1
|
Mousavi F, Thompson J, Lau J, Renollet N, Martin MB, McGue J, Hassan O, Frankel T, Shooshtari P, Pin CL, Bednar F. Mouse Models for Pancreatic Ductal Adenocarcinoma are Affected by the cre-driver Used to Promote KRAS G12D Activation. Cell Mol Gastroenterol Hepatol 2024; 19:101428. [PMID: 39547411 PMCID: PMC11874826 DOI: 10.1016/j.jcmgh.2024.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND & AIMS The fundamental biology of pancreatic ductal adenocarcinoma has been greatly impacted by the characterization of genetically engineered mouse models that allow temporal and spatial activation of oncogenic KRAS (KRASG12D). One of the most commonly used models involves targeted insertion of a cre-recombinase into the Ptf1a gene. However, this approach disrupts the Ptf1a gene, resulting in haploinsufficiency that likely affects sensitivity to oncogenic KRAS (KRASG12D). This study aims to determine if Ptf1a haploinsufficiency affected the acinar cell response to KRASG12D before and after induction of pancreatic injury. METHODS We performed morphological and molecular analysis of 3 genetically engineered mouse models that express a tamoxifen-inducible cre-recombinase to activate KrasG12D in acinar cells of the pancreas. The cre-recombinase was targeted to the acinar-specific transcription factor genes, Ptf1a or Mist1/Bhlha15, or expressed within a BAC-derived Elastase transgene. Histological and RNA-seq analyses were used to delineate differences between the models. RESULTS Up to 2 months after tamoxifen induction of KRASG12D, morphological changes were negligible. However, induction of pancreatic injury by cerulein resulted in widespread PanIN lesions in Ptf1acreERT pancreata within 7 days and maintained for at least 5 weeks post-injury, which was not seen in the models with 2 functional Ptf1a alleles. RNA-sequencing analysis prior to injury induction suggested Ptf1acreERT and Mist1creERT mice have unique profiles of gene expression that predict a differential response to injury. Multiplex analysis of pancreatic tissue confirmed different inflammatory responses between the models. CONCLUSIONS These findings suggest Ptf1a haploinsufficiency in Ptf1acreERT mouse models promotes KRASG12D priming of genes for promotion of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Fatemeh Mousavi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Joyce Thompson
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Justine Lau
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nur Renollet
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mickenzie B Martin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Oneeb Hassan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Timothy Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Parisa Shooshtari
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Christopher L Pin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Program in Cancer Biology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
2
|
Menon JC, Singh P, Archana A, Singh P, Mittal M, Kanga U, Mandal K, Seth A, Bhatia V, Dabadghao P, Sudhanshu S, Garg A, Vishwakarma R, Sarangi AN, Verma S, Singh SK, Bhatia E. High Frequency of Recessive WFS1 Mutations Among Indian Children With Islet Antibody-negative Type 1 Diabetes. J Clin Endocrinol Metab 2024; 109:e1072-e1082. [PMID: 37931151 DOI: 10.1210/clinem/dgad644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND While the frequency of islet antibody-negative (idiopathic) type 1 diabetes mellitus (T1DM) is reported to be increased in Indian children, its aetiology has not been studied. We investigated the role of monogenic diabetes in the causation of islet antibody-negative T1DM. METHODS We conducted a multicenter, prospective, observational study of 169 Indian children (age 1-18 years) with recent-onset T1DM. All were tested for antibodies against GAD65, islet antigen-2, and zinc transporter 8 using validated ELISA. Thirty-four islet antibody-negative children underwent targeted next-generation sequencing for 31 genes implicated in monogenic diabetes using the Illumina platform. All mutations were confirmed by Sanger sequencing. RESULTS Thirty-five (21%) children were negative for all islet antibodies. Twelve patients (7% of entire cohort, 34% of patients with islet antibody-negative T1DM) were detected to have pathogenic or likely pathogenic genetic variants. The most frequently affected locus was WFS1, with 9 patients (5% of entire cohort, 26% of islet antibody-negative). These included 7 children with homozygous and 1 patient each with a compound heterozygous and heterozygous mutation. Children with Wolfram syndrome 1 (WS) presented with severe insulin-requiring diabetes (including 3 patients with ketoacidosis), but other syndromic manifestations were not detected. In 3 patients, heterozygous mutations in HNF4A, ABCC8, and PTF1A loci were detected. CONCLUSION Nearly one-quarter of Indian children with islet antibody-negative T1DM had recessive mutations in the WFS1 gene. These patients did not exhibit other features of WS at the time of diagnosis. Testing for monogenic diabetes, especially WS, should be considered in Indian children with antibody-negative T1DM.
Collapse
Affiliation(s)
- Jayakrishnan C Menon
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Pratibha Singh
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Archana Archana
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Preeti Singh
- Department of Paediatrics, Lady Hardinge Medical College, Delhi 110001, India
| | - Medha Mittal
- Department of Paediatrics, Chacha Nehru Bal Chikitsalay, Delhi 110031, India
| | - Uma Kanga
- Department of Immunogenetics and Transplant Immunology, All India Institute of Medical Sciences, Delhi 110029, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Anju Seth
- Department of Paediatrics, Lady Hardinge Medical College, Delhi 110001, India
| | - Vijayalakshmi Bhatia
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Siddhnath Sudhanshu
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Atul Garg
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Ruchira Vishwakarma
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Aditya Narayan Sarangi
- Department of Genome Analytics, BaseSolve Informatics Pvt Ltd, Ahmedabad, Gujrat 380006, India
| | - Shivendra Verma
- Department of General Medicine, GSVM Medical College, Kanpur, Uttar Pradesh 208002, India
| | - Surya Kumar Singh
- Department of Endocrinology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Eesh Bhatia
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
3
|
Weidemann BJ, Marcheva B, Kobayashi M, Omura C, Newman MV, Kobayashi Y, Waldeck NJ, Perelis M, Lantier L, McGuinness OP, Ramsey KM, Stein RW, Bass J. Repression of latent NF-κB enhancers by PDX1 regulates β cell functional heterogeneity. Cell Metab 2024; 36:90-102.e7. [PMID: 38171340 PMCID: PMC10793877 DOI: 10.1016/j.cmet.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified β cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). β cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in β cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1β receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single β cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.
Collapse
Affiliation(s)
- Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mikoto Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Louise Lantier
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Owen P McGuinness
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Al-Hasani K, Marikar SN, Kaipananickal H, Maxwell S, Okabe J, Khurana I, Karagiannis T, Liang JJ, Mariana L, Loudovaris T, Kay T, El-Osta A. EZH2 inhibitors promote β-like cell regeneration in young and adult type 1 diabetes donors. Signal Transduct Target Ther 2024; 9:2. [PMID: 38161208 PMCID: PMC10757994 DOI: 10.1038/s41392-023-01707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
β-cells are a type of endocrine cell found in pancreatic islets that synthesize, store and release insulin. In type 1 diabetes (T1D), T-cells of the immune system selectively destroy the insulin-producing β-cells. Destruction of these cells leads to a lifelong dependence on exogenous insulin administration for survival. Consequently, there is an urgent need to identify novel therapies that stimulate β-cell growth and induce β-cell function. We and others have shown that pancreatic ductal progenitor cells are a promising source for regenerating β-cells for T1D owing to their inherent differentiation capacity. Default transcriptional suppression is refractory to exocrine reaction and tightly controls the regenerative potential by the EZH2 methyltransferase. In the present study, we show that transient stimulation of exocrine cells, derived from juvenile and adult T1D donors to the FDA-approved EZH2 inhibitors GSK126 and Tazemetostat (Taz) influence a phenotypic shift towards a β-like cell identity. The transition from repressed to permissive chromatin states are dependent on bivalent H3K27me3 and H3K4me3 chromatin modification. Targeting EZH2 is fundamental to β-cell regenerative potential. Reprogrammed pancreatic ductal cells exhibit insulin production and secretion in response to a physiological glucose challenge ex vivo. These pre-clinical studies underscore the potential of small molecule inhibitors as novel modulators of ductal progenitor differentiation and a promising new approach for the restoration of β-like cell function.
Collapse
Affiliation(s)
- Keith Al-Hasani
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
| | - Safiya Naina Marikar
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
| | - Scott Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
| | - Thomas Karagiannis
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia
| | - Julia J Liang
- School of Science, STEM College, RMIT University, Melbourne, 3001, VIC, Australia
| | - Lina Mariana
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, 3065, VIC, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, 3065, VIC, Australia
| | - Thomas Kay
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, 3065, VIC, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, VIC, Australia.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia.
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, 3004, VIC, Australia.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR.
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32- Ngan Shing Street, Sha Tin, Hong Kong SAR.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR.
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Mehanna S, Arakawa S, Imasaka M, Chen W, Nakanishi Y, Nishiura H, Shimizu S, Ohmuraya M. Beclin1 is essential for the pancreas development. Dev Biol 2023; 504:113-119. [PMID: 37739117 DOI: 10.1016/j.ydbio.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Beclin1 (Becn1) is a multifunctional protein involved in autophagy regulation, membrane trafficking, and tumor suppression. In this study, we examined the roles of Becn1 in the pancreas development by generating mice with conditional deletion of Becn1 in the pancreas using pancreatic transcriptional factor 1a (Ptf1a)-Cre mice (Becn1f/f; Ptf1aCre/+). Surprisingly, loss of Becn1 in the pancreas resulted in severe pancreatic developmental defects, leading to insufficient exocrine and endocrine pancreatic function. Approximately half of Becn1f/f; Ptf1aCre/+ mice died immediately after birth. However, duodenum and neural tissue development were almost normal, indicating that pancreatic insufficiency was the cause of death. These findings demonstrated a novel role for Becn1 in pancreas morphogenesis, differentiation, and growth, and suggested that loss of this factor leaded to pancreatic agenesis at birth.
