1
|
Gao J, Wilde B, Kripfgans OD, Chen J, Rubin JM. The Effect of Backscatter Anisotropy in Assessing Hepatic Steatosis Using Ultrasound Hepatorenal Index. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025. [PMID: 39973030 DOI: 10.1002/jum.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVES To discuss challenges in assessing hepatic steatosis using ultrasound hepatorenal index (HRI). METHODS We retrospectively analyzed HRI and liver magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) in 134 adult participants (53 men and 81 women, mean age 55 years). The diagnostic performance of HRI for determining hepatic steatosis was tested by the area under the receiver operating characteristic curve (AUROC) using liver MRI-PDFF as the reference. Regression plots were employed to compare the sampling sites in liver and kidney that were used to calculate HRIs. RESULTS In 11 of 134 cases (8.2%), we failed to acquire HRI measurements. In the remaining 123 cases, AUROC for HRI (cutoff: 1.69 ± 0.13 [mean ± standard deviation]) for defining the HRI threshold for diagnosing hepatic steatosis was 0.83. In 60 of 123 cases (49%) with HRI measurement IQR/median >0.3, slopes of the regression lines in the liver showed backscatter intensity changes consistent with signal attenuation. However, in the kidney, the backscatter intensity was inverted yielding position-dependent HRI cutoff values, mid-pole = 2.24 ± 0.20 and upper pole = 1.08 ± 0.16. CONCLUSIONS HRI is used to estimate liver steatosis based on backscattered ultrasound. In order to compensate for effects such as body habitus and transducer frequency, the liver backscatter is divided by backscatter from a corresponding region at the same depth in the right renal cortex. Theoretically, this compensation should make HRI sampling position independent. Yet, due to renal cortical backscatter anisotropy, this compensation method does not work in general, potentially producing inaccurate liver fat estimates.
Collapse
Affiliation(s)
- Jing Gao
- Montana College of Osteopathic Medicine, Rocky Vista University, Billings, MT, USA
| | - Ben Wilde
- Montana College of Osteopathic Medicine, Rocky Vista University, Billings, MT, USA
| | | | - Johnson Chen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan M Rubin
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Mohit K, Gupta R, Kumar B. Contrastive Learned Self-Supervised Technique for Fatty Liver and Chronic Liver Identification. Biomed Signal Process Control 2025; 100:106950. [DOI: 10.1016/j.bspc.2024.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Drazinos P, Gatos I, Katsakiori PF, Tsantis S, Syrmas E, Spiliopoulos S, Karnabatidis D, Theotokas I, Zoumpoulis P, Hazle JD, Kagadis GC. Comparison of deep learning schemes in grading non-alcoholic fatty liver disease using B-mode ultrasound hepatorenal window images with liver biopsy as the gold standard. Phys Med 2025; 129:104862. [PMID: 39626614 DOI: 10.1016/j.ejmp.2024.104862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND/INTRODUCTION To evaluate the performance of pre-trained deep learning schemes (DLS) in hepatic steatosis (HS) grading of Non-Alcoholic Fatty Liver Disease (NAFLD) patients, using as input B-mode US images containing right kidney (RK) cortex and liver parenchyma (LP) areas indicated by an expert radiologist. METHODS A total of 112 consecutively enrolled, biopsy-validated NAFLD patients underwent a regular abdominal B-mode US examination. For each patient, a radiologist obtained a B-mode US image containing RK cortex and LP and marked a point between the RK and LP, around which a window was automatically cropped. The cropped image dataset was augmented using up-sampling, and the augmented and non-augmented datasets were sorted by HS grade. Each dataset was split into training (70%) and testing (30%), and fed separately as input to InceptionV3, MobileNetV2, ResNet50, DenseNet201, and NASNetMobile pre-trained DLS. A receiver operating characteristic (ROC) analysis of hepatorenal index (HRI) measurements by the radiologist from the same cropped images was used for comparison with the performance of the DLS. RESULTS With the test data, the DLS reached 89.15 %-93.75 % accuracy when comparing HS grades S0-S1 vs. S2-S3 and 79.69 %-91.21 % accuracy for S0 vs. S1 vs. S2 vs. S3 with augmentation, and 80.45-82.73 % accuracy when comparing S0-S1 vs. S2-S3 and 59.54 %-63.64 % accuracy for S0 vs. S1 vs. S2 vs. S3 without augmentation. The performance of radiologists' HRI measurement after ROC analysis was 82 %, 91.56 %, and 96.19 % for thresholds of S ≥ S1, S ≥ S2, and S = S3, respectively. CONCLUSION All networks achieved high performance in HS assessment. DenseNet201 with the use of augmented data seems to be the most efficient supplementary tool for NAFLD diagnosis and grading.
Collapse
Affiliation(s)
- Petros Drazinos
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece; Diagnostic Echotomography SA, Kifissia, GR 14561, Greece
| | - Ilias Gatos
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece
| | - Paraskevi F Katsakiori
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece
| | - Stavros Tsantis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece
| | - Efstratios Syrmas
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece
| | - Stavros Spiliopoulos
- Second Department of Radiology, School of Medicine, University of Athens, Athens, GR 12461, Greece
| | - Dimitris Karnabatidis
- Department of Radiology, School of Medicine, University of Patras, Patras, GR 26504, Greece
| | | | | | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Erdem Toslak I, Joyce C, Yacoub JH. Usefulness of Picture Archiving and Communication System-Based Quantitative Ultrasound Measurements in Evaluation of Allograft Dysfunction in Patients With Liver Transplantation. J Comput Assist Tomogr 2025; 49:34-41. [PMID: 39095062 DOI: 10.1097/rct.0000000000001647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVE The aim of this study was to assess the usefulness of picture archiving and communication system (PACS)-based quantitative grayscale ultrasonography (US) measurements in detecting allograft dysfunction in posttransplant patients. METHODS In this retrospective study, 116 patients with liver transplantation who underwent biopsy for allograft evaluation were recruited from the database. All participants had US images prior to procedure. Normal, acute cellular rejection (ACR), recurrent hepatitis (Hep), or combined (ACR/Hep) groups were generated based on pathology results. Region of interests were drawn for liver and rectus abdominus muscle to perform quantitative US analysis. The liver/muscle mean ratio (L/M) and heterogeneity index (HI; liver standard deviation/liver mean) were obtained. The ratios of groups were compared, and receiver-operating-characteristic analysis was performed. RESULTS There was a significant difference between normal (n = 16) and each of other groups (ACR, 39; Hep, 36; combined, 25) for L/M and HI ( P < 0.05). No significant difference was detected between ACR, Hep, and combined groups. The areas under the curve for L/M and HI were 0.755 (moderate) and 0.817 (good), respectively. To differentiate abnormal (ACR, Hep, and combined) from normal allografts sensitivity, specificity, PPV, and NPV were 50.0%, 87.5%, 96.2%, and 21.9% for cut point of L/M ≥1 and 84.0%, 68.8%, 94.4%, and 40.7% for cut point of HI ≥0.2 with odds ratios of 7.52 (for L/M ≥1) and 13.10 (for HI ≥0.2), respectively ( P < 0.01). CONCLUSIONS L/M has moderate and HI has good discrimination of normal from abnormal allograft in liver transplant patients. PACS-based quantitative US measurements is an objective, easy to use, noninvasive auxiliary tool to discriminate hepatic allograft dysfunction.
Collapse
Affiliation(s)
- Iclal Erdem Toslak
- From the Department of Radiology, Health Sciences University Antalya Training and Research Hospital, Muratpaşa, Antalya, Türkiye
| | - Cara Joyce
- Clinical Research Office, Loyola University Chicago Health Sciences Division Maywood, IL
| | - Joseph H Yacoub
- Department of Radiology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| |
Collapse
|
5
|
El-Hammady AM, Marei YM, Mohammed RR, Rahman SMAE, Marei YM, Sarhan RS. PLASMA EXPRESSION LEVELS OF MICRORNA-21 MIGHT HELP IN THE DETECTION OF HCV PATIENTS COMPLICATED BY HEPATOCELLULAR CARCINOMA. ARQUIVOS DE GASTROENTEROLOGIA 2024; 61:e24025. [PMID: 39776121 DOI: 10.1590/s0004-2803.24612024-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/29/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE To investigate the ability of the estimated plasma gene-expression levels of microRNA (miR)-21 and 126 to define patients suspected to have hepatocellular carcinoma (HCC) among patients with complicated hepatitis-C virus (HCV) infection. METHODS Patients with uncomplicated (U-HCV) or complicated HCV underwent clinical and ultrasonographic (US) evaluations and assessment for the computerized hepatorenal index, hepatic steatosis index and fibrosis indices. Blood samples were obtained for estimation of serum levels of alpha-fetoprotein (AFP) and tumor necrosis factor-α (TNF-α), and plasma expression levels of miR-21 and miR-126 using the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). RESULTS Serum levels of AFP and TNF-α were significantly higher in samples of HCV-HCC patients than controls and other HCV patients. Plasma levels of miR-21 were the highest, while miR-126 levels were the lowest in samples of HCV-HCC patients with significant differences in comparison to samples of controls and other HCV patients. The ROC curve analysis defined high plasma miR-21 levels as specific predictor for HCV infection, and could identify samples of complicated HCV, and samples of HCV-HCC patients, while estimated plasma levels of miR-126 could be applied to screen for HCV and its related complications. CONCLUSION Deregulated plasma expression levels of miR-21 and miR-126 might distinguish cases of HCV complicated by HCC and define cases of HCV-LC, even those that showed low Fib-4 scores.
Collapse
Affiliation(s)
- Amr M El-Hammady
- Department of Internal Medicine, Faculty of Medicine, Benha University, Benha, Egypt
| | - Yasmin M Marei
- Department of Medical Biochemistry, Faculty of Medicine, Benha University, Benha, Egypt
| | - Raafat R Mohammed
- Assistant Consultant of Medical Biochemistry, Hospital Lab, Clinical Pathology Department, Benha University, Benha, Egypt
| | | | - Yomna M Marei
- Department of Internal Medicine, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rizk S Sarhan
- Department of Internal Medicine, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
6
|
Hériard-Dubreuil B, Besson A, Mamou J, Gay J, Foucher J, De Ledinghen V, Cohen-Bacrie C. Ultraportable Quantitative Ultrasound for Hepatic Steatosis Assessment. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1842-1848. [PMID: 39317626 DOI: 10.1016/j.ultrasmedbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/18/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE This study aimed to evaluate the performances of quantitative ultrasound (QUS) for the detection and assessment of hepatic steatosis when implemented using an ultraportable ultrasound scanner. METHODS Seven established QUS parameters were investigated. Ultrasound signals were acquired using a new ultraportable ultrasound device, the Hepatoscope. The feasibility of QUS using the Hepatoscope was first assessed in vitro. Clinical reliability, accuracy and staging capabilities were evaluated in 60 patients referred to a hepatology consultation for known chronic liver disease and enrolled in a prospective clinical investigation using the controlled attenuation parameter (CAP) as ground truth. RESULTS QUS parameters showed moderate (intra-class correlation coefficient [ICC] >0.50) to excellent (ICC >0.90) reliability. Two parameters, namely Lizzi-Feleppa mid-band fit and attenuation, were both reliable (ICC = 0.89 and 0.86, respectively) and correlated with the CAP (squared Pearson correlation coefficient of R2 = 0.65 and R2 = 0.6, respectively). For steatosis detection (S0 vs. ≥S1), the two parameters yielded an area under the receiving operating characteristic curve of 0.90 and 0.86, respectively (95% confidence interval: [0.81-0.99] and [0.76-0.96], respectively). CONCLUSION QUS can be reliably and accurately implemented on ultraportable ultrasound scanners. The combination of ultraportability and quantitative assessment of liver fat is promising for large-scale screening and monitoring of hepatic steatosis.
Collapse
Affiliation(s)
| | | | - Jonathan Mamou
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Joël Gay
- E-Scopics, Aix-en-Provence, France
| | | | | | | |
Collapse
|
7
|
Durdikova A, Durdik P, Prso M, Dvorska D, Remen L, Vojtkova J, Oleksak F, Banovcin P. Elastography as a non-invasive method of screening non-alcoholic fatty liver disease in the adult phenotype of paediatric obstructive sleep apnoea. Sleep Breath 2024; 28:2653-2661. [PMID: 39264533 PMCID: PMC11567998 DOI: 10.1007/s11325-024-03149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE The high prevalence of non-alcoholic fatty liver disease (NAFLD) in obese children with obstructive sleep apnoea (OSA) calls for early non-invasive screening. The aim of this study was to use ultrasonographic liver echogenicity and elasticity to evaluate the early stages of liver injury in obese children with OSA. METHODS Fifty-five obese children with OSA aged 12 to 15 years were included. The control group (n = 56) consisted of healthy, non-obese children. All children underwent ultrasound examination to assess liver echogenicity using the hepatorenal index (HRI) and real-time elastography to determine the liver fibrosis index (LFI). Polysomnographic parameters, sonographic values, and clinical-biochemical assessment were statistically analysed according to OSA and its severity. Subgroup 1 was obese children with OSA and AHI < 5 and subgroup 2 was obese children with OSA and AHI ≥ 5. RESULTS Higher average values of HRI and LFI were recorded in the group of obese paediatric patients with OSA (mean age ± SD, 14.1 ± 2.2 year; 53% male; BMI z-score, 2.6 ± 0.35) compared to the control group (1.37 ± 0.19 vs. 1.12 ± 0.07, p < 0.001 and 1.82 ± 0.31 vs. 1.02 ± 0.27, p < 0.001). A significantly higher LFI was recorded in subgroup 2 compared to subgroup 1 (2.0 ± 0.3 vs. 1.6 ± 0.2, p < 0.001) while laboratory parameters and HRI (1.4 ± 0.2 vs. 1.4 ± 0.2, p = 0.630) did not change significantly. A strong positive correlation was found between the severity of OSA and the LFI (r = 0.454; p < 0.01). CONCLUSIONS These findings suggest that ultrasound elastography is a useful non-invasive screening test for OSA-related steatohepatitis in obese adolescents, but other clinical studies are needed to confirm this result.
