1
|
Da Silva J, Figueiredo A, Tseng YH, Carvalho E, Leal EC. Bone Morphogenetic Protein 7 Improves Wound Healing in Diabetes by Decreasing Inflammation and Promoting M2 Macrophage Polarization. Int J Mol Sci 2025; 26:2036. [PMID: 40076659 PMCID: PMC11900347 DOI: 10.3390/ijms26052036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication of diabetes, presenting limited treatment success rates due to their complex pathophysiology. Bone morphogenetic protein 7 (BMP7) confers tissue protective and regenerative functions, but its potential role in diabetic wound healing is unknown. The aim of this study was to investigate the effects of topical BMP7 treatment in wound healing using a streptozotocin-induced diabetic mouse model. The expression of markers of wound healing progression were detected using RT-PCR or immunohistochemistry. Overall, BMP7 improved wound closure, as well as maturation of granulation tissue and collagen deposition, as evidenced by hematoxylin and eosin and Masson's trichrome histological analysis. The expression of inflammatory markers (IL-6, TNF-α) and matrix metalloproteinase-9 were decreased in BMP7-treated wounds, together with the number of pro-inflammatory M1 macrophages and T lymphocytes. The number of anti-inflammatory M2 macrophages was increased in BMP7-treated wounds. Moreover, BMP7 decreased oxidative stress and increased Ki67+ cells and CD31+ cells, indicating induced proliferation and angiogenesis in the wound bed compared to the control wounds. Finally, BMP7 activated the ERK pathway and suppressed the p38 pathway in diabetic wounds. Together, our data suggest that BMP7 enhanced skin wound healing in diabetes by decreasing local inflammation and oxidative stress, which promoted a regenerative environment for collagen deposition, wound maturation, cell proliferation, and angiogenesis. These findings underline BMP7 as a potential therapeutic agent for the treatment of skin wounds in diabetes.
Collapse
Affiliation(s)
- Jessica Da Silva
- Doctoral Program in Experimental Biology and Biomedicine (PDBEB), Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Ana Figueiredo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eugenia Carvalho
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ermelindo C. Leal
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Toba K, Yamada A, Sasa K, Shirota T, Kamijo R. Expression of Kielin/chordin-like protein is regulated by BMP-2 in osteoblasts. Bone Rep 2024; 22:101793. [PMID: 39139593 PMCID: PMC11321374 DOI: 10.1016/j.bonr.2024.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Bone morphogenetic protein (BMP), an osteoinductive factor, is a cytokine that induces osteoblast differentiation and mineralization, and expected to be applicable for hard tissue reconstruction. Kielin/chordin-like protein (Kcp), a member of the family of cysteine-rich proteins, enhances BMP signaling. The present study found that expression of Kcp in osteoblasts was induced by BMP-2 in a concentration- and time-dependent manner. Up-regulation of Kcp by BMP-2 was inhibited by Dorsomorphin, a SMAD signaling inhibitor. The involvement of up-regulation of Kcp by BMP-2 in induction of osteoblast differentiation by BMP-2 was also examined, which showed that suppression of Kcp expression by si Kcp partially inhibited induction of osteoblast differentiation and mineralization by BMP-2. Together, these results suggest that Kcp induced by BMP-2 functions to provide positive feedback for promotion of osteoblastic differentiation and mineralization by BMP-2 in osteoblasts.
Collapse
Affiliation(s)
- Kazuki Toba
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
3
|
Fang N, Wang Z, Jiang J, Yang A, Mao T, Wang Z, Chen Q. Nonsurgical therapy for lumbar spinal stenosis caused by ligamentum flavum hypertrophy: A review. Medicine (Baltimore) 2024; 103:e38782. [PMID: 38968524 PMCID: PMC11224896 DOI: 10.1097/md.0000000000038782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Lumbar spinal stenosis (LSS) can cause a range of cauda equina symptoms, including lower back and leg pain, numbness, and intermittent claudication. This disease affects approximately 103 million people worldwide, particularly the elderly, and can seriously compromise their health and well-being. Ligamentum flavum hypertrophy (LFH) is one of the main contributing factors to this disease. Surgical treatment is currently recommended for LSS caused by LFH. For patients who do not meet the criteria for surgery, symptom relief can be achieved by using oral nonsteroidal anti-inflammatory drugs (NSAIDs) and epidural steroid injections. Exercise therapy and needle knife can also help to reduce the effects of mechanical stress. However, the effectiveness of these methods varies, and targeting the delay in LF hypertrophy is challenging. Therefore, further research and development of new drugs is necessary to address this issue. Several new drugs, including cyclopamine and N-acetyl-l-cysteine, are currently undergoing testing and may serve as new treatments for LSS caused by LFH.
Collapse
Affiliation(s)
- Nan Fang
- College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Zhigang Wang
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
- Department of Orthopedics & Traumatology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Jiecheng Jiang
- College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Aofei Yang
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
- Department of Orthopedics & Traumatology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Tian Mao
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
- Department of Orthopedics & Traumatology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Zitong Wang
- College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Qian Chen
- College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
| |
Collapse
|
4
|
Bongiovanni C, Bueno-Levy H, Posadas Pena D, Del Bono I, Miano C, Boriati S, Da Pra S, Sacchi F, Redaelli S, Bergen M, Romaniello D, Pontis F, Tassinari R, Kellerer L, Petraroia I, Mazzeschi M, Lauriola M, Ventura C, Heermann S, Weidinger G, Tzahor E, D'Uva G. BMP7 promotes cardiomyocyte regeneration in zebrafish and adult mice. Cell Rep 2024; 43:114162. [PMID: 38678558 DOI: 10.1016/j.celrep.2024.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Zebrafish have a lifelong cardiac regenerative ability after damage, whereas mammals lose this capacity during early postnatal development. This study investigated whether the declining expression of growth factors during postnatal mammalian development contributes to the decrease of cardiomyocyte regenerative potential. Besides confirming the proliferative ability of neuregulin 1 (NRG1), interleukin (IL)1b, receptor activator of nuclear factor kappa-Β ligand (RANKL), insulin growth factor (IGF)2, and IL6, we identified other potential pro-regenerative factors, with BMP7 exhibiting the most pronounced efficacy. Bmp7 knockdown in neonatal mouse cardiomyocytes and loss-of-function in adult zebrafish during cardiac regeneration reduced cardiomyocyte proliferation, indicating that Bmp7 is crucial in the regenerative stages of mouse and zebrafish hearts. Conversely, bmp7 overexpression in regenerating zebrafish or administration at post-mitotic juvenile and adult mouse stages, in vitro and in vivo following myocardial infarction, enhanced cardiomyocyte cycling. Mechanistically, BMP7 stimulated proliferation through BMPR1A/ACVR1 and ACVR2A/BMPR2 receptors and downstream SMAD5, ERK, and AKT signaling. Overall, BMP7 administration is a promising strategy for heart regeneration.
Collapse
Affiliation(s)
- Chiara Bongiovanni
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; Centre for Applied Biomedical Research (CRBA), University of Bologna, via Massarenti 9, 40138 Bologna, Italy; National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), via di Corticella 183, 40128 Bologna, Italy
| | - Hanna Bueno-Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Herzl St. 234, Rehovot 76100, Israel
| | - Denise Posadas Pena
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Irene Del Bono
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; Centre for Applied Biomedical Research (CRBA), University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Carmen Miano
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; Centre for Applied Biomedical Research (CRBA), University of Bologna, via Massarenti 9, 40138 Bologna, Italy; National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), via di Corticella 183, 40128 Bologna, Italy
| | - Stefano Boriati
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; Centre for Applied Biomedical Research (CRBA), University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Da Pra
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; Centre for Applied Biomedical Research (CRBA), University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Sacchi
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; Centre for Applied Biomedical Research (CRBA), University of Bologna, via Massarenti 9, 40138 Bologna, Italy; National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), via di Corticella 183, 40128 Bologna, Italy
| | - Simone Redaelli
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max Bergen
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, 79104 Freiburg, Germany
| | - Donatella Romaniello
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; Centre for Applied Biomedical Research (CRBA), University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Pontis
- Scientific and Technological Pole, IRCCS MultiMedica, via Fantoli 16/15, 20138 Milan, Italy
| | | | - Laura Kellerer
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ilaria Petraroia
- Scientific and Technological Pole, IRCCS MultiMedica, via Fantoli 16/15, 20138 Milan, Italy
| | - Martina Mazzeschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; Centre for Applied Biomedical Research (CRBA), University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), via di Corticella 183, 40128 Bologna, Italy
| | - Stephan Heermann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, 79104 Freiburg, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Herzl St. 234, Rehovot 76100, Israel
| | - Gabriele D'Uva
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italy.
| |
Collapse
|
5
|
Zhu D, Sun Z, Wei J, Zhang Y, An W, Lin Y, Li X. BMP7-Loaded Human Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Ameliorate Liver Fibrosis by Targeting Activated Hepatic Stellate Cells. Int J Nanomedicine 2024; 19:3475-3495. [PMID: 38623080 PMCID: PMC11018131 DOI: 10.2147/ijn.s450284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose Human umbilical cord mesenchymal stem cell (hucMSC)-derived small extracellular vesicles (sEVs) are natural nanocarriers with promising potential in treating liver fibrosis and have widespread applications in the fields of nanomedicine and regenerative medicine. However, the therapeutic efficacy of natural hucMSC-sEVs is currently limited owing to their non-specific distribution in vivo and partial removal by mononuclear macrophages following systemic delivery. Thus, the therapeutic efficacy can be improved through the development of engineered hucMSC-sEVs capable to overcome these limitations. Patients and Methods To improve the anti-liver fibrosis efficacy of hucMSC-sEVs, we genetically engineered hucMSC-sEVs to overexpress the anti-fibrotic gene bone morphogenic protein 7 (BMP7) in parental cells. This was achieved using lentiviral transfection, following which BMP7-loaded hucMSC-sEVs were isolated through ultracentrifugation. First, the liver fibrosis was induced in C57BL/6J mice by intraperitoneal injection of 50% carbon tetrachloride (CCL4) twice a week for 8 weeks. These mice were subsequently treated with BMP7+sEVs via tail vein injection, and the anti-liver fibrosis effect of BMP7+sEVs was validated using small animal in vivo imaging, immunohistochemistry (IHC), tissue immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Finally, cell function studies were performed to confirm the in vivo results. Results Liver imaging and liver histopathology confirmed that the engineered hucMSC-sEVs could reach the liver of mice and aggregate around activated hepatic stellate cells (aHSCs) with a significantly stronger anti-liver fibrosis effect of BMP7-loaded hucMSC-sEVs compared to those of blank or negative control-transfected hucMSC-sEVs. In vitro, BMP7-loaded hucMSC-sEVs promoted the phenotypic reversal of aHSCs and inhibited their proliferation to enhance the anti-fibrotic effects. Conclusion These engineered BMP7-loaded hucMSC-sEVs offer a novel and promising strategy for the clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Dan Zhu
- First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
| | - Zongbin Sun
- First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
| | - Jiayun Wei
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yulin Zhang
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
| | - Wenjing An
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yan Lin
- First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
| | - Xun Li
- First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
- General Surgery Department, First Hospital of Lanzhou University, Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
6
|
Hosseini-Fard SR, Etemad-Moghadam S, Alaeddini M, Dehpour AR, Emamgholipour S, Golestani A. Exploring the impact of naltrexone on the THBS1/eNOS/NO pathway in osteoporotic bile duct-ligated rats. Sci Rep 2024; 14:48. [PMID: 38167957 PMCID: PMC10761994 DOI: 10.1038/s41598-023-50547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatic osteodystrophy, a prevalent manifestation of metabolic bone disease, can arise in the context of chronic liver disease. The THBS1-eNOS-NO signaling pathway plays a pivotal role in the maturation of osteoclast precursors. This study aimed to investigate the impact of Naltrexone (NTX) on bone loss by examining the THBS1-eNOS-NO signaling pathways in bile duct ligated (BDL) rats. Male Wistar rats were randomly divided into five groups (n = 10 per group): control, sham-operated + normal saline, BDL + normal saline, sham-operated + NTX (10 mg/kg), and BDL + NTX. Parameters related to liver injury were measured at the study's conclusion, and Masson-trichrome staining was employed to evaluate collagen deposition in liver tissue. Bone THBS-1 and endothelial nitric oxide synthase (eNOS) expression levels were measured using real-time PCR, while the level of bone nitric oxide (NO) was assessed through a colorimetric assay. NTX treatment significantly attenuated the BDL-induced increase in circulating levels of liver enzymes and bilirubin. THBS-1 expression levels, elevated after BDL, were significantly suppressed following NTX administration in the BDL + NTX group. Despite no alterations in eNOS expression between groups, the bone NO level, significantly decreased in the BDL group, was significantly reduced by NTX in the BDL + NTX group. This study partly provides insights into the possible molecular mechanisms in BDL-induced osteoporosis and highlights the modulating effect of NTX on these pathways. Further research is needed to establish the impact of NTX on histomorphometric indexes.