Collapse
Affiliation(s)
- Sally Mehanna
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - Mai Imasaka
- Department of Genetics, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Wenting Chen
- Department of Genetics, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yuto Nakanishi
- Department of Genetics, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hiroshi Nishiura
- Division of Functional Pathology, Department of Pathology, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
6
|
Alsagheir AI, AlMutair A, Bakhamis S, Aletani L, Alhumaidi S, Bin Abbas B. Isolated Pancreatic Agenesis Secondary to PTF1A Gene Mutation: A Case Series and Literature Review. Cureus 2023; 15:e47202. [PMID: 37854477 PMCID: PMC10580879 DOI: 10.7759/cureus.47202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Background Neonatal diabetes mellitus is a rare form of monogenic diabetes which is diagnosed in the first six months of life. It is often related to genetic mutations; hence, genetic testing is warranted. Here, we present six cases of pancreatic agenesis resulting in neonatal diabetes with PTF1A gene mutation. Methodology This retrospective case series study included six pediatric cases of neonatal diabetes mellitus who are currently following at pediatric endocrinology clinics at King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. Results The study reported six patients with a mean age of eight years who presented with pancreatic agenesis resulting in neonatal diabetes with PTF1A gene mutation. In four patients, there was no evidence of cerebellar agenesis. Conclusions Neonatal diabetes is a challenging disease that must be diagnosed early to prevent subsequent metabolic complications. Genetic testing is recommended in neonates who present with prolonged duration of hyperglycemia. Insulin replacement is the treatment of choice.
Collapse
Affiliation(s)
- Afaf I Alsagheir
- Department of Pediatrics, Division of Endocrinology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Angham AlMutair
- Department of Pediatrics, Division of Endocrinology, King Abdulaziz Medical City, King Abdullah Specialist Children's Hospital, Ministry of National Guard-Health Affairs, Riyadh, SAU
| | - Sarah Bakhamis
- Department of Pediatrics, Division of Endocrinology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Lujain Aletani
- Department of Pediatrics, Division of Endocrinology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Shahad Alhumaidi
- Department of Pediatrics, Section of Pediatric Endocrinology, King Khalid University Medical City, Abha, SAU
| | - Bassam Bin Abbas
- Department of Pediatrics, Division of Endocrinology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| |
Collapse
|
7
|
Duan YY, Chen XF, Zhu RJ, Jia YY, Huang XT, Zhang M, Yang N, Dong SS, Zeng M, Feng Z, Zhu DL, Wu H, Jiang F, Shi W, Hu WX, Ke X, Chen H, Liu Y, Jing RH, Guo Y, Li M, Yang TL. High-throughput functional dissection of noncoding SNPs with biased allelic enhancer activity for insulin resistance-relevant phenotypes. Am J Hum Genet 2023; 110:1266-1288. [PMID: 37506691 PMCID: PMC10432149 DOI: 10.1016/j.ajhg.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.
Collapse
Affiliation(s)
- Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ren-Jie Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ying-Ying Jia
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao-Ting Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Meng Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ning Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mengqi Zeng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xin Ke
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Rui-Hua Jing
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
8
|
Hashemipour M, Mostofizadeh N, Ghasemi M, Behnam M, Rostampour N, Dehkordi EH, Hovsepian S. Molecular genetic analysis of the insulin gene variants in Iranian patients with permanent neonatal diabetes. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
9
|
Duque M, Amorim JP, Bessa J. Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J 2022; 289:5121-5136. [PMID: 34125483 PMCID: PMC9545688 DOI: 10.1111/febs.16075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Vertebrate pancreas organogenesis is a stepwise process regulated by a complex network of signaling and transcriptional events, progressively steering the early endoderm toward pancreatic fate. Many crucial players of this process have been identified, including signaling pathways, cis-regulatory elements, and transcription factors (TFs). Pancreas-associated transcription factor 1a (PTF1A) is one such TF, crucial for pancreas development. PTF1A mutations result in dramatic pancreatic phenotypes associated with severe complications, such as neonatal diabetes and impaired food digestion due to exocrine pancreatic insufficiency. Here, we present a brief overview of vertebrate pancreas development, centered on Ptf1a function and transcriptional regulation, covering similarities and divergences in three broadly studied organisms: human, mouse and zebrafish.
Collapse
Affiliation(s)
- Marta Duque
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - João Pedro Amorim
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - José Bessa
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
| |
Collapse
|
10
|
Overton DL, Mastracci TL. Exocrine-Endocrine Crosstalk: The Influence of Pancreatic Cellular Communications on Organ Growth, Function and Disease. Front Endocrinol (Lausanne) 2022; 13:904004. [PMID: 35769082 PMCID: PMC9234176 DOI: 10.3389/fendo.2022.904004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus, a disease that affects nearly 536.6 million people worldwide, is characterized by the death or dysfunction of insulin-producing beta cells of the pancreas. The beta cells are found within the islets of Langerhans, which are composed of multiple hormone-producing endocrine cells including the alpha (glucagon), delta (somatostatin), PP (pancreatic polypeptide), and epsilon (ghrelin) cells. There is direct evidence that physical and paracrine interactions between the cells in the islet facilitate and support beta cell function. However, communication between endocrine and exocrine cells in the pancreas may also directly impact beta cell growth and function. Herein we review literature that contributes to the view that "crosstalk" between neighboring cells within the pancreas influences beta cell growth and function and the maintenance of beta cell health.
Collapse
Affiliation(s)
- Danielle L. Overton
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Teresa L. Mastracci
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
11
|
Backx E, Coolens K, Van den Bossche JL, Houbracken I, Espinet E, Rooman I. On the Origin of Pancreatic Cancer: Molecular Tumor Subtypes in Perspective of Exocrine Cell Plasticity. Cell Mol Gastroenterol Hepatol 2021; 13:1243-1253. [PMID: 34875393 PMCID: PMC8881661 DOI: 10.1016/j.jcmgh.2021.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating type of cancer. While many studies have shed light into the pathobiology of PDAC, the nature of PDAC's cell of origin remains under debate. Studies in adult pancreatic tissue have unveiled a remarkable exocrine cell plasticity including transitional states, mostly exemplified by acinar to ductal cell metaplasia, but also with recent evidence hinting at duct to basal cell transitions. Single-cell RNA sequencing has further revealed intrapopulation heterogeneity among acinar and duct cells. Transcriptomic and epigenomic relationships between these exocrine cell differentiation states and PDAC molecular subtypes have started to emerge, suggesting different ontogenies for different tumor subtypes. This review sheds light on these diverse aspects with particular focus on studies with human cells. Understanding the "masked ball" of exocrine cells at origin of PDAC and leaving behind the binary acinar vs duct cell classification may significantly advance our insights in PDAC biology.
Collapse
Affiliation(s)
- Elyne Backx
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katarina Coolens
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan-Lars Van den Bossche
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Houbracken
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisa Espinet
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
12
|
De Franco E. Neonatal diabetes caused by disrupted pancreatic and β-cell development. Diabet Med 2021; 38:e14728. [PMID: 34665882 DOI: 10.1111/dme.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Neonatal diabetes is diagnosed before the age of 6 months and is usually caused by single-gene mutations. More than 30 genetic causes of neonatal diabetes have been described to date, resulting in severely reduced β-cell number or function. Seven of these genes are known to cause neonatal diabetes through disrupted development of the whole pancreas, resulting in diabetes and exocrine pancreatic insufficiency. Pathogenic variants in five transcription factors essential for β-cell development cause neonatal diabetes without other pancreatic phenotypes. However, additional extra-pancreatic features are common. This review will focus on the genes causing neonatal diabetes through disrupted β-cell development, discussing what is currently known about the genetic and phenotypic features of these genetic conditions, and what discoveries may come in the future.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Alvarez Fallas ME, Pedraza-Arevalo S, Cujba AM, Manea T, Lambert C, Morrugares R, Sancho R. Stem/progenitor cells in normal physiology and disease of the pancreas. Mol Cell Endocrinol 2021; 538:111459. [PMID: 34543699 PMCID: PMC8573583 DOI: 10.1016/j.mce.2021.111459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 03/19/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Though embryonic pancreas progenitors are well characterised, the existence of stem/progenitor cells in the postnatal mammalian pancreas has been long debated, mainly due to contradicting results on regeneration after injury or disease in mice. Despite these controversies, sequencing advancements combined with lineage tracing and organoid technologies indicate that homeostatic and trigger-induced regenerative responses in mice could occur. The presence of putative progenitor cells in the adult pancreas has been proposed during homeostasis and upon different stress challenges such as inflammation, tissue damage and oncogenic stress. More recently, single cell transcriptomics has revealed a remarkable heterogeneity in all pancreas cell types, with some cells showing the signature of potential progenitors. In this review we provide an overview on embryonic and putative adult pancreas progenitors in homeostasis and disease, with special emphasis on in vitro culture systems and scRNA-seq technology as tools to address the progenitor nature of different pancreatic cells.
Collapse
Affiliation(s)
- Mario Enrique Alvarez Fallas
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Sergio Pedraza-Arevalo
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Teodora Manea
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Christopher Lambert
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Rosario Morrugares
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain; Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Cordoba, Cordoba, Spain; Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK; Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany.
| |
Collapse
|
14
|
Ikle JM, Gloyn AL. 100 YEARS OF INSULIN: A brief history of diabetes genetics: insights for pancreatic beta-cell development and function. J Endocrinol 2021; 250:R23-R35. [PMID: 34196608 PMCID: PMC9037733 DOI: 10.1530/joe-21-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Since the discovery of insulin 100 years ago, our knowledge and understanding of diabetes have grown exponentially. Specifically, with regards to the genetics underlying diabetes risk, our discoveries have paralleled developments in our understanding of the human genome and our ability to study genomics at scale; these advancements in genetics have both accompanied and led to those in diabetes treatment. This review will explore the timeline and history of gene discovery and how this has coincided with progress in the fields of genomics. Examples of genetic causes of monogenic diabetes are presented and the continuing expansion of allelic series in these genes and the challenges these now cause for diagnostic interpretation along with opportunities for patient stratification are discussed.