Collapse
Affiliation(s)
- Anna Durdikova
- Paediatric Department, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, Martin, 036 01, Slovakia
- Paediatric Department, University Hospital Martin, Martin, Slovakia
| | - Peter Durdik
- Paediatric Department, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, Martin, 036 01, Slovakia.
- Paediatric Department, University Hospital Martin, Martin, Slovakia.
| | - Marek Prso
- Paediatric Department, University Hospital Martin, Martin, Slovakia
| | - Dominika Dvorska
- Paediatric Department, University Hospital Martin, Martin, Slovakia
| | - Lukas Remen
- Paediatric Department, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, Martin, 036 01, Slovakia
- Paediatric Department, University Hospital Martin, Martin, Slovakia
| | - Jarmila Vojtkova
- Paediatric Department, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, Martin, 036 01, Slovakia
- Paediatric Department, University Hospital Martin, Martin, Slovakia
| | - Filip Oleksak
- Paediatric Department, University Hospital Martin, Martin, Slovakia
| | - Peter Banovcin
- Paediatric Department, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, Martin, 036 01, Slovakia
- Paediatric Department, University Hospital Martin, Martin, Slovakia
| |
Collapse
|
8
|
Hudson D, Afzaal T, Bualbanat H, AlRamdan R, Howarth N, Parthasarathy P, AlDarwish A, Stephenson E, Almahanna Y, Hussain M, Diaz LA, Arab JP. Modernizing metabolic dysfunction-associated steatotic liver disease diagnostics: the progressive shift from liver biopsy to noninvasive techniques. Therap Adv Gastroenterol 2024; 17:17562848241276334. [PMID: 39553445 PMCID: PMC11565685 DOI: 10.1177/17562848241276334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/27/2024] [Indexed: 11/19/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing public health concern worldwide. Liver biopsy is the gold standard for diagnosing and staging MASLD, but it is invasive and carries associated risks. In recent years, there has been significant progress in developing noninvasive techniques for evaluation. This review article discusses briefly current available noninvasive assessments and the various liver biopsy techniques available for MASLD, including invasive techniques such as transjugular and transcutaneous needle biopsy, intraoperative/laparoscopic biopsy, and the evolving role of endoscopic ultrasound-guided biopsy. In addition to discussing the various biopsy techniques, we review the current state of knowledge on the histopathologic evaluation of MASLD, including the various scoring systems used to grade and stage the disease. We also explore current and alternative modalities for histopathologic evaluation, such as whole slide imaging and the utility of immunohistochemistry. Overall, this review article provides a comprehensive overview of the progress in liver biopsy techniques for MASLD and compares invasive and noninvasive modalities. However, beyond clinical trials, the practical application of liver biopsy may be limited, as ongoing advancements in noninvasive fibrosis assessments are expected to more effectively identify candidates for MASLD treatment in real-world settings.
Collapse
Affiliation(s)
- David Hudson
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Tamoor Afzaal
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Hasan Bualbanat
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Raaed AlRamdan
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Nisha Howarth
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Pavithra Parthasarathy
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Alia AlDarwish
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Emily Stephenson
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Yousef Almahanna
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Maytham Hussain
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, ON, Canada
| | - Luis Antonio Diaz
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- MASLD Research Center, Division of MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA
| | - Juan Pablo Arab
- Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, 1201 E. Broad St. P.O. Box 980341, Richmond, VA 23284, USA
| |
Collapse
|
9
|
Gbande P, Tchaou M, Djoko Makamto HD, Dagbe M, Sonhaye L, Agoda-Koussema LK, Adjenou K. Correlation between qualitative and semi-quantitative ultrasound assessment of diffuse fatty liver disease: A case-control study. ULTRASOUND (LEEDS, ENGLAND) 2024; 32:253-259. [PMID: 39493915 PMCID: PMC11528735 DOI: 10.1177/1742271x241241779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/08/2024] [Indexed: 11/05/2024]
Abstract
Objective To study the relationship between qualitative and semi-quantitative assessment of diffuse liver steatosis in ultrasound. Patients and Methods This was a case-control study, conducted in the Campus University Hospital Centre of Lome (Togo) over a 3-month period. It included 40 patients showing ultrasonographic signs of diffuse hepatic steatosis and 40 volunteers (healthy) whose echostructure and echogenicity of the hepatic parenchyma were normal. The B-mode sonographic grade of steatosis was compared with the hepatorenal echogenicity gradient and the ultrasound attenuation coefficient. Results The average body mass index in patients was 30.87 ± 4.65 kg/m2 versus 24.25 ± 4.30 kg/m2 in the healthy group (p < 0.00001). Hepatomegaly was observed in 57.5% of the patients versus 17.5% in the healthy group (p = 0.0005). The average hepatorenal echogenicity ratio was 1.18 ± 0.07 in patients versus 1.01 ± 0.03 in the healthy group (p < 0.00001). The average difference in hepatorenal echogenicity was 9.30 ± 3.41 dB in patients versus 1.52 ± 1.07 dB in the healthy group (p < 0.00001). The attenuation of ultrasound waves increased with the grade of steatosis, averaging 0.08 ± 0.23 dB/cm/MHz (ranging from -0.33 to 0.61 dB/cm/MHz) in patients versus -0.24 ± 0.21 (ranging from -0.69 to 0.19 dB/cm/MHz) in the healthy group (p < 0.00001). Conclusion Despite the advancements in new ultrasound technologies today, qualitative methods continue to be effective for the detection of hepatic steatosis and could prove useful in monitoring the effectiveness of hepatic steatosis treatment.
Collapse
Affiliation(s)
- Pihou Gbande
- Department of Radiology and Medical Imaging, Sokodé Regional Hospital Centre, Sokodé, Togo
| | - Mazamaesso Tchaou
- Department of Radiology and Medical Imaging, Sokodé Regional Hospital Centre, Sokodé, Togo
| | | | - Massaga Dagbe
- Department of Radiology and Medical Imaging, Kara University Hospital Centre, Kara, Togo
| | - Lantam Sonhaye
- Department of Radiology and Medical Imaging, Campus University Hospital Centre, Lomé, Togo
| | | | - Komlanvi Adjenou
- Department of Radiology and Medical Imaging, Campus University Hospital Centre, Lomé, Togo
| |
Collapse
|
10
|
Hajibonabi F, Riedesel EL, Taylor SD, Linam LE, Alazraki AL, Zhang C, Khanna G. Ultrasound-estimated hepatorenal index: diagnostic performance and interobserver agreement for pediatric liver fat quantification. Pediatr Radiol 2024; 54:1653-1660. [PMID: 39136769 DOI: 10.1007/s00247-024-06021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Semiquantitative and quantitative sonographic techniques have the potential for screening and surveillance of children at risk of nonalcoholic fatty liver disease. OBJECTIVE To determine diagnostic performance and interobserver agreement of hepatorenal index (HRI) for pediatric ultrasound-based liver fat quantification. MATERIALS AND METHODS In an institutional review board (IRB)-approved retrospective study (April 2014 to April 2023), children (< 18 years) with clinically performed magnetic resonance imaging (MRI) scans for liver fat quantification were assessed. Inclusion criteria required availability of abdominal ultrasound within 3 months of quantitative MRI. Three blinded readers subjectively assessed for sonographic hepatic steatosis and calculated HRI. MRI proton density fat fraction (PDFF) was the reference standard. Interobserver agreement, correlation with PDFF, and optimal HRI (using ROC analysis) values were analyzed. The significance level was set at p < 0.05. RESULTS A total of 41 patients (25 male) with median (interquartile range (IQR)) age of 13 (10-15) years were included. Median (IQR) MRI PDFF was 11.30% (2.70-17.95%). Hepatic steatosis distribution by MRI PDFF included grade 0 (34%), grade 1 (15%), grade 2 (22%), and grade 3 (29%) patients. Intraclass correlation coefficient for HRI among the three readers was 0.61 (95% CI 0.43-0.75) (p < 0.001). Moderate correlation was observed between manually estimated HRI and PDFF for each reader (r = 0.62, 0.67, and 0.67; p < 0.001). Optimal HRI cutoff was found to be 1.99 to diagnose hepatic steatosis (sensitivity 89%, specificity 93%). Median (IQR) HRI for each MRI grade of hepatic steatosis (0-4) was as follows: 1.2 (1.1-1.5), 2.6 (1.1-3.3), 3.6 (2.6-5.4), 5.6 (2.6-10.9), respectively (p < 0.001). CONCLUSION Ultrasound-estimated HRI has moderate interobserver agreement and moderate correlation with MRI-derived PDFF. HRI of 1.99 maximizes accuracy for identifying pediatric liver fat.
Collapse
Affiliation(s)
- Farid Hajibonabi
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA.
| | - Erica L Riedesel
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Susan D Taylor
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Leann E Linam
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Adina L Alazraki
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Chao Zhang
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, USA
| | - Geetika Khanna
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| |
Collapse
|
11
|
Tan ZX, Mehta B, Kusel K, Seow J, Zelesco M, Abbott S, Simons R, Boardman G, Welman CJ, Ayonrinde OT. Hepatic steatosis: Qualitative and quantitative sonographic assessment in comparison to histology. Australas J Ultrasound Med 2024; 27:179-188. [PMID: 39328258 PMCID: PMC11423484 DOI: 10.1002/ajum.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Introduction Globally, B-mode ultrasound is the most common modality used for the diagnosis of hepatic steatosis. We aimed to assess the correlation between qualitative liver ultrasound parameters, attenuation imaging (ATI) and histopathology-diagnosed steatosis grade obtained from liver biopsy. Our secondary aim was to examine the interobserver variability of qualitative ultrasound features. Methods A retrospective cohort study was performed which included adult patients (age ≥ 18 years) who had same-day liver ultrasound, ATI and liver biopsy for grading hepatic steatosis severity between 2018 and 2022. The qualitative US features for hepatic steatosis were independently scored by three radiologists and interobserver variability was examined. Histologic steatosis grade, ATI and qualitative ultrasound parameters were compared. Results Ninety patients were included; 67% female with a median age of 54 (IQR 39-65) years. The radiologist's overall impression had the highest correlation (very strongly correlated) with histologic steatosis grade (r = 0.82, P < 0.001). ATI coefficient and all qualitative ultrasound B-mode features except for liver echotexture and focal fat sparing were strongly correlated with histologic steatosis grade (r ≥ 0.70, P < 0.001). Most qualitative ultrasound features had good agreement between observers (Kappa statistic 0.61-1.0, P < 0.001), (Kendall coefficient 0.92, P < 0.001). Conclusion The examined qualitative ultrasound parameters and ATI had good-excellent performance for diagnosing clinically significant hepatic steatosis; however, the radiologist's overall impression had the best correlation with histologic steatosis grade. Our findings suggest an ongoing role for qualitative liver ultrasound assessment of hepatic steatosis despite the emergence of newer quantitative measures.
Collapse
Affiliation(s)
- Zhi Xin Tan
- Gastroenterology and Hepatology Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Bryan Mehta
- Gastroenterology and Hepatology Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Kieran Kusel
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
| | - James Seow
- Department of Radiology Royal Perth Hospital Perth Western Australia Australia
| | - Marilyn Zelesco
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Steven Abbott
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Rebecca Simons
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Glenn Boardman
- SMHS Research Support and Development Unit Murdoch Western Australia Australia
| | - Christopher J Welman
- Department of Medical Imaging Fiona Stanley Hospital Murdoch Western Australia Australia
- Department of Radiology Royal Perth Hospital Perth Western Australia Australia
| | - Oyekoya T Ayonrinde
- Gastroenterology and Hepatology Fiona Stanley Hospital Murdoch Western Australia Australia
- Medical School The University of Western Australia Crawley Western Australia Australia
- Faculty of Health Sciences Curtin University Perth Western Australia Australia
| |
Collapse
|
12
|
Santoro S, Khalil M, Abdallah H, Farella I, Noto A, Dipalo GM, Villani P, Bonfrate L, Di Ciaula A, Portincasa P. Early and accurate diagnosis of steatotic liver by artificial intelligence (AI)-supported ultrasonography. Eur J Intern Med 2024; 125:57-66. [PMID: 38490931 DOI: 10.1016/j.ejim.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVES Steatotic liver disease is the most frequent chronic liver disease worldwide. Ultrasonography (US) is commonly employed for the assessment and diagnosis. Few information is available on the possible use of artificial intelligence (AI) to ameliorate the diagnostic accuracy of ultrasonography. MATERIALS AND METHODS An AI-based algorithm was developed using a dataset of US images. We prospectively enrolled 134 patients for algorithm validation. Patients underwent abdominal US and Proton Density Fat Fraction MRI scans (MRI-PDFF), assumed as reference technique. The hepatorenal index was manually calculated (HRIM) by 4 operators. An automatic hepatorenal index (HRIA) was obtained by the algorithm. The accuracy of HRIA to discriminate steatosis grades was evaluated by ROC analysis using MRI-PDFF cut-offs. RESULTS Overweight was 40 % of subjects (BMI 26.4 kg/cm2). The median HRIA was 1.11 (IQR 0.32) and the average of 4 manually calculated HRIM was 1.08 (IQR 0.26), with a 15 % inter-operator variability. Both HRIA (R = 0.79, P < 0.0001) and HRIM (R = 0.69, P < 0.0001) significantly correlated with liver fat percentage (MRI-PDFF). According to MRI-PDFF, 32 % of enrolled subjects had steatosis. Discrimination capacity by AUC between patient with steatosis and patient without steatosis was better for HRIA than HRIM (AUC: 0.87 vs. 0.82, respectively). ROC analysis showed an AUC = 0.98 for HRIA with 1.64 cut-off in distinguishing between mild and moderate/severe groups. CONCLUSIONS The use of AI improves accuracy and speed of ultrasonography in the diagnosis of liver steatosis. Further studies should evaluate the routine use of this technique in the management of liver steatosis at high cardio-metabolic risk.