Collapse
Affiliation(s)
- Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Choi MJ, You TM, Jang YJ. Galectin-3 Plays an Important Role in BMP7-Induced Cementoblastic Differentiation of Human Periodontal Ligament Cells by Interacting with Extracellular Components. Stem Cells Int 2023; 2023:5924286. [PMID: 37396953 PMCID: PMC10313471 DOI: 10.1155/2023/5924286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/01/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) contain multipotent postnatal stem cells that differentiate into PDL progenitors, osteoblasts, and cementoblasts. Previously, we obtained cementoblast-like cells from hPDLSCs using bone morphogenetic protein 7 (BMP7) treatment. Differentiation into appropriate progenitor cells requires interactions and changes between stem or progenitor cells and their so-called environment niches, and cell surface markers play an important role. However, cementoblast-specific cell surface markers have not yet been fully studied. Through decoy immunization with intact cementoblasts, we developed a series of monoclonal antibodies against cementoblast-specific membrane/extracellular matrix (ECM) molecules. One of these antibodies, the anti-CM3 antibody, recognized an approximate 30 kDa protein in a mouse cementoblast cell line, and the CM3 antigenic molecule accumulated in the cementum region of human tooth roots. Using mass spectrometric analysis, we found that the antigenic molecules recognized by the anti-CM3 antibody were galectin-3. As cementoblastic differentiation progressed, the expression of galectin-3 increased, and it localized at the cell surface. Inhibition of galectin-3 via siRNA and a specific inhibitor showed the complete blockage of cementoblastic differentiation and mineralization. In contrast, ectopic expression of galectin-3 induced cementoblastic differentiation. Galectin-3 interacted with laminin α2 and BMP7, and these interactions were diminished by galectin-3 inhibitors. These results suggested that galectin-3 participates in binding to the ECM component and trapping BMP7 to induce, in a sustained fashion, the upregulation of cementoblastic differentiation. Finally, galectin-3 could be a potential cementoblast-specific cell surface marker, with functional importance in cell-to-ECM interactions.
Collapse
Affiliation(s)
- Min-Jeong Choi
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae Min You
- Department of Advanced General Dentistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
8
|
Ly TD, Sambale M, Klösener L, Traut P, Fischer B, Hendig D, Kuhn J, Knabbe C, Faust-Hinse I. Understanding of arthrofibrosis: New explorative insights into extracellular matrix remodeling of synovial fibroblasts. PLoS One 2023; 18:e0286334. [PMID: 37235555 DOI: 10.1371/journal.pone.0286334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Arthrofibrosis following total knee arthroplasty is a fibroproliferative joint disorder marked by dysregulated biosynthesis of extracellular matrix proteins, such as collagens and proteoglycans. The underlying cellular events remain incompletely understood. Myofibroblasts are highly contractile matrix-producing cells characterized by increased alpha-smooth muscle actin expression and xylosyltransferase-I (XT-I) secretion. Human XT-I has been identified as a key mediator of arthrofibrotic remodeling. Primary fibroblasts from patients with arthrofibrosis provide a useful in vitro model to identify and characterize disease regulators and potential therapeutic targets. This study aims at characterizing primary synovial fibroblasts from arthrofibrotic tissues (AFib) regarding their molecular and cellular phenotype by utilizing myofibroblast cell culture models. Compared to synovial control fibroblasts (CF), AFib are marked by enhanced cell contractility and a higher XT secretion rate, demonstrating an increased fibroblast-to-myofibroblast transition rate during arthrofibrosis. Histochemical assays and quantitative gene expression analysis confirmed higher collagen and proteoglycan expression and accumulation in AFib compared to CF. Furthermore, fibrosis-based gene expression profiling identified novel modifier genes in the context of arthrofibrosis remodeling. In summary, this study revealed a unique profibrotic phenotype in AFib that resembles some traits of other fibroproliferative diseases and can be used for the future development of therapeutic interventions.
Collapse
Affiliation(s)
- Thanh-Diep Ly
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Meike Sambale
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Lara Klösener
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Philipp Traut
- Orthopädische Beratung und Begutachtung, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Isabel Faust-Hinse
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| |
Collapse
|
9
|
Zhang J, Zhou S, Xia Z, Peng Z, Luo W, Cheng X, Yang R. Effectiveness of artesunate combined with fractional CO2 laser in a hypertrophic scar model with underlying mechanism. Burns 2022; 48:662-671. [PMID: 34103199 DOI: 10.1016/j.burns.2021.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Both artesunate and fractional CO2 laser have been proved effective in the treatment of hypertrophic scars, yet little data are available for the efficacy of artesunate combined with fractional CO2 laser. In order to assess the pre-clinical significance and the underlying mechanism of this combined treatment profile, we attempted to observe the effectiveness of this therapy in rabbit models through determining the expression of BMP-7 and Fas. MATERIALS AND METHODS Twenty-Four New Zealand white rabbits with established hypertrophic scar samples were randomly divided into control group and three treatment groups. Artesunate (20 μl/cm2) was injected into the rat's scar of artesunate and combination groups, while fractional CO2 laser (Combo mode, deep energy:10 mJ, super energy: 50 mJ) was applied to rats in fractional CO2 laser and combination groups at week 4 after model establishment. All rabbits underwent a total of 3 sessions of treatment once every 2 weeks. Histological and immunohistochemistry study, Western blot assay, cell viability, ELISA and RT-QPCR were performed at week 10 to observe the aspects of hypertrophic scar sample changes and expression of BMP-7 and Fas in the scar tissues. RESULTS Compared with control group, hypertrophic scars and the collagen fibers were significantly inhibited after treatment, and higher inhibition was seen in the samples in combination group compared to that in artesunate and fractional CO2 laser groups (P < 0.01). Meanwhile, BMP-7 and Fas expressions were both notably increased in all treatment groups, and upregulation of the two proteins was dominant in combination group (P < 0.01). CONCLUSIONS Artesunate combined with fractional CO2 laser is effective in hypertrophic scarring in this rabbit model. Our findings can serve as a potential alternative strategy to treatment of hypertrophic scar in clinical practice.
Collapse
Affiliation(s)
- Jinxia Zhang
- Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| | - Shuanglin Zhou
- Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| | - Zhikuan Xia
- Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| | - Zhuoying Peng
- Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| | - Wanting Luo
- Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| | - Xiaoxian Cheng
- Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| | - Rongya Yang
- Seventh Medical Center of PLA General Hospital, Beijing, 100700 China.
| |
Collapse
|
10
|
Zhang J, Luo W, Han M, Wu L, Peng Z, Xia Z, Yang R. Verifying the outcomes of artesunate plus 595-nm PDL in hypertrophic scars via determining BMP-7 and Fas level in model rabbits. Lasers Surg Med 2022; 54:716-724. [PMID: 35234299 DOI: 10.1002/lsm.23518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Single-use of artesunate (ART) or 595-nm pulsed-dye laser (PDL) has proven clinical efficacy in the treatment of hypertrophic scars (HSs), yet little research has been done on the combined use of ART and PDL. Bone morphogenetic protein-7 (BMP-7) and Fas are recognized to be two important proteins in reducing scar formation. This study was designed to observe the effect of ART combined with 595-nm PDL in the treatment of HS in rabbit models, and investigate the effect of such protocol on the expression of BMP-7 and Fas in rabbit models. STUDY DESIGN/MATERIALS AND METHODS Twenty-four New Zealand white rabbits were randomly divided into the control group, ART group, PDL group, and combined treatment (ART + PDL) group. ART was respectively applied to the ART group and combined treatment group. Treatment was once every 2-week for a total of three sessions for both groups. Animals in the PDL group were simply treated with 595-nm PDL. Then, hematoxylin & eosin and Van Gieson straining, immunohistochemical study, enzyme-linked immunosorbent assay (ELISA), Cell counting kit-8 test, western blot assay, and real-time polymerase chain reaction (RT-PCR) were carried out to observe the development of HS samples and expression of BMP-7 and Fas proteins in the sample tissues. RESULTS After treatment, the scar samples grew lower and flatter, which was particularly evident in the combined treatment group, with notably inhibited fibroblast and collagen compared to other groups (p < 0.001). Western blot assay and RT-PCR demonstrated that the expression of BMP-7 was most increased in scar samples treated by ART + PDL. BMP-7 level was correspondingly and notably upregulated in treatment groups, especially in the ART + PDL group. In addition, relevant expression of Fas was also higher after treatment, especially in the ART + PDL group compared to either ART or 595-nm PDL group. The difference was significant among groups (p < 0.001). CONCLUSIONS Combined use of ART and 595-nm PDL can inhibit HSs in rabbit models via inhibiting extra fibroblast and collagens. The potential mechanism may be involved in enhanced BMP-7 and Fas expression. Our observations may create an alternative therapeutic strategy for HSs in the clinic.