Collapse
Affiliation(s)
- Jennifer M Ikle
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
| |
Collapse
|
15
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
16
|
Osipovich AB, Dudek KD, Greenfest-Allen E, Cartailler JP, Manduchi E, Potter Case L, Choi E, Chapman AG, Clayton HW, Gu G, Stoeckert CJ, Magnuson MA. A developmental lineage-based gene co-expression network for mouse pancreatic β-cells reveals a role for Zfp800 in pancreas development. Development 2021; 148:dev196964. [PMID: 33653874 PMCID: PMC8015253 DOI: 10.1242/dev.196964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
To gain a deeper understanding of pancreatic β-cell development, we used iterative weighted gene correlation network analysis to calculate a gene co-expression network (GCN) from 11 temporally and genetically defined murine cell populations. The GCN, which contained 91 distinct modules, was then used to gain three new biological insights. First, we found that the clustered protocadherin genes are differentially expressed during pancreas development. Pcdhγ genes are preferentially expressed in pancreatic endoderm, Pcdhβ genes in nascent islets, and Pcdhα genes in mature β-cells. Second, after extracting sub-networks of transcriptional regulators for each developmental stage, we identified 81 zinc finger protein (ZFP) genes that are preferentially expressed during endocrine specification and β-cell maturation. Third, we used the GCN to select three ZFPs for further analysis by CRISPR mutagenesis of mice. Zfp800 null mice exhibited early postnatal lethality, and at E18.5 their pancreata exhibited a reduced number of pancreatic endocrine cells, alterations in exocrine cell morphology, and marked changes in expression of genes involved in protein translation, hormone secretion and developmental pathways in the pancreas. Together, our results suggest that developmentally oriented GCNs have utility for gaining new insights into gene regulation during organogenesis.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Karrie D Dudek
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Emily Greenfest-Allen
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | - Elisabetta Manduchi
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Leah Potter Case
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Eunyoung Choi
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Austin G Chapman
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hannah W Clayton
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Guoqiang Gu
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Christian J Stoeckert
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
17
|
Abdelalim EM. Modeling different types of diabetes using human pluripotent stem cells. Cell Mol Life Sci 2021; 78:2459-2483. [PMID: 33242105 PMCID: PMC11072720 DOI: 10.1007/s00018-020-03710-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia as a result of progressive loss of pancreatic β cells, which could lead to several debilitating complications. Different paths, triggered by several genetic and environmental factors, lead to the loss of pancreatic β cells and/or function. Understanding these many paths to β cell damage or dysfunction could help in identifying therapeutic approaches specific for each path. Most of our knowledge about diabetes pathophysiology has been obtained from studies on animal models, which do not fully recapitulate human diabetes phenotypes. Currently, human pluripotent stem cell (hPSC) technology is a powerful tool for generating in vitro human models, which could provide key information about the disease pathogenesis and provide cells for personalized therapies. The recent progress in generating functional hPSC-derived β cells in combination with the rapid development in genomic and genome-editing technologies offer multiple options to understand the cellular and molecular mechanisms underlying the development of different types of diabetes. Recently, several in vitro hPSC-based strategies have been used for studying monogenic and polygenic forms of diabetes. This review summarizes the current knowledge about different hPSC-based diabetes models and how these models improved our current understanding of the pathophysiology of distinct forms of diabetes. Also, it highlights the progress in generating functional β cells in vitro, and discusses the current challenges and future perspectives related to the use of the in vitro hPSC-based strategies.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
| |
Collapse
|
18
|
Yang L, Webb SE, Jin N, Lee HM, Chan TF, Xu G, Chan JC, Miller AL, Ma RC. Investigating the role of dachshund b in the development of the pancreatic islet in zebrafish. J Diabetes Investig 2021; 12:710-727. [PMID: 33449448 PMCID: PMC8089008 DOI: 10.1111/jdi.13503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/29/2022] Open
Abstract
Aims/Introduction β‐Cell dysfunction is a hallmark of type 2 diabetes. In a previous pilot study, we identified an association between genetic variants within the human DACH1 gene and young‐onset type 2 diabetes. Here, we characterized the function of dachb, the only dach homologue to be expressed in the pancreas, in developing zebrafish embryos. Materials and Methods We injected one‐cell stage embryos with a dachb‐morpholino (MO) or with the dachb‐MO and dachb messenger ribonucleic acid, and determined the effect on the development of the pancreatic islet. We also carried out quantitative polymerase chain reaction and ribonucleic acid sequencing on the dachb‐MO group to determine the effect of dachb knockdown on gene expression. Results MO‐mediated dachb knockdown resulted in impaired islet cell development, with a significant decrease in both the β‐cell and islet cell numbers. This islet developmental defect was rescued when embryos were co‐injected with dachb‐MO and dachb messenger ribonucleic acid. Knockdown of dachb was associated with a significant downregulation of the β‐cell specific marker gene, insa, and the somatostatin cell marker, sst2, as well as regulators of pancreas development, ptf1a, neuroD, pax6a and nkx6.1, and the cell cycle gene, insm1a. Furthermore, ribonucleic sequencing analysis showed an upregulation of genes enriched in the forkhead box O and mitogen‐activated protein kinase signaling pathways in the dachb‐MO group, when compared with the control groups. Conclusions Together, our results suggest the possible role of dachb in islet development in zebrafish.
Collapse
Affiliation(s)
- Lingling Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Nana Jin
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Teaching and Research Division, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Ronald Cw Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
19
|
Helman A, Melton DA. A Stem Cell Approach to Cure Type 1 Diabetes. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a035741. [PMID: 32122884 PMCID: PMC7778150 DOI: 10.1101/cshperspect.a035741] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Treatment of type 1 diabetes with insulin injection is expensive, complicated, and insufficient. While cadaveric islet transplantations coupled with immunosuppressants can cure diabetes, the scarcity of acceptable islets is problematic. Developmental research on pancreas formation has informed in vitro differentiation of human pluripotent stem cells into functional islets. Although generating β cells from stem cells offers a potential cure for type 1 diabetes, several challenges remain, including protecting the cells from the immune system.
Collapse
|
20
|
Demirbilek H, Cayir A, Flanagan SE, Yıldırım R, Kor Y, Gurbuz F, Haliloğlu B, Yıldız M, Baran RT, Akbas ED, Demiral M, Ünal E, Arslan G, Vuralli D, Buyukyilmaz G, Al-Khawaga S, Saeed A, Al Maadheed M, Khalifa A, Onal H, Yuksel B, Ozbek MN, Bereket A, Hattersley AT, Hussain K, De Franco E. Clinical Characteristics and Long-term Follow-up of Patients with Diabetes Due To PTF1A Enhancer Mutations. J Clin Endocrinol Metab 2020; 105:5902291. [PMID: 32893856 PMCID: PMC7526731 DOI: 10.1210/clinem/dgaa613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Biallelic mutations in the PTF1A enhancer are the commonest cause of isolated pancreatic agenesis. These patients do not have severe neurological features associated with loss-of-function PTF1A mutations. Their clinical phenotype and disease progression have not been well characterized. OBJECTIVE To evaluate phenotype and genotype characteristics and long-term follow-up of patients with PTF1A enhancer mutations. SETTING Twelve tertiary pediatric endocrine referral centers. PATIENTS Thirty patients with diabetes caused by PTF1A enhancer mutations. Median follow-up duration was 4 years. MAIN OUTCOME MEASURES Presenting and follow-up clinical (birthweight, gestational age, symptoms, auxology) and biochemical (pancreatic endocrine and exocrine functions, liver function, glycated hemoglobin) characteristics, pancreas imaging, and genetic analysis. RESULTS Five different homozygous mutations affecting conserved nucleotides in the PTF1A distal enhancer were identified. The commonest was the Chr10:g.23508437A>G mutation (n = 18). Two patients were homozygous for the novel Chr10:g.23508336A>G mutation. Birthweight was often low (median SDS = -3.4). The majority of patients presented with diabetes soon after birth (median age of diagnosis: 5 days). Only 2/30 presented after 6 months of age. All patients had exocrine pancreatic insufficiency. Five had developmental delay (4 mild) on long-term follow-up. Previously undescribed common features in our cohort were transiently elevated ferritin level (n = 12/12 tested), anemia (19/25), and cholestasis (14/24). Postnatal growth was impaired (median height SDS: -2.35, median BMI SDS: -0.52 SDS) with 20/29 (69%) cases having growth retardation. CONCLUSION We report the largest series of patients with diabetes caused by PTF1A enhancer mutations. Our results expand the disease phenotype, identifying recurrent extrapancreatic features which likely reflect long-term intestinal malabsorption.