Collapse
Affiliation(s)
- Sergio Santoro
- PhD Program in Public Health, Clinical Medicine and Oncology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy; Eurisko Technology srl, Modugno, BA, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Hala Abdallah
- PhD Program in Public Health, Clinical Medicine and Oncology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy; Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Ilaria Farella
- PhD Program in Public Health, Clinical Medicine and Oncology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy; Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Antonino Noto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | | | | | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Agostino Di Ciaula
- PhD Program in Public Health, Clinical Medicine and Oncology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy; Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Piero Portincasa
- PhD Program in Public Health, Clinical Medicine and Oncology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
13
|
Savino A, Loglio A, Neri F, Camagni S, Pasulo L, Lucà MG, Trevisan R, Fagiuoli S, Viganò M. Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) after Liver Transplantation: A Narrative Review of an Emerging Issue. J Clin Med 2024; 13:3871. [PMID: 38999436 PMCID: PMC11242808 DOI: 10.3390/jcm13133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The development of steatotic liver disease after liver transplant (LT) is widely described, and epidemiological data have revealed an increased incidence in recent times. Its evolution runs from simple steatosis to steatohepatitis and, in a small proportion of patients, to significant fibrosis and cirrhosis. Apparently, post-LT steatotic disease has no impact on the recipient's overall survival; however, a higher cardiovascular and malignancy burden has been reported. Many donors' and recipients' risk factors have been associated with this occurrence, although the recipient-related ones seem of greater impact. Particularly, pre- and post-LT metabolic alterations are strictly associated with steatotic graft disease, sharing common pathophysiologic mechanisms that converge on insulin resistance. Other relevant risk factors include genetic variants, sex, age, baseline liver diseases, and immunosuppressive drugs. Diagnostic evaluation relies on liver biopsy, although non-invasive methods are being increasingly used to detect and monitor both steatosis and fibrosis stages. Management requires a multifaceted approach focusing on lifestyle modifications, the optimization of immunosuppressive therapy, and the management of metabolic complications. This review aims to synthesize the current knowledge of post-LT steatotic liver disease, focusing on the recent definition of metabolic-dysfunction-associated steatotic liver disease (MASLD) and its metabolic and multisystemic concerns.
Collapse
Affiliation(s)
- Alberto Savino
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| | - Alessandro Loglio
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
| | - Flavia Neri
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Luisa Pasulo
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
| | - Maria Grazia Lucà
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
| | - Roberto Trevisan
- Endocrine and Diabetology Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| | - Stefano Fagiuoli
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| | - Mauro Viganò
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| |
Collapse
|
14
|
Chan WK, Petta S, Noureddin M, Goh GBB, Wong VWS. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment Pharmacol Ther 2024; 59 Suppl 1:S23-S40. [PMID: 38813831 DOI: 10.1111/apt.17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 12/26/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most common chronic liver disease and an important cause of cirrhosis and hepatocellular carcinoma. It is strongly associated with type 2 diabetes and obesity. Because of the huge number of patients at risk of MASLD, it is imperative to use non-invasive tests appropriately. AIMS To provide a narrative review on the performance and limitations of non-invasive tests, with a special emphasis on the impact of diabetes and obesity. METHODS We searched PubMed and Cochrane databases for articles published from 1990 to August 2023. RESULTS Abdominal ultrasonography remains the primary method to diagnose hepatic steatosis, while magnetic resonance imaging proton density fat fraction is currently the gold standard to quantify steatosis. Simple fibrosis scores such as the Fibrosis-4 index are well suited as initial assessment in primary care and non-hepatology settings to rule out advanced fibrosis and future risk of liver-related complications. However, because of its low positive predictive value, an abnormal test should be followed by specific blood (e.g. Enhanced Liver Fibrosis score) or imaging biomarkers (e.g. vibration-controlled transient elastography and magnetic resonance elastography) of fibrosis. Some non-invasive tests of fibrosis appear to be less accurate in patients with diabetes. Obesity also affects the performance of abdominal ultrasonography and transient elastography, whereas magnetic resonance imaging may not be feasible in some patients with severe obesity. CONCLUSIONS This article highlights issues surrounding the clinical application of non-invasive tests for MASLD in patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Salvatore Petta
- Sezione di Gastroenterologia, PROMISE, University of Palermo, Palermo, Italy
- Department of Economics and Statistics, University of Palermo, Palermo, Italy
| | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, Houston, Texas, USA
| | - George Boon Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Wuopio A, Baker BM, Koethe B, Goodman MD, Shin R, Bugaev N, Nepomnayshy D, Kim WC, Schnelldorfer T. Can Surgeons Reliably Identify Non-cirrhotic Liver Disease During Laparoscopic Bariatric Surgery? Obes Surg 2024; 34:769-777. [PMID: 38280161 DOI: 10.1007/s11695-024-07070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Identification of liver disease during bariatric operations is an important task given the patients risk for occult fatty liver disease. Surgeon's accuracy of assessing for liver disease during an operation is poorly understood. The objective was to measure surgeons' performance on intra-operative visual assessment of the liver in a simulated environment. METHODS Liver images from 100 patients who underwent laparoscopic bariatric surgery and pre-operative ultrasound elastography between July 2020 and July 2021 were retrospectively evaluated. The perception of 15 surgeons regarding the degree of hepatic steatosis and fibrosis was collected in a simulated clinical environment by survey and compared to results determined by ultrasonographic exam. RESULTS The surgeons' ability to correctly identify the class of steatosis and fibrosis was poor (accuracy 61% and 59%, respectively) with a very weak correlation between the surgeon's predicted class and its true class (r = 0.17 and r = 0.12, respectively). When liver disease was present, surgeons completely missed its presence in 26% and 51% of steatosis and fibrosis, respectively. Digital image processing demonstrated that surgeons subjectively classified steatosis based on the "yellowness" of the liver and fibrosis based on texture of the liver, despite neither correlating with the true degree of liver disease. CONCLUSION Laparoscopic visual assessment of the liver surface for identification of non-cirrhotic liver disease was found to be an inaccurate method during laparoscopic bariatric surgery. While validation studies are needed, the results suggest the clinical need for alternative approaches.
Collapse
Affiliation(s)
- Alexandra Wuopio
- Department of Surgery, Lahey Hospital and Medical Center, Burlington, MA, 01805, USA
| | | | - Benjamin Koethe
- Tufts Clinical and Translational Science Institute, Tufts University, and Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, 02111, USA
| | - Martin D Goodman
- Department of Surgery, Tufts Medical Center, Boston, MA, 02111, USA
| | - Reuben Shin
- Department of Surgery, Lahey Hospital and Medical Center, Burlington, MA, 01805, USA
| | - Nikolay Bugaev
- Department of Surgery, Tufts Medical Center, Boston, MA, 02111, USA
| | - Dmitry Nepomnayshy
- Department of Surgery, Lahey Hospital and Medical Center, Burlington, MA, 01805, USA
| | - Woon Cho Kim
- Department of Surgery, Tufts Medical Center, Boston, MA, 02111, USA
| | - Thomas Schnelldorfer
- Department of Surgery, Tufts Medical Center, Boston, MA, 02111, USA.
- Department of Translational Research, Lahey Hospital and Medical Center, Burlington, MA, 01805, USA.
- Surgical Imaging Lab, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
16
|
Beutler BD, El-Sabawi B, Walker DK, Cen S, Tchelepi H. An Objective Computer-Assisted Measurement of Sonographic Renal Cortical Echogenicity: The Splenorenal Index. Ultrasound Q 2024; 40:56-60. [PMID: 37496177 DOI: 10.1097/ruq.0000000000000646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
ABSTRACT Renal cortical echogenicity represents a marker of renal function. However, evaluation of the renal echotexture is subjective and thus disposed to error and interrater variability. Computer-aided image analysis may be used to objectively assess renal cortical echogenicity by comparing the echogenicity of the left kidney to that of the spleen; the resultant ratio is referred to as the splenorenal index (SRI). We performed a retrospective review of all adult patients who received a renal ultrasound over a 45-day period at our institution. Demographic data and kidney function laboratory values were documented for each patient. Regions of interest (ROIs) were selected in the left renal cortex and spleen using ImageJ software. The SRI was calculated as a ratio of the mean pixel brightness of the left kidney cortex ROI to the mean pixel brightness of the spleen ROI. The SRI was then correlated with serum creatinine, blood urea nitrogen, and estimated glomerular filtration rate. We found that among the 94 patients included in the study, the SRI had a significant positive correlation with serum creatinine ( r = 0.43, P < 0.001) and serum blood urea nitrogen ( r = 0.45, P < 0.001) and negative correlation with estimated glomerular filtration rate ( r = -0.47, P < 0.001). Our data indicate that SRI may serve as a valuable tool for sonographic evaluation of renal parenchymal disease.
Collapse
Affiliation(s)
- Bryce D Beutler
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Bassim El-Sabawi
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Daphne K Walker
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Steven Cen
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Hisham Tchelepi
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| |
Collapse
|
17
|
Chen B, Lu Q, Hu B, Sun D, Ying T. Protocol of quantitative ultrasound techniques for noninvasive assessing of hepatic steatosis after bariatric surgery. Front Surg 2024; 10:1244199. [PMID: 38239667 PMCID: PMC10794322 DOI: 10.3389/fsurg.2023.1244199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Roux-en-Y gastric bypass surgery can effectively improve steatosis, necroinflammatory activity, and hepatic fibrosis in individuals diagnosed with morbid obesity or nonalcoholic steatohepatitis (NASH). Common methods such as body mass index (BMI) to evaluate the postoperative effect of clinical bariatric surgery cannot differentiate subcutaneous fats from visceral fats and muscles. Several Quantitative ultrasound (QUS)-based approaches have been developed to quantify hepatic steatosis. QUS techniques (tissue attenuation imaging (TAI), tissue scatter distribution imaging (TSI)) from radio frequency (RF) data analysis as a means for the detection and grading of hepatic steatosis has been posited as an objective and noninvasive approach. The implementation and standardization of QUS techniques (TAI, TSI) in assessing hepatic steatosis quantitatively after bariatric surgery is of high-priority. Our study is aimed to assess hepatic steatosis with QUS techniques (TAI, TSI) in morbidly obese individuals before and after bariatric surgery, and to compare with anthropometric measurements, laboratory assessments and other imaging methods. Methods and analysis The present investigation, a self-discipline examination of navigational capacity devoid of visual cues, is designed as a single-site, forward-looking evaluation of efficacy with the imprimatur of the institutional review board. The duration of the study has been provisionally determined to span from 1 January 2023 through 31 December 2025. Our cohort shall encompass one hundred participants, who was scheduled to undergo Roux-en-Y gastric bypass (RYGB) at Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. All patients will undergo anthropometric measurements, blood-based biochemical analyses, ultrasonic examination and magnetic resonance imaging proton density fat fraction (MRI-PDFF). The primary endpoint is the analysis of evaluating the efficacy of QUS techniques assessing hepatic steatosis compared to other methods before and after bariatric surgery. Results Prior to the fomal study, we recruited 21 obese Chinese participants who received ultrasonic examination (TAI, TSI) and MRI-PDFF. AC-TAI showed moderate correlations with MRI-PDFF (adjusted r = 0.632; P < 0.05). For MRI-PDFF ≥10%, SC-TSI showed moderate correlations with MRI-PDFF (adjusted r = 0.677; P < 0.05). Conclusion Our pre-experiment results signified that using QUS techniques for postoperative evaluation of bariatric surgery is promising. QUS techniques will be signed a widespread availability, real-time functionality, and low-cost approach for assessing hepatic steatosis before and after bariatric surgery in obese individuals, thus is capable for subsequent scale-up liver fat quantification. Ethics and dissemination The present research endeavor has been bestowed with the imprimatur of the Ethics Committee of the Hospital, as indicated by its Approval Number: 2023-KY-015. In due course, upon completion of the study, we intend to disseminate our findings by publishing them in a suitable academic journal, thereby facilitating their widespread utilization. Registration The trial is duly registered with the Chinese Clinical Trial Registry, and with a unique Trial Registration Number, ChiCTR2300069892, approved on March 28, 2023.
Collapse
Affiliation(s)
- Bin Chen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qijie Lu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Sun
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Ferraioli G, Barr RG. Noninvasive assessment of liver steatosis with ultrasound techniques. MULTIPARAMETRIC ULTRASOUND FOR THE ASSESSMENT OF DIFFUSE LIVER DISEASE 2024:177-198. [DOI: 10.1016/b978-0-323-87479-3.00020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Zalcman M, Barth RA, Rubesova E. Real-time ultrasound-derived fat fraction in pediatric population: feasibility validation with MR-PDFF. Pediatr Radiol 2023; 53:2466-2475. [PMID: 37667050 DOI: 10.1007/s00247-023-05752-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. To avoid limitations of liver biopsy and MRI, quantitative ultrasound has become a research focus. Ultrasound-derived fat fraction (UDFF) is based on a combination of backscatter coefficient and attenuation parameter. OBJECTIVE The objectives of the study were to determine (1) agreement between UDFF/MRI proton density fat fraction (MR-PDFF) and (2) whether BMI and age are predictive for UDFF. MATERIALS AND METHODS This cross-sectional prospective study included a convenience sample of 46 children referred for clinically indicated abdominal MRI. MR-PDFF and five acquisitions of UDFF were collected. Intraclass correlation coefficient (ICC) and Bland-Altman analysis were used to assess agreement between MR-PDFF and UDFF. Receiver operating characteristic curves were calculated for UDFF prediction of liver steatosis (MR-PDFF ≥ 6%). Multivariable regression was performed to assess BMI and age as predictors for UDFF. RESULTS Twenty-two participants were male, 24 were female, and the mean age was 14 ± 3 (range: 7-18) years. Thirty-six out of 46 participants had normal liver fat fraction <6%, and 10/46 had liver steatosis. UDFF was positively associated with MR-PDFF (ICC 0.92 (95% CI, 0.89-0.96). The mean bias between UDFF and MR-PDFF was 0.64% (95% LOA, -5.3-6.6%). AUROC of UDFF for steatosis was of 0.95 (95% CI, 0.89-0.99). UDFF cutoff of 6% had a sensitivity of 90% (95% CI, 55-99%) and a specificity of 94% (95% CI, 81-0.99%). BMI was an independent predictor of UDFF (correlation: 0.55 (95% CI, 0.35-0.95)). CONCLUSIONS UDFF shows strong agreement with MR-PDFF in children. A UDFF cutoff of 6% provides good sensitivity and specificity for detection of MR-PDFF of ≥ 6%.