Collapse
Affiliation(s)
- Jinxia Zhang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Wanting Luo
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Minna Han
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Lili Wu
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhuoying Peng
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Rongya Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
12
|
Gupta S, Sinha NR, Martin LM, Keele LM, Sinha PR, Rodier JT, Landreneau JR, Hesemann NP, Mohan RR. Long-Term Safety and Tolerability of BMP7 and HGF Gene Overexpression in Rabbit Cornea. Transl Vis Sci Technol 2021; 10:6. [PMID: 34383876 PMCID: PMC8362627 DOI: 10.1167/tvst.10.10.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Tissue-targeted localized BMP7+HGF genes delivered into the stroma via nanoparticle effectively treats corneal fibrosis and rehabilitates transparency in vivo without acute toxicity. This study evaluated the long-term safety and tolerability of BMP7+HGF nanomedicine for the eye in vivo. Methods One eye each of 36 rabbits received balanced salt solution (group 1, naïve; n = 12), naked vector with polyethylenimine-conjugated gold nanoparticles (PEI2-GNP; group 2, naked-vector; n = 12), or BMP7+HGF genes with PEI2-GNP (group 3, BMP7+HGF; n = 12) via a topical delivery technique. Safety and tolerability measurements were performed by clinical biomicroscopy in live rabbits at predetermined time intervals up to 7 months. Corneal tissues were collected at 2 months and 7 months after treatment and subjected to histology, immunofluorescence, and quantitative real-time PCR analyses. Results Clinical ophthalmic examinations and modified MacDonald-Shadduck scores showed no significant changes in corneal thickness (P = 0.3389), tear flow (P = 0.2121), intraocular pressure (P = 0.9958), epithelial abrasion, or ocular abnormality. Slit-lamp, stereo, confocal, and specular biomicroscopy showed no signs of blepharospasm chemosis, erythema, epiphora, abnormal ocular discharge, or changes in epithelium, stroma, and endothelium after BMP7+HGF therapy for up to 7 months, as compared with control groups. Throughout the 7-month period, no significant changes were recorded in endothelial density (P = 0.9581). Histological and molecular data were well corroborated with the subjective clinical analyses and showed no differences in the naïve, naked-vector, and BMP7+HGF groups. Conclusions Localized BMP7+HGF therapy is a safe, tolerable, and innovative modality for the treatment of corneal fibrosis. Translational Relevance Nanoparticle-mediated BMP7+HGF combination gene therapy has the potential to treat corneal fibrosis in vivo without short- or long-term toxicity.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Landon M Keele
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jason T Rodier
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - James R Landreneau
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Pompili S, Latella G, Gaudio E, Sferra R, Vetuschi A. The Charming World of the Extracellular Matrix: A Dynamic and Protective Network of the Intestinal Wall. Front Med (Lausanne) 2021; 8:610189. [PMID: 33937276 PMCID: PMC8085262 DOI: 10.3389/fmed.2021.610189] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal extracellular matrix (ECM) represents a complex network of proteins that not only forms a support structure for resident cells but also interacts closely with them by modulating their phenotypes and functions. More than 300 molecules have been identified, each of them with unique biochemical properties and exclusive biological functions. ECM components not only provide a scaffold for the tissue but also afford tensile strength and limit overstretch of the organ. The ECM holds water, ensures suitable hydration of the tissue, and participates in a selective barrier to the external environment. ECM-to-cells interaction is crucial for morphogenesis and cell differentiation, proliferation, and apoptosis. The ECM is a dynamic and multifunctional structure. The ECM is constantly renewed and remodeled by coordinated action among ECM-producing cells, degrading enzymes, and their specific inhibitors. During this process, several growth factors are released in the ECM, and they, in turn, modulate the deposition of new ECM. In this review, we describe the main components and functions of intestinal ECM and we discuss their role in maintaining the structure and function of the intestinal barrier. Achieving complete knowledge of the ECM world is an important goal to understand the mechanisms leading to the onset and the progression of several intestinal diseases related to alterations in ECM remodeling.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
14
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
15
|
Enhanced asthma-related fibroblast to myofibroblast transition is the result of profibrotic TGF-β/Smad2/3 pathway intensification and antifibrotic TGF-β/Smad1/5/(8)9 pathway impairment. Sci Rep 2020; 10:16492. [PMID: 33020537 PMCID: PMC7536388 DOI: 10.1038/s41598-020-73473-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Airway remodelling with subepithelial fibrosis, which abolishes the physiological functions of the bronchial wall, is a major issue in bronchial asthma. Human bronchial fibroblasts (HBFs) derived from patients diagnosed with asthma display in vitro predestination towards TGF-β1-induced fibroblast-to-myofibroblast transition (FMT), a key event in subepithelial fibrosis. As commonly used anti-asthmatic drugs do not reverse the structural changes of the airways, and the molecular mechanism of enhanced asthma-related TGF-β1-induced FMT is poorly understood, we investigated the balance between the profibrotic TGF-β/Smad2/3 and the antifibrotic TGF-β/Smad1/5/9 signalling pathways and its role in the myofibroblast formation of HBF populations derived from asthmatic and non-asthmatic donors. Our findings showed for the first time that TGF-β-induced activation of the profibrotic Smad2/3 signalling pathway was enhanced, but the activation of the antifibrotic Smad1/5/(8)9 pathway by TGF-β1 was significantly diminished in fibroblasts from asthmatic donors compared to those from their healthy counterparts. The impairment of the antifibrotic TGF-β/Smad1/5/(8)9 pathway in HBFs derived from asthmatic donors was correlated with enhanced FMT. Furthermore, we showed that Smad1 silencing in HBFs from non-asthmatic donors increased the FMT potential in these cells. Additionally, we demonstrated that activation of antifibrotic Smad signalling via BMP7 or isoliquiritigenin [a small-molecule activator of the TGF-β/Smad1/5/(8)9 pathway] administration prevents FMT in HBFs from asthmatic donors through downregulation of profibrotic genes, e.g., α-SMA and fibronectin. Our data suggest that influencing the balance between the antifibrotic and profibrotic TGF-β/Smad signalling pathways using BMP7-mimetic compounds presents an unprecedented opportunity to inhibit subepithelial fibrosis during airway remodelling in asthma.
Collapse
|
16
|
New Role for Growth/Differentiation Factor 15 in the Survival of Transplanted Brown Adipose Tissues in Cooperation with Interleukin-6. Cells 2020; 9:cells9061365. [PMID: 32492819 PMCID: PMC7349565 DOI: 10.3390/cells9061365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
To identify factors involved in the earliest phase of the differentiation of human embryonic stem cells (hESCs) into brown adipocytes (BAs), we performed multi-time point microarray analyses. We found that growth/differentiation factor 15 (GDF15) expressions were specifically upregulated within three days of differentiation, when expressions of immature hESC markers were sustained. Although GDF15 expressions continued to increase in the subsequent differentiation phases, GDF15-deficient hESCs differentiated into mature BAs (Day 10) without apparent abnormalities. In addition, GDF15-deficient mice had normal brown adipose tissue (BAT) and were metabolically healthy. Unexpectedly, we found that interleukin-6 (IL6) expression was significantly lowered in the BAT of GDF15-/- mice. In addition, GDF15-/- hESCs showed abortive IL6 expressions in the later phase (>Day 6) of the differentiation. Interestingly, GDF15 expression was markedly repressed throughout the whole course of the differentiation of IL6-/- hESCs into BAs, indicating IL6 is essential for the induction of GDF15 in the differentiation of hESCs. Finally, intraperitoneally transplanted BAT grafts of GDF15-/- donor mice, but not those of wild-type (WT) mice, failed in the long-term survival (12 weeks) in GDF15-/- recipient mice. Collectively, GDF15 is required for long-term survival of BAT grafts by creating a mutual gene induction loop with IL6.
Collapse
|
17
|
Kimawaha P, Jusakul A, Junsawang P, Loilome W, Khuntikeo N, Techasen A. Circulating TGF-β1 as the potential epithelial mesenchymal transition-biomarker for diagnosis of cholangiocarcinoma. J Gastrointest Oncol 2020; 11:304-318. [PMID: 32399272 DOI: 10.21037/jgo.2019.01.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a malignant tumor arising from bile duct epithelium. The oncogenic risk factor is infection by the liver fluke, Opisthorchis viverrini (Ov). One of key mechanism in the development of CCA is epithelial mesenchymal transition (EMT). We aimed to investigate the expression of EMT-related proteins namely, E-cadherin, TGF-β1 and BMP-7 in CCA tissues, to determine the level of candidate EMT-related protein, and to examine whether there were significant correlations with clinicopathological data in sera of CCA patients compared with normal groups. Methods The expression of E-cadherin, TGF-β1 and BMP-7 was analyzed in human CCA tissues by immunohistochemistry and altered expressions compared to clinicopathological data were analyzed to identify the potential candidate EMT-biomarker. Subsequently, the level of candidate marker was determined in sera of CCA patients compared with normal and inflammatory-related diseases groups by enzyme-linked immunosorbent assay (ELISA). Results Immunohistochemical analysis showed that E-cadherin was expressed at a low level whereas TGF-β1 and BMP-7 showed high expression in CCA tissues when compared with liver from cadaveric donor. Interestingly, only high TGF-β1 expression in CCA tissues was significantly correlated with lymph node metastasis, severe cancer stage, intrahepatic CCA type and shorter survival time of CCA patients (P<0.05). Consequently, TGF-β1 was selected to determine the level in serum of CCA patients using ELISA. The results showed that serum TGF-β1 level was elevated in CCA patients compared to the normal group. Patients with high TGF-β1 levels were significantly correlated with metastasis status (P=0.03). Furthermore, receiver operating characteristic (ROC) analysis showed that serum TGF-β1 level is effective in distinguishing CCA patients from normal at the cut-off of 38.54 ng/mL with high sensitivity (71.1%) and specificity (68.9%) and from inflammatory-related diseases group at the cut-off of 38.67 ng/mL with effective sensitivity (68.0%) and specificity (71.1%). Furthermore, TGF-β1 could serve as a novel metastatic biomarker in CCA to diagnose the disease with 48.95 ng/mL as the cut-off along with the desired sensitivity and specificity (48.2% and 88.9% respectively). Conclusions The results of this study show that TGF-β1 could be a potential EMT-biomarker for diagnosis and prognosis of CCA.
Collapse
Affiliation(s)
- Phongsaran Kimawaha
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Prem Junsawang
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
18
|
Gu YY, Liu XS, Huang XR, Yu XQ, Lan HY. Diverse Role of TGF-β in Kidney Disease. Front Cell Dev Biol 2020; 8:123. [PMID: 32258028 PMCID: PMC7093020 DOI: 10.3389/fcell.2020.00123] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation and fibrosis are two pathological features of chronic kidney disease (CKD). Transforming growth factor-β (TGF-β) has been long considered as a key mediator of renal fibrosis. In addition, TGF-β also acts as a potent anti-inflammatory cytokine that negatively regulates renal inflammation. Thus, blockade of TGF-β inhibits renal fibrosis while promoting inflammation, revealing a diverse role for TGF-β in CKD. It is now well documented that TGF-β1 activates its downstream signaling molecules such as Smad3 and Smad3-dependent non-coding RNAs to transcriptionally and differentially regulate renal inflammation and fibrosis, which is negatively regulated by Smad7. Therefore, treatments by rebalancing Smad3/Smad7 signaling or by specifically targeting Smad3-dependent non-coding RNAs that regulate renal fibrosis or inflammation could be a better therapeutic approach. In this review, the paradoxical functions and underlying mechanisms by which TGF-β1 regulates in renal inflammation and fibrosis are discussed and novel therapeutic strategies for kidney disease by targeting downstream TGF-β/Smad signaling and transcriptomes are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
19
|
Gao L, Zhong X, Jin J, Li J, Meng XM. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. Signal Transduct Target Ther 2020; 5:9. [PMID: 32296020 PMCID: PMC7018831 DOI: 10.1038/s41392-020-0106-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is defined as a rapid decline in renal function and is characterized by excessive renal inflammation and programmed death of resident cells. AKI shows high morbidity and mortality, and severe or repeated AKI can transition to chronic kidney disease (CKD) or even end-stage renal disease (ESRD); however, very few effective and specific therapies are available, except for supportive treatment. Growth factors, such as epidermal growth factor (EGF), insulin-like growth factor (IGF), and transforming growth factor-β (TGF-β), are significantly altered in AKI models and have been suggested to play critical roles in the repair process of AKI because of their roles in cell regeneration and renal repair. In recent years, a series of studies have shown evidence that growth factors, receptors, and downstream effectors may be highly involved in the mechanism of AKI and may function in the early stage of AKI in response to stimuli by regulating inflammation and programmed cell death. Moreover, certain growth factors or correlated proteins act as biomarkers for AKI due to their sensitivity and specificity. Furthermore, growth factors originating from mesenchymal stem cells (MSCs) via paracrine signaling or extracellular vesicles recruit leukocytes or repair intrinsic cells and may participate in AKI repair or the AKI-CKD transition. In addition, growth factor-modified MSCs show superior therapeutic potential compared to that of unmodified controls. In this review, we summarized the current therapeutic and diagnostic strategies targeting growth factors to treat AKI in clinical trials. We also evaluated the possibilities of other growth factor-correlated molecules as therapeutic targets in the treatment of AKI and the AKI-CKD transition.