Collapse
Affiliation(s)
- Huseyin Demirbilek
- Hacettepe University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
- Diyarbakır Children’s Hospital, Clinics of Pediatric Endocrinology, Diyarbakir, Turkey
- Correspondence and Reprint Requests: Huseyin Demirbilek, MD, Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, 06130; Ankara, Turkey. E-mail:
| | - Atilla Cayir
- Erzurum Training and Research Hospital, Clinics of Pediatric Endocrinology, Erzurum, Turkey
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Ruken Yıldırım
- Diyarbakır Children’s Hospital, Clinics of Pediatric Endocrinology, Diyarbakir, Turkey
| | - Yılmaz Kor
- Adana Training and Research Hospital, Clinics of Pediatric Endocrinology, Adana, Turkey
| | - Fatih Gurbuz
- Cukurova University Faculty of Medicine, Department of Pediatric Endocrinology, Adana, Turkey
| | - Belma Haliloğlu
- Diyarbakır Children’s Hospital, Clinics of Pediatric Endocrinology, Diyarbakir, Turkey
- Yeditepe University School of Medicine, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Melek Yıldız
- Kanuni Sultan Suleyman Training and Research Hospital, Clinics of Pediatric Endocrinology, Istanbul, Turkey
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Rıza Taner Baran
- Diyarbakır Children’s Hospital, Clinics of Pediatric Endocrinology, Diyarbakir, Turkey
| | - Emine Demet Akbas
- Adana Training and Research Hospital, Clinics of Pediatric Endocrinology, Adana, Turkey
| | - Meliha Demiral
- Gazi Yasargil Training and Research Hospital, Pediatric Endocrinology, Diyarbakır, Turkey
| | - Edip Ünal
- Gazi Yasargil Training and Research Hospital, Pediatric Endocrinology, Diyarbakır, Turkey
| | - Gulcin Arslan
- University of Health Science, Behcet Uz Training and Research Hospital, Department of Pediatric Endocrinology, Izmir, Turkey
| | - Dogus Vuralli
- Hacettepe University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Gonul Buyukyilmaz
- Ankara City Hospital, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Sara Al-Khawaga
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Amira Saeed
- Department of Pediatrics, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Maryam Al Maadheed
- Department of Pediatrics, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Amel Khalifa
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hasan Onal
- Cukurova University Faculty of Medicine, Department of Pediatric Endocrinology, Adana, Turkey
| | - Bilgin Yuksel
- Cukurova University Faculty of Medicine, Department of Pediatric Endocrinology, Adana, Turkey
| | - Mehmet Nuri Ozbek
- Diyarbakır Children’s Hospital, Clinics of Pediatric Endocrinology, Diyarbakir, Turkey
- Gazi Yasargil Training and Research Hospital, Pediatric Endocrinology, Diyarbakır, Turkey
| | - Abdullah Bereket
- Maramara University Faculty of Medicine, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Khalid Hussain
- Department of Pediatrics, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
21
|
Mona B, Villarreal J, Savage TK, Kollipara RK, Boisvert BE, Johnson JE. Positive autofeedback regulation of Ptf1a transcription generates the levels of PTF1A required to generate itch circuit neurons. Genes Dev 2020; 34:621-636. [PMID: 32241803 PMCID: PMC7197352 DOI: 10.1101/gad.332577.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/13/2020] [Indexed: 11/24/2022]
Abstract
In this study, Mona et al. set out to investigate the role of Ptf1a in specifying a subset of dorsal spinal cord inhibitory neurons in mice in vivo. The authors used CRISPR to target multiple noncoding sequences with putative cis-regulatory activity controlling Ptf1a and demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the levels of PTF1A necessary for generating correctly balanced neuronal circuits. Peripheral somatosensory input is modulated in the dorsal spinal cord by a network of excitatory and inhibitory interneurons. PTF1A is a transcription factor essential in dorsal neural tube progenitors for specification of these inhibitory neurons. Thus, mechanisms regulating Ptf1a expression are key for generating neuronal circuits underlying somatosensory behaviors. Mutations targeted to distinct cis-regulatory elements for Ptf1a in mice, tested the in vivo contribution of each element individually and in combination. Mutations in an autoregulatory enhancer resulted in reduced levels of PTF1A, and reduced numbers of specific dorsal spinal cord inhibitory neurons, particularly those expressing Pdyn and Gal. Although these mutants survive postnatally, at ∼3–5 wk they elicit a severe scratching phenotype. Behaviorally, the mutants have increased sensitivity to itch, but acute sensitivity to other sensory stimuli such as mechanical or thermal pain is unaffected. We demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the level of the neuronal specification factor PTF1A necessary for generating correctly balanced neuronal circuits.
Collapse
Affiliation(s)
- Bishakha Mona
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Juan Villarreal
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Trisha K Savage
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brooke E Boisvert
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
22
|
Yip L, Fuhlbrigge R, Alkhataybeh R, Fathman CG. Gene Expression Analysis of the Pre-Diabetic Pancreas to Identify Pathogenic Mechanisms and Biomarkers of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:609271. [PMID: 33424774 PMCID: PMC7793767 DOI: 10.3389/fendo.2020.609271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 Diabetes (T1D) occurs as a result of the autoimmune destruction of pancreatic β-cells by self-reactive T cells. The etiology of this disease is complex and difficult to study due to a lack of disease-relevant tissues from pre-diabetic individuals. In this study, we performed gene expression analysis on human pancreas tissues obtained from the Network of Pancreatic Organ Donors with Diabetes (nPOD), and showed that 155 genes were differentially expressed by ≥2-fold in the pancreata of autoantibody-positive (AA+) at-risk individuals compared to healthy controls. Only 48 of these genes remained changed by ≥2-fold in the pancreata of established T1D patients. Pathway analysis of these genes showed a significant association with various immune pathways. We were able to validate the differential expression of eight disease-relevant genes by QPCR analysis: A significant upregulation of CADM2, and downregulation of TRPM5, CRH, PDK4, ANGPL4, CLEC4D, RSG16, and FCGR2B was confirmed in the pancreata of AA+ individuals versus controls. Studies have already implicated FCGR2B in the pathogenesis of disease in non-obese diabetic (NOD) mice. Here we showed that CADM2, TRPM5, PDK4, and ANGPL4 were similarly changed in the pancreata of pre-diabetic 12-week-old NOD mice compared to NOD.B10 controls, suggesting a possible role for these genes in the pathogenesis of both T1D and NOD disease. The loss of the leukocyte-specific gene, FCGR2B, in the pancreata of AA+ individuals, is particularly interesting, as it may serve as a potential whole blood biomarker of disease progression. To test this, we quantified FCGR2B expression in peripheral blood samples of T1D patients, and AA+ and AA- first-degree relatives of T1D patients enrolled in the TrialNet Pathway to Prevention study. We showed that FCGR2B was significantly reduced in the peripheral blood of AA+ individuals compared to AA- controls. Together, these findings demonstrate that gene expression analysis of pancreatic tissue and peripheral blood samples can be used to identify disease-relevant genes and pathways and potential biomarkers of disease progression in T1D.
Collapse
|
23
|
Lv YQ, Wu J, Li XK, Zhang JS, Bellusci S. Role of FGF10/FGFR2b Signaling in Mouse Digestive Tract Development, Repair and Regeneration Following Injury. Front Cell Dev Biol 2019; 7:326. [PMID: 31921841 PMCID: PMC6914673 DOI: 10.3389/fcell.2019.00326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
During embryonic development, the rudimentary digestive tract is initially a tube-like structure. It is composed of epithelial cells surrounded by mesenchymal cells. Reciprocal epithelial–mesenchymal interactions progressively subdivide this primitive tube into distinct functional regions: the tongue, the pharynx, the esophagus, the stomach, the duodenum, the small intestine, the cecum, the large intestine, the colon, and the anus as well as the pancreas and the liver. Fibroblast growth factors (Fgfs) constitute a family of conserved small proteins playing crucial roles during organogenesis, homeostasis, and repair after injury. Among them, fibroblast growth factor 10 (Fgf10) has been reported to orchestrate epithelial–mesenchymal interactions during digestive tract development. In mice, loss of function of Fgf10 as well as its receptor fibroblast growth factor receptor 2b (Fgfr2b) lead to defective taste papillae in the tongue, underdeveloped and defective differentiation of the stomach, duodenal, cecal, and colonic atresias, anorectal malformation, as well as underdeveloped pancreas and liver. Fgf signaling through Fgfr2b receptor is also critical for the repair process after gut injury. In the adult mice, a malabsorption disorder called small bowel syndrome is triggered after massive small bowel resection (SBR). In wild-type mice, SBR leads to a regenerative process called gut adaptation characterized by an increase in the diameter of the remaining small intestine as well as by the presence of deeper crypts and longer villi, altogether leading to increased intestinal surface. Intestinal stem cells are key for this regeneration process. Induction of Fgf10 expression in the Paneth cells located in the crypt following SBR suggests a critical role for this growth factor in the process of gut adaptation.
Collapse
Affiliation(s)
- Yu-Qing Lv
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiao-Kun Li
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin-San Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China.,Department of Internal Medicine II, Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
24
|
Villani V, Thornton ME, Zook HN, Crook CJ, Grubbs BH, Orlando G, De Filippo R, Ku HT, Perin L. SOX9+/PTF1A+ Cells Define the Tip Progenitor Cells of the Human Fetal Pancreas of the Second Trimester. Stem Cells Transl Med 2019; 8:1249-1264. [PMID: 31631582 PMCID: PMC6877773 DOI: 10.1002/sctm.19-0231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Significant progress has been made in recent years in characterizing human multipotent progenitor cells (hMPCs) of the early pancreas; however, the identity and persistence of these cells during the second trimester, after the initiation of branching morphogenesis, remain elusive. Additionally, studies on hMPCs have been hindered by few isolation methods that allow for the recovery of live cells. Here, we investigated the tip progenitor domain in the branched epithelium of human fetal pancreas between 13.5 and 17.5 gestational weeks by immunohistological staining. We also used a novel RNA-based technology to isolate live cells followed by gene expression analyses. We identified cells co-expressing SOX9 and PTF1A, two transcription factors known to be important for pancreatic MPCs, within the tips of the epithelium and observed a decrease in their proportions over time. Pancreatic SOX9+/PTF1A+ cells were enriched for MPC markers, including MYC and GATA6. These cells were proliferative and appeared active in branching morphogenesis and matrix remodeling, as evidenced by gene set enrichment analysis. We identified a hub of genes pertaining to the expanding tip progenitor niche, such as FOXF1, GLI3, TBX3, FGFR1, TGFBR2, ITGAV, ITGA2, and ITGB3. YAP1 of the Hippo pathway emerged as a highly enriched component within the SOX9+/PTF1A+ cells. Single-cell RNA-sequencing further corroborated the findings by identifying a cluster of SOX9+/PTF1A+ cells with multipotent characteristics. Based on these results, we propose that the SOX9+/PTF1A+ cells in the human pancreas are uncommitted MPC-like cells that reside at the tips of the expanding pancreatic epithelium, directing self-renewal and inducing pancreatic organogenesis. Stem Cells Translational Medicine 2019;8:1249&1264.
