1
|
Zhu S, Liu M, Han S, Zhu J, Deng X, Tian Y, Yang D. Revealing the therapeutic targets, mechanisms, and heterogeneity of Huatan Jieyu Granules for Parkinson's disease through single-cell sequencing. J Pharm Biomed Anal 2025; 257:116679. [PMID: 39864142 DOI: 10.1016/j.jpba.2025.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND The incidence of Parkinson's disease (PD) increases with age. Previous pharmacological studies have shown the potential of Huatan Jieyu Granules (HGs) for the treatment of PD, but the exact mechanisms remain unclear. This study aimed to explore the effects of herbal treatment on PD using mouse models and single-cell sequencing. METHODS In this study, we established in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD models in mice. Motor function was assessed through behavioral tests. Immunofluorescence was used to examine dopaminergic neuron loss. Single-cell sequencing was performed on mice from the blank, PD model and medication groups. After quality control and dimensionality reduction of the single-cell data, cells were clustered, and different cell types were identified. We then identified the intersection of differentially expressed genes (DEGs1) in the blank and model groups and DEGs2 in the model and medication groups, yielding intersected DEGs. Key drug targets were identified by intersecting these DEGs with the drug targets of active ingredients in TCM. Topological analysis of the PPI network was used to identify key genes. Cell types exhibiting high expression of these genes were designated as key cells. These key cells were subjected to cellular communication analysis and temporal analysis, after which they were classified into subtypes. RESULTS HGs significantly improved motor function and prevented dopaminergic neuronal loss in the substantia nigra (SN) of MPTP-treated mice. A total of 34 cell clusters were delineated, with 9 cell types identified, including oligodendrocytes (oligo), neurons, and T cells. We identified 758 intersected DEGs and 13 key drug targets, including Egfr, Ntrk2, Grm5, Htr2c, Bcl2l1. Oligo and neuronal cells were identified as key cells due to higher expression levels of these key genes. In the cellular communication analysis, oligo-neuronal interactions in the blank and model groups, and oligo-OPC and oligo-T cell interactions in the medication group, exhibited the most receptor-ligand interactions. In temporal analysis, both oligo and neuronal cells were differentiated into 9 states, with C1 being the most differentiated. CONCLUSION HGs demonstrate neuroprotective effects in MPTP-treated mice. Using single-cell sequencing, we identified five key genes (Egfr, Ntrk2, Grm5, Htr2c, Bcl2l1) and two key cell types (oligo and neuronal) related to HGs in PD. These findings provided a foundation for understanding the molecular mechanisms by which HGs treat PD.
Collapse
Affiliation(s)
- Sijia Zhu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Meijun Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shiyu Han
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jingyi Zhu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xinmin Deng
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yanyan Tian
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Dongdong Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
2
|
Liang T, Wang J, Yang Z, Zhang R. Comprehensive analysis of mRNA expression of Piezo1 and Piezo2 in tumor samples and their prognostic implications in gastric cancer. Discov Oncol 2025; 16:582. [PMID: 40257604 PMCID: PMC12011698 DOI: 10.1007/s12672-025-02309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND This study aims to investigate the expression pattern and clinical significance of Piezo1 and Piezo2 in various cancers, focusing on gastric cancer (GC). METHODS The study investigated the mRNA expression levels of Piezo1 and Piezo2 in tumor samples from different cancers using the BEST online database. The case-control studies about the relation between Piezo1 and Piezo2 and GC were retrieved from PubMed, Embase, Web of Science, and Cochrane Library. The retrieval time was from inception to October, 2023. The meta-analysis of the included literatures was conducted by the STATA 12.0 software. Additionally, the expression profiles of Piezo1 and Piezo2 in tumor and normal gastric tissues were analyzed, and their clinical drug relevance was assessed using the CPADS database. The research program has been registered with PROSPERO (CRD42023495836). RESULTS The analysis demonstrated elevated mRNA expression of both Piezo1 and Piezo2 in the majority of tumor samples. Of particular note was the significant increase observed in GC tissue compared to normal tissue (all p < 0.05). Additionally, the meta-analysis revealed a meaningful correlation between high expression levels of Piezo1 and Piezo2 and poor prognosis in patients with GC (HR = 1.48, 95% CI = 1.27-1.69, p < 0.0001). This study identified a significant correlation between high levels of Piezo1 expression and the TNM phase (OR = 1.87, 95% CI = 1.21-2.91, p = 0.005). Furthermore, enhanced Piezo2 expression was observed to be positively correlated with survival status (OR = 2.12, 95% CI = 1.31-3.44, p = 0.002). Piezo1 (p = 0.028, R2 = 0.12) and Piezo2 (p = 0.049, R2 = 0.09) have been identified as potential therapeutic targets for GC treatment, according to drug sensitivity analyses. CONCLUSION The findings of this study indicate that the expression levels of Piezo1 and Piezo2 have the potential to serve as diagnostic indicators or therapeutic targets for GC management. TRIAL REGISTRATION CRD42023495836 (PROSPERO).
Collapse
Affiliation(s)
- Tong Liang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China.
| | - Junhong Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
- Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Baiyin, Baiyin, 730900, Gansu, China
| | - Zhong Yang
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China.
| | - Ronglong Zhang
- General Surgical Department, The First People's Hospital of Baiyin, Baiyin, 730900, Gansu, China.
| |
Collapse
|
3
|
Lan X, Zhang H, Chen ZY, Wang J, Zhang SC, Li Q, Ke JY, Wei W, Huang R, Tang X, Chen SP, Huang TT, Zhou YW. Suppressor of cytokine signaling 2 modulates regulatory T cell activity to suppress liver hepatocellular carcinoma growth and metastasis. World J Gastroenterol 2025; 31:100566. [PMID: 40248063 PMCID: PMC12001165 DOI: 10.3748/wjg.v31.i13.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is a highly aggressive cancer with poor prognosis due to its complex tumor microenvironment (TME) and immune evasion. Regulatory T cells (Tregs) play a critical role in tumor progression. Suppressor of cytokine signaling 2 (SOCS2), a key immune regulator, may modulate Treg activity and impact LIHC growth and metastasis. AIM To explore how the SOCS2 affects Treg activity in LIHC and its impact on tumor growth and metastasis. METHODS LIHC transcriptome data from The Cancer Genome Atlas database were analyzed using Gene Set Enrichment Analysis, Estimation of Stromal and Immune Cells in Malignant Tumors Using Expression Data, and Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts to evaluate immune pathways and Treg infiltration. Key prognostic genes were identified using Weighted Gene Co-expression Network Analysis and machine learning. In vitro, co-culture experiments, migration assays, apoptosis detection, and enzyme-linked immunosorbent assay were conducted. In vivo, tumor growth, metastasis, and apoptosis were assessed using subcutaneous and lung metastasis mouse models with hematoxylin and eosin staining, Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling, and immunohistochemistry analyses. RESULTS SOCS2 overexpression inhibited Treg cell activity, reducing LIHC cell migration and invasion while increasing apoptosis. In vivo, SOCS2 suppressed tumor growth and metastasis, confirming its therapeutic potential. CONCLUSION SOCS2 modulates CD4+ T function in the TME, contributing to LIHC progression. Targeting SOCS2 presents a potential therapeutic strategy for treating LIHC.
Collapse
Affiliation(s)
- Xi Lan
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Heng Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ze-Yan Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Jing Wang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Shi-Chang Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Qing Li
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Juan-Yu Ke
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Wei Wei
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Rong Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Xi Tang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Si-Ping Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ting-Ting Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Yi-Wen Zhou
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| |
Collapse
|
4
|
García-Domínguez M. Pathological and Inflammatory Consequences of Aging. Biomolecules 2025; 15:404. [PMID: 40149940 PMCID: PMC11939965 DOI: 10.3390/biom15030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Aging is a complex, progressive, and irreversible biological process that entails numerous structural and functional changes in the organism. These changes affect all bodily systems, reducing their ability to respond and adapt to the environment. Chronic inflammation is one of the key factors driving the development of age-related diseases, ultimately causing a substantial decline in the functional abilities of older individuals. This persistent inflammatory state (commonly known as "inflammaging") is characterized by elevated levels of pro-inflammatory cytokines, an increase in oxidative stress, and a perturbation of immune homeostasis. Several factors, including cellular senescence, contribute to this inflammatory milieu, thereby amplifying conditions such as cardiovascular disease, neurodegeneration, and metabolic disorders. Exploring the mechanisms of chronic inflammation in aging is essential for developing targeted interventions aimed at promoting healthy aging. This review explains the strong connection between aging and chronic inflammation, highlighting potential therapeutic approaches like pharmacological treatments, dietary strategies, and lifestyle changes.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
5
|
Guo Y, Shang S, Liang L, Liu E. ZNF385A was identified as a novel colorectal cancer-related functional gene by analysis of the interaction and immune characteristics of oxidative stress and the inflammatory response. Discov Oncol 2025; 16:290. [PMID: 40064736 PMCID: PMC11893970 DOI: 10.1007/s12672-025-02024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Recently, oxidative stress and inflammatory responses have been shown to directly impact tumor growth and the tumor microenvironment (TME). However, more research is necessary to fully understand the relationship between oxidative stress and inflammatory responses and colorectal cancer (CRC). METHODS The FindCluster algorithm was used to extract CRC Single-cell RNA sequencing (scRNA-seq) data and identify tumor cell groupings. From the MSigDB database, genes associated with oxidative stress and the inflammatory response were taken. We identified molecular subtypes and built a predictive risk model with the LASSO-Cox method using the ConsensusClusterPlus software suite. We incorporated the prognostic risk model and other clinicopathological parameters into a column-line chart. Finally, we used Quantitative Polymerase Chain Reaction (qPCR) and immunohistochemistry to check the expression of the unreported hub model genes. Cell proliferation was assessed using EDU and colony formation assays. Reactive Oxygen Species (ROS) tests were used to quantitatively determine the ROS content in CRC cells. The ability of CRC cells to invade and migrate was examined using transwell experiments. The regulatory functions of hub model genes were discovered in vivo using a xenograft model tumor assay. RESULTS Oxidative stress and inflammatory response factors in monocytic/macrophages of CRC were significantly upregulated, and their oxidative stress and inflammatory response functions were significantly higher than those of other cell subgroups, as indicated by the enrichment score. These factors showed significant synergistic overexpression and enrichment in this cell population. We constructed a prognostic risk model consisting of seven signatures. The good and stable prognostic evaluation efficacy of the model was confirmed, and risk scores were determined to be independent prognostic factors for CRC. We explored the relationship between the risk score model and malignant progression of tumor cells, tumor immune microenvironment, genomic variation, chemotherapy resistance, and immune response. Further qPCR and immunohistochemistry analysis showed that the expression of ZNF385A was high in CRC tissues. The functional experiment results indicated that interfering with the expression of ZNF385A could suppress the proliferation, ROS, migration and invasion of SW620 cells in vitro and the growth of xenograft tumors in vivo. CONCLUSION In this study, we investigated the critical expression patterns of oxidative stress- and inflammatory response-related genes in CRC, which may contribute to the prognosis and immunotherapy of CRC. Additionally, we discovered ZNF385A to be a novel oncogene in CRC. These findings imply that this model may be applied to assess prognostic risk and identify potential therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Yaqi Guo
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Shipeng Shang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Leilei Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Enrui Liu
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Jing X, Li Y. Identification and Experimental Validation of Biomarkers Related to MiR-125a-5p in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2025; 20:581-600. [PMID: 40078927 PMCID: PMC11899922 DOI: 10.2147/copd.s493749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Purpose The miR-125a-5p has been reported influence the development of lung cancer, however, the link between it and chronic obstructive pulmonary disease (COPD) is still not well understood. Hence, this study was designed to investigate the molecular pathway by which miR-125a-5p related biomarkers were involved in COPD. Patients and Methods The differentially expressed genes (DEGs) and module genes related to COPD in GSE100153 were screened out by differential analysis and weighted gene co-expression network analysis, respectively. Then, the target genes of miR-125a-5p obtained from miRWalk database were intersected with DEGs and module genes, followed by identification of biomarkers through SVM-RFE algorithms. Moreover, the gene set enrichment analysis, immune infiltration analysis, construction of regulatory network, single-cell analysis and Mendelian randomization (MR) analysis were performed. At last, the expression levels of the biomarkers were further validated in GSE100153 and GSE146560 as well as in qRT-PCR. Results A total of 10 genes were acquired by intersecting the 126 DEGs, the 3989 module genes, and 2329 target genes, of which PITHD1, CNTNAP2 and GUCD1 were identified as biomarkers. Enrichment analysis showed their roles in various cellular functions. In addition, significant associations were identified between 9 distinct cells and biomarkers. Subsequently, 5 TFs and 63 therapeutic agents were predicted as biomarkers. Moreover, GUCD1 and PITHD1 were significantly different between case and control in T cells and Alveolar cells. In COPD, GUCD1 and PITHD1 were significantly down-regulated in GSE100153 and GSE146560 datasets and confirmed by qRT-PCR. Conclusion In our study, PITHD1, CNTNAP2, and GUCD1 were recognized as biomarkers related to miR-125a-5p-related genes in COPD, providing new references for treatment of COPD.
