1
|
Yu LP, Li YJ, Wang T, Tao YX, Zhang M, Gu W, Yu J, Yang XX. In vivo recognition of bioactive substances of Polygonum multiflorum for protecting mitochondria against metabolic dysfunction-associated fatty liver disease. World J Gastroenterol 2023; 29:171-189. [PMID: 36683716 PMCID: PMC9850952 DOI: 10.3748/wjg.v29.i1.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a severe threat to human health. Polygonum multiflorum (PM) has been proven to remedy mitochondria and relieve MAFLD, but the main pharmacodynamic ingredients for mitigating MAFLD remain unclear. AIM To research the active ingredients of PM adjusting mitochondria to relieve high-fat diet (HFD)-induced MAFLD in rats. METHODS Fat emulsion-induced L02 adipocyte model and HFD-induced MAFLD rat model were used to investigate the anti-MAFLD ability of PM and explore their action mechanisms. The adipocyte model was also applied to evaluate the activities of PM-derived constituents in liver mitochondria from HFD-fed rats (mitochondrial pharmacology). PM-derived constituents in liver mitochondria were confirmed by ultra-high-performance liquid chromatography/mass spectrometry (mitochondrial pharmacochemistry). The abilities of PM-derived monomer and monomer groups were evaluated by the adipocyte model and MAFLD mouse model, respectively. RESULTS PM repaired mitochondrial ultrastructure and prevented oxidative stress and energy production disorder of liver mitochondria to mitigate fat emulsion-induced cellular steatosis and HFD-induced MAFLD. PM-derived constituents that entered the liver mitochondria inhibited oxidative stress damage and improved energy production against cellular steatosis. Eight chemicals were found in the liver mitochondria of PM-administrated rats. The anti-steatosis ability of one monomer and the anti-MAFLD activity of the monomer group were validated. CONCLUSION PM restored mitochondrial structure and function and alleviated MAFLD, which may be associated with the remedy of oxidative stress and energy production. The identified eight chemicals may be the main bioactive ingredients in PM that adjusted mitochondria to prevent MAFLD. Thus, PM provides a new approach to prevent MAFLD-related mitochondrial dysfunction. Mitochondrial pharmacology and pharmacochemistry further showed efficient strategies for determining the bioactive ingredients of Chinese medicines that adjust mitochondria to prevent diseases.
Collapse
Affiliation(s)
- Li-Ping Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Kunming 650500, Yunnan Province, China
| | - Yan-Juan Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Kunming 650500, Yunnan Province, China
| | - Tao Wang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Kunming 650500, Yunnan Province, China
| | - Yu-Xuan Tao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Kunming 650500, Yunnan Province, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Kunming 650500, Yunnan Province, China
| | - Wen Gu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Kunming 650500, Yunnan Province, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Kunming 650500, Yunnan Province, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Kunming 650500, Yunnan Province, China
| |
Collapse
|
2
|
Regulation of Mitochondrial Function by Natural Products for the Treatment of Metabolic Associated Fatty Liver Disease. Can J Gastroenterol Hepatol 2021; 2021:5527315. [PMID: 34222135 PMCID: PMC8221858 DOI: 10.1155/2021/5527315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is a multifactorial systemic disorder that occurs in the absence of excessive alcohol consumption. The disease is characterized by fatty degeneration and fat accumulation in liver parenchymal cells, the incidence of which is increasing annually, particularly in younger adults. MAFLD is caused by genetic and metabolism related disorders, of which mitochondrial dysfunction is the major contributor. Natural products can relieve MAFLD through restoring mitochondrial function. In this article, we describe the relationship between mitochondria and MAFLD and discuss the beneficial effects of natural products as a future anti-MAFLD strategy. Significance Statement. We herein propose that the development of mitochondrial regulators/nutrients from natural products can remedy mitochondrial dysfunction which represents an attractive strategy for the treatment of MAFLD. Furthermore, the mitochondrial regulation of natural products can provide new insight into the underlying mechanisms of action of natural products used for future MAFLD therapeutics.
Collapse
|