Collapse
Affiliation(s)
- Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Matthew E. Thornton
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Heather N. Zook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Christiana J. Crook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Brendan H. Grubbs
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Giuseppe Orlando
- Department of SurgeryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Roger De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
25
|
Abstract
A comprehensive understanding of mechanisms that underlie the development and function of human cells requires human cell models. For the pancreatic lineage, protocols have been developed to differentiate human pluripotent stem cells (hPSCs) into pancreatic endocrine and exocrine cells through intermediates resembling in vivo development. In recent years, this differentiation system has been employed to decipher mechanisms of pancreatic development, congenital defects of the pancreas, as well as genetic forms of diabetes and exocrine diseases. In this review, we summarize recent insights gained from studies of pancreatic hPSC models. We discuss how genome-scale analyses of the differentiation system have helped elucidate roles of chromatin state, transcription factors, and noncoding RNAs in pancreatic development and how the analysis of cells with disease-relevant mutations has provided insight into the molecular underpinnings of genetically determined diseases of the pancreas.
Collapse
Affiliation(s)
- Bjoern Gaertner
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Andrea C Carrano
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
26
|
Chen C, Shiota C, Agostinelli G, Ridley D, Jiang Y, Ma J, Prasadan K, Xiao X, Gittes GK. Evidence of a developmental origin for β-cell heterogeneity using a dual lineage-tracing technology. Development 2019; 146:dev164913. [PMID: 31160417 PMCID: PMC6633602 DOI: 10.1242/dev.164913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2019] [Indexed: 12/24/2022]
Abstract
The Cre/loxP system has been used extensively in mouse models with a limitation of one lineage at a time. Differences in function and other properties among populations of adult β-cells is termed β-cell heterogeneity, which was recently associated with diabetic phenotypes. Nevertheless, the presence of a developmentally derived β-cell heterogeneity is unclear. Here, we have developed a novel dual lineage-tracing technology, using a combination of two recombinase systems, Dre/RoxP and Cre/LoxP, to independently trace green fluorescent Pdx1-lineage cells and red fluorescent Ptf1a-lineage cells in the developing and adult mouse pancreas. We detected a few Pdx1+/Ptf1a- lineage cells in addition to the vast majority of Pdx1+/Ptf1a+ lineage cells in the pancreas. Moreover, Pdx1+/Ptf1a+ lineage β-cells had fewer Ki-67+ proliferating β-cells, and expressed higher mRNA levels of insulin, Glut2, Pdx1, MafA and Nkx6.1, but lower CCND1 and CDK4 levels, compared with Pdx1+/Ptf1a- lineage β-cells. Furthermore, more TSQ-high, SSC-high cells were detected in the Pdx1+Ptf1a+ lineage population than in the Pdx1+Ptf1a- lineage population. Together, these data suggest that differential activation of Ptf1a in the developing pancreas may correlate with this β-cell heterogeneity.
Collapse
Affiliation(s)
- Congde Chen
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Chiyo Shiota
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Guy Agostinelli
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Daniel Ridley
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jie Ma
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
27
|
Ikuta K, Fukuda A, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Tsuda M, Kimura Y, Matsumoto Y, Kimura Y, Maruno T, Kanda K, Nishi K, Takaori K, Uemoto S, Takaishi S, Chiba T, Nishi E, Seno H. Nardilysin inhibits pancreatitis and suppresses pancreatic ductal adenocarcinoma initiation in mice. Gut 2019; 68:882-892. [PMID: 29798841 DOI: 10.1136/gutjnl-2017-315425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Nardilysin (NRDC), a zinc peptidase, exhibits multiple localisation-dependent functions including as an enhancer of ectodomain shedding in the extracellular space and a transcriptional coregulator in the nucleus. In this study, we investigated its functional role in exocrine pancreatic development, homeostasis and the formation of pancreatic ductal adenocarcinoma (PDA). DESIGN We analysed Ptf1a-Cre; Nrdcflox/flox mice to investigate the impact of Nrdc deletion. Pancreatic acinar cells were isolated from Nrdcflox/flox mice and infected with adenovirus expressing Cre recombinase to examine the impact of Nrdc inactivation. Global gene expression in Nrdc-cKO pancreas was analysed compared with wild-type pancreas by microarray analysis. We also analysed Ptf1a-Cre; KrasG12D; Nrdcflox/flox mice to investigate the impact of Nrdc deletion in the context of oncogenic Kras. A total of 51 human samples of pancreatic intraepithelial lesions (PanIN) and PDA were examined by immunohistochemistry for NRDC. RESULTS We found that pancreatic deletion of Nrdc leads to spontaneous chronic pancreatitis concomitant with acinar-to-ductal conversion, increased apoptosis and atrophic pancreas in mice. Acinar-to-ductal conversion was observed mainly through a non-cell autonomous mechanism, and the expression of several chemokines was significantly increased in Nrdc-null pancreatic acinar cells. Furthermore, pancreatic deletion of Nrdc dramatically accelerated KrasG12D -driven PanIN and subsequent PDA formation in mice. These data demonstrate a previously unappreciated anti-inflammatory and tumour suppressive functions of Nrdc in the pancreas in mice. Finally, absence of NRDC expression was observed in a subset of human PanIN and PDA. CONCLUSION Nrdc inhibits pancreatitis and suppresses PDA initiation in mice.
Collapse
Affiliation(s)
- Kozo Ikuta
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Masuo
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Kimura
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihide Matsumoto
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuto Kimura
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keitaro Kanda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiyoto Nishi
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoichi Takaori
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeo Takaishi
- Laboratory for Malignancy Control Research (DSK project), Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Seno
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
28
|
Sakikubo M, Furuyama K, Horiguchi M, Hosokawa S, Aoyama Y, Tsuboi K, Goto T, Hirata K, Masui T, Dor Y, Fujiyama T, Hoshino M, Uemoto S, Kawaguchi Y. Ptf1a inactivation in adult pancreatic acinar cells causes apoptosis through activation of the endoplasmic reticulum stress pathway. Sci Rep 2018; 8:15812. [PMID: 30361559 PMCID: PMC6202406 DOI: 10.1038/s41598-018-34093-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreas transcription factor 1 subunit alpha (PTF1A) is one of the key regulators in pancreatogenesis. In adults, it transcribes digestive enzymes, but its other functions remain largely unknown. Recent conditional knockout studies using Ptf1aCreER/floxed heterozygous mouse models have found PTF1A contributes to the identity maintenance of acinar cells and prevents tumorigenesis caused by the oncogenic gene Kras. However, Ptf1a heterozygote is known to behave differently from homozygote. To elucidate the effects of Ptf1a homozygous loss, we prepared Elastase-CreERTM; Ptf1afloxed/floxed mice and found that homozygous Ptf1a deletion in adult acinar cells causes severe apoptosis. Electron microscopy revealed endoplasmic reticulum (ER) stress, a known cause of unfolded protein responses (UPR). We confirmed that UPR was upregulated by the activating transcription factor 6 (ATF6) and protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) pathways, but not the inositol requiring enzyme 1 (IRE1) pathway. Furthermore, we detected the expression of CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP), a pro-apoptotic factor, indicating the apoptosis was induced through UPR. Our homozygous model helps clarify the role PTF1A has on the homeostasis and pathogenesis of exocrine pancreas in mice.
Collapse
Affiliation(s)
- Morito Sakikubo
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Kenichiro Furuyama
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Masashi Horiguchi
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Shinichi Hosokawa
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Yoshiki Aoyama
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Kunihiko Tsuboi
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Toshihiko Goto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Koji Hirata
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Toshihiko Masui
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tomoyuki Fujiyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiya Kawaguchi
- Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan.
| |
Collapse
|
29
|
Tsuda M, Fukuda A, Roy N, Hiramatsu Y, Leonhardt L, Kakiuchi N, Hoyer K, Ogawa S, Goto N, Ikuta K, Kimura Y, Matsumoto Y, Takada Y, Yoshioka T, Maruno T, Yamaga Y, Kim GE, Akiyama H, Ogawa S, Wright CV, Saur D, Takaori K, Uemoto S, Hebrok M, Chiba T, Seno H. The BRG1/SOX9 axis is critical for acinar cell-derived pancreatic tumorigenesis. J Clin Invest 2018; 128:3475-3489. [PMID: 30010625 PMCID: PMC6063489 DOI: 10.1172/jci94287] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Chromatin remodeler Brahma related gene 1 (BRG1) is silenced in approximately 10% of human pancreatic ductal adenocarcinomas (PDAs). We previously showed that BRG1 inhibits the formation of intraductal pancreatic mucinous neoplasm (IPMN) and that IPMN-derived PDA originated from ductal cells. However, the role of BRG1 in pancreatic intraepithelial neoplasia-derived (PanIN-derived) PDA that originated from acinar cells remains elusive. Here, we found that exclusive elimination of Brg1 in acinar cells of Ptf1a-CreER; KrasG12D; Brg1fl/fl mice impaired the formation of acinar-to-ductal metaplasia (ADM) and PanIN independently of p53 mutation, while PDA formation was inhibited in the presence of p53 mutation. BRG1 bound to regions of the Sox9 promoter to regulate its expression and was critical for recruitment of upstream regulators, including PDX1, to the Sox9 promoter and enhancer in acinar cells. SOX9 expression was downregulated in BRG1-depleted ADMs/PanINs. Notably, Sox9 overexpression canceled this PanIN-attenuated phenotype in KBC mice. Furthermore, Brg1 deletion in established PanIN by using a dual recombinase system resulted in regression of the lesions in mice. Finally, BRG1 expression correlated with SOX9 expression in human PDAs. In summary, BRG1 is critical for PanIN initiation and progression through positive regulation of SOX9. Thus, the BRG1/SOX9 axis is a potential target for PanIN-derived PDA.