Collapse
Affiliation(s)
- Xia Jing
- Department of General Medical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yueqin Li
- Department of General Medical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
7
|
Richter KM, Wrage M, Krekeler C, De Oliveira T, Conradi LC, Menck K, Bleckmann A. Model systems to study tumor-microbiome interactions in early-onset colorectal cancer. EMBO Mol Med 2025; 17:395-413. [PMID: 39948421 PMCID: PMC11903813 DOI: 10.1038/s44321-025-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major health problem, with an alarming increase of early-onset CRC (EO-CRC) cases among individuals under 50 years of age. This trend shows the urgent need for understanding the underlying mechanisms leading to EO-CRC development and progression. There is significant evidence that the gut microbiome acts as a key player in CRC by triggering molecular changes in the colon epithelium, leading to tumorigenesis. However, a comprehensive collection and comparison of methods to study such tumor-microbiome interactions in the context of EO-CRC is sparse. This review provides an overview of the available in vivo, ex vivo as well as in vitro approaches to model EO-CRC and assess the effect of gut microbes on tumor development and growth. By comparing the advantages and limitations of each model system, it highlights that, while no single model is perfect, each is suitable for studying specific aspects of microbiome-induced tumorigenesis. Taken together, multifaceted approaches can simulate the human body's complexity, aiding in the development of effective treatment and prevention strategies for EO-CRC.
Collapse
Affiliation(s)
- Katharina M Richter
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Marius Wrage
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Carolin Krekeler
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Kerstin Menck
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany.
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany.
| |
Collapse
|
8
|
Zhang N, Qiu X, Chen X, Du C, Dong J, Li X, Chen B, Zhang L, Zhang Y. Survival expectations in melanoma patients: a molecular prognostic model associated with aging. Discov Oncol 2025; 16:253. [PMID: 40019657 PMCID: PMC11874052 DOI: 10.1007/s12672-025-01971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Aging and long non-coding RNAs (lncRNAs) are research hotspots in melanoma. However, no study has so far explored the relationship between melanoma prognosis and aging-related lncRNAs (ARLs). METHODS The Cancer Genome Atlas database, the GTEx database, and the HAGR database were used in this study in a combined manner. Univariate and multivariate cox regression analyses were used to screen out lncRNA signatures associated with overall survival (OS) in the primary dataset. The risk scoring model was analyzed by risk stratification and tested internally. The protein expression levels of possible target genes of ARLs were verified by immunohistochemistry analysis in HPA database. Finally, gene enrichment analysis was performed. RESULTS In the primary dataset, five OS-related lncRNA signatures (AC011481.1, USP30-AS1, EBLN3P, LINC01527, HLA-DQB1-AS1) were screened out. The survival curve showed that the high-risk group had a worse prognosis than the low-risk group. The immunohistochemical analysis revealed that reduced expression of Epidermal Growth Factor Receptor (EGFR), along with increased expression of Activating Transcription Factor 2 (ATF2) and DNA Polymerase Delta 1 (POLD1), was linked to a worse prognosis. Finally, enrichment analysis revealed that OS-related DELs were significantly enriched in the regulation of reactive oxygen metabolism, etc. The ARGs were significantly activated in the SKCM tissues. The regulation of aging in melanoma cells may be realized through ferroptosis, immunity, and autophagy and so on. CONCLUSION The ARL signature obtained in this study had better prognostic ability than individual clinical features.
Collapse
Affiliation(s)
- Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314033, China
| | - Xinyi Qiu
- The First School of Clinical Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xingying Chen
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314033, China
| | - Cheng Du
- Ophthalmology Department, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314033, China
| | - Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaohong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bing Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
9
|
Ni M, Peng W, Wang X, Li J. Role of Aging in Ulcerative Colitis Pathogenesis: A Focus on ETS1 as a Promising Biomarker. J Inflamm Res 2025; 18:1839-1853. [PMID: 39931173 PMCID: PMC11809410 DOI: 10.2147/jir.s504040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose An increasing proportion of the aging population has led to a rapid increase in the number of elderly patients with ulcerative colitis (UC). However, the molecular mechanisms by which aging causes UC remain unclear. In this study, we explored the role of aging-related genes (ARGs) in UC pathogenesis and diagnosis prediction. Methods Gene expression data were obtained from four independent datasets (GSE75214, GSE87466, GSE94648, and GSE169568) in the GEO database, and ARGs were derived from multiple public databases. After identifying UC-related ARGs, consistent clustering was performed to screen aging-related molecular subtypes, followed by the exploration of differences in the immune microenvironment and pathways between distinct subtypes. Next, core module genes were screened using WGCNA and then the hub genes were characterized using LASSO and random forest methods. Besides, the associations between hub genes, immune cells, and key pathways were explored. Finally, the expression levels of key genes were determined in a dextran sulfate sodium (DSS)-induced UC mouse model by qRT-PCR. Results UC samples were classified into two subtypes (1 and 2), which displayed significant differences in the immune landscape and JAK/STAT signaling pathways. A series of machine learning algorithms was used to screen two feature genes (ETS1 and IL7R) to establish the diagnostic model, which exhibited satisfactory diagnostic efficiency. In addition, these hub genes were closely associated with the infiltration of specific immune cells (such as neutrophils, memory B cells, and M2 macrophages) as well as with the JAK/STAT pathway. Later, experimental validation confirmed that ETS1 expression was markedly increased in a mouse model of UC. Conclusion Overall, aging, immune dysregulation, and UC process are closely associated. The identified feature genes, particularly ETS1, could serve as novel diagnostic biomarkers for UC. These findings have the potential to enhance the understanding of the age-related mechanisms of UC.
Collapse
Affiliation(s)
- Man Ni
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Xiaoguang Wang
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| |
Collapse
|
10
|
Qiu L, Luo W, Chen Y, Guo Z, Quan J, Chi J, Guan Y, Huang Y, Lin Y. The incidence, mortality, and survival rate of colorectal cancer in Xiamen, China, from 2011 to 2020. BMC Public Health 2025; 25:176. [PMID: 39819599 PMCID: PMC11736963 DOI: 10.1186/s12889-024-21010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION Currently, nearly one-third of newly diagnosed Colorectal cancer (CRC) cases and associated deaths worldwide are from China. Among Chinese provinces, Fujian exhibited the highest CRC mortality rate. This study aims to analyze long-term trends of CRC epidemiology in Xiamen, Fujian, China. METHODS Data were obtained from various cancer surveillance systems, including the Xiamen Cancer Register system, the Xiamen Death Register system, and the household registration system. Trends in incidence, mortality and survival rates from 2011 to 2020 were analyzed using annual percent changes (APC) and average annual percent changes (AAPC), stratified by sex and residency status. RESULTS A total of 7,406 new cases and 3,726 CRC-related deaths were reported from Xiamen. The age-standardized of incidence and mortality rates were 26.09 per 100,000 and 12.70 per 100,000, respectively. The observed 5-year survival rate was 46.65%, with an age-standardized survival of 51.24%. CRC incidence in Xiamen is significantly increasing (AAPC = 4.90%). In contrast, trends in CRC mortality and survival rates are not significant. Urban areas exhibited higher rates of CRC incidence, mortality, and survival rate compared to rural areas, though rural areas showed a more marked upward trend. CONCLUSIONS The burden of CRC in Xiamen is notably high, with a concerning increasing in incidence. This underscores the urgent need for targeted strategies to address this public health challenges.
Collapse
Affiliation(s)
- Lingxian Qiu
- Xiamen Center for Disease Control and Prevention, Xiamen City, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen City, China
| | - Wenting Luo
- Department of Research, The First Affiliated Hospital of Xiamen University, Xiamen, Xiamen City, China
| | - Youlan Chen
- Xiamen Center for Disease Control and Prevention, Xiamen City, China
| | - Zhinan Guo
- Xiamen Center for Disease Control and Prevention, Xiamen City, China
| | - Jiali Quan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen City, China
| | - Jiahuang Chi
- Xiamen Center for Disease Control and Prevention, Xiamen City, China
| | - Yingying Guan
- Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen City, Fujian, China.
| | - Yue Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen City, China.
| | - Yilan Lin
- Xiamen Center for Disease Control and Prevention, Xiamen City, China.