Collapse
Affiliation(s)
- Max Zalcman
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA.
| | - Richard A Barth
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Erika Rubesova
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
20
|
Arif-Tiwari H, Porter KK, Kamel IR, Bashir MR, Fung A, Kaplan DE, McGuire BM, Russo GK, Smith EN, Solnes LB, Thakrar KH, Vij A, Wahab SA, Wardrop RM, Zaheer A, Carucci LR. ACR Appropriateness Criteria® Abnormal Liver Function Tests. J Am Coll Radiol 2023; 20:S302-S314. [PMID: 38040457 DOI: 10.1016/j.jacr.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 12/03/2023]
Abstract
Liver function tests are commonly obtained in symptomatic and asymptomatic patients. Various overlapping lab patterns can be seen due to derangement of hepatocytes and bile ducts function. Imaging tests are pursued to identify underlying etiology and guide management based on the lab results. Liver function tests may reveal mild, moderate, or severe hepatocellular predominance and can be seen in alcoholic and nonalcoholic liver disease, acute hepatitis, and acute liver injury due to other causes. Cholestatic pattern with elevated alkaline phosphatase with or without elevated γ-glutamyl transpeptidase can be seen with various causes of obstructive biliopathy. Acute or subacute cholestasis with conjugated or unconjugated hyperbilirubinemia can be seen due to prehepatic, intrahepatic, or posthepatic causes. We discuss the initial and complementary imaging modalities to be used in clinical scenarios presenting with abnormal liver function tests. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Hina Arif-Tiwari
- University of Arizona, Banner University Medical Center, Tucson, Arizona.
| | | | - Ihab R Kamel
- Panel Chair, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Alice Fung
- Oregon Health & Science University, Portland, Oregon
| | - David E Kaplan
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania; American Association for the Study of Liver Diseases
| | - Brendan M McGuire
- University of Alabama at Birmingham, Birmingham, Alabama, Primary care physician
| | | | - Elainea N Smith
- University of Alabama at Birmingham Medical Center, Birmingham, Alabama
| | - Lilja Bjork Solnes
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland; Commission on Nuclear Medicine and Molecular Imaging
| | | | - Abhinav Vij
- New York University Langone Medical Center, New York, New York
| | - Shaun A Wahab
- University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Richard M Wardrop
- Cleveland Clinic, Cleveland, Ohio; American College of Physicians, Hospital Medicine
| | | | - Laura R Carucci
- Specialty Chair, Virginia Commonwealth University Medical Center, Richmond, Virginia
| |
Collapse
|
21
|
Mohit K, Shukla A, Gupta R, Singh PK, Agarwal K, Kumar B. Contrastive Learning Embedded Siamese Neural Network for the Assessment of Fatty Liver. TENCON 2023 - 2023 IEEE REGION 10 CONFERENCE (TENCON) 2023:1261-1265. [DOI: 10.1109/tencon58879.2023.10322413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Kumar Mohit
- MNNIT Allahabad,Department of Electronics and Communication Engineering,Prayagraj,INDIA
| | - Ankit Shukla
- MNNIT Allahabad,Department of Electronics and Communication Engineering,Prayagraj,INDIA
| | - Rajeev Gupta
- MNNIT Allahabad,Department of Electronics and Communication Engineering,Prayagraj,INDIA
| | | | | | - Basant Kumar
- MNNIT Allahabad,Department of Electronics and Communication Engineering,Prayagraj,INDIA
| |
Collapse
|
22
|
Green S, Mouzaki M, Abu Ata N, Trout AT. Prevalence of incidental sonographic findings of hepatic steatosis in children under 4 years of age. Pediatr Radiol 2023; 53:2221-2228. [PMID: 37563321 DOI: 10.1007/s00247-023-05729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The age of onset of nonalcoholic fatty liver disease (NAFLD) and its prevalence in young children is incompletely understood. OBJECTIVE We sought to evaluate the prevalence of ultrasound findings of hepatic steatosis in a cohort of children less than 4 years of age. MATERIALS AND METHODS This is an institutional review board-approved retrospective review of ultrasounds performed on children less than 4 years of age from January 2022 to August 2022 at a single quaternary care center. Two independent blinded reviewers evaluated for qualitative and semi-quantitative findings of hepatic steatosis. Per prior literature, hepatorenal index (HRI)>1.75 was used as a threshold suggestive of hepatic steatosis. Chi-square, Mann-Whitney U test, and logistic regression analyses were performed for univariable and multivariable statistical analyses. Kappa statistics were used to assess agreement between reviewers. RESULTS Eighty-five males and 102 females, median age of 1.1 years (interquartile range 2.1 years), were included. Qualitative findings of hepatic steatosis were seen in 26/187 (14%; 95% CI 10-20%). An HRI>1.75 was present in 15/187 (8%; 95% CI: 5-13%) of examinations, including 11 females and 4 males, and 7/123 (6%) participants <2 years old. Among participants with overweight or obesity, 8/43 (19%) had HRI>1.75 vs. 7/144 (5%) participants without overweight or obesity (P=0.004). Each percentile increase in anthropometrics percentile (weight-to-length or BMI, depending on age) was associated with 22 increased odds of HRI>1.75 (P=0.02). CONCLUSION Prevalence of sonographic findings of hepatic steatosis in an unselected sample of preschool-age children is 8-14%, and are more common in participants with overweight/obesity.
Collapse
Affiliation(s)
- Shannon Green
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Marialena Mouzaki
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nadeen Abu Ata
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
23
|
Barghchi H, Milkarizi N, Belyani S, Norouzian Ostad A, Askari VR, Rajabzadeh F, Goshayeshi L, Ghelichi Kheyrabadi SY, Razavidarmian M, Dehnavi Z, Sobhani SR, Nematy M. Pomegranate (Punica granatum L.) peel extract ameliorates metabolic syndrome risk factors in patients with non-alcoholic fatty liver disease: a randomized double-blind clinical trial. Nutr J 2023; 22:40. [PMID: 37605174 PMCID: PMC10464300 DOI: 10.1186/s12937-023-00869-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome (MS)-related liver disorder that has an increasing prevalence. Thus, the aim of our study is to evaluate the effects of pomegranate peel extract (PP) supplementation on hepatic status and metabolic syndrome risk factors. METHODS In phase one, the hydro-alcoholic extraction of the peel of 750 kg of pomegranate (Punica granatum L.) was performed by the soaking method. Then, in phase two, NAFLD patients received 1500 mg of placebo (n = 37) or pomegranate peel capsules (n = 39) with a 500-kcal deficit diet for 8 weeks. Gastrointestinal intolerance, dietary intake, lipid and glycemic profiles, systolic and diastolic blood pressure, body composition, insulin resistance indexes, and elastography-evaluated NAFLD changes were followed. RESULTS The mean age of participants was 43.1 ± 8.6 years (51.3% female). Following the intervention, the mean body weight (mean changes: -5.10 ± 2.30 kg), waist circumference (-7.57 ± 2.97 cm), body mass index (-1.82 ± 0.85 kg/m2), body fat index (-1.49 ± 0.86), and trunk fat (- 3.93 ± 3.07%), systolic (-0.63 ± 0.29 cmHg) and diastolic (-0.39 ± 0.19 cmHg) blood pressure, total cholesterol (-10.51 ± 0.77 mg/dl), triglyceride (-16.02 ± 1.7 mg/dl), low-density lipoprotein cholesterol (-9.33 ± 6.66 mg/dl; all P < 0.001), fat free mass (- 0.92 ± 0.90 kg; P < 0.003), and fasting blood sugar (-5.28 ± 1.36 mg/dl; P = 0.02) decreased significantly in PP in contrast to the placebo group in the raw model and when adjusted for confounders. Also, high-density lipoprotein cholesterol (5.10 ± 0.36 mg/dl), liver steatosis and stiffness (- 0.30 ± 0.17 and - 0.72 ± 0.35 kPa, respectively, all P < 0.001) improved in the PP group. However, fasting insulin (P = 0.81) and homeostatic model assessment for insulin resistance (HOMA-IR) (P = 0.93) were not significantly different when comparing two groups during the study in the raw and even adjusted models. CONCLUSION In conclusion, 1500 mg pomegranate peel extract along with a weight-loss diet improved metabolic syndrome risk factors and reduced hepatic steatosis in patients with NAFLD after 8 weeks.
Collapse
Affiliation(s)
- Hanieh Barghchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Milkarizi
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Belyani
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Andisheh Norouzian Ostad
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnood Rajabzadeh
- Department of Radiology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Ladan Goshayeshi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Maryam Razavidarmian
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Zahra Dehnavi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Sobhani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Nematy
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Fetzer DT, Pierce TT, Robbin ML, Cloutier G, Mufti A, Hall TJ, Chauhan A, Kubale R, Tang A. US Quantification of Liver Fat: Past, Present, and Future. Radiographics 2023; 43:e220178. [PMID: 37289646 DOI: 10.1148/rg.220178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fatty liver disease has a high and increasing prevalence worldwide, is associated with adverse cardiovascular events and higher long-term medical costs, and may lead to liver-related morbidity and mortality. There is an urgent need for accurate, reproducible, accessible, and noninvasive techniques appropriate for detecting and quantifying liver fat in the general population and for monitoring treatment response in at-risk patients. CT may play a potential role in opportunistic screening, and MRI proton-density fat fraction provides high accuracy for liver fat quantification; however, these imaging modalities may not be suited for widespread screening and surveillance, given the high global prevalence. US, a safe and widely available modality, is well positioned as a screening and surveillance tool. Although well-established qualitative signs of liver fat perform well in moderate and severe steatosis, these signs are less reliable for grading mild steatosis and are likely unreliable for detecting subtle changes over time. New and emerging quantitative biomarkers of liver fat, such as those based on standardized measurements of attenuation, backscatter, and speed of sound, hold promise. Evolving techniques such as multiparametric modeling, radiofrequency envelope analysis, and artificial intelligence-based tools are also on the horizon. The authors discuss the societal impact of fatty liver disease, summarize the current state of liver fat quantification with CT and MRI, and describe past, currently available, and potential future US-based techniques for evaluating liver fat. For each US-based technique, they describe the concept, measurement method, advantages, and limitations. © RSNA, 2023 Online supplemental material is available for this article. Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- David T Fetzer
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Theodore T Pierce
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Michelle L Robbin
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Guy Cloutier
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Arjmand Mufti
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Timothy J Hall
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Anil Chauhan
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - Reinhard Kubale
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| | - An Tang
- From the Department of Radiology (D.T.F.) and Department of Internal Medicine, Division of Digestive and Liver Diseases (A.M.), UT Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas, TX 75390-9316; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (T.T.P.); Department of Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.L.R.); Departments of Radiology and Biomedical Engineering, Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center, Montréal, Quebec, Canada (G.C.); Department of Medical Physics, University of Wisconsin, Madison, Wis (T.J.H.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (A.C.); Department of Diagnostic and Interventional Radiology, University Hospital Homburg/Saar, Homburg, Germany (R.K.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM) and Université de Montréal, Montréal, Quebec, Canada (A.T.)
| |
Collapse
|
25
|
Collin R, Magnin B, Gaillard C, Nicolas C, Abergel A, Buchard B. Prospective study comparing hepatic steatosis assessment by magnetic resonance imaging and four ultrasound methods in 105 successive patients. World J Gastroenterol 2023; 29:3548-3560. [PMID: 37389233 PMCID: PMC10303516 DOI: 10.3748/wjg.v29.i22.3548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is becoming a major health problem, resulting in hepatic, metabolic and cardio-vascular morbidity.
AIM To evaluate new ultrasonographic tools to detect and measure hepatic steatosis.
METHODS We prospectively included 105 patients referred to our liver unit for NAFLD suspicion or follow-up. They underwent ultrasonographic measurement of liver sound speed estimation (SSE) and attenuation coefficient (AC) using Aixplorer MACH 30 (Supersonic Imagine, France), continuous controlled attenuation parameter (cCAP) using Fibroscan (Echosens, France) and standard liver ultrasound with hepato-renal index (HRI) calculation. Hepatic steatosis was then classified according to magnetic resonance imaging proton density fat fraction (PDFF). Receiver operating curve (ROC) analysis was performed to evaluate the diagnostic performance in the diagnosis of steatosis.
RESULTS Most patients were overweight or obese (90%) and had metabolic syndrome (70%). One third suffered from diabetes. Steatosis was identified in 85 patients (81%) according to PDFF. Twenty-one patients (20%) had advanced liver disease. SSE, AC, cCAP and HRI correlated with PDFF, with respective Spearman correlation coefficient of -0.39, 0.42, 0.54 and 0.59 (P < 0.01). Area under the receiver operating characteristic curve (AUROC) for detection of steatosis with HRI was 0.91 (0.83-0.99), with the best cut-off value being 1.3 (Se = 83%, Sp = 98%). The optimal cCAP threshold of 275 dB/m, corresponding to the recent EASL-suggested threshold, had a sensitivity of 72% and a specificity of 80%. Corresponding AUROC was 0.79 (0.66-0.92). The diagnostic accuracy of cCAP was more reliable when standard deviation was < 15 dB/m with an AUC of 0.91 (0.83-0.98). An AC threshold of 0.42 dB/cm/MHz had an AUROC was 0.82 (0.70-0.93). SSE performed moderately with an AUROC of 0.73 (0.62-0.84).
CONCLUSION Among all ultrasonographic tools evaluated in this study, including new-generation tools such as cCAP and SSE, HRI had the best performance. It is also the simplest and most available method as most ultrasound scans are equipped with this module.