Collapse
Affiliation(s)
- Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nilotpal Roy
- Diabetes Center, Department of Medicine, UCSF, San Francisco, California, USA
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Laura Leonhardt
- Diabetes Center, Department of Medicine, UCSF, San Francisco, California, USA
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaja Hoyer
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Hematology, Oncology and Tumorimmunology, Charite–Universitätsmedizin Berlin, Berlin, Germany
| | - Satoshi Ogawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kozo Ikuta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Kimura
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihide Matsumoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Takada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuichi Yamaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Grace E. Kim
- Department of Pathology, UCSF, San Francisco, California, USA
| | | | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Christopher V. Wright
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kyoichi Takaori
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, UCSF, San Francisco, California, USA
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Kansai Electric Power Hospital, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Evliyaoğlu O, Ercan O, Ataloğlu E, Zübarioğlu Ü, Özcabı B, Dağdeviren A, Erdoğan H, De Franco E, Ellard S. Neonatal Diabetes: Two Cases with Isolated Pancreas Agenesis due to Homozygous PTF1A Enhancer Mutations and One with Developmental Delay, Epilepsy, and Neonatal Diabetes Syndrome due to KCNJ11 Mutation. J Clin Res Pediatr Endocrinol 2018; 10:168-174. [PMID: 28943513 PMCID: PMC5985387 DOI: 10.4274/jcrpe.5162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/23/2017] [Indexed: 12/01/2022] Open
Abstract
Neonatal diabetes mellitus is a rare form of monogenic diabetes which is diagnosed in the first six months of life. Here we report three patients with neonatal diabetes; two with isolated pancreas agenesis due to mutations in the pancreas-specific transcription factor 1A (PTF1A) enhancer and one with developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome, due to a KCNJ11 mutation. The two cases with mutations in the distal enhancer of PTF1A had a homozygous g.23508363A>G and a homozygous g.23508437A>G mutation respectively. Previous functional analyses showed that these mutations can decrease expression of PTF1A which is involved in pancreas development. Both patients were born small for gestational age to consanguineous parents. Both were treated with insulin and pancreatic enzymes. One of these patients’ fathers was also homozygous for the PTF1A mutation, whilst his partner and the parents of the other patient were heterozygous carriers. In the case with DEND sydrome, a previosly reported heterozygous KCNJ11 mutation, p.Cys166Tyr (c.497G>A), was identified. This patient was born to nonconsanguineous parents with normal birth weight. The majority of neonatal diabetes patients with KCNJ11 mutations will respond to sulphonylurea treatment. Therefore Glibenclamide, an oral antidiabetic of the sulphonylurea group, was started. This treatment regimen relatively improved blood glucose levels and neurological symptoms in the short term. Because we could not follow the patient in the long term, we are not able to draw conclusions about the efficacy of the treatment. Although neonatal diabetes mellitus can be diagnosed clinically, genetic analysis is important since it is a guide for the treatment and for prognosis.
Collapse
Affiliation(s)
- Olcay Evliyaoğlu
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Oya Ercan
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Emel Ataloğlu
- University of Health Science, Haseki Training and Research Hospital, Newborn Intensive Unit, İstanbul, Turkey
| | - Ümit Zübarioğlu
- Şişli Hamidiye Etfal Training and Research Hospital, Newborn Intensive Unit, İstanbul, Turkey
| | - Bahar Özcabı
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Aydilek Dağdeviren
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Hande Erdoğan
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Elisa De Franco
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| | - Sian Ellard
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| |
Collapse
|
31
|
Norlin S, Parekh V, Edlund H. The ATPase activity of Asna1/TRC40 is required for pancreatic progenitor cell survival. Development 2018; 145:dev.154468. [PMID: 29180572 PMCID: PMC5825870 DOI: 10.1242/dev.154468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Asna1, also known as TRC40, is implicated in the delivery of tail-anchored (TA) proteins into the endoplasmic reticulum (ER), in vesicle-mediated transport, and in chaperoning unfolded proteins during oxidative stress/ATP depletion. Here, we show that Asna1 inactivation in pancreatic progenitor cells leads to redistribution of the Golgi TA SNARE proteins syntaxin 5 and syntaxin 6, Golgi fragmentation, and accumulation of cytosolic p62+ puncta. Asna1−/− multipotent progenitor cells (MPCs) selectively activate integrated stress response signaling and undergo apoptosis, thereby disrupting endocrine and acinar cell differentiation, resulting in pancreatic agenesis. Rescue experiments implicate the Asna1 ATPase activity and a CXXC di-cysteine motif in ensuring Golgi integrity, syntaxin 5 localization and MPC survival. Ex vivo inhibition of retrograde transport reproduces the perturbed Golgi morphology, and syntaxin 5 and syntaxin 6 expression, whereas modulation of p53 activity, using PFT-α and Nutlin-3, prevents or reproduces apoptosis in Asna1-deficient and wild-type MPCs, respectively. These findings support a role for the Asna1 ATPase activity in ensuring the survival of pancreatic MPCs, possibly by counteracting p53-mediated apoptosis. Summary: Conditional inactivation of Asna1/TRC40 in pancreatic progenitor cells results in pancreatic agenesis resulting from pancreatic progenitor cell apoptosis, thus revealing a crucial role for Asna1/TRC40 in pancreatic progenitor cell survival.
Collapse
Affiliation(s)
- Stefan Norlin
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Vishal Parekh
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
32
|
Ndlovu R, Deng LC, Wu J, Li XK, Zhang JS. Fibroblast Growth Factor 10 in Pancreas Development and Pancreatic Cancer. Front Genet 2018; 9:482. [PMID: 30425728 PMCID: PMC6219204 DOI: 10.3389/fgene.2018.00482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
The tenacious prevalence of human pancreatic diseases such as diabetes mellitus and adenocarcinoma has prompted huge research interest in better understanding of pancreatic organogenesis. The plethora of signaling pathways involved in pancreas development is activated in a highly coordinated manner to assure unmitigated development and morphogenesis in vertebrates. Therefore, a complex mesenchymal-epithelial signaling network has been implicated to play a pivotal role in organogenesis through its interactions with other germ layers, specifically the endoderm. The Fibroblast Growth Factor Receptor FGFR2-IIIb splicing isoform (FGFR2b) and its high affinity ligand Fibroblast Growth Factor 10 (FGF10) are expressed in the epithelium and mesenchyme, respectively, and therefore are well positioned to transmit mesenchymal to epithelial signaling. FGF10 is a typical paracrine FGF and chiefly mediates biological responses by activating FGFR2b with heparin/heparan sulfate (HS) as cofactor. A substantial number of studies using genetically engineered mouse models have demonstrated an essential role of FGF10 in the development of many organs and tissues including the pancreas. During mouse embryonic development, FGF10 signaling is crucial for epithelial cell proliferation, maintenance of progenitor cell fate and branching morphogenesis in the pancreas. FGF10 is also implicated in pancreatic cancer, and that overexpression of FGFR2b is associated with metastatic invasion. A thorough understanding of FGF10 signaling machinery and its crosstalk with other pathways in development and pathological states may provide novel opportunities for pancreatic cancer targeted therapy and regenerative medicine.
Collapse
Affiliation(s)
- Rodrick Ndlovu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lian-Cheng Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiao-Kun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| | - Jin-San Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Centre for Precision Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| |
Collapse
|
33
|
Candidate Gene Identification of Feed Efficiency and Coat Color Traits in a C57BL/6J × Kunming F2 Mice Population Using Genome-Wide Association Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7132941. [PMID: 28828387 PMCID: PMC5554547 DOI: 10.1155/2017/7132941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022]
Abstract
Feed efficiency (FE) is a very important trait in livestock industry. Identification of the candidate genes could be of benefit for the improvement of FE trait. Mouse is used as the model for many studies in mammals. In this study, the candidate genes related to FE and coat color were identified using C57BL/6J (C57) × Kunming (KM) F2 mouse population. GWAS results showed that 61 and 2 SNPs were genome-wise suggestive significantly associated with feed conversion ratio (FCR) and feed intake (FI) traits, respectively. Moreover, the Erbin, Msrb2, Ptf1a, and Fgf10 were considered as the candidate genes of FE. The Lpl was considered as the candidate gene of FI. Further, the coat color trait was studied. KM mice are white and C57 ones are black. The GWAS results showed that the most significant SNP was located at chromosome 7, and the closely linked gene was Tyr. Therefore, our study offered useful target genes related to FE in mice; these genes may play similar roles in FE of livestock. Also, we identified the major gene of coat color in mice, which would be useful for better understanding of natural mutation of the coat color in mice.
Collapse
|
34
|
Prasadan K, Shiota C, Xiangwei X, Ricks D, Fusco J, Gittes G. A synopsis of factors regulating beta cell development and beta cell mass. Cell Mol Life Sci 2016; 73:3623-37. [PMID: 27105622 PMCID: PMC5002366 DOI: 10.1007/s00018-016-2231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/29/2022]
Abstract
The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells; however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation.