- Xiamen Medical College, Xiamen City, China.
| |
Collapse
|
11
|
He J, Fu Z, Zou B, Lei X, Lei L, Yang Q, Li G. Identification the Cellular Senescence Associated lncRNA LINC01579 in Gastric Cancer. J Cell Mol Med 2025; 29:e70360. [PMID: 39855898 PMCID: PMC11760997 DOI: 10.1111/jcmm.70360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cellular senescence is a key promoter of tumorigenesis and malignant progression. This study aimed to develop a predictive model for assessing cellular senescence in gastric cancer (GC) outcomes. We identified senescence-related genes and lncRNAs from 375 stomach adenocarcinoma (STAD) patients and established a prognostic senescence score using multivariate Cox regression, validated in testing, TCGA-STAD and the combined TCGA-COAD and READ cohorts. The model's predictive efficacy was evaluated across clinical subgroups, tumour microenvironments and immune cell infiltration. A total of 116 senescence-related lncRNAs were filtered, and patients were clustered into two senescent subtypes. The lncRNA signature identified LINC01579 as an independent prognostic factor for GC. Low-risk groups showed prolonged overall survival, increased immune cell infiltration and reduced mutation load. Downregulation of LINC01579 using antisense oligonucleotides (ASOs) on normal human fibroblasts decreased cellular proliferation and migration in GC. Collectively, this study established and validated a promising prognostic model connecting senescence-related lncRNAs and clinical outcome in GC and provided potential senescence-related biomarkers for GC prognosis prediction.
Collapse
Affiliation(s)
- Jiayong He
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
| | - Ziyi Fu
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Boya Zou
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouPeople's Republic of China
- Department of DermatologySeoul National University College of MedicineSeoulRepublic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulRepublic of Korea
| | - Xuetao Lei
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
| | - Linhan Lei
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
| | - Qingbin Yang
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
| | - Guoxin Li
- Department of General Surgery, Nanfang HospitalSouthern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouPeople's Republic of China
- Cancer Center of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine,Tsinghua MedicineTsinghua UniversityBeijingPeople's Republic of China
| |
Collapse
|
12
|
Peng Z, Fang W, Wu B, He M, Li S, Wei J, Hao Y, Jin L, Liu M, Zhang X, Wei Y, Ge Y, Wei Y, Qian H, Zhang Y, Jiang J, Chang Z, Rao Y, Zhang X, Cui CP, Zhang L. Targeting Smurf1 to block PDK1-Akt signaling in KRAS-mutated colorectal cancer. Nat Chem Biol 2025; 21:59-70. [PMID: 39039255 DOI: 10.1038/s41589-024-01683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 06/23/2024] [Indexed: 07/24/2024]
Abstract
The phosphoinositide 3-kinase (PI3K)-Akt axis is one of the most frequently activated pathways and is demonstrated as a therapeutic target in Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutated colorectal cancer (CRC). Targeting the PI3K-Akt pathway has been a challenging undertaking through the decades. Here we unveiled an essential role of E3 ligase SMAD ubiquitylation regulatory factor 1 (Smurf1)-mediated phosphoinositide-dependent protein kinase 1 (PDK1) neddylation in PI3K-Akt signaling and tumorigenesis. Upon growth factor stimulation, Smurf1 immediately triggers PDK1 neddylation and the poly-neural precursor cell expressed developmentally downregulated protein 8 (poly-Nedd8) chains recruit methyltransferase SET domain bifurcated histone lysine methyltransferase 1 (SETDB1). The cytoplasmic complex of PDK1 assembled with Smurf1 and SETDB1 (cCOMPASS) consisting of PDK1, Smurf1 and SETDB1 directs Akt membrane attachment and T308 phosphorylation. Smurf1 deficiency dramatically reduces CRC tumorigenesis in a genetic mouse model. Furthermore, we developed a highly selective Smurf1 degrader, Smurf1-antagonizing repressor of tumor 1, which exhibits efficient PDK1-Akt blockade and potent tumor suppression alone or combined with PDK1 inhibitor in KRAS-mutated CRC. The findings presented here unveil previously unrecognized roles of PDK1 neddylation and offer a potential strategy for targeting the PI3K-Akt pathway and KRAS mutant cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Peng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Wei Fang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Bo Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ming He
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Shaohua Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Jun Wei
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Yang Hao
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lujia Jin
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Mingqiu Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yange Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yingwei Ge
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yinghua Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangjun Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Junyi Jiang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhijie Chang
- School of Medicine, Tsinghua University, Beijing, China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China.
| | - Xueli Zhang
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China.
| | - Chun-Ping Cui
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
13
|
Yang Z, Luo B, Li M, He Z, Ren C, Chen X, Kang X, Chen H, Xu E, Guan W, Xia X. The effector function of mucosal associated invariant T cells alters with aging and is regulated by RORγt. Front Immunol 2024; 15:1504806. [PMID: 39669566 PMCID: PMC11634854 DOI: 10.3389/fimmu.2024.1504806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Mucosal-associated invariant T (MAIT) cells are a predominant subset of innate-like T cells in humans, characterized by diverse gene expression profiles and functional capabilities. However, the factors influencing the transcriptomes and effector functions of MAIT cells, particularly at mucosal barriers, remain largely unclear. Methods In this study, we employed single-cell RNA sequencing (scRNA-seq) and functional assays to investigate the transcriptomic and functional characteristics of intestinal MAIT cells in mouse models during aging. We also extended scRNA-seq analysis to human intestinal MAIT cells to compare their gene expression patterns with those observed in aged mice. Results Our findings demonstrated that the transcriptomes and functional capabilities of intestinal MAIT cells shifted from MAIT17 to MAIT1 profiles with aging in mouse models, with notable changes in the production of cytotoxic molecules. Further scRNA-seq analysis of human intestinal MAIT cells revealed a segregation into MAIT1 and MAIT17 subsets, displaying gene expression patterns that mirrored those seen in aged mouse models. The transcription factor RORγt was expressed in both MAIT1 and MAIT17 cells, acting to repress IFNγ production while promoting IL17 expression. Moreover, reduced expression of RORC and Il17A was correlated with poorer survival outcomes in colorectal cancer patients. Discussion These results suggest that aging induces a functional shift between MAIT1 and MAIT17 cells, which may be influenced by transcriptional regulators like RORγt. The observed alterations in MAIT cell activity could potentially impact disease prognosis, particularly in colorectal cancer. This study provides new insights into the dynamics of MAIT cell responses at mucosal barriers, highlighting possible therapeutic targets for modulating MAIT cell functions in aging and disease.
Collapse
Affiliation(s)
- Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Banxin Luo
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Minhuan Li
- Department of Andrology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Ziyun He
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuanfu Ren
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hong Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - En Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Taikang Xianlin DrumTower Hospital, The Affiliated Hospital of Wuhan University Medical School, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Taikang Xianlin DrumTower Hospital, The Affiliated Hospital of Wuhan University Medical School, Nanjing, China
| |
Collapse
|
14
|
Chen L, Ying X, Wang H, Xie J, Tang Q, Liu W. Identification and Validation of Senescence-Related Signature by Combining Single Cell and Bulk Transcriptome Data Analysis to Predict the Prognosis and Identify the Key Gene CAV1 in Pancreatic Cancer. J Inflamm Res 2024; 17:9391-9406. [PMID: 39600676 PMCID: PMC11590645 DOI: 10.2147/jir.s489985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background The role of cellular senescence in the tumor microenvironment of pancreatic cancer (PC) remains unclear, particularly regarding its impact on prognosis and immunotherapy outcomes. Methods We utilized single-cell sequencing datasets (GSE155698 and GSE154778) for pancreatic cancer from the Gene Expression Omnibus (GEO) database and bulk RNA-seq data from the University of California, Santa Cruz (UCSC) and International Cancer Genome Consortium (ICGC) repositories, creating three patient cohorts: The Cancer Genome Atlas (TCGA) cohort, PAAD-AU cohort, and PAAD-CA cohort. Dimensionality reduction cluster analysis processed the single-cell data, while weighted gene co-expression network analysis (WGCNA) and differential expression gene analysis were applied to bulk RNA-seq data. Prognostic models were developed using Cox proportional hazards (COX) and least absolute shrinkage and selection operator (LASSO) regression, with validation through survival analysis, decision curve analysis, and principal component analysis (PCA). Tumor mutation data were analyzed using the "maftools" package, and the immune microenvironment was assessed with TIMER2 data. Results We developed a senescence-related (SENR) six-gene prognostic signature for PC, which stratifies patients by risk, with high-risk groups showing poorer prognoses. This model also offers predictive insights into tumor mutations and immune microenvironment characteristics. Caveolin-1 (CAV1) emerged as a significant prognostic biomarker, with functional validation showing its role in promoting cancer cell proliferation and migration, highlighting its potential as a therapeutic target. Conclusion This study provides a novel senescence-related prognostic tool for PC, enhancing patient stratification for prognosis and immunotherapy, and identifies CAV1 as a key gene with clinical significance for targeted interventions.
Collapse
Affiliation(s)
- Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Xiaomei Ying
- Department of General Surgery, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, People’s Republic of China
| | - Haohao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jiaheng Xie
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People’s Republic of China
| | - Qikai Tang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Wen Liu
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| |
Collapse
|
15
|
Wang Y, Wang H, Yu X, Wu Q, Lv X, Zhou X, Chen Y, Geng S. Identification of metabolism related biomarkers in obesity based on adipose bioinformatics and machine learning. J Transl Med 2024; 22:986. [PMID: 39482740 PMCID: PMC11526509 DOI: 10.1186/s12967-024-05615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/18/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Obesity has emerged as a growing global public health concern over recent decades. Obesity prevalence exhibits substantial global variation, ranging from less than 5% in regions like China, Japan, and Africa to rates exceeding 75% in urban areas of Samoa. AIM To examine the involvement of metabolism-related genes. METHODS Gene expression datasets GSE110729 and GSE205668 were accessed from the GEO database. DEGs between obese and lean groups were identified through DESeq2. Metabolism-related genes and pathways were detected using enrichment analysis, WGCNA, Random Forest, and XGBoost. The identified signature genes were validated by real-time quantitative PCR (qRT-PCR) in mouse models. RESULTS A total of 389 genes exhibiting differential expression were discovered, showing significant enrichment in metabolic pathways, particularly in the propanoate metabolism pathway. The orangered4 module, which exhibited the highest correlation with propanoate metabolism, was identified using Weighted Correlation Network Analysis (WGCNA). By integrating the DEGs, WGCNA results, and machine learning methods, the identification of two metabolism-related genes, Storkhead Box 1 (STOX1), NACHT and WD repeat domain-containing protein 2(NWD2) was achieved. These signature genes successfully distinguished between obese and lean individuals. qRT-PCR analysis confirmed the downregulation of STOX1 and NWD2 in mouse models of obesity. CONCLUSION This study has analyzed the available GEO dataset in order to identify novel factors associated with obesity metabolism and found that STOX1 and NWD2 may serve as diagnostic biomarkers.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Honglin Wang
- Department of Orthopedic Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xingrui Yu
- Institute of Information, Xiamen University, Xiamen, China
| | - Qinan Wu
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xinlu Lv
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xuelian Zhou
- The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China
| | - Yong Chen
- The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China.
| | - Shan Geng
- Department of Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China.
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China.