Collapse
Affiliation(s)
- Remi Collin
- Gastroenterology and Endoscopy Unit, Dupuytren University Hospital, Limoges 87000, France
- Department of Hepatology and Gastroenterology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Benoit Magnin
- Department of Radiology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Constance Gaillard
- Department of Radiology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Carine Nicolas
- Department of Hepatology and Gastroenterology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Armand Abergel
- Department of Hepatology and Gastroenterology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| | - Benjamin Buchard
- Department of Hepatology and Gastroenterology, Clermont-Ferrand University Hospital, Clermont-Ferrand 63000, France
| |
Collapse
|
26
|
Timaná J, Chahuara H, Basavarajappa L, Basarab A, Hoyt K, Lavarello R. Simultaneous imaging of ultrasonic relative backscatter and attenuation coefficients for quantitative liver steatosis assessment. Sci Rep 2023; 13:8898. [PMID: 37264043 DOI: 10.1038/s41598-023-33964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Prevalence of liver disease is continuously increasing and nonalcoholic fatty liver disease (NAFLD) is the most common etiology. We present an approach to detect the progression of liver steatosis based on quantitative ultrasound (QUS) imaging. This study was performed on a group of 55 rats that were subjected to a control or methionine and choline deficient (MCD) diet known to induce NAFLD. Ultrasound (US) measurements were performed at 2 and 6 weeks. Thereafter, animals were humanely euthanized and livers excised for histological analysis. Relative backscatter and attenuation coefficients were simultaneously estimated from the US data and envelope signal-to-noise ratio was calculated to train a regression model for: (1) fat fraction percentage estimation and (2) performing classification according to Brunt's criteria in grades (0 <5%; 1, 5-33%; 2, >33-66%; 3, >66%) of liver steatosis. The trained regression model achieved an [Formula: see text] of 0.97 (p-value < 0.01) and a RMSE of 3.64. Moreover, the classification task reached an accuracy of 94.55%. Our results suggest that in vivo QUS is a promising noninvasive imaging modality for the early assessment of NAFLD.
Collapse
Affiliation(s)
- José Timaná
- Laboratorio de Imágenes Médicas, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Hector Chahuara
- Laboratorio de Imágenes Médicas, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Lokesh Basavarajappa
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Adrian Basarab
- INSA-Lyon, UCBL, CNRS, Inserm, CREATIS UMR 5220 U1294, Université de Lyon, Villeurbanne, France
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Roberto Lavarello
- Laboratorio de Imágenes Médicas, Pontificia Universidad Católica del Perú, Lima, Peru.
| |
Collapse
|
27
|
Jang W, Song JS. Non-Invasive Imaging Methods to Evaluate Non-Alcoholic Fatty Liver Disease with Fat Quantification: A Review. Diagnostics (Basel) 2023; 13:diagnostics13111852. [PMID: 37296703 DOI: 10.3390/diagnostics13111852] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatic steatosis without specific causes (e.g., viral infection, alcohol abuse, etc.) is called non-alcoholic fatty liver disease (NAFLD), which ranges from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), fibrosis, and NASH-related cirrhosis. Despite the usefulness of the standard grading system, liver biopsy has several limitations. In addition, patient acceptability and intra- and inter-observer reproducibility are also concerns. Due to the prevalence of NAFLD and limitations of liver biopsies, non-invasive imaging methods such as ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) that can reliably diagnose hepatic steatosis have developed rapidly. US is widely available and radiation-free but cannot examine the entire liver. CT is readily available and helpful for detection and risk classification, significantly when analyzed using artificial intelligence; however, it exposes users to radiation. Although expensive and time-consuming, MRI can measure liver fat percentage with magnetic resonance imaging proton density fat fraction (MRI-PDFF). Specifically, chemical shift-encoded (CSE)-MRI is the best imaging indicator for early liver fat detection. The purpose of this review is to provide an overview of each imaging modality with an emphasis on the recent progress and current status of liver fat quantification.
Collapse
Affiliation(s)
- Weon Jang
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Ji Soo Song
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| |
Collapse
|
28
|
Zeng KY, Bao WYG, Wang YH, Liao M, Yang J, Huang JY, Lu Q. Non-invasive evaluation of liver steatosis with imaging modalities: New techniques and applications. World J Gastroenterol 2023; 29:2534-2550. [PMID: 37213404 PMCID: PMC10198053 DOI: 10.3748/wjg.v29.i17.2534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
In the world, nonalcoholic fatty liver disease (NAFLD) accounts for majority of diffuse hepatic diseases. Notably, substantial liver fat accumulation can trigger and accelerate hepatic fibrosis, thus contributing to disease progression. Moreover, the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases. Therefore, early detection and quantified measurement of hepatic fat content are of great importance. Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis. However, liver biopsy has several limitations, namely, its invasiveness, sampling error, high cost and moderate intraobserver and interobserver reproducibility. Recently, various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content, including ultrasound- or magnetic resonance-based methods. These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content, which is useful for longitudinal follow-up. In this review, we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.
Collapse
Affiliation(s)
- Ke-Yu Zeng
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wu-Yong-Ga Bao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yun-Han Wang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Min Liao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Yang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yan Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiang Lu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
29
|
Treiber G, Guilleux A, Huynh K, Bonfanti O, Flaus-Furmaniuk A, Couret D, Mellet N, Bernard C, Le-Moullec N, Doray B, Jéru I, Maiza JC, Domun B, Cogne M, Meilhac O, Vigouroux C, Meikle PJ, Nobécourt E. Lipoatrophic diabetes in familial partial lipodystrophy type 2: From insulin resistance to diabetes. DIABETES & METABOLISM 2023; 49:101409. [PMID: 36400409 DOI: 10.1016/j.diabet.2022.101409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
AIM Subjects with Familial Partial Lipodystrophy type 2 (FPLD2) are at high risk to develop diabetes. To better understand the natural history and variability of this disease, we studied glucose tolerance, insulin response to an oral glucose load, and metabolic markers in the largest cohort to date of subjects with FPLD2 due to the same LMNA variant. METHODS A total of 102 patients aged > 18 years, with FPLD2 due to the LMNA 'Reunionese' variant p.(Thr655Asnfs*49) and 22 unaffected adult relatives with normal glucose tolerance (NGT) were enrolled. Oral Glucose Tolerance Tests (OGTT) with calculation of derived insulin sensitivity and secretion markers, and measurements of HbA1c, C-reactive protein, leptin, adiponectin and lipid profile were performed. RESULTS In patients with FPLD2: 65% had either diabetes (41%) or prediabetes (24%) despite their young age (median: 39.5 years IQR 29.0-50.8) and close-to-normal BMI (median: 25.5 kg/m2 IQR 23.1-29.4). Post-load OGTT values revealed insulin resistance and increased insulin secretion in patients with FPLD2 and NGT, whereas patients with diabetes were characterized by decreased insulin secretion. Impaired glucose tolerance with normal fasting glucose was present in 86% of patients with prediabetes. Adiponectin levels were decreased in all subjects with FPLD2 and correlated with insulin sensitivity markers. CONCLUSIONS OGTT reveals early alterations of glucose and insulin metabolism in patients with FPLD2, and should be systematically performed before excluding a diagnosis of prediabetes or diabetes to adapt medical care. Decreased adiponectin is an early marker of the disease. Adiponectin replacement therapy warrants further study in FPLD2.
Collapse
Affiliation(s)
- Guillaume Treiber
- Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France; University of La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de, La Réunion, France
| | - Alice Guilleux
- Centre d'Investigation Clinique - Epidémiologie Clinique (CIC-EC) U1410 INSERM, Centre Hospitalo-Universitaire de la Réunion, La Réunion, France
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Oriane Bonfanti
- Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
| | - Ania Flaus-Furmaniuk
- Department of Endocrinology, Diabetes and Nutrition, Felix-Guyon, Centre Hospitalo-Universitaire de la Réunion, Saint-Denis, La Réunion, France
| | - David Couret
- University of La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de, La Réunion, France; Neurocritical Care Unit, Centre Hospitalo-Universitaire de la Réunion, University of La Réunion, BP 350, Saint Pierre, 97448, la Réunion, France
| | - Natalie Mellet
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Céline Bernard
- Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
| | - Nathalie Le-Moullec
- Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
| | - Berenice Doray
- Genetic Department, Felix-Guyon, Centre Hospitalo-Universitaire de la Réunion, Saint-Denis, La Réunion, France
| | - Isabelle Jéru
- Sorbonne Université, Inserm UMR S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, AP-HP, Pitié-Salpêtrière Hospital, Department of Medical Genetics, DMU BioGeM, Paris, France
| | - Jean-Christophe Maiza
- Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
| | - Bhoopendrasing Domun
- Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
| | - Muriel Cogne
- Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
| | - Olivier Meilhac
- University of La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de, La Réunion, France
| | - Corinne Vigouroux
- Sorbonne Université, Inserm UMR S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, AP-HP, Saint-Antoine Hospital, Genetics, Molecular Biology and Endocrinology Departments, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - Estelle Nobécourt
- Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France; University of La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de, La Réunion, France; Centre d'Investigation Clinique - Epidémiologie Clinique (CIC-EC) U1410 INSERM, Centre Hospitalo-Universitaire de la Réunion, La Réunion, France.
| |
Collapse
|
30
|
Kjaergaard M, Lindvig KP, Hansen CD, Detlefsen S, Krag A, Thiele M. Hepatorenal Index by B-Mode Ratio Versus Imaging and Fatty Liver Index to Diagnose Steatosis in Alcohol-Related and Nonalcoholic Fatty Liver Disease. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:487-496. [PMID: 35475550 PMCID: PMC10084348 DOI: 10.1002/jum.15991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 05/12/2023]
Abstract
OBJECTIVES We aimed to evaluate the accuracy of the hepatorenal index by B-mode ratio to diagnose hepatic steatosis, compared to ultrasound steatosis score, controlled attenuation parameter, and the fatty liver index using histology as the gold standard. METHODS We prospectively included participants with alcohol-related or nonalcoholic fatty liver disease for same-day noninvasive investigations and liver biopsy. RESULTS We included 137 participants, 72% male, median age 60 years (53-65) and body mass index 32 kg/m2 (28-38). Eighty percent had steatosis (S0/S1/S2/S3 = 20/37/24/19%). B-mode ratio had moderate diagnostic accuracy for any steatosis (≥S1, area under the receiver operating characteristics curve [AUROC] = 0.79; 95% confidence interval 0.70-0.88), significant steatosis (≥S2, AUROC = 0.76; 0.66-0.85), and severe steatosis (=S3, AUROC = 0.74; 0.62-0.86), independent of disease etiology. The cutoff values to rule-out and rule-in any steatosis were 1.09 and 1.45. While B-mode ratio and controlled attenuation parameter correlated poorly, their diagnostic accuracies were comparable to each other and to ultrasound steatosis scoring. Fatty liver index did not differ from B-mode ratio in detecting any steatosis but had poor accuracy to detect higher steatosis grades. B-mode ratio measurements failed in 12% of patients, compared to 1% for ultrasound steatosis scoring and 2% for controlled attenuation parameter. CONCLUSION The hepatorenal index by B-mode ratio diagnose steatosis with moderate accuracy in patients with alcohol-related or nonalcoholic fatty liver disease, comparable to B-mode ultrasound steatosis scoring and controlled attenuation parameter. However, its clinical use is limited by a high failure rate.
Collapse
Affiliation(s)
- Maria Kjaergaard
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark
- Institute of Clinical Research, University of Southern DenmarkOdenseDenmark
| | - Katrine Prier Lindvig
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark
- Institute of Clinical Research, University of Southern DenmarkOdenseDenmark
| | - Camilla Dalby Hansen
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark
- Institute of Clinical Research, University of Southern DenmarkOdenseDenmark
| | - Sönke Detlefsen
- Institute of Clinical Research, University of Southern DenmarkOdenseDenmark
- Department of PathologyOdense University HospitalOdenseDenmark
| | - Aleksander Krag
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark
- Institute of Clinical Research, University of Southern DenmarkOdenseDenmark
| | - Maja Thiele
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark
- Institute of Clinical Research, University of Southern DenmarkOdenseDenmark
| |
Collapse
|
31
|
Wear KA, Han A, Rubin JM, Gao J, Lavarello R, Cloutier G, Bamber J, Tuthill T. US Backscatter for Liver Fat Quantification: An AIUM-RSNA QIBA Pulse-Echo Quantitative Ultrasound Initiative. Radiology 2022; 305:526-537. [PMID: 36255312 DOI: 10.1148/radiol.220606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is believed to affect one-third of American adults. Noninvasive methods that enable detection and monitoring of NAFLD have the potential for great public health benefits. Because of its low cost, portability, and noninvasiveness, US is an attractive alternative to both biopsy and MRI in the assessment of liver steatosis. NAFLD is qualitatively associated with enhanced B-mode US echogenicity, but visual measures of B-mode echogenicity are negatively affected by interobserver variability. Alternatively, quantitative backscatter parameters, including the hepatorenal index and backscatter coefficient, are being investigated with the goal of improving US-based characterization of NAFLD. The American Institute of Ultrasound in Medicine and Radiological Society of North America Quantitative Imaging Biomarkers Alliance are working to standardize US acquisition protocols and data analysis methods to improve the diagnostic performance of the backscatter coefficient in liver fat assessment. This review article explains the science and clinical evidence underlying backscatter for liver fat assessment. Recommendations for data collection are discussed, with the aim of minimizing potential confounding effects associated with technical and biologic variables.