Collapse
Affiliation(s)
- Li Gao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiang Zhong
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 230032, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
20
|
Ochsner UA, Green LS, Rice TP, Olivas E, Janjic N, Katilius E. Targeting Unique Epitopes on Highly Similar Proteins GDF-11 and GDF-8 with Modified DNA Aptamers. Biochemistry 2019; 58:4632-4640. [PMID: 31638376 DOI: 10.1021/acs.biochem.9b00760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mature forms of the TGF-β family members GDF-11 and GDF-8 are highly similar 25 kDa homodimers with 90% amino acid sequence identity and 99% similarity. Cross-reactivity of GDF-11 and GDF-8 binding reagents is common, making it difficult to attribute distinct roles of these two proteins in biology. We report the selection of GDF-11 and GDF-8 specific SOMAmer (Slow Off-rate Modified Aptamer) reagents aided by a combination of positive selection for one protein coupled with counter-selection against the other. We identified GDF-11 specific SOMAmer reagents from four modified DNA libraries that showed a high affinity (Kd range 0.05-1.2 nM) for GDF-11 but did not bind to GDF-8 (Kd > 1 μM). Conversely, we identified one SOMAmer reagent for GDF-8 from one of the modified libraries that demonstrated excellent affinity (Kd = 0.23 nM) and specificity. In contrast, standard protocols that utilized only positive selection produced binding reagents with similar affinity for both proteins. High affinity and specificity were efficiently encoded in minimal sequences of 21 nucleotides for GDF-11 and 24 nucleotides for GDF-8. Further characterization in pull-down, competition, sandwich-binding, and kinetic studies revealed robust binding under a wide range of buffer and assay conditions. For highly similar proteins like GDF-11 and GDF-8, our method of selection coupled with counter-selection was essential for identification of high-affinity, specific reagents that have the potential to elucidate the fundamental distinction of these growth factors in biology.
Collapse
Affiliation(s)
- Urs A Ochsner
- SomaLogic, Inc. , 2945 Wilderness Place , Boulder , Colorado 80301 , United States
| | - Louis S Green
- SomaLogic, Inc. , 2945 Wilderness Place , Boulder , Colorado 80301 , United States
| | - Taylor P Rice
- SomaLogic, Inc. , 2945 Wilderness Place , Boulder , Colorado 80301 , United States
| | - Edgar Olivas
- SomaLogic, Inc. , 2945 Wilderness Place , Boulder , Colorado 80301 , United States
| | - Nebojsa Janjic
- SomaLogic, Inc. , 2945 Wilderness Place , Boulder , Colorado 80301 , United States
| | - Evaldas Katilius
- SomaLogic, Inc. , 2945 Wilderness Place , Boulder , Colorado 80301 , United States
| |
Collapse
|
21
|
Meurer S, Wimmer AE, Leur EVD, Weiskirchen R. Endoglin Trafficking/Exosomal Targeting in Liver Cells Depends on N-Glycosylation. Cells 2019; 8:cells8090997. [PMID: 31466384 PMCID: PMC6769735 DOI: 10.3390/cells8090997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
Injury of the liver involves a wound healing partial reaction governed by hepatic stellate cells and portal fibroblasts. Individual members of the transforming growth factor-β (TGF-β) superfamily including TGF-β itself and bone morphogenetic proteins (BMP) exert diverse and partially opposing effects on pro-fibrogenic responses. Signaling by these ligands is mediated through binding to membrane integral receptors type I/type II. Binding and the outcome of signaling is critically modulated by Endoglin (Eng), a type III co-receptor. In order to learn more about trafficking of Eng in liver cells, we investigated the membranal subdomain localization of full-length (FL)-Eng. We could show that FL-Eng is enriched in Caveolin-1-containing sucrose gradient fractions. Since lipid rafts contribute to the pool of exosomes, we could consequently demonstrate for the first time that exosomes isolated from cultured primary hepatic stellate cells and its derivatives contain Eng. Moreover, via adenoviral overexpression, we demonstrate that all liver cells have the capacity to direct Eng to exosomes, irrespectively whether they express endogenous Eng or not. Finally, we demonstrate that block of N-glycosylation does not interfere with dimerization of the receptor, but abrogates the secretion of soluble Eng (sol-Eng) and prevents exosomal targeting of FL-Eng.
Collapse
Affiliation(s)
- Steffen Meurer
- RWTH University Hospital Aachen, Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, D-52074 Aachen, Germany.
| | - Almut Elisabeth Wimmer
- RWTH University Hospital Aachen, Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, D-52074 Aachen, Germany
| | - Eddy van de Leur
- RWTH University Hospital Aachen, Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- RWTH University Hospital Aachen, Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, D-52074 Aachen, Germany.
| |
Collapse
|
22
|
Shi H, Liu CB, Xiao HJ. Stable expression of constitutively activated ALK3 suppresses rat hepatic stellate cell activation. Shijie Huaren Xiaohua Zazhi 2019; 27:807-813. [DOI: 10.11569/wcjd.v27.i13.807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is related to activation of hepatic stellate cells (HSCs) and epithelial mesenchymal transformation (EMT), in which transforming growth factor-β1 (TGF-β1) plays a pivotal role, but bone morphogenetic protein-7 (BMP7) can antagonize TGF-β1. Currently, the TGF-β/BMPs-Smad signaling pathway is a hot topic of research in this field. ALK3 belongs to the constitutively activated type Ⅰ receptor of BMPs, and its role in the molecular mechanism of hepatic fibrosis is rarely studied.
AIM To detect the expression of Samd1, P-Smad1, and fibrosis-related genes E-cadherin, α-SMA, and col1A2 in cultured rat HSCs (HSC-T6) to investigate how BMP-7 antagonizes TGF-β1 in the development of liver fibrosis and its anti-hepatic fibrosis mechanisms.
METHODS After HSCs-T6 were transfected with constitutively active cDNA construct expressing ALK3, RT-PCR method was used to screen the cell line with stable ALK3 expression and detect the mRNA level of col1A2. MTT assay was used to examine the proliferation of HSC-T6 cells with high expression of ALK3. Western blot method was used to detect the expression of Smad1, P-Smad1, E-cadherin, α-SMA, and co1lA2. Optic microscopy was used to detect the morphological changes of HSC-T6 cells with high expression of ALK3.
RESULTS Compared with control cells, ALK3 high expression restrained the growth of HSC-T6 cells, suppressed the expression of α-SMA and col1A2, promoted the expression of P-Smad1 and E-cadherin, but had no significant effect on Samd1.
CONCLUSION BMP-7 competitively antagonizes TGF-β1 induced fibrosis by enhancing the phosphorylation of Samd1.
Collapse
Affiliation(s)
- Hui Shi
- Department of Gastroenterology, the First Affiliated Hospital of Hainan Medical College, Haikou 570000, Hainan Province, China,Key Laboratory of Tumor Microenvironment and Immunotherapy of Hubei Province, Three Gorges University, Yichang 443000, Hubei Province, China,Institute of Liver Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Chang-Bai Liu
- Key Laboratory of Tumor Microenvironment and Immunotherapy of Hubei Province, Three Gorges University, Yichang 443000, Hubei Province, China,Institute of Liver Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - He-Jie Xiao
- Institute of Liver Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|
23
|
Ehnert S, Aspera-Werz RH, Ruoß M, Dooley S, Hengstler JG, Nadalin S, Relja B, Badke A, Nussler AK. Hepatic Osteodystrophy-Molecular Mechanisms Proposed to Favor Its Development. Int J Mol Sci 2019; 20:2555. [PMID: 31137669 PMCID: PMC6566554 DOI: 10.3390/ijms20102555] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with chronic liver diseases (CLD) show altered bone metabolism. Depending on the etiology, this manifests in a severe osteoporosis in up to 75% of the affected patients. Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered bone metabolism, decreased bone mineral density, and deterioration of bone structure in patients with CLD. Once developed, HOD is difficult to treat and increases the risk of fragility fractures. Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients, which presents with increased mortality. Thus, special care is required to support the healing process. However, for early diagnosis (reduce fracture risk) and development of adequate treatment strategies (support healing of existing fractures), it is essential to understand the underlying mechanisms that link disturbed liver function with this bone phenotype. In the present review, we summarize proposed molecular mechanisms favoring the development of HOD and compromising the healing of associated fractures, including alterations in vitamin D metabolism and action, disbalances in transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signaling with histone deacetylases (HDACs) as secondary regulators, as well as alterations in the receptor activator of nuclear factor kappa B ligand (RANKL)-osteoprotegerin (OPG) system mediated by sclerostin. Based on these mechanisms, we give an overview on the limitations of early diagnosis of HOD with established serum markers.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Romina H Aspera-Werz
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Marc Ruoß
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, 44139 Dortmund, Germany.
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany.
| | - Andreas Badke
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Andreas K Nussler
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
24
|
miR-4739 mediates pleural fibrosis by targeting bone morphogenetic protein 7. EBioMedicine 2019; 41:670-682. [PMID: 30850350 PMCID: PMC6443597 DOI: 10.1016/j.ebiom.2019.02.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pleural fibrosis is defined as excessive depositions of matrix components that result in pleural tissue architecture destruction and dysfunction. In severe cases, the progression of pleural fibrosis leads to lung entrapment, resulting in dyspnea and respiratory failure. However, the mechanism of pleural fibrosis is poorly understood. METHODS miR-4739 levels were detected by miRNA array and real-time PCR. Real-time PCR, western blotting and immunofluorescence were used to identify the expression profile of indicators related to fibrosis. Target gene of miR-4739 and promoter activity assay was measured by using dual-luciferase reporter assay system. In vivo, pleural fibrosis was evaluated by Masson staining and miR-4739 level was detected by In situ hybridization histochemistry. FINDINGS We found that bleomycin induced up-regulation of miR-4739 in pleural mesothelial cells (PMCs). Over-regulated miR-4739 mediated mesothelial-mesenchymal transition and increased collagen-I synthesis in PMCs. Investigation on the clinical specimens revealed that high levels of miR-4739 and low levels of bone morphogenetic protein 7 (BMP-7) associated with pleural fibrosis in patients. Then we next identified that miR-4739 targeted and down-regulated BMP-7 which further resulted in unbalance between Smad1/5/9 and Smad2/3 signaling. Lastly, in vivo studies revealed that miR-4739 over-expression induced pleural fibrosis, and exogenous BMP-7 prevented pleural fibrosis in mice. INTERPRETATION Our data indicated that miR-4739 targets BMP-7 which mediates pleural fibrosis. The miR-4739/BMP-7 axis is a promising therapeutic target for the disease. FUND: The National Natural Science Foundation of China.