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Ooko E, Ali NT, Efferth T. Identification of Cuproptosis-Associated Prognostic Gene Expression Signatures from 20 Tumor Types. BIOLOGY 2024; 13:793. [PMID: 39452102 PMCID: PMC11505359 DOI: 10.3390/biology13100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
We investigated the mRNA expression of 124 cuproptosis-associated genes in 7489 biopsies from 20 different tumor types of The Cancer Genome Atlas (TCGA). The KM plotter algorithm has been used to calculate Kaplan-Meier statistics and false discovery rate (FDR) corrections. Interaction networks have been generated using Ingenuity Pathway Analysis (IPA). High mRNA expression of 63 out of 124 genes significantly correlated with shorter survival times of cancer patients across all 20 tumor types. IPA analyses revealed that their gene products were interconnected in canonical pathways (e.g., cancer, cell death, cell cycle, cell signaling). Four tumor entities showed a higher accumulation of genes than the other cancer types, i.e., renal clear cell carcinoma (n = 21), renal papillary carcinoma (n = 13), kidney hepatocellular carcinoma (n = 13), and lung adenocarcinoma (n = 9). These gene clusters may serve as prognostic signatures for patient survival. These signatures were also of prognostic value for tumors with high mutational rates and neoantigen loads. Cuproptosis is of prognostic significance for the survival of cancer patients. The identification of specific gene signatures deserves further exploration for their clinical utility in routine diagnostics.
Collapse
Affiliation(s)
- Ednah Ooko
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, Kakamega 190-50100, Kenya
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| |
Collapse
|
17
|
Su G, Wang M, Qian J, Wang Y, Zhu Y, Wang N, Wang K, Wang Q, Wang Y, Li D, Yang L. Comprehensive Analysis of a Platelet- and Coagulation-Related Prognostic Gene Signature Identifies CYP19A1 as a Key Tumorigenic Driver of Colorectal Cancer. Biomedicines 2024; 12:2225. [PMID: 39457539 PMCID: PMC11505370 DOI: 10.3390/biomedicines12102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The intricate interplay between the platelet-coagulation system and the progression of malignant tumors has profound therapeutic implications. However, a thorough examination of platelet and coagulation markers specific to colorectal cancer (CRC) is conspicuously absent in the current literature. Consequently, there is an urgent need for further exploration into the mechanistic underpinnings of these markers and their potential clinical applications. METHODS By integrating RNA-seq data and clinicopathological information from patients with CRC in the cancer genome atlas, we identified genes related to the platelet-coagulation system using weighted gene co-expression networks and univariate Cox analysis. We established a prognostic risk model based on platelet- and coagulation-related genes using Lasso Cox regression analysis and validated the model in two independent CRC cohorts. We explored potential biological functional disparities between high-risk and low-risk groups through comprehensive bioinformatics analysis. RESULTS Our findings indicate that colorectal cancer patients classified as high-risk generally exhibit poorer prognoses. Moreover, the model's risk scores were associated with the differential composition of the immune tumor microenvironment, suggesting its applicability to infer immunotherapy responsiveness. Cellular functional experiments and animal experiments indicated that CYP19A1 expression in CRC influences malignant phenotype and platelet activation. CONCLUSIONS In summary, we present a novel platelet- and coagulation-related risk model for prognostic assessment of patients with CRC and confirm the important role of CYP19A1 in promoting malignant progression of CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dongzheng Li
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; (G.S.); (M.W.); (J.Q.); (Y.W.); (Y.Z.); (N.W.); (K.W.); (Q.W.); (Y.W.)
| | - Liu Yang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; (G.S.); (M.W.); (J.Q.); (Y.W.); (Y.Z.); (N.W.); (K.W.); (Q.W.); (Y.W.)
| |
Collapse
|
18
|
Zhang S, Jiang Y, Shi L, Wei T, Lai Z, Feng X, Li S, Tang D. Identification and analysis of key genes related to efferocytosis in colorectal cancer. BMC Med Genomics 2024; 17:198. [PMID: 39107816 PMCID: PMC11304617 DOI: 10.1186/s12920-024-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
The impact of efferocytosis-related genes (ERGs) on the diagnosis of colorectal cancer (CRC) remains unclear. In this study, efferocytosis-associated biomarkers for the diagnosis of CRC were identified by integrating data from transcriptome sequencing and public databases. Finally, the expression of biomarkers was validated by real-time quantitative polymerase chain reaction (RT-qPCR). Our study may provide a reference for CRC diagnosis. BACKGROUND It has been shown that some efferocytosis related genes (ERGs) are associated with the development of cancer. However, it is still uncertain how ERGs may influence the diagnosis of colorectal cancer (CRC). METHODS In our study, the CRC cohorts were gained from transcriptome sequencing and the gene expression omnibus (GEO) database (GSE71187). Efferocytosis related biomarkers with diagnostic utility for CRC were identified through combining differentially expressed analysis, machine learning algorithms, and receiver operating characteristic (ROC) analysis. Then, infiltration abundance of immune cells between CRC and control was evaluated. The regulatory networks (including mRNA-miRNA-lncRNA and miRNA/transcription factors (TF)-mRNA networks) were created. Finally, the expression of biomarkers was validated via real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS There were 3 biomarkers (ELMO3, P2RY12, and PDK4) related diagnosis for CRC patients gained. ELMO3 was highly expressed in CRC group, while P2RY12 and PDK4 was lowly expressed. Besides, the infiltrating abundance of 3 immune cells between CRC and control groups was significantly differential, namely activated CD4 memory T cells, macrophages M0, and resting mast cells. We then constructed a mRNA-miRNA-lncRNA network containing 3 mRNAs, 33 miRNAs, and 22 lncRNAs, and a miRNA/TF-mRNA network including 3 mRNAs, 33 miRNAs, and 7 TFs. Additionally, RT-qPCR results revealed that the expression trends of all biomarkers were consistent with the transcriptome sequencing data and GSE71187. CONCLUSION Taken together, this study provides three efferocytosis related biomarkers (ELMO3, P2RY12, and PDK4) for diagnosis of CRC, providing a scientific reference for further studies of CRC.
Collapse
Affiliation(s)
- Shengliang Zhang
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Ying Jiang
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Lei Shi
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Tianning Wei
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Zhiwen Lai
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Xuan Feng
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Shiyuan Li
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China
| | - Detao Tang
- Department of Gastrointestinal and Breast Surgery, Guizhou University of Traditional Chinese Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine of China, Guizhou, China.
| |
Collapse
|
19
|
Zhang K, Li G, Wang Q, Liu X, Chen H, Li F, Li S, Song X, Li Y. A disulfidptosis-related glucose metabolism and immune response prognostic model revealing the immune microenvironment in lung adenocarcinoma. Front Immunol 2024; 15:1398802. [PMID: 39091494 PMCID: PMC11291233 DOI: 10.3389/fimmu.2024.1398802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Background Lung adenocarcinoma accounts for the majority of lung cancer cases and impact survival rate of patients severely. Immunotherapy is an effective treatment for lung adenocarcinoma but is restricted by many factors including immune checkpoint expression and the inhibitory immune microenvironment. This study aimed to explore the immune microenvironment in lung adenocarcinoma via disulfidptosis. Methods Public datasets of lung adenocarcinoma from the TCGA and GEO was adopted as the training and validation cohort. Based on the differences in the expression of disulfidptosis -related genes, a glucose metabolism and immune response prognostic model was constructed. The prognostic value and clinical relationship of the model were further explored. Immune-related analyses were performed according to CIBERSORT, ssGSEA, TIDE, IPS. Results We verified that the model could accurately predict the survival expectancy of lung adenocarcinoma patients. Patients with lung adenocarcinoma and a low-risk score had better survival outcomes according to the model. Moreover, the high-risk group tended to have an immunosuppressive effect, as reflected by the immune cell components, phenotypes and functions. We also found that the clinically relevant immune checkpoint CTLA-4 was significantly higher in low-risk group (P<0.05), indicating that the high-risk group may suffer worse tumor immunotherapy efficacy. Finally, we found that this model has accurate predictive value for the efficacy of immune checkpoint blockade in non-small cell lung cancer (P<0.05). Conclusion The prognostic model demonstrated the feasibility of predicting survival and immunotherapy efficacy via disulfidptosis-related genes and will facilitate the development of personalized anticancer therapy.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Gang Li
- Graduate School, Kunming Medical University, Kunming, China
| | - Qin Wang
- Graduate School, Kunming Medical University, Kunming, China
| | - Xin Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Fuqiang Li
- Department of Traditional Chinese Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Shuangyan Li
- Graduate School, Kunming Medical University, Kunming, China
| | - Xinmao Song
- Department of Radiation Oncology, Ear, Nose & Throat Hospital of Fudan University, Shanghai, China
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| |
Collapse
|
20
|
Jin T, Ji J, Xu X, Li X, Gong B. Identification and validation of a novel 17 coagulation-related genes signature for predicting prognostic risk in colorectal cancer. Heliyon 2024; 10:e32687. [PMID: 38988584 PMCID: PMC11233961 DOI: 10.1016/j.heliyon.2024.e32687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Background Patients with colorectal cancer commonly experience disturbances in coagulation homeostasis. Activation of the coagulation system contributes to cancer-associated thrombosis as the second risk factor for death in cancer patients. This study intended to discover coagulation-related genes and construct a risk model for colorectal cancer patients' prognosis. Methods Coagulation-related genes were identified by searching coagulation-related pathways in the Molecular Signatures Database. Transcriptomic data and clinical data were downloaded from the Cancer Genome Atlas and Gene Expression Omnibus datasets. Univariate Cox and backward stepwise regression were utilized to identify prognosis-related genes and construct a predictive risk model for the training cohort. Next, survival analysis determines the risk model's predictive power, correlation with clinicopathological characteristics, and nomogram. Additionally, we characterized the variances in immune cell infiltration, somatic mutations, immune checkpoint molecules, biological functions, and drug sensitivity between the high- and low-score patients. Result Eight hundred forty-five genes were obtained by searching the theme term "coagulation" after de-duplication. After univariate regression analysis, 69 genes correlated with prognosis were obtained from the Cancer Genome Atlas dataset. A signature consisting of 17 coagulation-related genes was established through backward stepwise regression. The Kaplan-Meier curve indicated a worse prognosis for high-score patients. Time-dependent receiver operating characteristic curve analysis demonstrated high accuracy in predicting overall survival. Further, the results were validated by two independent datasets (GSE39582 and GSE17536). Combined with clinicopathological characteristics, the risk model was proven to be an independent prognostic factor to predict poor pathological status and worse prognosis. Furthermore, high-score patients had significantly higher stromal cell infiltration. Low-score patients were associated with high infiltration of resting memory CD4+ T cells, activated CD4+ T cells, and T follicular helper cells. The low-score patients exhibited increased expression of immune checkpoint genes, and this might be relevant to their better prognosis. High-score patients exhibited lower IC50 values of Paclitaxel, Rapamycin, Temozolomide, Cyclophosphamide, etc. The differential signaling pathways mainly involve the calcium signaling pathway and the neuroactive ligand-receptor interaction. Lastly, a nomogram was constructed and showed a good prediction. Conclusion The prognostic signature of 17 coagulation-related genes had significant prognostic value for colorectal cancer patients. We expect to improve treatment modalities and benefit more patients through research on molecular features.