Collapse
Affiliation(s)
- Keith A Wear
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Aiguo Han
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Jonathan M Rubin
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Jing Gao
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Roberto Lavarello
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Guy Cloutier
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Jeffrey Bamber
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Theresa Tuthill
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| |
Collapse
|
32
|
Bischoff SC, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2022; 41:2364-2405. [PMID: 35970666 DOI: 10.1016/j.clnu.2022.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for ESPEN guidelines, following the Scottish Intercollegiate Guidelines Network (SIGN) grading system (A, B, 0, and good practice point (GPP)). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France; Department of Clinical Nutrition, Paul-Brousse-Hospital, Villejuif, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim GGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
33
|
Moret A, Boursier J, Houssel Debry P, Riou J, Crouan A, Dubois M, Michalak Provost S, Aubé C, Paisant A. Evaluation of the Hepatorenal B-Mode Ratio and the "Controlled Attenuation Parameter" for the Detection and Grading of Steatosis. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2022; 43:479-487. [PMID: 32992377 DOI: 10.1055/a-1233-2290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
PURPOSE The aim of this study was to evaluate the hepatorenal index ratio of Supersonic Imagine (B-mode ratio) and the controlled attenuation parameter (CAP) of FibroScan for the noninvasive diagnosis and grading of steatosis. MATERIALS AND METHODS Two centers prospectively included patients who underwent liver biopsy, B-mode ratio and CAP evaluation all on the same day between June 2017 and July 2019. MRI and histological morphometry were also performed in center 1. Histology (classic semiquantitative score and morphometry) was used as the reference. RESULTS Concerning the B-mode ratio, the AUROCs for ≥ S1, ≥ S2 and ≥ S3 were respectively 0.896 ± 0.20, 0.775 ± 0.30 and 0.729 ± 0.39 with the best cut-off values being 1.22 for ≥ S1 (Se = 76.4 %, Sp = 93.2 %), 1.42 for ≥ S2 (Se = 70.2 %, Sp = 71.2 %) and 1.54 for ≥ S3 (Se = 68.4 %, Sp = 69.8 %). The correlation between the B-mode ratio and morphometry was moderate (Rs = 0.575, p < 0.001) and the correlation between the B-mode ratio and MRI was good (Rs = 0.613, p < 0.001). Concerning the CAP, the AUROCs for ≥ S1, ≥ S2 and ≥ S3 were 0.926 ± 0.18, 0.760 ± 0.30 and 0.701 ± 0.40, respectively, with the best cut-off values being 271 dB/m for ≥ S1 (Se = 84 %, Sp = 88.2 %), 331 dB/m for ≥ S2 (Se = 64.5 %, Sp = 74.7 %) and 355 dB/m for ≥ S3 (Se = 55.3 %, Sp = 75.1 %). The correlation between the CAP and morphometry and between the CAP and MRI was moderate in both cases (Rs = 0.526, p < 0.001 and Rs = 0.397, p < 0.001, respectively). The B-mode ratio was better at ruling in and the CAP was better at ruling out the disease. CONCLUSION B-mode ratio and CAP show similar and good performance for the diagnosis of steatosis (≥ S1). However, both techniques are limited with respect to differentiating mild to moderate (≥ S2) or severe (≥ S3) steatosis.
Collapse
Affiliation(s)
- Antoine Moret
- Department of Radiology, University Hospital Centre Angers, France
| | - Jérome Boursier
- Department of Hepatology, University Hospital Centre Angers, France
- HIFIH Laboratory, EA 3859, University of Angers, France
| | | | - Jérémie Riou
- UFR Santé, 49000 Angers, France; MINT UMR INSERM 1066, CNRS 6021, University of Angers, France
| | - Anne Crouan
- Department of Radiology, University Hospital Centre Angers, France
| | - Marine Dubois
- Department of Radiology, University Hospital Centre Rennes, France
| | | | - Christophe Aubé
- Department of Radiology, University Hospital Centre Angers, France
- HIFIH Laboratory, EA 3859, University of Angers, France
| | - Anita Paisant
- Department of Radiology, University Hospital Centre Angers, France
- HIFIH Laboratory, EA 3859, University of Angers, France
| |
Collapse
|
34
|
Bozic D, Podrug K, Mikolasevic I, Grgurevic I. Ultrasound Methods for the Assessment of Liver Steatosis: A Critical Appraisal. Diagnostics (Basel) 2022; 12:2287. [PMID: 36291976 PMCID: PMC9600709 DOI: 10.3390/diagnostics12102287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 08/10/2023] Open
Abstract
The prevalence of the non-alcoholic fatty liver disease has reached major proportions, being estimated to affect one-quarter of the global population. The reference techniques, which include liver biopsy and the magnetic resonance imaging proton density fat fraction, have objective practical and financial limitations to their routine use in the detection and quantification of liver steatosis. Therefore, there has been a rising necessity for the development of new inexpensive, widely applicable and reliable non-invasive diagnostic tools. The controlled attenuation parameter has been considered the point-of-care technique for the assessment of liver steatosis for a long period of time. Recently, many ultrasound (US) system manufacturers have developed proprietary software solutions for the quantification of liver steatosis. Some of these methods have already been extensively tested with very good performance results reported, while others are still under evaluation. This manuscript reviews the currently available US-based methods for diagnosing and grading liver steatosis, including their classification and performance results, with an appraisal of the importance of this armamentarium in daily clinical practice.
Collapse
Affiliation(s)
- Dorotea Bozic
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Kristian Podrug
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology and Hepatology, University Hospital Center Rijeka, Krešimirova 42, 51 000 Rijeka, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| |
Collapse
|
35
|
Bischoff SC, Barazzoni R, Busetto L, Campmans‐Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon‐Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint European Society for Clinical Nutrition and Metabolism / United European Gastroenterology guideline. United European Gastroenterol J 2022; 10:663-720. [PMID: 35959597 PMCID: PMC9486502 DOI: 10.1002/ueg2.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for European Society for Clinical Nutrition and Metabolism guidelines, following the Scottish Intercollegiate Guidelines Network grading system (A, B, 0, and good practice point [GPP]). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational SciencesUniversity of TriesteTriesteItaly
| | - Luca Busetto
- Department of MedicineUniversity of PadovaPadovaItaly
| | - Marjo Campmans‐Kuijpers
- Department of Gastroenterology and HepatologyUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Vincenzo Cardinale
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Irit Chermesh
- Department of GastroenterologyRambam Health Care CampusAffiliated with Technion‐Israel Institute of TechnologyHaifaIsrael
| | - Ahad Eshraghian
- Department of Gastroenterology and HepatologyAvicenna HospitalShirazIran
| | - Haluk Tarik Kani
- Department of GastroenterologyMarmara UniversitySchool of MedicineIstanbulTurkey
| | - Wafaa Khannoussi
- Hepato‐Gastroenterology DepartmentMohammed VI University HospitalOujdaMorocco
- Laboratoire de Recherche des Maladies Digestives (LARMAD)Mohammed the First UniversityOujdaMorocco
| | - Laurence Lacaze
- Department of NutritionRennes HospitalRennesFrance
- Department of general surgeryMantes‐la‐Jolie HospitalFrance
- Department of clinical nutritionPaul Brousse‐Hospital, VillejuifFrance
| | - Miguel Léon‐Sanz
- Department of Endocrinology and NutritionUniversity Hospital Doce de OctubreMedical SchoolUniversity ComplutenseMadridSpain
| | - Juan M. Mendive
- La Mina Primary Care Academic Health Centre. Catalan Institute of Health (ICS)University of BarcelonaBarcelonaSpain
| | - Michael W. Müller
- Department of General and Visceral SurgeryRegionale Kliniken HoldingKliniken Ludwigsburg‐Bietigheim gGmbHBietigheim‐BissingenGermany
| | - Johann Ockenga
- Medizinische Klinik IIKlinikum Bremen‐MitteBremenGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCharité Universitätsmedizin BerlinCampus Virchow‐Klinikum and Campus Charité MitteBerlinGermany
| | - Anders Thorell
- Department of Clinical ScienceDanderyds HospitalKarolinska InstitutetStockholmSweden
- Department of SurgeryErsta HospitalStockholmSweden
| | - Darija Vranesic Bender
- Department of Internal MedicineUnit of Clinical NutritionUniversity Hospital Centre ZagrebZagrebCroatia
| | - Arved Weimann
- Department of General, Visceral and Oncological SurgerySt. George HospitalLeipzigGermany
| | - Cristina Cuerda
- Departamento de MedicinaUniversidad Complutense de MadridNutrition UnitHospital General Universitario Gregorio MarañónMadridSpain
| |
Collapse
|
36
|
Petzold G. Role of Ultrasound Methods for the Assessment of NAFLD. J Clin Med 2022; 11:jcm11154581. [PMID: 35956196 PMCID: PMC9369745 DOI: 10.3390/jcm11154581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. The prevalence in patients with type 2 diabetes mellitus is between 55–80%. The spectrum of NALFD ranges from simple steatosis to aggressive steatohepatitis with potentially progressive liver fibrosis up to cirrhosis and hepatocellular carcinoma. In clinical practice, there are two important aims: First to make the diagnosis of NAFLD, and second, to identify patients with advanced fibrosis, because extent of fibrosis is strongly associated with overall mortality, cardiovascular disease, hepatocellular carcinoma, and extrahepatic malignancy. Histology by liver biopsy can deliver this information, but it is an invasive procedure with rare, but potentially severe, complications. Therefore, non-invasive techniques were developed to stage fibrosis. Ultrasound is the primary imaging modality in the assessment of patients with confirmed or suspected NAFLD. This narrative review focus on different ultrasound methods to detect and graduate hepatic steatosis and to determine grade of fibrosis using elastography-methods, such as transient elastography and 2-dimensional shear wave elastography in patients with NAFLD. Particular attention is paid to the application and limitations in overweight patients in clinical practice. Finally, the role of B-mode ultrasound in NAFLD patients to screen for hepatocellular carcinoma is outlined.
Collapse
Affiliation(s)
- Golo Petzold
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
37
|
Srigandan S, Zelesco M, Abbott S, Welman CJ. Correlation between hepatorenal index and attenuation imaging for assessing hepatic steatosis. Australas J Ultrasound Med 2022; 25:107-115. [PMID: 35978731 PMCID: PMC9351430 DOI: 10.1002/ajum.12297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 08/06/2023] Open
Abstract
INTRODUCTION Hepatic steatosis screening is required to assess high-risk populations, identify those for intervention, monitor response and prevent disease progression and complications. Liver biopsy and magnetic resonance imaging proton density fat fraction are current gold standards, but are limited by biopsy risk factors, patient tolerance and cost. Non-invasive, cost-effective, semi-quantitative and quantitative ultrasound assessment exists. The aim of this study was to assess the correlation between the semi-quantitative hepatorenal index (HRI) to assess hepatic steatosis using the quantitative attenuation imaging (ATI) as a reference standard, in adults with varied suspected liver pathologies. METHODS Data were collected prospectively between April 2019 and March 2020 at a tertiary institution on any patient >18 years referred to US assessment of suspected liver pathology. The only exclusion criteria were absent or invalid HRI or ATI measurements. Three hundred fifty eight patients were included. RESULTS There was a significant weak positive correlation between HRI and ATI (r = 0.351, P < 0.001) and between HRI steatosis grade (SG) and ATI SG (r = 0.329, P < 0.001), using previously established cut-off values. With ATI as the reference standard, there was no significant correlation between HRI and hepatic steatosis within steatosis grades, nor for no (SG = 0) or any (SG > 0) hepatic steatosis. CONCLUSIONS Our study in a typical heterogeneous clinical population suggests the semi-quantitative HRI is of limited use in hepatic steatosis imaging. As HRI is the objective measure of the subjective brightness (B)-mode assessment, this imaging feature may not be as reliable as previously thought. Quantitative ATI may be the preferred non-invasive technique for hepatic steatosis assessment.
Collapse
Affiliation(s)
- Shrivuthsun Srigandan
- Department of Medical ImagingFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Marilyn Zelesco
- Department of Medical ImagingFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Steven Abbott
- Department of Medical ImagingFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Christopher J Welman
- Department of Medical ImagingFiona Stanley HospitalMurdochWestern AustraliaAustralia
| |
Collapse
|
38
|
Gatos I, Drazinos P, Yarmenitis S, Theotokas I, Koskinas J, Koullias E, Mitranou A, Manesis E, Zoumpoulis PS. Liver Ultrasound Attenuation: An Ultrasound Attenuation Index for Liver Steatosis Assessment. Ultrasound Q 2022; 38:124-132. [PMID: 35353797 DOI: 10.1097/ruq.0000000000000605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) is the most widespread chronic liver disease type in the Western countries. Ultrasound (US) is used for NAFLD and hepatic steatosis (HS) grading. The most popular US method for NAFLD assessment is the hepatorenal index (HRI), but because of its limitations, other noninvasive methods have been developed. The Resona 7 US system has recently incorporated an US attenuation-related quantitative feature, liver ultrasound attenuation (LiSA), for HS estimation. The purpose of this study is to compare LiSA's and HRI's performance on NAFLD assessment. METHODS A total of 159 NAFLD patients having a magnetic resonance imaging-proton density fat fraction (MRI-PDFF) examination were examined by 2 radiologists, who performed LiSA and HRI measurements in the liver. Correlation of LiSA's and HRI's measurements with MRI-PDFF values was calculated through Pearson correlation coefficient (PCC). To further investigate the performance of LiSA and HRI, optimum cutoffs, provided by the literature, were used to correspond HS grades to MRI-PDFF results. Moreover, a receiver operating characteristic (ROC) analysis on LiSA measurements and steatosis grades was performed. RESULTS Magnetic resonance imaging-PDFF was better correlated with LiSA (PCC = 0.80) than HRI (PCC = 0.67). Receiver operating characteristic analysis showed better performance range for LiSA (77.8%-91.8%) than for HRI (72.8%-85.4%) on all HS grades for all studies used for corresponding MRI-PDFF values to HS grades. CONCLUSIONS The results indicate that LiSA is more accurate than HRI in HS differentiation and can lead to more accurate grading of HS on NAFLD patients.