Collapse
|
25
|
Vigolo E, Markó L, Hinze C, Müller DN, Schmidt-Ullrich R, Schmidt-Ott KM. Canonical BMP signaling in tubular cells mediates recovery after acute kidney injury. Kidney Int 2018; 95:108-122. [PMID: 30447934 DOI: 10.1016/j.kint.2018.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 10/27/2022]
Abstract
Bone morphogenetic protein (BMP) signaling has been shown to modulate the development of renal fibrosis in animal models of kidney injury, but the downstream mediators are incompletely understood. In wild-type mice, canonical BMP signaling mediated by SMAD1/5/8 transcription factors was constitutively active in healthy renal tubules, transiently down-regulated after ischemia reperfusion injury (IRI), and reactivated during successful tubular regeneration. We then induced IRI in mice with a tubular-specific BMP receptor 1A (BMPR1A) deletion. These mice failed to reactivate SMAD1/5/8 signaling in the post-ischemic phase and developed renal fibrosis after injury. Using unbiased genomic analyses, we identified three genes encoding inhibitor of DNA-binding (ID) proteins (Id1, Id2, and Id4) as key targets of BMPR1A-SMAD1/5/8 signaling. BMPR1A-deficient mice failed to re-induce these targets following IRI. Instead, BMPR1A-deficiency resulted in activation of pro-fibrotic signaling proteins that are normally repressed by ID proteins, namely, p38 mitogen-activated protein kinase and cell cycle inhibitor p27. These data indicate that the post-ischemic activation of canonical BMP signaling acts endogenously to repress pro-fibrotic signaling in tubular cells and may help to prevent the progression of acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
- Emilia Vigolo
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Christian Hinze
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik N Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Ruth Schmidt-Ullrich
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Castellano G, Franzin R, Stasi A, Divella C, Sallustio F, Pontrelli P, Lucarelli G, Battaglia M, Staffieri F, Crovace A, Stallone G, Seelen M, Daha MR, Grandaliano G, Gesualdo L. Complement Activation During Ischemia/Reperfusion Injury Induces Pericyte-to-Myofibroblast Transdifferentiation Regulating Peritubular Capillary Lumen Reduction Through pERK Signaling. Front Immunol 2018; 9:1002. [PMID: 29875766 PMCID: PMC5974049 DOI: 10.3389/fimmu.2018.01002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
Pericytes are one of the principal sources of scar-forming myofibroblasts in chronic kidneys disease. However, the modulation of pericyte-to-myofibroblast transdifferentiation (PMT) in the early phases of acute kidney injury is poorly understood. Here, we investigated the role of complement in inducing PMT after transplantation. Using a swine model of renal ischemia/reperfusion (I/R) injury, we found the occurrence of PMT after 24 h of I/R injury as demonstrated by reduction of PDGFRβ+/NG2+ cells with increase in myofibroblasts marker αSMA. In addition, PMT was associated with significant reduction in peritubular capillary luminal diameter. Treatment by C1-inhibitor (C1-INH) significantly preserved the phenotype of pericytes maintaining microvascular density and capillary lumen area at tubulointerstitial level. In vitro, C5a transdifferentiated human pericytes in myofibroblasts, with increased αSMA expression in stress fibers, collagen I production, and decreased antifibrotic protein Id2. The C5a-induced PMT was driven by extracellular signal-regulated kinases phosphorylation leading to increase in collagen I release that required both non-canonical and canonical TGFβ pathways. These results showed that pericytes are a pivotal target of complement activation leading to a profibrotic maladaptive cellular response. Our studies suggest that C1-INH may be a potential therapeutic strategy to counteract the development of PMT and capillary lumen reduction in I/R injury.
Collapse
Affiliation(s)
- Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Chiara Divella
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Michele Battaglia
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Crovace
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Marc Seelen
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands.,Department of Nephrology, Leiden University Medical Centre, Leiden, Netherlands
| | - Giuseppe Grandaliano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
27
|
Sun Y, Fu J, Xue X, Yang H, Wu L. BMP7 regulates lung fibroblast proliferation in newborn rats with bronchopulmonary dysplasia. Mol Med Rep 2018; 17:6277-6284. [PMID: 29512787 PMCID: PMC5928605 DOI: 10.3892/mmr.2018.8692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
The present study investigated the expression of bone morphogenetic protein (BMP) 7 in a newborn rat model of bronchopulmonary dysplasia (BPD) and the biological effects of BMP7 on newborn rat lung fibroblast (LF) cells. For this purpose, a total of 196 newborn rats were randomly and equally assigned to a model group and a control group. Lung tissue was collected at days 3, 7, 14 and 21 for histological analysis. The location and expression of BMP7 was examined by immunohistochemical staining and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. A total of 38 full‑term newborn rats on the day of birth were sacrificed and LF cells were isolated and treated with BMP7. The biological effects of BMP7 on LF cells were assessed by cell proliferation and cell cycle analysis. The findings demonstrated that abnormal alveolar development due to BPD was gradually intensified in the model group over time. Immunohistochemical staining revealed that the location of BMP7 in lung tissue was altered. Immunohistochemistry and RT‑qPCR assays demonstrated a gradual decrease in BMP7 expression in the model group induced by hyperoxia. MTT assays demonstrated that BMP7 inhibited LF cells and the inhibitory effect was dose‑dependent and time‑dependent. Flow cytometry revealed that the inhibitory effect of BMP7 in LF cells was causing cell cycle arrest at the G1 phase. The present study demonstrated that BMP7 may serve an important role in alveolar development in a BPD model. BMP7 may be involved in abnormal alveolar development through the regulation of LF proliferation.
Collapse
Affiliation(s)
- Yanli Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haiping Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Linlin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
28
|
Exogenous BMP7 in aortae of rats with chronic uremia ameliorates expression of profibrotic genes, but does not reverse established vascular calcification. PLoS One 2018; 13:e0190820. [PMID: 29304096 PMCID: PMC5755916 DOI: 10.1371/journal.pone.0190820] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Hyperphosphatemia and vascular calcification are frequent complications of chronic renal failure and bone morphogenetic protein 7 (BMP7) has been shown to protect against development of vascular calcification in uremia. The present investigation examined the potential reversibility of established uremic vascular calcification by treatment of uremic rats with BMP7. A control model of isogenic transplantation of a calcified aorta from uremic rats into healthy littermates examined whether normalization of the uremic environment reversed vascular calcification. Uremia and vascular calcification were induced in rats by 5/6 nephrectomy, high phosphate diet and alfacalcidol treatment. After 14 weeks severe vascular calcification was present and rats were allocated to BMP7, vehicle or aorta transplantation. BMP7 treatment caused a significant decrease of plasma phosphate to 1.56 ± 0.17 mmol/L vs 2.06 ± 0.34 mmol/L in the vehicle group even in the setting of uremia and high phosphate diet. Uremia and alfacalcidol resulted in an increase in aortic expression of genes related to fibrosis, osteogenic transformation and extracellular matrix calcification, and the BMP7 treatment resulted in a decrease in the expression of profibrotic genes. The total Ca-content of the aorta was however unchanged both in the abdominal aorta: 1.9 ± 0.6 μg/mg tissue in the vehicle group vs 2.2 ± 0.6 μg/mg tissue in the BMP7 group and in the thoracic aorta: 71 ± 27 μg/mg tissue in the vehicle group vs 54 ± 18 μg/mg tissue in the BMP7 group. Likewise, normalization of the uremic environment by aorta transplantation had no effect on the Ca-content of the calcified aorta: 16.3 ± 0.6 μg/mg tissue pre-transplantation vs 15.9 ± 2.3 μg/mg tissue post-transplantation. Aortic expression of genes directly linked to extracellular matrix calcification was not affected by BMP7 treatment, which hypothetically might explain persistent high Ca-content in established vascular calcification. The present results highlight the importance of preventing the development of vascular calcification in chronic kidney disease. Once established, vascular calcification persists even in the setting when hyperphosphatemia or the uremic milieu is abolished.
Collapse
|
29
|
Abu El Makarem MA, El-Sagheer GM, Abu El-Ella MA. The Role of Signal Transducer and Activator of Transcription 5 and Transforming Growth Factor-β1 in Hepatic Fibrosis Induced by Chronic Hepatitis C Virus Infection in Egyptian Patients. Med Princ Pract 2018; 27:115-121. [PMID: 29402841 PMCID: PMC5968251 DOI: 10.1159/000487308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/31/2018] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To investigate the possible role of signal transducer and activator of transcription 5 (STAT5) in the pathogenesis of liver fibrosis in Egyptian patients with chronic hepatitis C (CHC) virus infection and its relation to hepatic stellate cells (HSC). SUBJECTS AND METHODS Sixty-five patients (46 males and 19 females) were divided into 4 groups based on the severity of fibrosis as detected by Fibroscan as follows: F1, n = 15; F2, n = 21; F3, n = 13; and F4, n = 16. Twenty age- and gender-matched healthy persons volunteered as controls. The serum levels of STAT5, TGF-β1, α-smooth muscle actin (α-SMA), fasting blood sugar, and fasting insulin, as well as homeostasis model assessment of insulin resistance (HOMA-IR), were determined and compared for all groups. The usefulness of the studied serum biomarkers for predicting liver fibrosis was evaluated using a receiver operating characteristic curve. RESULTS Serum levels of STAT5 were significantly lower in patients compared to controls (9.69 ± 5.62 vs. 14.73 ± 6.52, p ≤ 0.001); on the contrary, TGF-β1, α-SMA, and HOMA-IR were significantly higher in patients compared to controls (mean: 1,796.04 vs. 1,636.94; 14.94 vs. 8.1; and 7.91 vs. 4.18; p ≤ 0.01 and 0.001, respectively). TGF-β1 and α-SMA showed a progressive increase with advancing severity of hepatic fibrosis (mean TGF-β1: 2,058.4 in F1-F2 and 1,583.8 in F3-F4, p ≤ 0.04; mean α-SMA: 13.59 in F1-F2 and 16.62 in F3-F4, p ≤ 0.05). STAT5 had a significant negative correlation with TGF-β1 (p ≤ 0.001), while no correlation was detected with α-SMA (p ≤ 0.8). CONCLUSIONS STAT5 may play a significant role in hepatic fibrogenesis through the induction of TGF-β1 but not through the activation of hepatic stellate cells.