Collapse
Affiliation(s)
- Taojun Jin
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianmei Ji
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaowen Xu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinxing Li
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Biao Gong
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
21
|
Song J, Yan XX, Zhang FL, Lei YY, Ke ZY, Li F, Zhang K, He YQ, Li W, Li C, Pan YM. Unveiling the secrets of gastrointestinal mucous adenocarcinoma survival after surgery with artificial intelligence: A population-based study. World J Gastrointest Oncol 2024; 16:2404-2418. [PMID: 38994138 PMCID: PMC11236227 DOI: 10.4251/wjgo.v16.i6.2404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Research on gastrointestinal mucosal adenocarcinoma (GMA) is limited and controversial, and there is no reference tool for predicting postoperative survival. AIM To investigate the prognosis of GMA and develop predictive model. METHODS From the Surveillance, Epidemiology, and End Results database, we collected clinical information on patients with GMA. After random sampling, the patients were divided into the discovery (70% of the total, for model training), validation (20%, for model evaluation), and completely blind test cohorts (10%, for further model evaluation). The main assessment metric was the area under the receiver operating characteristic curve (AUC). All collected clinical features were used for Cox proportional hazard regression analysis to determine factors influencing GMA's prognosis. RESULTS This model had an AUC of 0.7433 [95% confidence intervals (95%CI): 0.7424-0.7442] in the discovery cohort, 0.7244 (GMA: 0.7234-0.7254) in the validation cohort, and 0.7388 (95%CI: 0.7378-0.7398) in the test cohort. We packaged it into Windows software for doctors' use and uploaded it. Mucinous gastric adenocarcinoma had the worst prognosis, and these were protective factors of GMA: Regional nodes examined [hazard ratio (HR): 0.98, 95%CI: 0.97-0.98, P < 0.001)] and chemotherapy (HR: 0.62, 95%CI: 0.58-0.66, P < 0.001). CONCLUSION The deep learning-based tool developed can accurately predict the overall survival of patients with GMA postoperatively. Combining surgery, chemotherapy, and adequate lymph node dissection during surgery can improve patient outcomes.
Collapse
Affiliation(s)
- Jie Song
- Department of Gastroenterology, Dongying People’s Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying 257000, Shandong Province, China
| | - Xiang-Xiu Yan
- Department of Gastroenterology, Dongying People’s Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying 257000, Shandong Province, China
| | - Fang-Liang Zhang
- Gastrointestinal Surgery Department, Suining Central Hospital, Suining 629000, Sichuan Province, China
| | - Yong-Yi Lei
- Obstetrical Department, Suining Central Hospital, Suining 629000, Sichuan Province, China
| | - Zi-Yin Ke
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Fang Li
- Department of Pathology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Kai Zhang
- General Department, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yu-Qi He
- Department of Gastroenterology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Wei Li
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Chao Li
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Yuan-Ming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
22
|
Song J, Yan XX, Zhang FL, Lei YY, Ke ZY, Li F, Zhang K, He YQ, Li W, Li C, Pan YM. Unveiling the secrets of gastrointestinal mucous adenocarcinoma survival after surgery with artificial intelligence: A population-based study. World J Gastrointest Oncol 2024; 16:2392-2406. [DOI: 10.4251/wjgo.v16.i6.2392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Research on gastrointestinal mucosal adenocarcinoma (GMA) is limited and controversial, and there is no reference tool for predicting postoperative survival.
AIM To investigate the prognosis of GMA and develop predictive model.
METHODS From the Surveillance, Epidemiology, and End Results database, we collected clinical information on patients with GMA. After random sampling, the patients were divided into the discovery (70% of the total, for model training), validation (20%, for model evaluation), and completely blind test cohorts (10%, for further model evaluation). The main assessment metric was the area under the receiver operating characteristic curve (AUC). All collected clinical features were used for Cox proportional hazard regression analysis to determine factors influencing GMA’s prognosis.
RESULTS This model had an AUC of 0.7433 [95% confidence intervals (95%CI): 0.7424-0.7442] in the discovery cohort, 0.7244 (GMA: 0.7234-0.7254) in the validation cohort, and 0.7388 (95%CI: 0.7378-0.7398) in the test cohort. We packaged it into Windows software for doctors’ use and uploaded it. Mucinous gastric adenocarcinoma had the worst prognosis, and these were protective factors of GMA: Regional nodes examined [hazard ratio (HR): 0.98, 95%CI: 0.97-0.98, P < 0.001)] and chemotherapy (HR: 0.62, 95%CI: 0.58-0.66, P < 0.001).
CONCLUSION The deep learning-based tool developed can accurately predict the overall survival of patients with GMA postoperatively. Combining surgery, chemotherapy, and adequate lymph node dissection during surgery can improve patient outcomes.
Collapse
Affiliation(s)
- Jie Song
- Department of Gastroenterology, Dongying People’s Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying 257000, Shandong Province, China
| | - Xiang-Xiu Yan
- Department of Gastroenterology, Dongying People’s Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying 257000, Shandong Province, China
| | - Fang-Liang Zhang
- Gastrointestinal Surgery Department, Suining Central Hospital, Suining 629000, Sichuan Province, China
| | - Yong-Yi Lei
- Obstetrical Department, Suining Central Hospital, Suining 629000, Sichuan Province, China
| | - Zi-Yin Ke
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Fang Li
- Department of Pathology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Kai Zhang
- General Department, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yu-Qi He
- Department of Gastroenterology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Wei Li
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Chao Li
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Yuan-Ming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
23
|
Li F, Han M, Gao X, Du X, Jiang C. APOA1 mRNA and serum APOA1 protein as diagnostic and prognostic biomarkers in gastric cancer. Transl Cancer Res 2024; 13:2141-2154. [PMID: 38881912 PMCID: PMC11170536 DOI: 10.21037/tcr-23-1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/17/2024] [Indexed: 06/18/2024]
Abstract
Background Gastric cancer (GC) remains a formidable challenge in oncology, ranking as a leading cause of cancer mortality globally. This underscores an urgent need for innovative prognostic markers that can revolutionize patient management and outcomes. Recent insights into cancer biology have spotlighted the profound influence of lipid metabolism alterations on tumorigenesis, tumor progression, and the tumor microenvironment. These alterations not only fuel cancer cell growth and proliferation but also play a strategic role in evading immune surveillance and promoting metastasis. The intricate web of lipid metabolism in cancer cells, characterized by deregulated uptake, synthesis, and oxidation of fatty acids (FAs), opens new avenues for targeted therapeutic interventions and prognostic evaluations. Specifically, this study zeroes in on apolipoprotein A-I (APOA1), a key player in lipid metabolism, to unearth its prognostic value in GC. By delving into the role of lipid metabolism-related genes, particularly APOA1, we aim to unveil their potential as groundbreaking biomarkers for GC prognosis. This endeavor not only aims to enhance our understanding of the molecular underpinnings of GC but also to spearhead the development of lipid metabolism-based strategies for improved diagnostic, prognostic, and therapeutic outcomes. Methods Transcriptomic and clinical data from GC patients and healthy individuals were sourced from The Cancer Genome Atlas (TCGA) database, a comprehensive project that molecularly characterizes over 20,000 primary cancer and matched normal samples across 33 cancer types. Significantly differentially expressed lipid metabolism-related genes were identified using the "limma" package in R. Prognostic genes were selected via univariate Cox regression analysis. Differential gene enrichment analysis was performed using Metascape (http://www.metascape.org). The Human Protein Atlas (HPA, https://www.proteinatlas.org) provided information on APOA1 protein expression in GC and healthy tissues. Immune cell infiltration was analyzed using the CIBERSORT algorithm (http://cibersort.stanford.edu). Results Significant differences in lipid metabolism-related gene expression were observed between GC and normal tissues, closely linked to FA metabolism, oxidoreductase activity, and sphingolipid metabolism. APOA1 emerged as a potential prognostic biomarker by intersecting prognostic and differentially expressed lipid metabolism genes. Immunohistochemical analysis confirmed APOA1 downregulation in GC. The receiver operating characteristic (ROC) analysis demonstrated its predictive value, with the area under the curve (AUC) being 0.64 [95% confidence interval (CI): 0.52-0.76]. APOA1 expression correlated with immune cell infiltrations. Clinical serum APOA1 results revealed lower levels in GC patients (1.38 vs. 1.26; P<0.05), associated with poor prognosis (hazard ratio =1.50; P<0.001) and clinical characteristics. ROC analysis of serum APOA1 demonstrated good diagnostic ability (AUC: 0.63, 95% CI: 0.61-0.65). Serum APOA1 levels significantly increased after treatment. Conclusions This study highlights lipid metabolism reprogramming in GC and identifies APOA1 as a potential diagnostic and prognostic biomarker, suggesting its clinical utility in managing GC.
Collapse
Affiliation(s)
- Fangfei Li
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mei Han
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyun Gao
- Department of Geriatric, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xuan Du
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chunmeng Jiang
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
24
|
Zhou Y, Yang Z, Zeng H. An Aging-Related lncRNA Signature Establishing for Breast Cancer Prognosis and Immunotherapy Responsiveness Prediction. Pharmgenomics Pers Med 2024; 17:251-270. [PMID: 38803444 PMCID: PMC11129764 DOI: 10.2147/pgpm.s450960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Emerging evidence demonstrates the vital role of aging and long non-coding RNAs (lncRNAs) in breast cancer (BC) progression. Our study intended to develop a prognostic risk model based on aging-related lncRNAs (AG-lncs) to foresee BC patients' outcomes. Patients and Methods 307 aging-related genes (AGs) were sequenced from the TCGA project. Then, 697 AG-lncs were identified by the co-expression analysis with AGs. Using multivariate and univariate Cox regression analysis, and LASSO, 6 AG-lncs, including al136531.1, mapt-as1, al451085.2, otud6b-as1, tnfrsf14-as1, and linc01871, were validated to compute the risk score and establish a risk signature. Expression levels of al136531.1, mapt-as1, al451085.2, tnfrsf14-as1, and linc01871 were higher in low-risk BC patients, whereas otud6b-as1 expression was higher in high-risk BC patients. In the training and testing set, high-risk patients performed shorter PFI, OS, and DFS than low-risk patients. Results Our risk signature had the highest concordance index among other established prognostic signatures and displayed ideal predictive ability for 1-, 3- and 5-year patient OS in the nomogram. Additionally, BC patients with different risk score levels showed different immune statuses and responses to immunotherapy via GSEA, ssGSEA, ESTIMATE algorithm, and TIDE algorithm analysis. Of note, the qRT-PCR analysis validated that these 6 AG-lncs expressed quite differentially in BC tissues at various clinical stages. Conclusion The risk signature of 6 AG-lncs might offer a novel prognostic biomarker and promisingly enhance BC immunotherapy's effectiveness.