Collapse
|
39
|
Diagnostic performance of ultrasound hepatorenal index for the diagnosis of hepatic steatosis in children. Pediatr Radiol 2022; 52:1306-1313. [PMID: 35229183 DOI: 10.1007/s00247-022-05313-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is increasing in prevalence and is the most common cause of pediatric chronic liver disease. Objective US-based measures of hepatic steatosis are an unmet clinical need. OBJECTIVE To evaluate the diagnostic performance of quantitative measurement of liver echogenicity (hepatorenal index, or HRI) for hepatic steatosis in a pediatric cohort. MATERIALS AND METHODS We identified pediatric patients (≤18 years old) who underwent both clinically indicated abdominal US and MRI with liver proton-density fat fraction (PDFF) within the 3-month period during the timeframe of July 2015-April 2020 (n=69). Using ImageJ, we drew small circular regions of interest (ROIs) and large freehand ROIs in the liver and right kidney on single longitudinal and transverse images to measure echogenicity (arbitrary units). We calculated four HRIs (liver-to-kidney ratio) as well as liver histogram features. Five pediatric radiologists independently reported the qualitative presence/absence of hepatic steatosis. We used Pearson correlation (r) to assess associations and receiver operating characteristic (ROC) curve analyses to evaluate diagnostic performance. Multivariable logistic regression was used to further assess relationships. RESULTS Mean patient age was 11.6 (standard deviation [SD] 4.7, range 0.3-18) years; 27/69 (39.1%) were female. Mean PDFF was 12.5% (SD 13.1%, range 1-48%); 34/69 (49.3%) patients were classified as having hepatic steatosis by MRI (PDFF ≥6%). There were significant, positive correlations between all four US HRI methods and PDFF (r=0.51-0.61); longitudinal freehand ROIs exhibited the strongest correlation (r=0.61; P<0.0001). Longitudinal freehand ROI HRI had moderate diagnostic performance for the binary presence of steatosis (area under the curve [AUC]=0.80, P<0.0001), with an optimal cut-off value >1.75 (sensitivity=70.6%, specificity=77.1%). Radiologists' sensitivity for detecting hepatic steatosis ranged from 79.4% to 97.1%, and specificity ranged from 91.2% to 100%. Significant multivariable predictors of PDFF ≥6% included HRI (P=0.002; odds ratio [OR]=34.2), body mass index (BMI) percentile (P=0.005; OR=1.06), and liver gray-scale echogenicity standard deviation (P=0.02; OR=0.79) (receiver operating characteristic AUC = 0.92). CONCLUSION Quantitative US HRI has moderate diagnostic performance for detecting liver fat in children and positively correlates with MRI PDFF. Incorporation of BMI-percentile and gray-scale echogenicity standard deviation improved diagnostic performance.
Collapse
|
40
|
Cioni D, Gabelloni M, Sanguinetti A, De Rosa L, Aringhieri G, Tintori R, Candita G, Febi M, Faita F, Lencioni R, Neri E. A New SteatoScore in the Evaluation of Non-Alcoholic Liver Disease in Oncologic Patients. Front Oncol 2022; 12:873524. [PMID: 35574336 PMCID: PMC9093140 DOI: 10.3389/fonc.2022.873524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The aims of this study were to evaluate the reproducibility of a new multi-parametric steatoscore (new SteatoScore) in oncologic patients with non-alcoholic fatty liver disease (NAFLD) and to compare it with computed tomography (CT). Materials and Methods Fifty-one (31 men, 20 women) oncologic patients, with a mean age and weight of 63.9 years and 78.33 kg, respectively, were retrospectively enrolled in the study. Patients underwent ultrasound (US) and computed tomography (CT) examinations as part of their oncologic follow-up protocol. US examinations were performed by using a 3.5-MHz convex probe. During the US examination, three standardized clips were obtained in each patient. Two operators performed all measurements, one of whom repeated the processing twice in 1 year. Hepatic/renal ratio (HR), attenuation rate (AR), diaphragm visualization (DV), hepatic/portal vein ratio (HPV), and portal vein wall visualization (PVW) were acquired and calculated by using Matlab and inserted in a multi-parametric algorithm called new SteatoScore. On unenhanced CT scan, hepatic attenuation (HA), liver-spleen difference (L-S), and liver/spleen ratio (L/S) were measured by placement of a region of interest (ROI) within liver and spleen parenchyma, avoiding areas with vessels and biliary ducts. Results The intra-observer variability was greater than the inter-observer one, with intraclass correlation coefficient (ICC) values of 0.94 and 0.97, respectively. Correlation between single US and CT parameters provided an agreement in no case exceeding 50%. New SteatoScore showed high reproducibility, and high coefficient of correlation with L-S (R = -0.64; p < 0.0001) and L/S (R = -0.62; p < 0.0001) at CT. Conclusion New SteatoScore has a high reproducibility and shows a good correlation with unenhanced CT in evaluation of oncologic patients with NAFLD.
Collapse
Affiliation(s)
- Dania Cioni
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Pisa, Italy
| | - Michela Gabelloni
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Andrea Sanguinetti
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Laura De Rosa
- Hepatology Unit, Pisa University Hospital, Pisa, Italy
| | - Giacomo Aringhieri
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Rachele Tintori
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Gianvito Candita
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Maria Febi
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Francesco Faita
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Riccardo Lencioni
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Pisa, Italy
| | - Emanuele Neri
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
NAFLD or MAFLD: That is the conundrum. Hepatobiliary Pancreat Dis Int 2022; 21:103-105. [PMID: 35125337 DOI: 10.1016/j.hbpd.2022.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
|
42
|
Pantaleão ACS, de Castro MP, Meirelles Araujo KSF, Campos CFF, da Silva ALA, Manso JEF, Machado JC. Ultrasound biomicroscopy for the assessment of early-stage nonalcoholic fatty liver disease induced in rats by a high-fat diet. Ultrasonography 2022; 41:750-760. [PMID: 35923118 PMCID: PMC9532208 DOI: 10.14366/usg.21182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/24/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE The aim of this study was to assess the ability of ultrasound biomicroscopy (UBM) to diagnose the initial stages of nonalcoholic fatty liver disease (NAFLD) in a rat model. METHODS Eighteen male Wistar rats were allocated to control or experimental groups. A high-fat diet (HFD) with 20% fructose and 2% cholesterol, resembling a common Western diet, was fed to animals in the experimental groups for up to 16 weeks; those in the control group received a regular diet. A 21 MHz UBM system was used to acquire B-mode images at specific times: baseline (T0), 10 weeks (T10), and 16 weeks (T16). The sonographic hepatorenal index (SHRI), based on the average ultrasound image gray-level intensities from the liver parenchyma and right renal cortex, was determined at T0, T10, and T16. The liver specimen histology was classified using the modified Nonalcoholic Steatohepatitis Clinical Research Network NAFLD activity scoring system. RESULTS The livers in the animals in the experimental groups progressed from sinusoidal congestion and moderate macro- and micro-vesicular steatosis to moderate steatosis and frequent hepatocyte ballooning. The SHRI obtained in the experimental group animals at T10 and T16 was significantly different from the SHRI of pooled control group. No significant difference existed between the SHRI in animals receiving HFD between T10 and T16. CONCLUSION SHRI measurement using UBM may be a promising noninvasive tool to characterize early-stage NAFLD in rat models.
Collapse
Affiliation(s)
- Antonio Carlos Soares Pantaleão
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - André Luiz Alves da Silva
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Eduardo Ferreira Manso
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Carlos Machado
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Biomedical Engineering Program-COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Hirooka M, Koizumi Y, Sunago K, Nakamura Y, Hirooka K, Watanabe T, Yoshida O, Tokumoto Y, Abe M, Hiasa Y. Efficacy of B-mode ultrasound-based attenuation for the diagnosis of hepatic steatosis: a systematic review/meta-analysis. J Med Ultrason (2001) 2022; 49:199-210. [PMID: 35239088 DOI: 10.1007/s10396-022-01196-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 10/25/2022]
Abstract
The accuracy of attenuation coefficients and B-mode ultrasound for distinguishing between S0 (healthy, < 5% fat) and S1-3 (steatosis ≥ 5%) livers compared to a controlled attenuation parameter is unclear. This meta-analysis aimed to comprehensively assess the diagnostic performance of B-mode ultrasound imaging for evaluating steatosis of ≥ 5%. We searched the PubMed, Embase, and Web of Science databases for studies on the accuracy of B-mode ultrasound for differentiating S0 from S1-3 in adults with chronic liver disease. A bivariate random-effects model was performed to estimate the pooled sensitivity, specificity, positive (PLR) and negative likelihood ratios (NLR), and diagnostic odds ratios (DORs). Subgroup analyses by attenuation coefficient, conventional B-mode ultrasound findings, and B-mode ultrasound findings without semi-quantification methods were performed. Liver steatosis was scored as follows: S0, < 5%; S1, 5-33%; S2, 33-66%; and S3, > 66%. Nineteen studies involving 3240 patients were analyzed. The pooled sensitivity and specificity of B-mode ultrasound for detecting S1 were 0.70 (95% confidence interval [CI], 0.63-0.77) and 0.86 (95% CI 0.82-0.89), respectively. The pooled PLR, NLR, and DOR were 4.90 (95% CI 3.69-6.51), 0.35 (95% CI 0.27- 0.44), and 14.1 (95% CI 8.7-23.0), respectively. The diagnostic accuracy was better in patients with attenuation coefficients (area under the curve [AUC], 0.89; sensitivity, 0.75; specificity, 0.86) than in those with conventional B-mode findings (AUC, 0.80; sensitivity, 0.59; specificity, 0.83). In particular, the diagnostic value was better when the attenuation coefficient guided by B-mode ultrasound was utilized. To screen patients with steatosis of ≥ 5%, attenuation coefficient should be used.
Collapse
Affiliation(s)
- Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Tōon, Ehime, 791-0295, Japan.
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Tōon, Ehime, 791-0295, Japan
| | - Kotarou Sunago
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Tōon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Tōon, Ehime, 791-0295, Japan
| | - Kana Hirooka
- Department of Gastroenterology and Metabology, National Hospital Organization Ehime Medical Center, Tōon, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Tōon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Tōon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Tōon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Tōon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Tōon, Ehime, 791-0295, Japan
| |
Collapse
|
44
|
Kim JW, Lee CH, Kim BH, Lee YS, Hwang SY, Park BN, Park YS. Ultrasonographic index for the diagnosis of non-alcoholic steatohepatitis in patients with non-alcoholic fatty liver disease. Quant Imaging Med Surg 2022; 12:1815-1829. [PMID: 35284276 PMCID: PMC8899945 DOI: 10.21037/qims-21-895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 08/03/2023]
Abstract
BACKGROUND Liver biopsy is a gold standard for the diagnosis of non-alcoholic steatohepatitis (NASH), but has several disadvantages including invasiveness, high cost, and sampling error. Ultrasonography (US) is a noninvasive imaging modality widely used in non-alcoholic fatty liver disease (NAFLD) patients. This study aimed: (I) to assess the feasibility of US in the prediction of NASH and (II) to develop various US indices combining US parameters and laboratory data for the detection of NASH in NAFLD patients and to compare the diagnostic performance of them. METHODS Sixty patients who underwent liver biopsy, gray-scale US [hepatorenal index (HRI) and shear-wave elastography (SWE)], and Fibroscan [controlled attenuation parameter (CAP) and transient elastography (TE)] for the evaluation of NASH were included. Patients were classified according to the NAFLD Activity Score (NAS) into the NASH (NAS ≥5) and non-NASH (NAS <5) groups. The diagnostic performance of HRI, CAP, SWE, TE, and laboratory data for grading steatosis, lobular inflammation, ballooning degeneration, and fibrosis was evaluated. After the identification of laboratory data that were independently associated with NASH through univariable and multivariable logistic regression analyses, various US indices were developed by combining US parameters with or without these laboratory data. The diagnostic performance of the US indices was assessed with obtaining area under the curve (AUC) and compared using DeLong test. RESULTS Twenty-five NASH and 35 non-NASH patients were included. The mean AUCs for grading steatosis were 0.871 using HRI and 0.583 using CAP. The mean AUCs for grading fibrosis and ballooning degeneration were 0.777 and 0.729 using SWE and 0.830 and 0.708 using TE, respectively. Aspartate aminotransferase (AST) was the only significant laboratory data associated with NASH (OR, 1.019; P=0.032). Using AST, the mean AUCs for grading lobular inflammation and ballooning degeneration were 0.712 and 0.775, respectively. Among various US indices, the index consisting of gray-scale US parameters (SWE and HRI) and AST showed the best diagnostic performance for the detection of NASH in NAFLD patients (AUC =0.806). CONCLUSIONS The index combining gray-scale US parameters and AST is useful for the detection of NASH and may be used to exclude the need for liver biopsy in NAFLD patients.
Collapse
Affiliation(s)
- Jeong Woo Kim
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Chang Hee Lee
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Baek-Hui Kim
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Soon-Young Hwang
- Department of Biostatistics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Bit Na Park
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Yang Shin Park
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Gonzalez-Cantero A, Teklu M, Sorokin AV, Prussick R, González-Cantero J, Martin-Rodriguez JL, Patel N, Parel PM, Manyak GA, Teague HL, Rodante JA, Keel A, Pérez-Hortet C, Sanchéz-Moya AI, Jiménez N, Ballester A, Solis J, Fernandez-Friera L, Barderas MG, Gonzalez-Calvin JL, Jaen P, Playford MP, Dey AK, Gelfand JM, Mehta NN. Subclinical Liver Disease Is Associated with Subclinical Atherosclerosis in Psoriasis: Results from Two Observational Studies. J Invest Dermatol 2022; 142:88-96. [PMID: 34293354 DOI: 10.1016/j.jid.2021.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Psoriasis is associated with a higher risk of liver diseases. We investigated the impact of hepatic steatosis (European cohort) and hepatic inflammation (United States cohort) on subclinical atherosclerosis. In the European cohort (n = 76 psoriasis participants and 76 controls), nonalcoholic fatty liver disease, assessed by the sonographic hepatorenal index, was more prevalent in psoriasis than in controls (61% vs. 45%; P = 0.04). Participants with psoriasis with nonalcoholic fatty liver disease had a higher prevalence of subclinical atherosclerosis (ultrasonographic presence of plaque in femoral or carotid arteries) than participants with psoriasis without nonalcoholic fatty liver disease (61% vs. 23%; P = 0.006) and controls with nonalcoholic fatty liver disease (61% vs. 32%; P < 0.05). Sonographic hepatorenal index was a determinant of subclinical atherosclerosis in psoriasis (OR = 3.5; P = 0.01). In the United States cohort (n = 162 participants with psoriasis who underwent positron emission tomography and coronary computed tomography angiography), those with high hepatic 2-[fluorine-18]fluoro-2-deoxy-D-glucose uptake had higher noncalcified (1.3 [0.49 mm2] vs. 1.0 [0.40 mm2]), fibrofatty (0.23 [0.15 mm2] vs. 0.11 [0.087 mm2]), and lipid-rich necrotic core (4.3 [2.3 mm2] vs. 3.0 [1.7 mm2]) coronary burden (all P < 0.001). Hepatic 2-[fluorine-18]fluoro-2-deoxy-D-glucose uptake associated with noncalcified (β = 0.28; P < 0.001), fibrofatty (β = 0.49; P < 0.001), and lipid-rich necrotic core (β = 0.28; P = 0.003) burden. These results show the downstream cardiovascular effects of subclinical liver disease in psoriasis.
