes, proving initiation of HDV replication. Strikingly, murine hepatocytes cleared HDV within 21 days both in immunocompetent hNTCPed84-87 mice and in immunodeficient USB mice xenografted with murine hepatocytes. In contrast, HDV infection remained stable for at least 42 days in human hepatocytes. Intrinsic innate responses were not enhanced in any of the HDV mono-infected cells and livers. CONCLUSION These findings suggest that in addition to NTCP, further species-specific factors limit HDV infection efficacy and persistence in murine hepatocytes. Identifying such species barriers may be crucial to develop novel potential therapeutic targets of HDV.
Collapse
Affiliation(s)
- Katja Giersch
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Kah
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - John Casey
- Georgetown University Medical Center, Washington, DC, USA
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Borstel, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Borstel, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
39
|
Roulot D, Brichler S, Layese R, BenAbdesselam Z, Zoulim F, Thibault V, Scholtes C, Roche B, Castelnau C, Poynard T, Chazouillères O, Ganne N, Fontaine H, Gournay J, Guyader D, Le Gal F, Nahon P, Roudot-Thoraval F, Gordien E, Landman R, Hezode C, Riachi G, Lascoux-Combe C, Loustaud-Ratti V, Rosa I, Mathurin P, Nguyen-Khac E, Causse X, Naveau S, Habersetzer F, Metivier S, Labadie H, Sellier P, Bottero J, de Ledinghen V, Alric L, Calès P, Goujard C, Cadranel JF, Salmon D, Hillaire S. Origin, HDV genotype and persistent viremia determine outcome and treatment response in patients with chronic hepatitis delta. J Hepatol 2020; 73:1046-1062. [PMID: 32634548 DOI: 10.1016/j.jhep.2020.06.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS HDV infection causes severe chronic liver disease in individuals infected with HBV. However, the factors associated with poor prognosis are largely unknown. Thus, we aimed to identify prognostic factors in patients with HDV infection. METHODS The French National Reference Centre for HDV performed a nationwide retrospective study on 1,112 HDV-infected patients, collecting epidemiological, clinical, virological and histological data from the initial referral to the last recorded follow-up. RESULTS The median age of our cohort was 36.5 (29.9-43.2) years and 68.6% of our cohort were male. Most patients whose birthplace was known were immigrants from sub-Saharan Africa (52.5%), southern and eastern Europe (21.3%), northern Africa and the Middle East (6.2%), Asia (5.9%) and South America (0.3%). Only 150 patients (13.8%) were French native. HDV load was positive in 659 of 748 tested patients (88.1%). HDV-1 was predominant (75.9%), followed by sub-Saharan genotypes: HDV-5 (17.6%), HDV-7 (2.9%), HDV-6 (1.8%) and HDV-8 (1.6%). At referral, 312 patients (28.2%) had cirrhosis, half having experienced at least 1 episode of hepatic decompensation. Cirrhosis was significantly less frequent in African than in European patients regardless of HDV genotype. At the end of follow-up (median 3.0 [0.8-7.2] years), 48.8% of the patients had developed cirrhosis, 24.2% had ≥1 episode(s) of decompensation and 9.2% had hepatocellular carcinoma. European HDV-1 and African HDV-5 patients were more at risk of developing cirrhosis. Persistent replicative HDV infection was associated with decompensation, hepatocellular carcinoma and death. African patients displayed better response to interferon therapy than non-African patients (46.4% vs. 29.1%, p <0.001). HDV viral load at baseline was significantly lower in responders than in non-responders. CONCLUSION Place of birth, HDV genotype and persistent viremia constitute the main determinants of liver involvement and response to treatment in chronic HDV-infected patients. LAY SUMMARY Chronic liver infection by hepatitis delta virus (HDV) is the most severe form of chronic viral hepatitis. Despite the fact that at least 15-20 million people are chronically infected by HDV worldwide, factors determining the severity of liver involvement are largely unknown. By investigating a large cohort of 1,112 HDV-infected patients followed-up in France, but coming from different areas of the world, we were able to determine that HDV genotype, place of birth (reflecting both viral and host-related factors) and persistent viremia constitute the main determinants of liver involvement and response to treatment.