Collapse
Affiliation(s)
- Yanshijing Zhou
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
25
|
Liu Y, Zhang X, Pang Z, Wang Y, Zheng H, Wang G, Wang K, Du J. Prediction of prognosis and immunotherapy efficacy based on metabolic landscape in lung adenocarcinoma by bulk, single-cell RNA sequencing and Mendelian randomization analyses. Aging (Albany NY) 2024; 16:8772-8809. [PMID: 38771130 PMCID: PMC11164486 DOI: 10.18632/aging.205838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
Immunotherapy has been a remarkable clinical advancement in cancer treatment, but only a few patients benefit from it. Metabolic reprogramming is tightly associated with immunotherapy efficacy and clinical outcomes. However, comprehensively analyzing their relationship is still lacking in lung adenocarcinoma (LUAD). Herein, we evaluated 84 metabolic pathways in TCGA-LUAD by ssGSEA. A matrix of metabolic pathway pairs was generated and a metabolic pathway-pair score (MPPS) model was established by univariable, LASSO, multivariable Cox regression analyses. The differences of metabolic reprogramming, tumor microenvironment (TME), tumor mutation burden and drug sensitivity in different MPPS groups were further explored. WGCNA and 117 machine learning algorithms were performed to identify MPPS-related genes. Single-cell RNA sequencing and in vitro experiments were used to explore the role of C1QTNF6 on TME. The results showed MPPS model accurately predicted prognosis and immunotherapy efficacy of LUAD patients regardless of sequencing platforms. High-MPPS group had worse prognosis, immunotherapy efficacy and lower immune cells infiltration, immune-related genes expression and cancer-immunity cycle scores than low-MPPS group. Seven MPPS-related genes were identified, of which C1QTNF6 was mainly expressed in fibroblasts. High C1QTNF6 expression in fibroblasts was associated with more infiltration of M2 macrophage, Treg cells and less infiltration of NK cells, memory CD8+ T cells. In vitro experiments validated silencing C1QTNF6 in fibroblasts could inhibit M2 macrophage polarization and migration. The study depicted the metabolic landscape of LUAD and constructed a MPPS model to accurately predict prognosis and immunotherapy efficacy. C1QTNF6 was a promising target to regulate M2 macrophage polarization and migration.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Xiangwei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhaofei Pang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Haotian Zheng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Guanghui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Kai Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Jiajun Du
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
26
|
Liu S, Wen H, Li F, Xue X, Sun X, Li F, Hu R, Xi H, Boccellato F, Meyer TF, Mi Y, Zheng P. Revealing the pathogenesis of gastric intestinal metaplasia based on the mucosoid air-liquid interface. J Transl Med 2024; 22:468. [PMID: 38760813 PMCID: PMC11101349 DOI: 10.1186/s12967-024-05276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Gastric intestinal metaplasia (GIM) is an essential precancerous lesion. Although the reversal of GIM is challenging, it potentially brings a state-to-art strategy for gastric cancer therapeutics (GC). The lack of the appropriate in vitro model limits studies of GIM pathogenesis, which is the issue this work aims to address for further studies. METHOD The air-liquid interface (ALI) model was adopted for the long-term culture of GIM cells in the present work. This study conducted Immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR), transcriptomic sequencing, and mucoproteomic sequencing (MS) techniques to identify the pathways for differential expressed genes (DEGs) enrichment among different groups, furthermore, to verify novel biomarkers of GIM cells. RESULT Our study suggests that GIM-ALI model is analog to the innate GIM cells, which thus can be used for mucus collection and drug screening. We found genes MUC17, CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, NMUR2, and MAL2 were highly expressed in GIM cells, while GLDN, SLC5A5, MAL, and MALAT1 showed down-regulated, which can be used as potential biomarkers for GIM cells. In parallel, these genes that highly expressed in GIM samples were mainly involved in cancer-related pathways, such as the MAPK signal pathway and oxidative phosphorylation signal pathway. CONCLUSION The ALI model is validated for the first time for the in vitro study of GIM. GIM-ALI model is a novel in vitro model that can mimic the tissue micro-environment in GIM patients and further provide an avenue for studying the characteristics of GIM mucus. Our study identified new markers of GIM as well as pathways associated with GIM, which provides outstanding insight for exploring GIM pathogenesis and potentially other related conditions.
Collapse
Affiliation(s)
- Simeng Liu
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Huijuan Wen
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Fazhan Li
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Xiangdong Sun
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Fuhao Li
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Ruoyu Hu
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453000, China
| | - Huayuan Xi
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453000, China
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, 11743, UK
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin- Straße 12, 24105, Kiel, Germany
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China.
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China.
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453000, China.
| |
Collapse
|
27
|
Ning N, Lu J, Li Q, Li M, Cai Y, Wang H, Li J. Single-sEV profiling identifies the TACSTD2 + sEV subpopulation as a factor of tumor susceptibility in the elderly. J Nanobiotechnology 2024; 22:222. [PMID: 38698420 PMCID: PMC11067244 DOI: 10.1186/s12951-024-02456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Aging is a very complex physiological phenomenon, and sEVs are involved in the regulation of this mechanism. Serum samples from healthy individuals under 30 and over 60 years of age were collected to analyze differences in sEVs proteomics. RESULTS Based on PBA analysis, we found that sEVs from the serum of elderly individuals highly express TACSTD2 and identified a subpopulation marked by TACSTD2. Using ELISA, we verified the upregulation of TACSTD2 in serum from elderly human and aged mouse. In addition, we discovered that TACSTD2 was significantly increased in samples from tumor patients and had better diagnostic value than CEA. Specifically, 9 of the 13 tumor groups exhibited elevated TACSTD2, particularly for cervical cancer, colon cancer, esophageal carcinoma, liver cancer and thyroid carcinoma. Moreover, we found that serum sEVs from the elderly (especially those with high TACSTD2 levels) promoted tumor cell (SW480, HuCCT1 and HeLa) proliferation and migration. CONCLUSION TACSTD2 was upregulated in the serum of elderly individuals and patients with tumors, and could serve as a dual biomarker for aging and tumors.
Collapse
Affiliation(s)
- Nannan Ning
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Jianying Lu
- School of Public Health, Shandong University, Jinan, China
| | - Qianpeng Li
- Department of Hematology, Weifang People's Hospital, Weifang, China
| | - Mengmeng Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanling Cai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China.
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
28
|
Xu Q, Zhang L, Li B, Cheng A, Wang C, Li D, Han Z, Feng Z. The significance of elective neck dissection for patients with T2N0M0 OSCC at different ages. Oral Dis 2024; 30:2219-2228. [PMID: 37455401 DOI: 10.1111/odi.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The aim of this study was to determine the significance of elective neck dissection (END) for patients of different ages with T2N0M0 oral squamous cell carcinoma (OSCC) and sought to analyze the reasons behind it and its value for clinical guidance. METHODS This study enrolled 391 patients with T2N0M0 OSCC who were surgically treated in our hospital and were divided into young-, moderate-, and advanced-age groups according to our previous study. The Chi-square test and Kaplan-Meier analysis were performed for statistical analysis. RESULTS Compared with moderate- and advanced-age patients, young patients with T2N0M0 OSCC had higher lymph node metastasis rates and lymph node ratios. Therefore, END significantly improved the recurrence (p = 0.001) and survival (p = 0.001) for young patients, but not for moderate-age patients. Advanced-age patients even benefit from watchful waiting. END significantly improved recurrence and survival in young patients with smoking or alcohol consumption habits. CONCLUSIONS END improved the prognosis of young patients, and it was related to their higher metastasis rate. However, advanced-age patients benefited from the wait-and-see policy. END is essential for the young patients with smoking or drinking habit, it is also highly recommended for nonsmokers and nondrinkers.
Collapse
Affiliation(s)
- Qiaoshi Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lirui Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Bo Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Aoming Cheng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chong Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Delong Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhien Feng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Yin Y, Niu Q, Wei Z, Wang Y, Li G, Zhang W, Guo K, Yao X. Research on the toxicological prognostic significance of age-related genes in endometrial cancer unveiling key factors in patient prognosis. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38591852 DOI: 10.1002/tox.24219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
This study investigates the influence of aging-related genes on endometrial cancer, a prominent gynecological malignancy with rising incidence and mortality. By analyzing gene expression differences between cancerous and normal endometrial tissues, 42 aging-related genes were identified as differentially expressed. Utilizing the TCGA-UCEC sample, consensus clustering divided the samples into two molecular subgroups, Aging low and Aging high, based on their expression profiles. These subgroups showed distinct prognoses and survival rates, with the Aging high group associated with DNA repair and cell cycle pathways, and the Aging low group showing suppressed metabolic pathways and increased immune cell infiltration, suggesting a potential for better immunotherapy outcomes. Mutation analysis did not find significant differences in mutation frequencies between the groups, but a high Tumor Mutation Burden (TMB) correlated with better prognosis. A risk score model was also developed, showcasing significant prognostic power. Further analysis of the SIX1 gene revealed its overexpression in cancer cells. Drug sensitivity tests indicated that the low-risk group might respond better to chemotherapy. This research underscores the significance of aging-related genes in endometrial cancer, offering insights into their prognostic value and therapeutic potential, which could lead to personalized treatment approaches and enhanced patient management.