Collapse
Affiliation(s)
- Alvaro Gonzalez-Cantero
- Department of Dermatology, Hospital Universitario Ramon y Cajal, Madrid, Spain; Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain
| | - Meron Teklu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander V Sorokin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ronald Prussick
- The Department of Dermatology, The George Washington School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | | | | | - Nidhi Patel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Parel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Grigory A Manyak
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heather L Teague
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin A Rodante
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Keel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Ana I Sanchéz-Moya
- Department of Dermatology, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Natalia Jiménez
- Department of Dermatology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Asunción Ballester
- Department of Dermatology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Jorge Solis
- Department of Cardiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - Pedro Jaen
- Department of Dermatology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Martin P Playford
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amit K Dey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joel M Gelfand
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
46
|
Byra M, Han A, Boehringer AS, Zhang YN, O'Brien WD, Erdman JW, Loomba R, Sirlin CB, Andre M. Liver Fat Assessment in Multiview Sonography Using Transfer Learning With Convolutional Neural Networks. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:175-184. [PMID: 33749862 PMCID: PMC9838564 DOI: 10.1002/jum.15693] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 05/11/2023]
Abstract
OBJECTIVES To develop and evaluate deep learning models devised for liver fat assessment based on ultrasound (US) images acquired from four different liver views: transverse plane (hepatic veins at the confluence with the inferior vena cava, right portal vein, right posterior portal vein) and sagittal plane (liver/kidney). METHODS US images (four separate views) were acquired from 135 participants with known or suspected nonalcoholic fatty liver disease. Proton density fat fraction (PDFF) values derived from chemical shift-encoded magnetic resonance imaging served as ground truth. Transfer learning with a deep convolutional neural network (CNN) was applied to develop models for diagnosis of fatty liver (PDFF ≥ 5%), diagnosis of advanced steatosis (PDFF ≥ 10%), and PDFF quantification for each liver view separately. In addition, an ensemble model based on all four liver view models was investigated. Diagnostic performance was assessed using the area under the receiver operating characteristics curve (AUC), and quantification was assessed using the Spearman correlation coefficient (SCC). RESULTS The most accurate single view was the right posterior portal vein, with an SCC of 0.78 for quantifying PDFF and AUC values of 0.90 (PDFF ≥ 5%) and 0.79 (PDFF ≥ 10%). The ensemble of models achieved an SCC of 0.81 and AUCs of 0.91 (PDFF ≥ 5%) and 0.86 (PDFF ≥ 10%). CONCLUSION Deep learning-based analysis of US images from different liver views can help assess liver fat.
Collapse
Affiliation(s)
- Michal Byra
- Department of Radiology, University of California, La Jolla, California, USA
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Aiguo Han
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrew S Boehringer
- Liver Imaging Group, Department of Radiology, University of California, La Jolla, California, USA
| | - Yingzhen N Zhang
- Liver Imaging Group, Department of Radiology, University of California, La Jolla, California, USA
| | - William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John W Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, La Jolla, California, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California, La Jolla, California, USA
| | - Michael Andre
- Department of Radiology, University of California, La Jolla, California, USA
| |
Collapse
|
47
|
Pirmoazen AM, Khurana A, Loening AM, Liang T, Shamdasani V, Xie H, El Kaffas A, Kamaya A. Diagnostic Performance of 9 Quantitative Ultrasound Parameters for Detection and Classification of Hepatic Steatosis in Nonalcoholic Fatty Liver Disease. Invest Radiol 2022; 57:23-32. [PMID: 34049335 DOI: 10.1097/rli.0000000000000797] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease worldwide. Quantitative ultrasound (QUS) parameters based on radiofrequency raw data show promise in quantifying liver fat. PURPOSE The aim of this study was to evaluate the diagnostic performance of 9 QUS parameters compared with magnetic resonance imaging (MRI)-estimated proton density fat fraction (PDFF) in detecting and staging hepatic steatosis in patients with or suspected of NAFLD. MATERIALS AND METHODS In this Health Insurance Portability and Accountability Act-compliant institutional review board-approved prospective study, 31 participants with or suspected of NAFLD, without other underlying chronic liver diseases (13 men, 18 women; average age, 52 years [range, 26-90 years]), were examined. The following parameters were obtained: acoustic attenuation coefficient (AC); hepatorenal index (HRI); Nakagami parameter; shear wave elastography measures such as shear wave elasticity, viscosity, and dispersion; and spectroscopy-derived parameters including spectral intercept (SI), spectral slope (SS), and midband fit (MBF). The diagnostic ability (area under the receiver operating characteristic curves and accuracy) of QUS parameters was assessed against different MRI-PDFF cutoffs (the reference standard): 6.4%, 17.4%, and 22.1%. Linearity with MRI-PDFF was evaluated with Spearman correlation coefficients (p). RESULTS The AC, SI, Nakagami, SS, HRI, and MBF strongly correlated with MRI-PDFF (P = 0.89, 0.89, 0.88, -0.87, 0.81, and 0.71, respectively [P < 0.01]), with highest area under the receiver operating characteristic curves (ranging from 0.85 to 1) for identifying hepatic steatosis using 6.4%, 17.4%, and 22.1% MRI-PDFF cutoffs. In contrast, shear wave elasticity, shear wave viscosity, and shear wave dispersion did not strongly correlate to MRI-PDFF (P = 0.45, 0.38, and 0.07, respectively) and had poor diagnostic performance. CONCLUSION The AC, Nakagami, SI, SS, MBF, and HRI best correlate with MRI-PDFF and show high diagnostic performance for detecting and classifying hepatic steatosis in our study population. SUMMARY STATEMENT Quantitative ultrasound is an accurate alternative to MRI-based techniques for evaluating hepatic steatosis in patients with or at risk of NAFLD. KEY FINDINGS Our preliminary results show that specific quantitative ultrasound parameters accurately detect different degrees of hepatic steatosis in NAFLD.
Collapse
Affiliation(s)
- Amir M Pirmoazen
- From the Department of Radiology, School of Medicine, Stanford University, California
| | - Aman Khurana
- Departments of Radiology and Biomedical Engineering, University of Kentucky, Lexington
| | - Andreas M Loening
- From the Department of Radiology, School of Medicine, Stanford University, California
| | - Tie Liang
- From the Department of Radiology, School of Medicine, Stanford University, California
| | - Vijay Shamdasani
- Strategy & Business Development, Philips Healthcare, Cambridge, Massachusetts
| | - Hua Xie
- Department of Precision Diagnosis and Image Guided Therapy, Philips Research North America, Cambridge, Massachusetts
| | - Ahmed El Kaffas
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, California
| | - Aya Kamaya
- From the Department of Radiology, School of Medicine, Stanford University, California
| |
Collapse
|
48
|
Zarei F, Moini M, Abedi M, Ravanfar Haghighi R, Zeinali-Rafsanjani B. Liver Fibrosis Assessment Using Transient Elastography by FibroScan and Shear Wave Elastography by Sonography: A Comparative Cross-sectional Study in an Outpatient Liver Clinic. IRANIAN JOURNAL OF RADIOLOGY 2021; 18. [DOI: 10.5812/iranjradiol.112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is the second most common cause of liver transplantation in the United States, with a continuously growing prevalence. There are several non-invasive methods to detect liver fibrosis, which is defined as the accumulation of extracellular matrix proteins, particularly collagens. It is most commonly associated with chronic liver diseases, such as NAFLD. Objectives: This study aimed to investigate the concordance between transient elastography (TE) and shear wave elastography (SWE) for liver fibrosis staging and also to examine the congruence between the controlled attenuation parameter (CAP) and the B-mode hepatorenal ratio for hepatic steatosis grading in patients with NAFLD. Patients and Methods: In this cross-sectional study conducted during March 2018 - 2019, NAFLD patients, referred to the liver clinic of our center for the non-invasive assessment of hepatic fibrosis, were enrolled. However, patients with sonographic features of cirrhosis, multiple hepatic masses, or moderate to large ascites were excluded; also, patients who were uncooperative during the tests were excluded. Measurements obtained by different tools were recorded. Kolmogorov-Smirnov test, Chi-square test, independent t-test, or Mann-Whitney tests, as well as Pearson’s correlation coefficient test, were used to analyze the data. Results: Sixty-five patients (male-to-female ratio, 1:13), with a median age of 47 years, were included in the study. The tools for assessing fibrosis (r = 0.9538, 95% CI: 0.9252 - 0.9717, P < 0.0001) and steatosis (r = 0.429, 95% CI: 0.2048 - 0.6104, P < 0.0001) were perfectly and moderately correlated, respectively. Sex, age, and body mass index (BMI) did not affect the results. Conclusion: The two elastography modalities showed a strong correlation for fibrosis staging in our study population. Also, the CAP and B-mode hepatorenal ratio were moderately correlated for grading hepatosteatosis. Overall, selection of the best assessment method among the studied modalities depends on factors other than internal validity.
Collapse
|
49
|
Ferraioli G, Berzigotti A, Barr RG, Choi BI, Cui XW, Dong Y, Gilja OH, Lee JY, Lee DH, Moriyasu F, Piscaglia F, Sugimoto K, Wong GLH, Wong VWS, Dietrich CF. Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2803-2820. [PMID: 34284932 DOI: 10.1016/j.ultrasmedbio.2021.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
New ultrasound methods that can be used to quantitatively assess liver fat content have recently been developed. These quantitative ultrasound (QUS) methods are based on the analysis of radiofrequency echoes detected by the transducer, allowing calculation of parameters for quantifying the fat in the liver. In this position paper, after a section dedicated to the importance of quantifying liver steatosis in patients with non-alcoholic fatty liver disease and another section dedicated to the assessment of liver fat with magnetic resonance, the current clinical studies performed using QUS are summarized. These new methods include spectral-based techniques and techniques based on envelope statistics. The spectral-based techniques that have been used in clinical studies are those estimating the attenuation coefficient and those estimating the backscatter coefficient. Clinical studies that have used tools based on the envelope statistics of the backscattered ultrasound are those performed by using the acoustic structure quantification or other parameters derived from it, such as the normalized local variance, and that performed by estimating the speed of sound. Experts' opinions are reported.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Medical School University of Pavia, Pavia, Italy
| | - Annalisa Berzigotti
- Hepatology Dept., University Clinic for Visceral Surgery and Medicine, Inselspital, University Hospital of Bern, University of Bern, Switzerland
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio, USA
| | - Byung I Choi
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Xin Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, and Department of Clinical Medicine, University of Bergen, Norway
| | - Jae Young Lee
- Departments of Health and Science and Technology and Medical Device Management and Research, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Fuminori Moriyasu
- Department of Gastroenterology and Hepatology, International University of Health and Welfare, Sanno Hospital, Tokyo, Japan
| | - Fabio Piscaglia
- Unit of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, Department of Medical and Surgical Sciences, University of Bologna S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Japan
| | - Grace Lai-Hung Wong
- Medical Data Analytic Centre and Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permancence, Bern, Switzerland.
| |
Collapse
|
50
|
Cloutier G, Destrempes F, Yu F, Tang A. Quantitative ultrasound imaging of soft biological tissues: a primer for radiologists and medical physicists. Insights Imaging 2021; 12:127. [PMID: 34499249 PMCID: PMC8429541 DOI: 10.1186/s13244-021-01071-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Quantitative ultrasound (QUS) aims at quantifying interactions between ultrasound and biological tissues. QUS techniques extract fundamental physical properties of tissues based on interactions between ultrasound waves and tissue microstructure. These techniques provide quantitative information on sub-resolution properties that are not visible on grayscale (B-mode) imaging. Quantitative data may be represented either as a global measurement or as parametric maps overlaid on B-mode images. Recently, major ultrasound manufacturers have released speed of sound, attenuation, and backscatter packages for tissue characterization and imaging. Established and emerging clinical applications are currently limited and include liver fibrosis staging, liver steatosis grading, and breast cancer characterization. On the other hand, most biological tissues have been studied using experimental QUS methods, and quantitative datasets are available in the literature. This educational review addresses the general topic of biological soft tissue characterization using QUS, with a focus on disseminating technical concepts for clinicians and specialized QUS materials for medical physicists. Advanced but simplified technical descriptions are also provided in separate subsections identified as such. To understand QUS methods, this article reviews types of ultrasound waves, basic concepts of ultrasound wave propagation, ultrasound image formation, point spread function, constructive and destructive wave interferences, radiofrequency data processing, and a summary of different imaging modes. For each major QUS technique, topics include: concept, illustrations, clinical examples, pitfalls, and future directions.
Collapse
Affiliation(s)
- Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada.
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada.
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada.
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada
| | - François Yu
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada
- Microbubble Theranostics Laboratory, CRCHUM, Montréal, Québec, Canada
| | - An Tang
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Laboratory of Medical Image Analysis, Montréal, CRCHUM, Canada
| |
Collapse
|