Collapse
Affiliation(s)
- Mona A. Abu El Makarem
- Hepatology Unit, Department of Internal Medicine, Minia University Hospital, El-Minia, Egypt
| | - Ghada M. El-Sagheer
- Endocrinology Unit, Department of Internal Medicine, Minia University Hospital, El-Minia, Egypt
- *Ghada M. El Sagheer, Department of Internal Medicine, Minia University Hospital, 12-M. Badawy St., El-Minia 61111 (Egypt), E-Mail
| | | |
Collapse
|
30
|
Herrera B, Addante A, Sánchez A. BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. Int J Mol Sci 2017; 19:ijms19010039. [PMID: 29295498 PMCID: PMC5795989 DOI: 10.3390/ijms19010039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) belong to the Transforming Growth Factor-β (TGF-β) family. Initially identified due to their ability to induce bone formation, they are now known to have multiple functions in a variety of tissues, being critical not only during development for tissue morphogenesis and organogenesis but also during adult tissue homeostasis. This review focus on the liver as a target tissue for BMPs actions, devoting most efforts to summarize our knowledge on their recently recognized and/or emerging roles on regulation of the liver regenerative response to various insults, either acute or chronic and their effects on development and progression of liver fibrosis in different pathological conditions. In an attempt to provide the basis for guiding research efforts in this field both the more solid and more controversial areas of research were highlighted.
Collapse
Affiliation(s)
- Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
31
|
The chemokines CXCL12 and CXCL14 differentially regulate connective tissue markers during limb development. Sci Rep 2017; 7:17279. [PMID: 29222527 PMCID: PMC5722906 DOI: 10.1038/s41598-017-17490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Connective tissues (CT) support and connect organs together. Understanding the formation of CT is important, as CT deregulation leads to fibrosis. The identification of CT specific markers has contributed to a better understanding of CT function during development. In developing limbs, Osr1 transcription factor is involved in the differentiation of irregular CT while the transcription factor Scx labels tendon. In this study, we show that the CXCL12 and CXCL14 chemokines display distinct expression pattern in limb CT during chick development. CXCL12 positively regulates the expression of OSR1 and COL3A1, a collagen subtype of irregular CT, while CXCL14 activates the expression of the tendon marker SCX. We provide evidence that the CXCL12 effect on irregular CT involves CXCR4 receptor and vessels. In addition, the expression of CXCL12, CXCL14 and OSR genes is suppressed by the anti-fibrotic BMP signal. Finally, mechanical forces, known to be involved in adult fibrosis, control the expression of chemokines, CT-associated transcription factors and collagens during limb development. Such unexpected roles of CXCL12 and CXCL14 chemokines during CT differentiation can contribute to a better understanding of the fibrosis mechanisms in adult pathological conditions.
Collapse
|
32
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017. [PMID: 25306501 DOI: 10.1016/j.crohns.2014.09.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia.,University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
33
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017; 11:1491-1503. [PMID: 25306501 PMCID: PMC5885809 DOI: 10.1016/j.crohns.2014.09.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia
- University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
34
|
Yu X, Gu P, Huang Z, Fang X, Jiang Y, Luo Q, Li X, Zhu X, Zhan M, Wang J, Fan L, Chen R, Yu J, Gu Y, Liang A, Yi X. Reduced expression of BMP3 contributes to the development of pulmonary fibrosis and predicts the unfavorable prognosis in IIP patients. Oncotarget 2017; 8:80531-80544. [PMID: 29113323 PMCID: PMC5655218 DOI: 10.18632/oncotarget.20083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and idiopathic nonspecific interstitial pneumonia (INSIP) are two related diseases involving varying degrees of pulmonary fibrosis with no effective cure. Bone morphogenetic protein 3 (BMP3) is a member of the transforming growth factor-β (TGF-β) super-family, which has not been implicated in pulmonary fibrosis previously. In this study, we aimed to investigate the potential role of BMP3 playing in pulmonary fibrosis from clinical diagnosis to molecular signaling regulation. RNA sequencing was performed to explore the potential biomarker of IIP patients. The expression of BMP3 was evaluated in 83 cases of IPF and INSIP by immunohistochemistry. The function of BMP3 was investigated in both fibroblast cells and a bleomycin-induced murine pulmonary fibrosis model. The clinical relevance of BMP3 expression were analyzed in 47 IIP patients, which were included in 83 cases and possess more than five-year follow-up data. Both RNA-sequencing and immunohistochemistry staining revealed that BMP3 was significantly down-regulated in lung tissues of patients with IPF and INSIP. Consistently, lower expression of BMP3 also was found in pulmonary fibrotic tissues of bleomycin-induced mice model. Up-regulation of BMP3 prevented pulmonary fibrosis processing through inhibiting cellular proliferation of fibroblasts as well as TGF-β1 signal transduction. Finally, the relatively higher expression of BMP3 in IPF patients was associated with less/worse mortality. Intravenous injection of recombinant BMP3. Taken together, our results suggested that the low expression level of BMP3 may indicate the unfavorable prognosis of IPF patients, targeting BMP3 may represent a novel potential therapeutic method for pulmonary fibrosis management.
Collapse
Affiliation(s)
- Xiaoting Yu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Pan Gu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ziling Huang
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xia Fang
- Department of Biotherapy, Tongji Hosptial, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying Jiang
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Qun Luo
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xia Li
- Department of Respiratory, Shanghai Pulmonary Hospital, Tongji Universiy School of Medicine, Shanghai 200433, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Mengna Zhan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbang Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Lichao Fan
- Department of Respiratory, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Rongchang Chen
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Juehua Yu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yingying Gu
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Aibin Liang
- Department of Biotherapy, Tongji Hosptial, Tongji University School of Medicine, Shanghai 200065, China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
35
|
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol 2017; 8:461. [PMID: 28769795 PMCID: PMC5509761 DOI: 10.3389/fphar.2017.00461] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs when there is an imbalance in extracellular matrix (ECM) deposition and degradation. Excessive ECM deposition results in scarring and thickening of the affected tissue, and interferes with tissue and organ homeostasis – mimicking an exaggerated “wound healing” response. Many transforming growth factor-β (TGF-β) ligands are potent drivers of ECM deposition, and additionally, have a natural affinity for the ECM, creating a concentrated pool of pro-fibrotic factors at the site of injury. Consequently, TGF-β ligands are upregulated in many human fibrotic conditions and, as such, are attractive targets for fibrosis therapy. Here, we will discuss the contribution of TGF-β proteins in the pathogenesis of fibrosis, and promising anti-fibrotic approaches that target TGF-β ligands.
Collapse
Affiliation(s)
- Kelly L Walton
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Katharine E Johnson
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Craig A Harrison
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| |
Collapse
|
36
|
Guo J, Lin Q, Shao Y, Rong L, Zhang D. BMP‑7 suppresses excessive scar formation by activating the BMP‑7/Smad1/5/8 signaling pathway. Mol Med Rep 2017. [PMID: 28627680 PMCID: PMC5561965 DOI: 10.3892/mmr.2017.6779] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Scarring is the inevitable consequence of wound repair, which may cause significant physical and mental pain to patients when excessive. Bone morphogenetic protein-7 (BMP-7) has been proved to inhibit TGF-β-induced fibrosis in various tissues including dermal papilla cells. However, the effect of BMP-7 on hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, has not been determined. To overcome this problem, the present study established a mouse model of thermal injury to investigate the inhibitory effects of BMP-7 on scar formation. The histological analysis of scar tissues was performed by H&E and Masson's trichrome staining. Western blot assay was used to determine the level changes of related proteins and TUNEL assay was performed to assess the apoptosis of scar tissues. The results demonstrated that BMP-7 promoted wound healing and inhibited scar formation when compared with untreated mice. Collagen deposition and the expression of fibrotic proteins were suppressed in the scar tissues of mice treated with BMP-7. In addition, BMP-7 induced fibroblast apoptosis in scar tissues. Furthermore, activation of the BMP-7/Smad1/5/8 signaling pathway may have been involved in the inhibitory effects of BMP-7 on scar formation. In conclusion, the results of the present study indicate that BMP-7 may inhibit excessive scar formation via activation of the BMP-7/Smad1/5/8 signaling pathway. The results present a potential alternative therapeutic strategy for the treatment of hypertrophic scarring.
Collapse
Affiliation(s)
- Jingdong Guo
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Quan Lin
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ying Shao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li Rong
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
37
|
Abstract
Fibrosis is a major player in cardiovascular disease, both as a contributor to the development of disease, as well as a post-injury response that drives progression. Despite the identification of many mechanisms responsible for cardiovascular fibrosis, to date no treatments have emerged that have effectively reduced the excess deposition of extracellular matrix associated with fibrotic conditions. Novel treatments have recently been identified that hold promise as potential therapeutic agents for cardiovascular diseases associated with fibrosis, as well as other fibrotic conditions. The purpose of this review is to provide an overview of emerging antifibrotic agents that have shown encouraging results in preclinical or early clinical studies, but have not yet been approved for use in human disease. One of these agents is bone morphogenetic protein-7 (BMP7), which has beneficial effects in multiple models of fibrotic disease. Another approach discussed involves altering the levels of micro-RNA (miR) species, including miR-29 and miR-101, which regulate the expression of fibrosis-related gene targets. Further, the antifibrotic potential of agonists of the peroxisome proliferator-activated receptors will be discussed. Finally, evidence will be reviewed in support of the polypeptide hormone relaxin. Relaxin is long known for its extracellular remodeling properties in pregnancy, and is rapidly emerging as an effective antifibrotic agent in a number of organ systems. Moreover, relaxin has potent vascular and renal effects that make it a particularly attractive approach for the treatment of cardiovascular diseases. In each case, the mechanism of action and the applicability to various fibrotic diseases will be discussed.
Collapse
Affiliation(s)
- Benita L McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, OmahaNE, United States
| | - Robert G Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,The Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, OmahaNE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, OmahaNE, United States
| |
Collapse
|
38
|
Sreekumar V, Aspera-Werz RH, Tendulkar G, Reumann MK, Freude T, Breitkopf-Heinlein K, Dooley S, Pscherer S, Ochs BG, Flesch I, Hofmann V, Nussler AK, Ehnert S. BMP9 a possible alternative drug for the recently withdrawn BMP7? New perspectives for (re-)implementation by personalized medicine. Arch Toxicol 2017; 91:1353-1366. [PMID: 27394662 DOI: 10.1007/s00204-016-1796-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Promotion of rhBMP2 and rhBMP7 for the routine use to support fracture healing has been hampered by high costs, safety concerns and reasonable failure rates, imposing restrictions in its clinical use. Since there is little debate regarding its treatment potential, there is rising need for a better understanding of the mode of action of these BMPs to overcome its drawbacks and promote more efficacious treatment strategies for bone regeneration. Recently, BMP9, owing to its improved osteogenic potential, is gaining attention as a promising therapeutic alternative. Our study aimed at identifying specific gene expression patterns which may predict and explain individual responses to rhBMP7 and rhBMP9 treatments. Therefore, we investigated the effect of rhBMP7 and rhBMP9 on primary human osteoblasts from 110 donors and corresponding THP-1-derived osteoclasts. This was further compared with each other and our reported data on rhBMP2 response. Based on the individual donor response, we found three donor groups profiting from rhBMP treatment either directly via stimulation of osteoblast function or viability and/or indirectly via inhibition of osteoclasts. The response on rhBMP7 treatment correlated with expression levels of the genes BAMBI, SOST, Noggin, Smad4 and RANKL, while the response of rhBMP9 correlated to the expression levels of Alk6, Endoglin, Smurf1, Smurf2, SOST and RANKL in these donors. Noteworthy, rhBMP9 treatment showed significantly increased osteogenic activity (AP activity and Smad nuclear translocation) when compared to the two clinically used rhBMPs. Based on patient's respective expression profiles, clinical application of rhBMP9 either solely or in combination with rhBMP2 and/or rhBMP7 can become a promising new approach to fit the patient's needs to promote fracture healing.