Collapse
Affiliation(s)
- Dominique Roulot
- AP-HP, Hôpital Avicenne, Unité d'hépatologie, Université Paris 13, Bobigny; Inserm U955, équipe 18, Université Paris-Est, Créteil.
| | - Ségolène Brichler
- AP-HP, Hôpital Avicenne, Laboratoire de microbiologie clinique, Université Paris 13, Centre national de référence des hépatites B, C et Delta, Bobigny, Inserm U955, équipe 18, Université Paris-Est, Créteil
| | - Richard Layese
- AP-HP, Hôpital Henri-Mondor, Unité de Recherche Clinique, Université Paris-Est, DHU A-TVB, IMRB- EA 7376 CEpiA (Clinical Epidemiology and Ageing Unit), Créteil
| | - Zahia BenAbdesselam
- AP-HP, Hôpital Avicenne, Unité d'hépatologie et Centre de Recherche Clinique, Bobigny
| | - Fabien Zoulim
- Hospices civils de Lyon, Hôpital Croix Rousse, Service d'hépatologie; Inserm U1052; Université de Lyon
| | | | - Caroline Scholtes
- Hospices civils de Lyon, Hôpital Croix Rousse, Département de virologie, Université de Lyon
| | - Bruno Roche
- AP-HP, Hopital Paul Brousse, Service d'hépatologie, Villejuif
| | | | - Thierry Poynard
- AP-HP, Groupe hospitalier Pitié-Salpêtriere, Service d'hépatologie, Sorbonne Université, Paris
| | - Olivier Chazouillères
- AP-HP, Hopital Saint-Antoine, Service d'hépatologie et Centre de Recherche, Inserm, Sorbonne Université, Paris
| | - Nathalie Ganne
- AP-HP, Hôpital Jean-Verdier, Service d'hépatologie, Bondy, Université Paris 13, Bobigny; Inserm U1162, Université Paris 5, Paris
| | | | - Jerome Gournay
- CHU de Nantes, Hopital Hôtel Dieu, Département d'hépatogastroentérologie, Nantes
| | | | - Frédéric Le Gal
- AP-HP, Hôpital Avicenne, Laboratoire de microbiologie clinique, Université Paris 13, Centre national de référence des hépatites B, C et Delta, Bobigny, Inserm U955, équipe 18, Université Paris-Est, Créteil
| | - Pierre Nahon
- AP-HP, Hôpital Jean-Verdier, Service d'hépatologie, Bondy, Université Paris 13, Bobigny; Inserm U1162, Université Paris 5, Paris
| | - Françoise Roudot-Thoraval
- AP-HP, Hôpital Henri-Mondor, Unité de Recherche Clinique, Université Paris-Est, DHU A-TVB, IMRB- EA 7376 CEpiA (Clinical Epidemiology and Ageing Unit), Créteil; AP-HP, Hôpital Henri-Mondor, Service d'hépatologie, Créteil
| | - Emmanuel Gordien
- AP-HP, Hôpital Avicenne, Laboratoire de microbiologie clinique, Université Paris 13, Centre national de référence des hépatites B, C et Delta, Bobigny, Inserm U955, équipe 18, Université Paris-Est, Créteil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu S, Zhang Y, Tang Y, Yao T, Lv M, Tang Z, Zang G, Yu Y, Chen X. Molecular epidemiology and clinical characteristics of hepatitis delta virus (HDV) infected patients with elevated transaminases in Shanghai, China. BMC Infect Dis 2020; 20:565. [PMID: 32746807 PMCID: PMC7397625 DOI: 10.1186/s12879-020-05275-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Patients coinfected with HBV and hepatitis D virus (HDV) have a greater risk of HCC and cirrhosis. The current study was undertaken to assess HDV genotype distribution and determine clinical characteristics of hepatitis delta virus (HDV) among HBsAg positive individuals in Shanghai. METHOD This retrospective study involved 225 serum samples from HBsAg positive hospitalized patients from October 2010 to April 2013. HDV-specific RT-nested PCR was used to amplify HDV RNA. HDV genotypes were characterized by Next-generation sequencing (NGS), followed by phylogenetic analyses. HDV/HBV co-infected patients and HBV mono-infected patients were compared clinically and virologically. RESULTS Out of the 225 HBsAg-positive serum samples with elevated transaminases, HDV-RNA was identified in 11 (4.9%) patients. The HBV loads in the HDV positive group were significantly lower than the HDV negative HBV-infected patients. The aminotransferase enzymes were significantly higher in HDV/HBV co-infected compared to HDV negative patients (P < 0.05). Phylogenetic analyses indicated that HDV-2 genotype being the predominant genotype, other HDV genotypes were not observed. HDV/HBV patients were significantly associated with a rather unfavourable clinical outcome. CONCLUSION In summary, the prevalence of HDV infection in patients with elevated transaminases is not low and the predominance of HDV genotype 2 infection in Shanghai. This finding helps us to better understand the correlation of HDV/HBV co-infection. Moreover, Next-generation sequencing (NGS) technologies provide a rapid, precise method for generating HDV genomes to define infecting genotypes.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yuyan Tang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhenghao Tang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yongsheng Yu