Collapse
Affiliation(s)
- Krishna Prasadan
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Chiyo Shiota
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Xiao Xiangwei
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - David Ricks
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - George Gittes
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
35
|
Houghton JAL, Swift GH, Shaw-Smith C, Flanagan SE, de Franco E, Caswell R, Hussain K, Mohamed S, Abdulrasoul M, Hattersley AT, MacDonald RJ, Ellard S. Isolated Pancreatic Aplasia Due to a Hypomorphic PTF1A Mutation. Diabetes 2016; 65:2810-5. [PMID: 27284104 PMCID: PMC5001172 DOI: 10.2337/db15-1666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Homozygous truncating mutations in the helix-loop-helix transcription factor PTF1A are a rare cause of pancreatic and cerebellar agenesis. The correlation of Ptf1a dosage with pancreatic phenotype in a mouse model suggested the possibility of finding hypomorphic PTF1A mutations in patients with pancreatic agenesis or neonatal diabetes but no cerebellar phenotype. Genome-wide single nucleotide polymorphism typing in two siblings with neonatal diabetes from a consanguineous pedigree revealed a large shared homozygous region (31 Mb) spanning PTF1A Sanger sequencing of PTF1A identified a novel missense mutation, p.P191T. Testing of 259 additional patients using a targeted next-generation sequencing assay for 23 neonatal diabetes genes detected one additional proband and an affected sibling with the same homozygous mutation. All four patients were diagnosed with diabetes at birth and were treated with insulin. Two of the four patients had exocrine pancreatic insufficiency requiring replacement therapy but none of the affected individuals had neurodevelopmental delay. Transient transfection assays of the mutant protein demonstrated a 75% reduction in transactivation activity. This study shows that the functional severity of a homozygous mutation impacts the severity of clinical features found in patients.
Collapse
Affiliation(s)
- Jayne A L Houghton
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Galvin H Swift
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Charles Shaw-Smith
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sarah E Flanagan
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Elisa de Franco
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Richard Caswell
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Khalid Hussain
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, U.K
| | - Sarar Mohamed
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Majedah Abdulrasoul
- Department of Paediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Andrew T Hattersley
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K.
| | - Raymond J MacDonald
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Sian Ellard
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
36
|
Diabetes Caused by Elastase-Cre-Mediated Pdx1 Inactivation in Mice. Sci Rep 2016; 6:21211. [PMID: 26887806 PMCID: PMC4758062 DOI: 10.1038/srep21211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Endocrine and exocrine pancreas tissues are both derived from the posterior foregut endoderm, however, the interdependence of these two cell types during their formation is not well understood. In this study, we generated mutant mice, in which the exocrine tissue is hypoplastic, in order to reveal a possible requirement for exocrine pancreas tissue in endocrine development and/or function. Since previous studies showed an indispensable role for Pdx1 in pancreas organogenesis, we used Elastase-Cre-mediated recombination to inactivate Pdx1 in the pancreatic exocrine lineage during embryonic stages. Along with exocrine defects, including impaired acinar cell maturation, the mutant mice exhibited substantial endocrine defects, including disturbed tip/trunk patterning of the developing ductal structure, a reduced number of Ngn3-expressing endocrine precursors, and ultimately fewer β cells. Notably, postnatal expansion of the endocrine cell content was extremely poor, and the mutant mice exhibited impaired glucose homeostasis. These findings suggest the existence of an unknown but essential factor(s) in the adjacent exocrine tissue that regulates proper formation of endocrine precursors and the expansion and function of endocrine tissues during embryonic and postnatal stages.
Collapse
|
37
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
38
|
Li XY, Zhai WJ, Teng CB. Notch Signaling in Pancreatic Development. Int J Mol Sci 2015; 17:ijms17010048. [PMID: 26729103 PMCID: PMC4730293 DOI: 10.3390/ijms17010048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways.
Collapse
Affiliation(s)
- Xu-Yan Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Wen-Jun Zhai
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
39
|
Wang YJ, Park JT, Parsons MJ, Leach SD. Fate mapping of ptf1a-expressing cells during pancreatic organogenesis and regeneration in zebrafish. Dev Dyn 2015; 244:724-35. [PMID: 25773748 DOI: 10.1002/dvdy.24271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/22/2015] [Accepted: 03/01/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Pancreas development in zebrafish shares many features with mammals, including the participation of epithelial progenitor cells expressing pancreas transcription factor 1a (ptf1a). However, to date it has remained unclear whether, as in mammals, ptf1a-expressing zebrafish pancreatic progenitors are able to contribute to multiple exocrine and endocrine lineages. To delineate the lineage potential of ptf1a-expressing cells, we generated ptf1a:creER(T2) transgenic fish and performed genetic-inducible lineage tracing in developmental, regenerating, and ptf1a-deficient zebrafish pancreas. RESULTS In addition to their contribution to the acinar cell lineage, ptf1a-expressing cells give rise to both pancreatic Notch-responsive-cells (PNCs) as well as small numbers of endocrine cells during pancreatic development. In fish with ptf1a haploinsufficiency, a higher proportion of ptf1a lineage-labeled cells are traced into the PNC and endocrine compartments. Further reduction of ptf1a gene dosage converts pancreatic progenitor cells to gall bladder and other non-pancreatic cell fates. CONCLUSIONS Our results confirm the presence of multipotent ptf1a-expressing progenitor cells in developing zebrafish pancreas, with reduced ptf1a dosage promoting greater contributions towards non-acinar lineages. As in mammals, loss of ptf1a results in conversion of nascent pancreatic progenitor cells to non-pancreatic cell fates, underscoring the central role of ptf1a in foregut tissue specification.
Collapse
Affiliation(s)
- Yue J Wang
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joon T Park
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael J Parsons
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven D Leach
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Impact of Sox9 dosage and Hes1-mediated Notch signaling in controlling the plasticity of adult pancreatic duct cells in mice. Sci Rep 2015; 5:8518. [PMID: 25687338 PMCID: PMC4330537 DOI: 10.1038/srep08518] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/22/2015] [Indexed: 12/23/2022] Open
Abstract
In the adult pancreas, there has been a long-standing dispute as to whether stem/precursor populations that retain plasticity to differentiate into endocrine or acinar cell types exist in ducts. We previously reported that adult Sox9-expressing duct cells are sufficiently plastic to supply new acinar cells in Sox9-IRES-CreERT2 knock-in mice. In the present study, using Sox9-IRES-CreERT2 knock-in mice as a model, we aimed to analyze how plasticity is controlled in adult ducts. Adult duct cells in these mice express less Sox9 than do wild-type mice but Hes1 equally. Acinar cell differentiation was accelerated by Hes1 inactivation, but suppressed by NICD induction in adult Sox9-expressing cells. Quantitative analyses showed that Sox9 expression increased with the induction of NICD but did not change with Hes1 inactivation, suggesting that Notch regulates Hes1 and Sox9 in parallel. Taken together, these findings suggest that Hes1-mediated Notch activity determines the plasticity of adult pancreatic duct cells and that there may exist a dosage requirement of Sox9 for keeping the duct cell identity in the adult pancreas. In contrast to the extended capability of acinar cell differentiation by Hes1 inactivation, we obtained no evidence of islet neogenesis from Hes1-depleted duct cells in physiological or PDL-induced injured conditions.
Collapse
|
41
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Li B, Bi CL, Lang N, Li YZ, Xu C, Zhang YQ, Zhai AX, Cheng ZF. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines. Mol Biol Rep 2014; 41:1917-25. [PMID: 24619356 DOI: 10.1007/s11033-013-3016-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/30/2013] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes is a chronic autoimmune disease in which pancreatic beta cells are killed by the infiltrating immune cells as well as the cytokines released by these cells. Many studies indicate that inflammatory mediators have an essential role in this disease. In the present study, we profiled the transcriptome in human islets of langerhans under control conditions or following exposure to the pro-inflammatory cytokines based on the RNA sequencing dataset downloaded from SRA database. After filtered the low-quality ones, the RNA readers was aligned to human genome hg19 by TopHat and then assembled by Cufflinks. The expression value of each transcript was calculated and consequently differentially expressed genes were screened out. Finally, a total of 63 differentially expressed genes were identified including 60 up-regulated and three down-regulated genes. GBP5 and CXCL9 stood out as the top two most up-regulated genes in cytokines treated samples with the log2 fold change of 12.208 and 10.901, respectively. Meanwhile, PTF1A and REG3G were identified as the top two most down-regulated genes with the log2 fold change of -3.759 and -3.606, respectively. Of note, we also found 262 lncRNAs (long non-coding RNA), 177 of which were inferred as novel lncRNAs. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on the specific function of these lncRNA.
Collapse
Affiliation(s)
- Bo Li
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Flanagan SE, De Franco E, Lango Allen H, Zerah M, Abdul-Rasoul MM, Edge JA, Stewart H, Alamiri E, Hussain K, Wallis S, de Vries L, Rubio-Cabezas O, Houghton JAL, Edghill EL, Patch AM, Ellard S, Hattersley AT. Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metab 2014; 19:146-54. [PMID: 24411943 PMCID: PMC3887257 DOI: 10.1016/j.cmet.2013.11.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 08/05/2013] [Accepted: 11/15/2013] [Indexed: 12/29/2022]
Abstract
Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development.