Collapse
Affiliation(s)
- Yongchao Yin
- Department of Second Ward of Gynecology, Xingtai People's Hospital, Xingtai, China
| | - Qian Niu
- Department of Ouclar Trauma, Hebei Provincial Eye Hospital, Xingtai, China
| | - Zhiqiang Wei
- Department of Operating Room, Xingtai People's Hospital, Xingtai, China
| | - Yefei Wang
- Department of Operating Room, Xingtai People's Hospital, Xingtai, China
| | - Gang Li
- Department of Operating Room, Xingtai People's Hospital, Xingtai, China
| | - Weican Zhang
- Department of Fourth Ward of Gynecology, Xingtai People's Hospital, Xingtai, China
| | - Kai Guo
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai, China
| | - Xinyu Yao
- Department of Anesthesiology, Xingtai People's Hospital, Xingtai, China
| |
Collapse
|
30
|
Bai R, Yin P, Xing Z, Wu S, Zhang W, Ma X, Gan X, Liang Y, Zang Q, Lei H, Wei Y, Zhang C, Dai B, Zheng Y. Investigation of GPR143 as a promising novel marker for the progression of skin cutaneous melanoma through bioinformatic analyses and cell experiments. Apoptosis 2024; 29:372-392. [PMID: 37945816 DOI: 10.1007/s10495-023-01913-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is an aggressive and life-threatening skin cancer. G-protein coupled receptor 143 (GPR143) belongs to the superfamily of G protein-coupled receptors. METHODS We used the TCGA, GTEx, CCLE, and the Human Protein Atlas databases to examine the mRNA and protein expression of GPR143. In addition, we performed a survival analysis and evaluated the diagnostic efficacy using the Receiver-Operating Characteristic (ROC) curve. Through CIBERSORT, R programming, TIMER, Gene Expression Profiling Interactive Analysis, Sangerbox, and Kaplan-Meier plotter database analyses, we explored the relationships between GPR143, immune infiltration, and gene marker expression of immune infiltrated cells. Furthermore, we investigated the proteins that potentially interact with GPR143 and their functions using R programming and databases including STRING, GeneMANIA, and GSEA. Meanwhile, the cBioPortal, UALCNA, and the MethSurv databases were used to examine the genomic alteration and methylation of GPR143 in SKCM. The Connectivity Map database was used to discover potentially effective therapeutic molecules against SKCM. Finally, we conducted cell experiments to investigate the potential role of GPR143 in SKCM. RESULTS We demonstrated a significantly high expression level of GPR143 in SKCM compared with normal tissues. High GPR143 expression and hypomethylation status of GPR143 were associated with a poorer prognosis. ROC analysis showed that the diagnostic efficacy of the GPR143 was 0.900. Furthermore, GPR143 expression was significantly correlated with immune infiltration in SKCM. We identified 20 neighbor genes and the pathways they enriched were anabolic process of pigmentation, immune regulation, and so on. Genomic alteration analysis revealed significantly different copy number variations related to GPR143 expression in SKCM, and shallow deletion could lead to high expression of GPR143. Ten potential therapeutic drugs against SKCM were identified. GPR143 knockdown inhibited melanoma cell proliferation, migration, and colony formation while promoting apoptosis. CONCLUSIONS Our findings suggest that GPR143 serves as a novel diagnostic and prognostic biomarker and is associated with the progression of SKCM.
Collapse
Affiliation(s)
- Ruimin Bai
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Pan Yin
- Department of Medicine, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Zixuan Xing
- Department of Medicine, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Shaobo Wu
- Department of Medicine, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Wen Zhang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xinyu Ma
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xinyi Gan
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yuxia Liang
- Department of Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Qijuan Zang
- Department of Medicine, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hao Lei
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yi Wei
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Chaonan Zhang
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Yan Zheng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
31
|
Geng S, Yu X, Yu S. Efficacy and safety of natural killer cells injection combined with XELOX chemotherapy in postoperative patients with stage III colorectal cancer in China: a prospective randomised controlled clinical trial study protocol. BMJ Open 2024; 14:e080377. [PMID: 38531576 PMCID: PMC10966825 DOI: 10.1136/bmjopen-2023-080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in China. However, resistance to multiple chemotherapeutics after surgery leads to failure of the main therapy to CRC. Natural killer (NK) cells are innate cytotoxic lymphocytes that exhibit strong cytotoxic activity against tumour cells. NK cell-based therapy, either alone or in combination with chemotherapy, has achieved favourable results and holds promise for addressing recurrence and metastasis in CRC patients after surgery. METHODS AND ANALYSIS This is a prospective, randomised controlled clinical trial to evaluate efficacy and safety of interleukin 2 activated NK cells injection combined with XELOX (capecitabine plus oxaliplatin)-based chemotherapy for postoperative CRC patients. Participants will be randomly divided into treatment group and control group, and every group includes 40 patients. The treatment group will also receive NK cells (5×109) with+XELOX-based chemotherapy, while the control group will receive only XELOX-based chemotherapy. This treatment will be repeated for eight cycles (6 months). The follow-up period lasts about 3 years, during which CEA, CA19-9, CA125, enhancement CT and colonoscopy will be conducted. The primary endpoints of this study are progression-free survival and overall survival, while the secondary endpoint is safety (number and severity of adverse events). Additionally, we aim to identify cancer stem cells in peripheral blood and predictive biomarkers (cytokines secreted by NK cells and activated markers of NK cells) that indicate patients who achieve an effective response. ETHICS AND DISSEMINATION The study has been approved by the Clinical Research Ethics Committee of our hospital (approval number 2023LLSC006) and the Chinese Clinical Trials. It will be conducted in accordance with the Declaration of Helsinki. Written informed consent will be obtained from all participants. The study findings will be submitted to peer-reviewed journals for publication. TRIAL REGISTRATION NUMBER Chinese Clinical Trials Registry (ChiCTR2300075861).
Collapse
Affiliation(s)
- Shan Geng
- Department of Endocrinology, The People's Hospital of Dazu Chongqing, Chongqing, China
| | - Xingrui Yu
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Shaohong Yu
- Department of General Surgery, The People's Hospital of Dazu Chongqing, Chongqing, China
| |
Collapse
|
32
|
Cao T, Huang M, Huang X, Tang T. Research and experimental verification on the mechanisms of cellular senescence in triple-negative breast cancer. PeerJ 2024; 12:e16935. [PMID: 38435998 PMCID: PMC10909353 DOI: 10.7717/peerj.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with high heterogeneity, poor prognosis, and a low 10-year survival rate of less than 50%. Although cellular senescence displays extensive effects on cancer, the comprehensions of cellular senescence-related characteristics in TNBC patients remains obscure. Method Single-cell RNA sequencing (scRNA-seq) data were analyzed by Seurat package. Scores for cellular senescence-related pathways were computed by single-sample gene set enrichment analysis (ssGSEA). Subsequently, unsupervised consensus clustering was performed for molecular cluster identification. Immune scores of patients in The Cancer Genome Atlas (TCGA) dataset and associated immune cell scores were calculated using Estimation of STromal and Immune cells in MAlignantTumours using Expression data (ESTIMATE) and Microenvironment Cell Populations-counter (MCP-counter), Tumor Immune Estimation Resource (TIMER) and Estimating the Proportion of Immune and Cancer cells (EPIC) methods, respectively. Immunotherapy scores were assessed using TIDE. Furthermore, feature genes were identified by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses; these were used to construct a risk model. Additionally, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and transwell assay were conducted for in vitro validation of hub genes. Result TNBC was classified into three subtypes based on cellular senescence-related pathways as clusters 1, 2, and 3. Specifically, cluster 1 showed the best prognosis, followed by cluster 2 and cluster 3. The levels of gene expression in cluster 2 were the lowest, whereas these were the highest in cluster 3. Moreover, clusters 1 and 3 showed a high degree of immune infiltration. TIDE scores were higher for cluster 3, suggesting that immune escape was more likely in patients with the cluster 3 subtype who were less likely to benefit from immunotherapy. Next, the TNBC risk model was constructed and validated. RT-qPCR revealed that prognostic risk genes (MMP28, ACP5 and KRT6A) were up-regulated while protective genes (CT83) were down-regulated in TNBC cell lines, validating the results of the bioinformatics analysis. Meanwhile, cellular experiments revealed that ACP5 could promote the migration and invasion abilities in two TNBC cell lines. Finally, we evaluated the validity of prognostic models for assessing TME characteristics and TNBC chemotherapy response. Conclusion In conclusion, these findings help to assess the efficacy of targeted therapies in patients with different molecular subtypes, have practical applications for subtype-specific treatment of TNBC patients, and provide information on prognostic factors, as well as guidance for the revelation of the molecular mechanisms by which senescence-associated genes influence TNBC progression.
Collapse
Affiliation(s)
- Tengfei Cao
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengjie Huang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyue Huang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tian Tang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Li Q, Chu Y, Yao Y, Song Q. A Treg-related riskscore model may improve the prognosis evaluation of colorectal cancer. J Gene Med 2024; 26:e3668. [PMID: 38342959 DOI: 10.1002/jgm.3668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) poses a significant health challenge. This study aims to investigate the prognostic value of a regulatory T cell (Treg)-related gene signature in CRC. METHODS We extracted the gene expression and clinical data on CRC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The gene module related to Treg was identified by weighted gene co-expression network analysis (WGCNA). The genes in the significant module were filtered by univariate Cox, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. A riskscore model was established in terms of the key Treg-related genes. The reliability of this riskscore model was validated using the external GEO dataset. The association of riskscore with clinical features, mutation patterns and signaling pathways was explored. RESULTS Genes in the blue module showed the strongest association with Tregs. After a series of filtering cycles, seven Treg-related key genes, GDE1, GSR, HSPB1, AOC2, TBX19, TAMM41 and TIGD6, were selected to construct a riskscore model. This model performed well in evaluating the patients' survival in TCGA cohort, and was further affirmed by the GSE17536 validation cohort. For precise evaluation of the patients' survival, we established a nomogram in light of riskscore and clinical factors. Patients in different risk groups had distinct clinical features, mutation patterns and signaling pathway activities. The expression of five key genes was significantly associated with Treg infiltration in the CRC samples. CONCLUSION We established a useful riskscore model in light of seven Treg-related genes. This model may contribute to the prognosis evaluation, direct tailored treatment, and hopefully improve clinical outcomes of the CRC patients.
Collapse
Affiliation(s)
- Qingqing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxin Chu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
He Y, Huang X, Ma Y, Yang G, Cui Y, Lv X, Zhao R, Jin H, Tong Y, Zhang X, Li J, Peng M. A novel aging-associated lncRNA signature for predicting prognosis in osteosarcoma. Sci Rep 2024; 14:1386. [PMID: 38228673 PMCID: PMC10791644 DOI: 10.1038/s41598-024-51732-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent bone tumors in adolescents, and the correlation between aging and OS remains unclear. Currently, few accurate and reliable biomarkers have been determined for OS prognosis. To address this issue, we carried out a detailed bioinformatics analysis based on OS with data from the Cancer Genome Atlas data portal and Human Aging Genomic Resources database, as well as in vitro experiments. A total of 88 OS samples with gene expression profiles and corresponding clinical characteristics were obtained. Through univariate Cox regression analysis and survival analysis, 10 aging-associated survival lncRNAs (AASRs) were identified to be associated with the overall survival of OS patients. Based on the expression levels of the 10 AASRs, the OS patients were classified into two clusters (Cluster A and Cluster B). Cluster A had a worse prognosis, while Cluster B had a better prognosis. Then, 5 AASRs were ultimately included in the signature through least absolute shrinkage and selection operator-Cox regression analysis. Kaplan‒Meier survival analysis verified that the high-risk group exhibited a worse prognosis than the low-risk group. Furthermore, univariate and multivariate Cox regression analyses confirmed that the riskScore was an independent prognostic factor for OS patients. Subsequently, we discovered that the risk signature was correlated with the properties of the tumor microenvironment and immune cell infiltration. Specifically, there was a positive association between the risk model and naïve B cells, resting dendritic cells and gamma delta T cells, while it was negatively related to CD8+ T cells. Finally, in vitro experiments, we found that UNC5B-AS1 inhibited OS cells from undergoing cellular senescence and apoptosis, thereby promoting OS cells proliferation. In conclusion, we constructed and verified a 5 AASR-based signature, that exhibited excellent performance in evaluating the overall survival of OS patients. In addition, we found that UNC5B-AS1 might inhibit the senescence process, thus leading to the development and progression of OS. Our findings may provide novel insights into the treatment of OS patients.