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
41
|
Mammalian deltavirus without hepadnavirus coinfection in the neotropical rodent Proechimys semispinosus. Proc Natl Acad Sci U S A 2020; 117:17977-17983. [PMID: 32651267 PMCID: PMC7395443 DOI: 10.1073/pnas.2006750117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is a human hepatitis-causing RNA virus, unrelated to any other taxonomic group of RNA viruses. Its occurrence as a satellite virus of hepatitis B virus (HBV) is a singular case in animal virology for which no consensus evolutionary explanation exists. Here we present a mammalian deltavirus that does not occur in humans, identified in the neotropical rodent species Proechimys semispinosus The rodent deltavirus is highly distinct, showing a common ancestor with a recently described deltavirus in snakes. Reverse genetics based on a tandem minus-strand complementary DNA genome copy under the control of a cytomegalovirus (CMV) promoter confirms autonomous genome replication in transfected cells, with initiation of replication from the upstream genome copy. In contrast to HDV, a large delta antigen is not expressed and the farnesylation motif critical for HBV interaction is absent from a genome region that might correspond to a hypothetical rodent large delta antigen. Correspondingly, there is no evidence for coinfection with an HBV-related hepadnavirus based on virus detection and serology in any deltavirus-positive animal. No other coinfecting viruses were detected by RNA sequencing studies of 120 wild-caught animals that could serve as a potential helper virus. The presence of virus in blood and pronounced detection in reproductively active males suggest horizontal transmission linked to competitive behavior. Our study establishes a nonhuman, mammalian deltavirus that occurs as a horizontally transmitted infection, is potentially cleared by immune response, is not focused in the liver, and possibly does not require helper virus coinfection.
Collapse
|
42
|
Lin GY, Wu YL, Wang CS, Ko CY, Chen CH, Chen PJ, Peng PH, Hsu CW. Performance of commercially available anti-HDV enzyme-linked immunosorbent assays in Taiwan. Virol J 2020; 17:76. [PMID: 32546164 PMCID: PMC7298757 DOI: 10.1186/s12985-020-01355-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Hepatitis D virus (HDV) infection is a major global health issue around the world. There are approximately 15–20 million individuals infected with HDV worldwide. HDV infection usually causes increased mortality compared with infection with hepatitis B virus (HBV) alone. However, testing for the detection of HDV is not widely available in Taiwan. Therefore, the General Biologicals Corporation (GB) HDV Ab kit was developed for detecting anti-HDV antibodies. Methods A total of 913 serum and 462 EDTA-treated plasma samples were obtained from HBsAg-positive individuals in three hospitals in Taiwan from June 2014 to November 2017. We used three commercially available ELISA kits, DiaPro HDV Ab, DiaSorin ETI-AB-DELTAK-2 and GB HDV Ab, which were utilized strictly according to the instructions of the manufacturers. Results A comparative study of the results from the GB HDV Ab kit and the other commercial ELISA kits (DiaPro and DiaSorin) was performed to determine their efficacy for anti-HDV detection. The results indicated that the sensitivity of the GB HDV Ab kit for serum and EDTA samples was 100% compared to that of the DiaPro and DiaSorin kits, whereas the specificity for serum and EDTA samples was 99.3 and 98.1%, respectively. In addition, the overall agreement of the results of the GB HDV Ab kit for the serum and EDTA samples was 99.3 and 98.3%, respectively. It is worth noting that the performance of the GB HDV Ab kit was not affected by interference from triglyceride, bilirubin, hemoglobin, or human anti-mouse antibody. The limit of detection of the GB HDV Ab kit is approximately 100-fold lower than that of the other two commercial kits. Conclusions The GB HDV Ab kit, which presented equivalent sensitivity and specificity compared to both certified anti-HDV kits, would be a suitable kit for HDV diagnosis in Taiwan.