Collapse
Affiliation(s)
- Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Hana Lango Allen
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Michele Zerah
- Presbyterian Medical Group, Albuquerque, NM 87106, USA
| | | | - Julie A Edge
- Oxford Children's Hospital, Headington, Oxford OX3 9DU, UK
| | - Helen Stewart
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford OX3 7LE, UK
| | - Elham Alamiri
- Al Qassimi Hospital, Sharjah 3500, United Arab Emirates
| | - Khalid Hussain
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust, and The Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sam Wallis
- Neonatal Unit, Bradford Royal Infirmary, Bradford BD9 6RJ, UK
| | - Liat de Vries
- Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, PetahTikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 49202, Israel
| | - Oscar Rubio-Cabezas
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK; Department of Paediatric Endocrinology, Hospital Infantil Niño Jesús, Madrid 28009, Spain
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Emma L Edghill
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Ann-Marie Patch
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK.
| |
Collapse
|
44
|
Pashos E, Park JT, Leach S, Fisher S. Distinct enhancers of ptf1a mediate specification and expansion of ventral pancreas in zebrafish. Dev Biol 2013; 381:471-81. [PMID: 23876428 DOI: 10.1016/j.ydbio.2013.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Development of the pancreas and cerebellum require Pancreas-specific transcription factor-1a (Ptf1a), which encodes a subunit of the transcription factor complex PTF1. Ptf1a is required in succession for specification of the pancreas, proper allocation of pancreatic progenitors to endocrine and exocrine fates, and the production of digestive enzymes from the exocrine acini. In several neuronal structures, including the cerebellum, hindbrain, retina and spinal cord, Ptf1a is transiently expressed and promotes inhibitory neuron fates at the expense of excitatory fates. Transcription of Ptf1a in mouse is maintained in part by PTF1 acting on an upstream autoregulatory enhancer. However, the transcription factors and enhancers that initially activate Ptf1a expression in the pancreas and in certain structures of the nervous system have not yet been identified. Here we describe a zebrafish autoregulatory element, conserved among teleosts, with activity similar to that described in mouse. In addition, we performed a comprehensive survey of all non-coding sequences in a 67kb interval encompassing zebrafish ptf1a, and identified several neuronal enhancers, and an enhancer active in the ventral pancreas prior to activation of the autoregulatory enhancer. To test the requirement for autoregulatory control during pancreatic development, we restored ptf1a function through BAC transgenesis in ptf1a morphants, either with an intact BAC or one lacking the autoregulatory enhancer. We find that ptf1a autoregulation is required for development of the exocrine pancreas and full rescue of the ptf1a morphant phenotype. Similarly, we demonstrate that a ptf1a locus lacking the early enhancer region is also capable of rescue, but only supports formation of a hypoplastic exocrine pancreas. Through our dissection of the complex regulatory control of ptf1a, we identified separate cis-regulatory elements that underlie different aspects of its expression and function, and further demonstrated the requirement of maintained ptf1a expression for normal pancreatic morphogenesis. We also identified a novel enhancer that mediates initiation of ptf1a expression in the pancreas, through which the signals that specify the ventral pancreas are expected to exert their action.
Collapse
Affiliation(s)
- Evanthia Pashos
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia 19104, PA, United States
| | | | | | | |
Collapse
|
45
|
Abstract
Recent advances in developmental biology have greatly expanded our understanding of progenitor cell programming and the fundamental roles that Sox9 plays in liver and pancreas organogenesis. In the last 2 years, several studies have dissected the behavior of the Sox9+ duct cells in adult organs, but conflicting results have left unanswered the long-standing question of whether physiologically functioning progenitors exist in adult liver and pancreas. On the other hand, increasing evidence suggests that duct cells function as progenitors in the tissue restoration process after injury, during which embryonic programs are sometimes reactivated. This article discusses the role of Sox9 in programming liver and pancreatic progenitors as well as controversies in the field.
Collapse
Affiliation(s)
- Yoshiya Kawaguchi
- Department of Clinical Application, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
46
|
Delaspre F, Massumi M, Salido M, Soria B, Ravassard P, Savatier P, Skoudy A. Directed pancreatic acinar differentiation of mouse embryonic stem cells via embryonic signalling molecules and exocrine transcription factors. PLoS One 2013; 8:e54243. [PMID: 23349836 PMCID: PMC3547908 DOI: 10.1371/journal.pone.0054243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/10/2012] [Indexed: 11/22/2022] Open
Abstract
Pluripotent embryonic stem cells (ESC) are a promising cellular system for generating an unlimited source of tissue for the treatment of chronic diseases and valuable in vitro differentiation models for drug testing. Our aim was to direct differentiation of mouse ESC into pancreatic acinar cells, which play key roles in pancreatitis and pancreatic cancer. To that end, ESC were first differentiated as embryoid bodies and sequentially incubated with activin A, inhibitors of Sonic hedgehog (Shh) and bone morphogenetic protein (BMP) pathways, fibroblast growth factors (FGF) and retinoic acid (RA) in order to achieve a stepwise increase in the expression of mRNA transcripts encoding for endodermal and pancreatic progenitor markers. Subsequent plating in Matrigel® and concomitant modulation of FGF, glucocorticoid, and folllistatin signalling pathways involved in exocrine differentiation resulted in a significant increase of mRNAs encoding secretory enzymes and in the number of cells co-expressing their protein products. Also, pancreatic endocrine marker expression was down-regulated and accompanied by a significant reduction in the number of hormone-expressing cells with a limited presence of hepatic marker expressing-cells. These findings suggest a selective activation of the acinar differentiation program. The newly differentiated cells were able to release α-amylase and this feature was greatly improved by lentiviral-mediated expression of Rbpjl and Ptf1a, two transcription factors involved in the maximal production of digestive enzymes. This study provides a novel method to produce functional pancreatic exocrine cells from ESC.
Collapse
Affiliation(s)
- Fabien Delaspre
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Biomedical Research Park, Barcelona, Spain
| | - Mohammad Massumi
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Biomedical Research Park, Barcelona, Spain
| | - Marta Salido
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Biomedical Research Park, Barcelona, Spain
| | - Bernat Soria
- CABIMER, Sevilla, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Pierre Savatier
- Stem Cells and Brain Research Institute, Bron, France
- Université de Lyon, Lyon, France
| | - Anouchka Skoudy
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Biomedical Research Park, Barcelona, Spain
| |
Collapse
|
47
|
Herreros-Villanueva M, Hijona E, Cosme A, Bujanda L. Mouse models of pancreatic cancer. World J Gastroenterol 2012; 18:1286-1294. [PMID: 22493542 PMCID: PMC3319955 DOI: 10.3748/wjg.v18.i12.1286] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/02/2012] [Accepted: 02/16/2012] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal of human malignancies ranking 4th among cancer-related death in the western world and in the United States, and potent therapeutic options are lacking. Although during the last few years there have been important advances in the understanding of the molecular events responsible for the development of pancreatic cancer, currently specific mechanisms of treatment resistance remain poorly understood and new effective systemic drugs need to be developed and probed. In vivo models to study pancreatic cancer and approach this issue remain limited and present different molecular features that must be considered in the studies depending on the purpose to fit special research themes. In the last few years, several genetically engineered mouse models of pancreatic exocrine neoplasia have been developed. These models mimic the disease as they reproduce genetic alterations implicated in the progression of pancreatic cancer. Genetic alterations such as activating mutations in KRas, or TGFb and/or inactivation of tumoral suppressors such as p53, INK4A/ARF BRCA2 and Smad4 are the most common drivers to pancreatic carcinogenesis and have been used to create transgenic mice. These mouse models have a spectrum of pathologic changes, from pancreatic intraepithelial neoplasia to lesions that progress histologically culminating in fully invasive and metastatic disease and represent the most useful preclinical model system. These models can characterize the cellular and molecular pathology of pancreatic neoplasia and cancer and constitute the best tool to investigate new therapeutic approaches, chemopreventive and/or anticancer treatments. Here, we review and update the current mouse models that reproduce different stages of human pancreatic ductal adenocarcinoma and will have clinical relevance in future pancreatic cancer developments.
Collapse
|
48
|
RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors. Mol Cell Biol 2012; 32:1189-99. [PMID: 22232429 DOI: 10.1128/mcb.06318-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pancreas development is initiated by the specification and expansion of a small group of endodermal cells. Several transcription factors are crucial for progenitor maintenance and expansion, but their interactions and the downstream targets mediating their activity are poorly understood. Among those factors, PTF1a, a basic helix-loop-helix (bHLH) transcription factor which controls pancreas exocrine cell differentiation, maintenance, and functionality, is also needed for the early specification of pancreas progenitors. We used RNA profiling and chromatin immunoprecipitation (ChIP) sequencing to identify a set of targets in pancreas progenitors. We demonstrate that Mnx1, a gene that is absolutely required in pancreas progenitors, is a major direct target of PTF1a and is regulated by a distant enhancer element. Pdx1, Nkx6.1, and Onecut1 are also direct PTF1a targets whose expression is promoted by PTF1a. These proteins, most of which were previously shown to be necessary for pancreas bud maintenance or formation, form a transcription factor network that allows the maintenance of pancreas progenitors. In addition, we identify Bmp7, Nr5a2, RhoV, and P2rx1 as new targets of PTF1a in pancreas progenitors.
Collapse
|
49
|
Al-Shammari M, Al-Husain M, Al-Kharfy T, Alkuraya FS. A novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement. Clin Genet 2011; 80:196-8. [PMID: 21749365 DOI: 10.1111/j.1399-0004.2010.01613.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Anderson KR, Singer RA, Balderes DA, Hernandez-Lagunas L, Johnson CW, Artinger KB, Sussel L. The L6 domain tetraspanin Tm4sf4 regulates endocrine pancreas differentiation and directed cell migration. Development 2011; 138:3213-24. [PMID: 21750032 DOI: 10.1242/dev.058693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The homeodomain transcription factor Nkx2.2 is essential for pancreatic development and islet cell type differentiation. We have identified Tm4sf4, an L6 domain tetraspanin family member, as a transcriptional target of Nkx2.2 that is greatly upregulated during pancreas development in Nkx2.2(-/-) mice. Tetraspanins and L6 domain proteins recruit other membrane receptors to form active signaling centers that coordinate processes such as cell adhesion, migration and differentiation. In this study, we determined that Tm4sf4 is localized to the ductal epithelial compartment and is prominent in the Ngn3(+) islet progenitor cells. We also established that pancreatic tm4sf4 expression and regulation by Nkx2.2 is conserved during zebrafish development. Loss-of-function studies in zebrafish revealed that tm4sf4 inhibits α and β cell specification, but is necessary for ε cell fates. Thus, Tm4sf4 functional output opposes that of Nkx2.2. Further investigation of how Tm4sf4 functions at the cellular level in vitro showed that Tm4sf4 inhibits Rho-activated cell migration and actin organization in a ROCK-independent fashion. We propose that the primary role of Nkx2.2 is to inhibit Tm4sf4 in endocrine progenitor cells, allowing for delamination, migration and/or appropriate cell fate decisions. Identification of a role for Tm4sf4 during endocrine differentiation provides insight into islet progenitor cell behaviors and potential targetable regenerative mechanisms.
Collapse
Affiliation(s)
- Keith R Anderson
- Molecular Biology Program, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|