Collapse
Affiliation(s)
- Vrinda Sreekumar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Romina Haydeé Aspera-Werz
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Gauri Tendulkar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Marie Karolina Reumann
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Thomas Freude
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan Pscherer
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Björn Gunnar Ochs
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Ingo Flesch
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Valeska Hofmann
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Andreas Klaus Nussler
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany.
| |
Collapse
|
39
|
Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA. Human Fibrotic Diseases: Current Challenges in Fibrosis Research. Methods Mol Biol 2017; 1627:1-23. [PMID: 28836191 DOI: 10.1007/978-1-4939-7113-8_1] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human fibrotic diseases constitute a major health problem worldwide owing to the large number of affected individuals, the incomplete knowledge of the fibrotic process pathogenesis, the marked heterogeneity in their etiology and clinical manifestations, the absence of appropriate and fully validated biomarkers, and, most importantly, the current void of effective disease-modifying therapeutic agents. The fibrotic disorders encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis (SSc), sclerodermatous graft vs. host disease, and nephrogenic systemic fibrosis, as well as numerous organ-specific disorders including radiation-induced fibrosis and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse and in several instances have remained elusive, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrotic tissue in affected organs causing their dysfunction and ultimate failure. Despite the remarkable heterogeneity in the etiologic mechanisms responsible for the development of fibrotic diseases and in their clinical manifestations, numerous studies have identified activated myofibroblasts as the common cellular element ultimately responsible for the replacement of normal tissues with nonfunctional fibrotic tissue. Critical signaling cascades, initiated primarily by transforming growth factor-β (TGF-β), but also involving numerous cytokines and signaling molecules which stimulate profibrotic reactions in myofibroblasts, offer potential therapeutic targets. Here, we briefly review the current knowledge of the molecular mechanisms involved in the development of tissue fibrosis and point out some of the most important challenges to research in the fibrotic diseases and to the development of effective therapeutic approaches for this often fatal group of disorders. Efforts to further clarify the complex pathogenetic mechanisms of the fibrotic process should be encouraged to attain the elusive goal of developing effective therapies for these serious, untreatable, and often fatal disorders.
Collapse
Affiliation(s)
- Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Apgar JR, Mader M, Agostinelli R, Benard S, Bialek P, Johnson M, Gao Y, Krebs M, Owens J, Parris K, St. Andre M, Svenson K, Morris C, Tchistiakova L. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody. MAbs 2016; 8:1302-1318. [PMID: 27625211 PMCID: PMC5058614 DOI: 10.1080/19420862.2016.1215786] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 01/29/2023] Open
Abstract
Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.
Collapse
Affiliation(s)
| | | | | | - Susan Benard
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Peter Bialek
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Mark Johnson
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Yijie Gao
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Mark Krebs
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Kevin Parris
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Kris Svenson
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Carl Morris
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | | |
Collapse
|
41
|
Chuang HM, Su HL, Li C, Lin SZ, Yen SY, Huang MH, Ho LI, Chiou TW, Harn HJ. The Role of Butylidenephthalide in Targeting the Microenvironment Which Contributes to Liver Fibrosis Amelioration. Front Pharmacol 2016; 7:112. [PMID: 27199755 PMCID: PMC4847481 DOI: 10.3389/fphar.2016.00112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/13/2016] [Indexed: 12/12/2022] Open
Abstract
The treatment of liver fibrosis has clinical limitations because of its multiple etiologies, such as epithelial–mesenchymal transition (EMT) promotion, cell regeneration and remodeling dysfunction, inflammatory cell activation, and scar tissue deposition. These factors might be considered as a new target for the fibrotic microenvironment, leading to increased fibrogenesis and liver fibrosis. Here, we investigate a small molecule named butylidenephthalide (BP) and its multiple effects on liver fibrosis treatment. Thioacetamide was used in vivo to induce chronic liver fibrosis. BP was administered orally in rats for a period of 2 and 4 weeks, which resulted in a significantly reduced fibrosis score (p < 0.05) and (p < 0.001), respectively. The inflammatory reaction of macrophage infiltration were reduced in the administration of BP, which led to the decrease in the transaminase levels. Moreover, we also found liver functions recovering (due to the increased serum albumin and reduced prothrombin time) where liver cells regenerated, which can be seen in the increase of Ki-67 on Oval cell. In addition, the fibrotic scar was also reduced, along with the expression of matrix metalloprotease by hepatic stellate cell. Furthermore, regarding the mechanism/study of EMT reduced by BP, the knockdown of BMP-7, which could reduce α-SMA expression, was mediated by the regulation of TGF-β, which implies its major role on EMT. Finally, in the in vivo study, BP treatment of liver fibrosis was reduced by Bmp7 knockdown in zebrafish, suggesting that BP leads to the reduction of liver fibrosis, which also depends on BMP-7 induction. These results suggest that BP had multiple targets for treating liver fibrosis in the following ways: reduction of EMT, decreasing inflammatory reaction, and liver cell proliferation. This multiple targets approach provided a new mechanism to treat liver injury and fibrosis.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Agricultural Biotechnology Center, Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Hong-Lin Su
- Agricultural Biotechnology Center, Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Chien Li
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University Hualien, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University HospitalTaichung, Taiwan; Graduate Institute of Immunology, China Medical UniversityTaichung, Taiwan
| | - Ssu-Yin Yen
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University Hualien, Taiwan
| | - Mao-Hsuan Huang
- Agricultural Biotechnology Center, Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Li-Ing Ho
- Division of Respiratory Therapy, Department of Chest Medicine, Taipei Veterans General Hospital Taipei, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University Hualien, Taiwan
| | - Horng-Jyh Harn
- Department of Pathology, China Medical University HospitalTaichung, Taiwan; Department of Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
42
|
Chen W, Li S, Li J, Zhou W, Wu S, Xu S, Cui K, Zhang DD, Liu B. Artemisitene activates the Nrf2‐dependent antioxidant response and protects against bleomycin‐induced lung injury. FASEB J 2016; 30:2500-10. [DOI: 10.1096/fj.201500109r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 03/07/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Weimin Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Shanshan Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Jinwei Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Wen Zhou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Shouhai Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Shengmei Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Ke Cui
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Donna D. Zhang
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of ArizonaTucsonArizonaUSA
| | - Bo Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
43
|
Zoheiry MM, Hasan SA, El-Ahwany E, Nagy FM, Taleb HA, Nosseir M, Magdy M, Meshaal S, El-Talkawy MD, Raafat I. Serum Markers of Epithelial Mesenchymal Transition as Predictors of HCV-induced Liver Fibrosis, Cirrhosis and Hepatocellular Carcinoma. Electron Physician 2015; 7:1626-37. [PMID: 26816590 PMCID: PMC4725417 DOI: 10.19082/1626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/13/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Hepatitis C virus (HCV) is a major cause of chronic liver disease in Egypt, leading to hepatic fibrosis, liver cirrhosis (LC), and hepatocellular carcinoma (HCC). Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM). Newly-recognized pathogenic mechanisms point to the epithelial-mesenchymal transition (EMT) of hepatocytes to matrix synthesizing (myo-) fibroblasts. Transforming growth factor-beta (TGF-β1), bone morphogenic protein (BMP)-7, and connective tissue growth factor (CTGF) are biomarkers reflecting the EMT process. YKL-40 is a glycoprotein member of ECM and plays a role in cancer cell proliferation. The purpose of this study was to determine the serum biomarkers of EMT and its impact on the fibrogenic process and tumorigenesis in HCV-genotype 4 patients. Methods In this case-control study that was conducted in 2013–2014, 97 HCV-infected patients were subjected to clinical examination, laboratory investigations, and liver biopsy. According to the histopathologic examination, they were classified to F0 (14 cases), F1 (17 cases), F2 (15 cases), F3 (18 cases), F4 (22 cases), and HCC (11 cases). Fifteen age- and gender-matched subjects were included as normal controls. Serum levels of TGF-β1, BMP-7, CTGF, YKL-40 were assessed, and the TGF-β1/BMP-7 ratios were calculated. The data were analyzed by plotting the receiver operating characteristic curve (ROC), Pearson product-moment correlation coefficient, and Spearman’s rank correlation coefficient (Spearman’s rho). Results Serum levels of TGF-β1, BMP-7, CTGF, and YKL-40 were significantly increased in all patient groups compared to controls (p < 0.001). LC exhibited the highest CTGF level and YKL-40 was highest in HCC. The TGF-β1/ BMP-7 ratios reflected the progression of EMT from CHC to LC, however, there was no significant difference between LC and HCC. TGF-β1/ BMP-7 ratio is considered to reflect positive correlation with CTGF in LC group (r = 0.629; p < 0.03) and YKL-40 in HCC group (r = 0.504; p < 0.04). Conclusion Increased TGF-β1/BMP-7 ratio and CTGF levels reflect the rate of EMT and provide information about fibrogenic activity. Also, this ratio, in association with YKL-40, can be used to predict malignant transformation in HCV-genotype 4 Egyptian patients.
Collapse
Affiliation(s)
- Mona M Zoheiry
- Department of Immunology, Theodor Bilharz Research Institute, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Shaimaa Aa Hasan
- Department of Immunology, Theodor Bilharz Research Institute, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Faten M Nagy
- Department of Immunology, Theodor Bilharz Research Institute, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hoda Abu Taleb
- Environmental Department, Theodor Bilharz Research Institute, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mona Nosseir
- Department of Pathology, Theodor Bilharz Research Institute, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mona Magdy
- Department of Pathology, Theodor Bilharz Research Institute, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Safa Meshaal
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohamed Darwish El-Talkawy
- Department of Gastroenterology, Theodor Bilharz Research Institute, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Inas Raafat
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
44
|
Liang D, Wang Y, Zhu Z, Yang G, An G, Li X, Niu P, Chen L, Tian L. BMP-7 attenuated silica-induced pulmonary fibrosis through modulation of the balance between TGF-β/Smad and BMP-7/Smad signaling pathway. Chem Biol Interact 2015; 243:72-81. [PMID: 26585589 DOI: 10.1016/j.cbi.2015.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 10/13/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the anti-fibrotic effects and possible mechanisms of bone morphogenetic protein-7 (BMP-7) on silica induced fibrosis in RLE-6TN cells, and compare the preventive treatment of experimental silicosis with BMP-7 with therapeutic treatment of silicosis in vitro models. METHODS RLE-6TN cells were incubated with the supernatant of RAW264.7, treated by 50 μg/mL silica in either presence or absence of BMP-7 in different phases. Morphological changes and the cellular wound-healing assays were used to evaluate the process of EMT. By using Western Blotting, the epithelial marker E-cadherin (E-cad), and the mesenchymal markers Vimentin (Vim), Snail, and fibronectin (FN) were detected as well as the Smad signaling pathway proteins, including phosphorylated Smad1/5(P-Smad1/5), phosphorylated Smad2/3(P-Smad2/3), and non-phosphorylated Smad1, Smad8, and Smad2. The progress of fibrosis was assessed by the content of hydroxyproline (Hyp) and collagen I and III protein levels. In addition, MTT assay was used to explore the toxic effects of silica as well as BMP-7. RESULTS The EMT model of RLE-6TN cells was established successfully, the cells had a fibroblast-like morphology with increasing migration activity. The expressions of Vim, Snail, FN, collagen I and collagen III were up-regulated with the increase of silica concentration. BMP-7 could attenuate the decrease of P-Smad1/5 and the increase of P-Smad2/3, collagen I, collagen III, and FN via Smad signaling pathway. BMP-7 inhibited the mesenchymal-like responses in RLE-6TN cells, including cell migration, expression of fibrosis markers, and secretion of Hyp. Furthermore, the anti-fibrotic effects in the prevention group were more effective than treatment group. CONCLUSION The restoration of BMP signaling with BMP-7 is associated with inhibiting silica-induced fibrosis through the mechanisms of activated BMP-7/Smad and suppressed TGF-β/Smad pathways. Preventive treatment of pulmonary fibrosis progression with BMP-7 may expect to be the optimized strategy than therapeutic therapy of fibrosis.