Collapse
Affiliation(s)
- Guan-Yu Lin
- General Biologicals Corporation, Hsinchu, 30076, Taiwan
| | - Yi-Le Wu
- General Biologicals Corporation, Hsinchu, 30076, Taiwan
| | - Cheng-Si Wang
- General Biologicals Corporation, Hsinchu, 30076, Taiwan
| | - Chia-Yun Ko
- General Biologicals Corporation, Hsinchu, 30076, Taiwan
| | - Chien-Hung Chen
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Jer Chen
- Hepatitis Research Center, National Taiwan University, Taipei, 10002, Taiwan
| | - Po-Hsin Peng
- General Biologicals Corporation, Hsinchu, 30076, Taiwan.
| | - Chao-Wei Hsu
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan.
| |
Collapse
|
43
|
Spaan M, Carey I, Bruce M, Shang D, Horner M, Dusheiko G, Agarwal K. Hepatitis delta genotype 5 is associated with favourable disease outcome and better response to treatment compared to genotype 1. J Hepatol 2020; 72:1097-1104. [PMID: 31981726 DOI: 10.1016/j.jhep.2019.12.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS Coinfection with HDV causes rapid progression to liver cirrhosis and hepatic decompensation in patients with chronic hepatitis B. Factors that are associated with disease progression are poorly understood. In this study we aim to identify risk factors associated with disease progression and better characterise clinical differences and treatment response between HDV genotype 1 and 5. METHODS In this retrospective study, all patients under our care between 2005 and 2016 with HBV/HDV coinfection (HBsAg+, anti-HDV antibodies positive) were analysed. Patients were excluded if follow-up was less than 6 months, if they had HCV and/or HIV coinfection or an acute HDV infection. Demographic data, stage of liver disease, development of liver complications and treatment response were recorded. RESULTS One-hundred seven patients (mean age 36.0 years, 57% male) were followed for a median period of 4.4 years (range 0.6-28.1 years); 64% were of African origin and 17% were of European origin, with 28% of patients being cirrhotic at first visit; 43% patients had actively replicating HDV virus (anti-HDV-IgG+, anti-HDV-IgM+ or HDV RNA+) and 57% of patients were HDV exposed (anti-HDV-IgG+, HDV RNA-). Patients with actively replicating HDV more often developed liver complications than HDV-exposed patients (p = 0.002), but no differences in baseline characteristics were observed. Patients with HDV genotype 5 less often developed cirrhosis or hepatic decompensation compared to patients with HDV genotype 1. Twenty-four patients were treated with peg-IFN and post-treatment response was significantly better in patients infected with genotype 5 (10% GT1 vs. 64% GT5, p = 0.013). CONCLUSION Patients infected with HDV genotype 5 appear to have a better prognosis with fewer episodes of hepatic decompensation and better response to peg-IFN treatment than patients infected with HDV genotype 1. LAY SUMMARY Hepatitis delta is a virus that affects the liver. The virus is known to have different subtypes, called genotypes. With this research we discovered that hepatitis delta virus genotype 1 behaves differently than genotype 5 and causes faster development of liver disease. This is important for education of our patients and to determine how often we need to check our patients.
Collapse
Affiliation(s)
- Michelle Spaan
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands.
| | - Ivana Carey
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Matthew Bruce
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Dazhuang Shang
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mary Horner
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Geoff Dusheiko
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
44
|
Statin inhibits large hepatitis delta antigen-Smad3 -twist-mediated epithelial-to-mesenchymal transition and hepatitis D virus secretion. J Biomed Sci 2020; 27:65. [PMID: 32434501 PMCID: PMC7240974 DOI: 10.1186/s12929-020-00659-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background Hepatitis D virus (HDV) infection may induce fulminant hepatitis in chronic hepatitis B patients (CHB) or rapid progression of CHB to cirrhosis or hepatocellular carcinoma. There is no effective treatment for HDV infection. HDV encodes small delta antigens (S-HDAg) and large delta antigens (L-HDAg). S-HDAg is essential for HDV replication. Prenylated L-HDAg plays a key role in HDV assembly. Previous studies indicate that L-HDAg transactivates transforming growth factor beta (TGF-β) and induces epithelial-mesenchymal transition (EMT), possibly leading to liver fibrosis. However, the mechanism is unclear. Methods The mechanisms of the activation of Twist promoter by L-HDAg were investigated by luciferase reporter assay, chromatin immunoprecipitation, and co-immunoprecipitation analysis. ELISA and Western blotting were used to analyze L-HDAg prenylation, TGF-β secretion, expression of EMT markers, and to evaluate efficacy of statins for HDV treatment. Results We found that L-HDAg activated Twist expression, TGF-β expression and consequently induced EMT, based on its interaction with Smad3 on Twist promoter. The treatment of statin, a prenylation inhibitor, resulted in reduction of Twist promoter activity, TGF-β expression, and EMT, and reduces the release of HDV virions into the culture medium. Conclusions We demonstrate that L-HDAg activates EMT via Twist and TGF-β activation. Treatment with statins suppressed Twist expression, and TGF-β secretion, leading to downregulation of EMT. Our findings clarify the mechanism of HDV-induced EMT, and provide a basis for possible novel therapeutic strategies against HDV infection.
Collapse
|
45
|
HDVdb: A Comprehensive Hepatitis D Virus Database. Viruses 2020; 12:v12050538. [PMID: 32422927 PMCID: PMC7290977 DOI: 10.3390/v12050538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) causes the most severe form of viral hepatitis, which may rapidly progress to liver cirrhosis and hepatocellular carcinoma (HCC). It has been estimated that 15-20 million people worldwide are suffering from the chronic HDV infection. Currently, no effective therapies are available to treat acute or chronic HDV infection. The remarkable sequence variability of the HDV genome, particularly within the hypervariable region has resulted in the provisional classification of eight major genotypes and various subtypes. We have developed a specialized database, HDVdb (http://hdvdb.bio.wzw.tum.de/), which contains a collection of partial and complete HDV genomic sequences obtained from the GenBank and from our own patient cohort. HDVdb enables the researchers to investigate the genetic variability of all available HDV sequences, correlation of genotypes to epidemiology and pathogenesis. Additionally, it will contribute in understanding the drug resistant mutations and develop effective vaccines against HDV infection. The database can be accessed through a web interface that allows for static and dynamic queries and offers integrated generic and specialized sequence analysis tools, such as annotation, genotyping, primer prediction, and phylogenetic analyses.