Collapse
Affiliation(s)
- Di Liang
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Gengxia Yang
- Oncology Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guoliang An
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaoli Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Tian
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
45
|
Muñoz-Félix JM, González-Núñez M, Martínez-Salgado C, López-Novoa JM. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacol Ther 2015; 156:44-58. [PMID: 26493350 DOI: 10.1016/j.pharmthera.2015.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The understanding of renal fibrosis in chronic kidney disease (CKD) remains as a challenge. More than 10% of the population of developed countries suffer from CKD. Proliferation and activation of myofibroblasts and accumulation of extracellular matrix proteins are the main features of kidney fibrosis, a process in which a large number of cytokines are involved. Targeting cytokines responsible for kidney fibrosis development might be an important strategy to face the problem of CKD. The increasing knowledge of the signaling pathway network of the transforming growth factor beta (TGF-β) superfamily members, such as the profibrotic cytokine TGF-β1 or the bone morphogenetic proteins (BMPs), and their involvement in the regulation of kidney fibrosis, has stimulated numerous research teams to look for potential strategies to inhibit profibrotic cytokines or to enhance the anti-fibrotic actions of other cytokines. The consequence of all these studies is a better understanding of all these canonical (Smad-mediated) and non-canonical signaling pathways. In addition, the different receptors involved for signaling of each cytokine, the different combinations of type I-type II receptors, and the presence and function of co-receptors that can influence the biological response have been also described. However, are these studies leading to suitable strategies to block the appearance and progression of kidney fibrosis? In this review, we offer a critical perspective analyzing the achievements using the most important strategies developed up till now: TGF-β antibodies, chemical inhibitors of TGF-β receptors, miRNAs and signaling pathways and BMP agonists with a potential role as therapeutic molecules against kidney fibrosis.
Collapse
Affiliation(s)
- José M Muñoz-Félix
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María González-Núñez
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Martínez-Salgado
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - José M López-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
46
|
Zhang K, Zhang YQ, Ai WB, Hu QT, Zhang QJ, Wan LY, Wang XL, Liu CB, Wu JF. Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-β/BMP signaling. World J Gastroenterol 2015; 21:878-887. [PMID: 25624721 PMCID: PMC4299340 DOI: 10.3748/wjg.v21.i3.878] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/18/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the role of Notch1 and Hes1 in regulating the activation of hepatic stellate cells (HSCs) and whether Hes1 is regulated by transforming growth factor (TGF)/bone morphogenetic protein (BMP) signaling.
METHODS: Immunofluorescence staining was used to detect the expression of desmin, glial fibrillary acidic protein and the myofibroblastic marker α-smooth muscle actin (α-SMA) after freshly isolated, normal rat HSCs had been activated in culture for different numbers of days (0, 1, 3, 7 and 10 d). The expression of α-SMA, collagen1α2 (COL1α2), Notch receptors (Notch1-4), and the Notch target genes Hes1 and Hey1 were analyzed by reverse transcriptase-polymerase chain reaction. Luciferase reporter assays and Western blot were used to study the regulation of α-SMA, COL1α1, COL1α2 and Hes1 by NICD1, Hes1, CA-ALK3, and CA-ALK5 in HSC-T6 cells. Moreover, the effects of inhibiting Hes1 function in HSC-T6 cells using a Hes1 decoy were also investigated.
RESULTS: The expression of Notch1 and Hes1 mRNAs was significantly down-regulated during the culture of freshly isolated HSCs. In HSC-T6 cells, Notch1 inhibited the promoter activities of α-SMA, COL1α1 and COL1α2. On the other hand, Hes1 enhanced the promoter activities of α-SMA and COL1α2, and this effect could be blocked by inhibiting Hes1 function with a Hes1 decoy. Furthermore, co-transfection of pcDNA3-CA-ALK3 (BMP signaling activin receptor-like kinase 3) and pcDNA3.1-NICD1 further increased the expression of Hes1 compared with transfection of either vector alone in HSC-T6 cells, while pcDNA3-CA-ALK5 (TGF-β signaling activin receptor-like kinase 5) reduced the effect of NICD1 on Hes1 expression.
CONCLUSION: Selective interruption of Hes1 or maintenance of Hes1 at a reasonable level decreases the promoter activities of α-SMA and COL1α2, and these conditions may provide an anti-fibrotic strategy against hepatic fibrosis.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biomarkers/metabolism
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type I/metabolism
- Bone Morphogenetic Proteins/metabolism
- Cells, Cultured
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Myofibroblasts/metabolism
- Myofibroblasts/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Time Factors
- Transcription Factor HES-1
- Transfection
- Transforming Growth Factor beta/metabolism
Collapse
|
47
|
Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol 2015; 50:53-65. [PMID: 25523556 DOI: 10.3109/00365521.2014.968863] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs). It becomes clinically apparent in >30% of patients with Crohn's disease (CD) and in about 5% with ulcerative colitis (UC). Fibrosis is a consequence of local chronic inflammation and is characterized by excessive extracellular matrix (ECM) protein deposition. ECM is produced by activated myofibroblasts, which are modulated by both, profibrotic and antifibrotic factors. Fibrosis depends on the balance between the production and degradation of ECM proteins. This equilibrium can be impacted by a complex and dynamic interaction between profibrotic and antifibrotic mediators. Despite the major therapeutic advances in the treatment of active inflammation in IBD over the past two decades, the incidence of intestinal strictures in CD has not significantly changed as the current anti-inflammatory therapies neither prevent nor reverse the established fibrosis and strictures. This implies that control of intestinal inflammation does not necessarily affect the associated fibrotic process. The conventional view that intestinal fibrosis is an inevitable and irreversible process in patients with IBD is also gradually changing in light of an improved understanding of the cellular and molecular mechanisms that underline the pathogenesis of fibrosis. Comprehension of the mechanisms of intestinal fibrosis is thus vital and may pave the way for the developments of antifibrotic agents and new therapeutic approaches in IBD.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila , L'Aquila , Italy
| | | | | | | | | |
Collapse
|
48
|
Abstract
Tubulointerstitial fibrosis and glomerulosclerosis, are a major feature of end stage chronic kidney disease (CKD), characterised by an excessive accumulation of extracellular matrix (ECM) proteins. Transforming growth factor beta-1 (TGF-β1) is a cytokine with an important role in many steps of renal fibrosis such as myofibroblast activation and proliferation, ECM protein synthesis and inflammatory cell infiltration. Endoglin is a TGF-β co-receptor that modulates TGF-β responses in different cell types. In numerous cells types, such as mesangial cells or myoblasts, endoglin regulates negatively TGF-β-induced ECM protein expression. However, recently it has been demonstrated that 'in vivo' endoglin promotes fibrotic responses. Furthermore, several studies have demonstrated an increase of endoglin expression in experimental models of renal fibrosis in the kidney and other tissues. Nevertheless, the role of endoglin in renal fibrosis development is unclear and a question arises: Does endoglin protect against renal fibrosis or promotes its development? The purpose of this review is to critically analyse the recent knowledge relating to endoglin and renal fibrosis. Knowledge of endoglin role in this pathology is necessary to consider endoglin as a possible therapeutic target against renal fibrosis.
Collapse
|
49
|
Horvath L, Bodmer D, Radojevic V, Monge Naldi A. Activin Signaling Disruption in the Cochlea Does Not Influence Hearing in Adult Mice. Audiol Neurootol 2014; 20:51-61. [DOI: 10.1159/000366152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
Activin, a member of the TGF-F superfamily, was found to play an important role in the development, repair and apoptosis of different tissues and organs. Accordingly, activin signaling is involved in the development of the cochlea. Activin binds to its receptor ActRII, then dimerizes with ActRI and induces a signaling pathway resulting in gene expression. A study reported a case of fibrodysplasia ossificans progressiva with an unusual mutation in the ActRI gene leading to sensorineural hearing loss. This draws attention to the role of activin and its receptors in the developed cochlea. To date, only the expression of ActRII is known in the adult mammalian cochlea. In this study, we present for the first time the presence of activin A and ActRIB in the adult cochlea. Transgenic mice with postnatal dominant-negative ActRIB expression causing disruption of activin signaling in vivo were used for assessing cochlear morphology and hearing ability through the auditory brainstem response (ABR) threshold. Nonfunctioning ActRIB did not affect the ABR thresholds and did not alter the microscopic anatomy of the cochlea. We conclude, therefore, that activin signaling is not necessary for hearing in adult mice under physiological conditions but may be important during and after damaging events in the inner ear. i 2014 S. Karger AG, Basel
Collapse
|
50
|
Myllärniemi M, Tikkanen J, Hulmi JJ, Pasternack A, Sutinen E, Rönty M, Leppäranta O, Ma H, Ritvos O, Koli K. Upregulation of activin-B and follistatin in pulmonary fibrosis - a translational study using human biopsies and a specific inhibitor in mouse fibrosis models. BMC Pulm Med 2014; 14:170. [PMID: 25361680 PMCID: PMC4271359 DOI: 10.1186/1471-2466-14-170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Background Activins are members of the TGF-ß superfamily of growth factors. First, we identified by expression array screening that activin-B and follistatin are upregulated in human idiopathic pulmonary fibrosis (IPF). Next, we wanted to clarify their specific role in lung fibrosis formation. Methods We used specific antibodies for activin-A and -B subunits and follistatin to measure and localize their levels in idiopathic pulmonary fibrosis and control lung biopsies. To inhibit activin signaling, we used soluble activin type IIB receptor fused to the Fc portion of human IgG1 (sActRIIB-Fc) in two different mouse models of pulmonary fibrosis. Results Activin-B and follistatin mRNA levels were elevated in the human IPF lung. Immunoreactivity to activin-A, -B and follistatin localized predominantly to the hyperplastic, activated alveolar epithelium, but was also seen in inflammatory cells. Mice treated with sActRIIB-Fc showed increased skeletal muscle mass and a clear reduction in alveolar cell counts in bronchoalveolar lavage fluid, but no significant antifibrotic effect in the lung was observed. Conclusions The upregulation of activin-B and follistatin in IPF is a novel finding. Our results indicate that activin inhibition is not an efficient tool for antifibrotic therapy, but could be useful in reducing alveolar cellular response to injury. Activin-B and follistatin levels may be useful as biomarkers of IPF.
Collapse
Affiliation(s)
- Marjukka Myllärniemi
- Department of Medicine, Division of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, PO Box 63, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|