Collapse
|
46
|
Abstract
Satellite viruses, most commonly found in plants, rely on helper viruses to complete their replication cycle. The only known example of a human satellite virus is the hepatitis D virus (HDV), and it is generally thought to require hepatitis B virus (HBV) to form infectious particles. Until 2018, HDV was the sole representative of the genus Deltavirus and was thought to have evolved in humans, the only known HDV host. The subsequent identification of HDV-like agents in birds, snakes, fish, amphibians, and invertebrates indicated that the evolutionary history of deltaviruses is likely much longer than previously hypothesized. Interestingly, none of the HDV-like agents were found in coinfection with an HBV-like agent, suggesting that these viruses use different helper virus(es). Here we show, using snake deltavirus (SDeV), that HBV and hepadnaviruses represent only one example of helper viruses for deltaviruses. We cloned the SDeV genome into a mammalian expression plasmid, and by transfection could initiate SDeV replication in cultured snake and mammalian cell lines. By superinfecting persistently SDeV-infected cells with reptarenaviruses and hartmaniviruses, or by transfecting their surface proteins, we could induce production of infectious SDeV particles. Our findings indicate that deltaviruses can likely use a multitude of helper viruses or even viral glycoproteins to form infectious particles. This suggests that persistent infections, such as those caused by arenaviruses and orthohantaviruses used in this study, and recurrent infections would be beneficial for the spread of deltaviruses. It seems plausible that further human or animal disease associations with deltavirus infections will be identified in the future.IMPORTANCE Deltaviruses need a coinfecting enveloped virus to produce infectious particles necessary for transmission to a new host. Hepatitis D virus (HDV), the only known deltavirus until 2018, has been found only in humans, and its coinfection with hepatitis B virus (HBV) is linked with fulminant hepatitis. The recent discovery of deltaviruses without a coinfecting HBV-like agent in several different taxa suggested that deltaviruses could employ coinfection by other enveloped viruses to complete their life cycle. In this report, we show that snake deltavirus (SDeV) efficiently utilizes coinfecting reptarena- and hartmaniviruses to form infectious particles. Furthermore, we demonstrate that cells expressing the envelope proteins of arenaviruses and orthohantaviruses produce infectious SDeV particles. As the envelope proteins are responsible for binding and infecting new host cells, our findings indicate that deltaviruses are likely not restricted in their tissue tropism, implying that they could be linked to animal or human diseases other than hepatitis.
Collapse
|
47
|
Sharafi H, Rezaee-Zavareh MS, Miri SM, Alavian SM. Global Distribution of Hepatitis D Virus Genotypes: A Systematic Review. HEPATITIS MONTHLY 2020; 20. [DOI: 10.5812/hepatmon.102268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
|
48
|
Aftab M, Naz S, Aftab B, Ali A, Rafique S, Fatima Z, Inamullah, Idrees M. Characterization of Hepatitis Delta Virus Among Pregnant Women of Pakistan. Viral Immunol 2019; 32:335-340. [PMID: 31553269 DOI: 10.1089/vim.2019.0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatitis delta virus (HDV) is a highly pathogenic virus and causes rapid disease progression from fulminant hepatitis to development of hepatocellular carcinoma in patients infected with hepatitis B virus (HBV). HDV is endemic in Pakistan; however, there are no available data on HDV prevalence among the high-risk group of HBV-infected pregnant women. A total of 1,394 pregnant women, visiting different public-sector hospitals in Lahore, were enrolled in this study. Their demographic data and blood samples were collected from May 2016 to July 2017. Samples were screened for both HBsAg and anti-HDV. Anti-HDV positive samples were tested for HDV RNA, and samples positive for HDV RNA were further sequenced to determine the HDV genotype. Of the 1,394 samples, HBsAg was positive in 63 (4.5%). Of these 63 HBsAg-positive samples, 13 (20.63%) were positive for anti-HDV. Of the 13 HBsAg/anti-HDV positive samples, HDV RNA was detected in 4 (30.8%) samples and all 4 carried HDV genotype 1. The age of enrolled women varied from 20 to 40 years, with most of the women living in urban areas, having education more than secondary school level, belonging to middle class, and being housewives. Majority of the tested women were of age from 25 to 30 years (39.2%); however, the prevalence of HBV was higher in age group 31-35 years (10.7%, confidence interval [CI]: 4.73-16.67); however, anti-HDV prevalence was 1.9% (CI: -0.7 to 4.7). This study is the first report on HDV prevalence among pregnant women in Pakistan. Our study showed a high predominance of HDV (20.63%) in HBV-infected pregnant women and the prevalence of HDV genotype 1 infection. The findings contribute to a better understanding of the HDV/HBV coinfection among pregnant women and circulating HDV genotypes in the country.
Collapse
Affiliation(s)
- Mahwish Aftab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Shagufta Naz
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Beenish Aftab
- Centre of Excellence in Molecular Biology (CEMB), Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology (CEMB), Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Zareen Fatima
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Inamullah
- Department of Genetics, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology (CEMB), Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
49
|
Gilman C, Heller T, Koh C. Chronic hepatitis delta: A state-of-the-art review and new therapies. World J Gastroenterol 2019; 25:4580-4597. [PMID: 31528088 PMCID: PMC6718034 DOI: 10.3748/wjg.v25.i32.4580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic delta hepatitis is the most severe form of viral hepatitis affecting nearly 65 million people worldwide. Individuals with this devastating illness are at higher risk for developing cirrhosis and hepatocellular carcinoma. Delta virus is a defective RNA virus that requires hepatitis B surface antigen for propagation in humans. Infection can occur in the form of a co-infection with hepatitis B, which can be self-limiting, vs superinfection in a patient with established hepatitis B infection, which often leads to chronicity in majority of cases. Current noninvasive tools to assess for advanced liver disease have limited utility in delta hepatitis. Guidelines recommend treatment with pegylated interferon, but this is limited to patients with compensated disease and is efficacious in about 30% of those treated. Due to limited treatment options, novel agents are being investigated and include entry, assembly and export inhibitors of viral particles in addition to stimulators of the host immune response. Future clinical trials should take into consideration the interaction of hepatitis B and hepatitis D as suppression of one virus can lead to the activation of the other. Also, surrogate markers of treatment efficacy have been proposed.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Coinfection/drug therapy
- Coinfection/epidemiology
- Coinfection/virology
- Drug Therapy, Combination/methods
- Global Burden of Disease
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/epidemiology
- Hepatitis B, Chronic/virology
- Hepatitis D, Chronic/drug therapy
- Hepatitis D, Chronic/epidemiology
- Hepatitis D, Chronic/virology
- Hepatitis Delta Virus/immunology
- Hepatitis Delta Virus/pathogenicity
- Humans
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Randomized Controlled Trials as Topic
- Review Literature as Topic
- Superinfection/drug therapy
- Superinfection/epidemiology
- Superinfection/virology
- Symporters/antagonists & inhibitors
- Symporters/metabolism
- Therapies, Investigational/methods
- Treatment Outcome
- Virus Assembly/drug effects
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Christy Gilman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
50
|
Coppola N, Alessio L, Onorato L, Sagnelli C, Sagnelli E, Pisaturo M. HDV infection in immigrant populations. J Med Virol 2019; 91:2049-2058. [PMID: 31429940 DOI: 10.1002/jmv.25570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022]
Abstract
AIMS Little data have been published so far on the epidemiological aspects of hepatitis D virus (HDV) infection in immigrant populations and even poorer is the information on the virological, phylogenetic, and clinical aspects of this infection in these populations. This review article, aimed primarily at physicians caring for immigrants, summarizes the information available on HDV infection and analyzes data on this topic concerning the immigrant populations. METHODS AND RESULTS The prevalence of HDV infection in HBsAg-positive immigrants varies according to the country of origin. For example, in immigrants from sub-Saharan Africa, this prevalence is higher in those born in Equatorial Guinea (24.4%) than those from other African countries (10.3%). The epidemiological impact of HDV infection linked to migratory flows is a function of the different endemicity between countries of origin and countries in which a new existence has been established. This impact is high when immigrants from areas endemic to HDV infection (eg, Equatorial Guinea) settle in areas of low endemicity (eg, Germany or England, with a prevalence of around 4%), while the impact is lesser or nonexistent if the migratory flows are directed toward countries with intermediate endemicity (eg, Italy and Greece, with a prevalence of around 10%). CONCLUSION This impact of immigration on HDV epidemiology can be strong when HDV endemicity is high in the country of origin and low in the host country and slight when immigrants move to high or medium endemic countries.
Collapse
Affiliation(s)
- Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy.,Infectious Disease Unit, AORN Caserta, Caserta, Italy
| | | | - Lorenzo Onorato
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy.,Infectious Disease Unit, AORN Caserta, Caserta, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mariantonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|