Collapse
Affiliation(s)
- Yi He
- Department of Mini-Invasive Spinal Surgery, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Xiao Huang
- Department of Clinical Laboratory, Luohe Central Hospital, Luohe, 462300, Henan, China
| | - Yajie Ma
- Department of Medical Affair, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Guohui Yang
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuqing Cui
- General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xuefeng Lv
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rongling Zhao
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Huifang Jin
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yalin Tong
- Department of Digestion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinyu Zhang
- Department of Medical Affair, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Provincial Orthopedic Institute, Henan University of Chinese Medicine, 100 Yongping Road, Zhengzhou, 450000, Henan, China.
| | - Mengle Peng
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China.
| |
Collapse
|
35
|
Fan TY, Xu LL, Zhang HF, Peng J, Liu D, Zou WD, Feng WJ, Qin M, Zhang J, Li H, Li YK. Comprehensive Analyses and Experiments Confirmed IGFBP5 as a Prognostic Predictor Based on an Aging-genomic Landscape Analysis of Ovarian Cancer. Curr Cancer Drug Targets 2024; 24:760-778. [PMID: 38018207 DOI: 10.2174/0115680096276852231113111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the malignant diseases of the reproductive system in elderly women. Aging-related genes (ARGs) were involved in tumor malignancy and cellular senescence, but the specifics of these mechanisms in OC remain unknown. METHODS ARGs expression and survival data of OC patients were collected from TCGA and CPTAC databases. Subtype classification was used to identify the roles of hub ARGs in OC progression, including function enrichment, immune infiltration, and drug sensitivity. LASSO regression was utilized to confirm the prognosis significance for these hub ARGs. MTT, EdU, Transwell, and wounding healing analysis confirmed the effect of IGFBP5 on the proliferation and migration ability of OC cells. RESULTS ARGs were ectopically expressed in OC tissues compared to normal ovary tissues. Three molecular subtypes were divided by ARGs for OC patients. There were significant differences in ferroptosis, m6A methylation, prognosis, immune infiltration, angiogenesis, differentiation level, and drug sensitivity among the three groups. LASSO regression indicated that 4 signatures, FOXO4, IGFBP5, OGG1 and TYMS, had important prognosis significance. Moreover, IGFBP5 was significantly correlated with immune infiltration. The hub ARG, IGFBP5, expression was significantly decreased in OC patients compared to normal women. IGFBP5 could also reduce the migration and proliferation ability of OC cells compared to vector and NC groups. CONCLUSION IGFBP5 was correlated with OC prognosis and associated with OC migration and proliferation. This gene may serve as potential prognostic biomarkers and therapeutic targets for OC patients.
Collapse
Affiliation(s)
- Ting-Yu Fan
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Li-Li Xu
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hong-Feng Zhang
- Department of Laboratory Medicine, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Peng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Jie Feng
- Burn and Plastic Department, Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Mei Qin
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yu-Kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
36
|
Chen M, Huang M, Chen X, Lin X, Chen X. Multiomics blueprint of PANoptosis in deciphering immune characteristics and prognosis stratification of glioma patients. J Gene Med 2024; 26:e3621. [PMID: 37997255 DOI: 10.1002/jgm.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND As the most prevalent primary brain tumor in adults, glioma accounts for the majority of all central nervous system malignant tumors. The concept of PANoptosis is a relatively new, underlining the interconnection and synergy among three distinct pathways: pyroptosis, apoptosis and necroptosis. METHODS We performed single-cell annotations of glioma cells and determined crucial signaling pathways through cell chat analysis. Using least absolute shrinkage and selection operator (LASSO) and Cox analyses, we identified a gene set with prognostic values. Our model was validated using independent external cohort. In addition, we employed single-sample gene set enrichment analysis and xCell analyses to describe the detailed profile of infiltrated immune cells and depicted the gene mutation landscape in the two groups. RESULTS We identified seven distinct cell clusters in glioma samples, including oligodendrocyte precursor cells (OPCs), myeloid cells, tumor cells, oligodendrocytes, astrocytes, vascular cells and neuronal cells. We found that myeloid cells showed the highest PANoptosis activity. An intense mutual cell communication pattern between the tumor cells and OPCs and oligodendrocytes was observed. Differentially expressed genes between the high-PANoptosis and low-PANoptosis cell groups were obtained, which were enriched to actin cytoskeleton, cell adhesion molecules and gamma R-mediated phagocytosis pathways. We determined a set of five genes of prognostic significance: SAA1, SLPI, DCX, S100A8 and TNR. The prognostic differences between the two groups in the internal and external sets were found to be statistically significant. We found a marked correlation between S100A8 and activated dendritic cell, macrophage, mast cell, myeloid derived suppressor cell and Treg infiltration. Moreover, we have observed a significant increase of PTEN mutation in the high risk (HR) group of glioma patients. CONCLUSIONS In the present study, we have constructed a prognostic model that is based on the PANoptosis, and we have demonstrated its significant efficacy in stratifying patients with glioma. This innovative prognostic model offers novel insights into precision immune treatments that could be used to combat this disease and improve patient outcomes, thereby providing a new avenue for personalized treatment options.
Collapse
Affiliation(s)
- Maohua Chen
- Department of Neurosurgery, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou Central Hospital, Zhejiang, China
| | - Min Huang
- Department of Obstetrics and Gynecology, E Gang Hospital, Hubei, China
| | - Xiaoxiang Chen
- Department of Neurosurgery, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou Central Hospital, Zhejiang, China
| | - Xiaoyu Lin
- Department of Neurosurgery, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou Central Hospital, Zhejiang, China
| | - Xianglin Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| |
Collapse
|
37
|
Wang Q, Shen K, Fei B, Luo H, Li R, Wang Z, Wei M, Xie Z. A predictive model for early death in elderly colorectal cancer patients: a population-based study. Front Oncol 2023; 13:1278137. [PMID: 38173840 PMCID: PMC10764026 DOI: 10.3389/fonc.2023.1278137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose The purpose of this study is to determine what variables contribute to the early death of elderly colorectal cancer patients (ECRC) and to generate predictive nomograms for this population. Methods This retrospective cohort analysis included elderly individuals (≥75 years old) diagnosed with colorectal cancer (CRC) from 2010-2015 in the Surveillance, Epidemiology, and End Result databases (SEER) databases. The external validation was conducted using a sample of the Chinese population obtained from the China-Japan Union Hospital of Jilin University. Logistic regression analyses were used to ascertain variables associated with early death and to develop nomograms. The nomograms were internally and externally validated with the help of the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). Results The SEER cohort consisted of 28,111 individuals, while the Chinese cohort contained 315 cases. Logistic regression analyses shown that race, marital status, tumor size, Grade, T stage, N stage, M stage, brain metastasis, liver metastasis, bone metastasis, surgery, chemotherapy, and radiotherapy were independent prognostic factors for all-cause and cancer-specific early death in ECRC patients; The variable of sex was only related to an increased risk of all-cause early death, whereas the factor of insurance status was solely associated with an increased risk of cancer-specific early death. Subsequently, two nomograms were devised to estimate the likelihood of all-cause and cancer-specific early death among individuals with ECRC. The nomograms exhibited robust predictive accuracy for predicting early death of ECRC patients, as evidenced by both internal and external validation. Conclusion We developed two easy-to-use nomograms to predicting the likelihood of early death in ECRC patients, which would contribute significantly to the improvement of clinical decision-making and the formulation of personalized treatment approaches for this particular population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhongshi Xie
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Zhang Y, Liu C. Transcriptomic analysis of mRNAs in human whole blood identified age-specific changes in healthy individuals. Medicine (Baltimore) 2023; 102:e36486. [PMID: 38065846 PMCID: PMC10713173 DOI: 10.1097/md.0000000000036486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Older age is one of the most important shared risk factors for multiple chronic diseases, increasing the medical burden to contemporary societies. Current research focuses on identifying aging biomarkers to predict aging trajectories and developing interventions aimed at preventing and delaying the progression of multimorbidity with aging. Here, a transcriptomic changes analysis of whole blood genes with age was conducted. The age-related whole blood gene-expression profiling datasets were downloaded from the Gene Expression Omnibus (GEO) database. We screened the differentially expressed genes (DEGs) between healthy young and old individuals and performed functional enrichment analysis. Cytoscape with Cytohubba and MCODE was used to perform an interaction network of DEGs and identify hub genes. In addition, ROC curves and correlation analysis were used to evaluate the accuracy of hub genes. In total, we identified 29 DEGs between young and old samples that were enriched mainly in immunoglobulin binding and complex, humoral immune response, and immune response-activating signaling pathways. In combination with the PPI network and topological analysis, 4 hub genes (IGLL5, Jchain, POU2AF1, and Bach2) were identified. Pearson analysis showed that the expression changes of these hub genes were highly correlated with age. Among them, 3 hub genes (IGLL5, POU2AF1, and Bach2) were identified with good accuracy (AUC score > 0.7), indicating that these genes were the best indicators of age. Together, our results provided potential biomarkers IGLL5, POU2AF1, and Bach2 to identify individuals at high early risk of age-related disease to be targeted for early interventions and contribute to understanding the molecular mechanisms in the progression of aging.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chonghui Liu
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
39
|
Wang H, Wu Y, Huang P, Chen W, Wang Z, Wang Y. Comparison of effectiveness and safety of Da Vinci robot's "3 + 1" and "4 + 1" modes of treatment for colorectal cancer. J Robot Surg 2023; 17:2807-2815. [PMID: 37735326 DOI: 10.1007/s11701-023-01717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/03/2023] [Indexed: 09/23/2023]
Abstract
To compare the effectiveness of the Da Vinci Surgical Robot System (DSRS) "3 + 1" and "4 + 1" models for colorectal cancer (CRC). A total of 107 patients with CRC admitted to our hospital from February 2021 to May 2022 were selected for the retrospective analysis. Of these, 57 patients underwent the DSRS "4 + 1" model (control group), while the rest 50 underwent the DSRS "3 + 1" model (research group). The operation time, intraoperative bleeding, number of lymph nodes detected, time of first postoperative urinary catheter removal, time of first feeding, time of first venting and hospitalization were compared between the two groups. The changes of white blood cell (WBC) and C-reactive protein (CRP) levels before and after surgery were detected, and patients' adverse effects and treatment costs between surgery and hospital discharge were counted. The Self-Rating Anxiety Scale (SAS) and the Self-Rating Depression Scale (SDS) were used to assess the psychological state of the patients. There was no difference in operative time, intraoperative bleeding, and number of lymph nodes detected between both groups (P > 0.05), while time to first postoperative urinary catheter removal, time to first feeding, time to first venting, length of stay (LOS), postoperative inflammatory factor levels, incidence of adverse events, and treatment costs were all lower in the research group than in the control group (P < 0.05). SAS and SDS scores decreased after treatment in both groups, but the decrease was more obvious in the research group (P < 0.05). Both DSRS "4 + 1" and "3 + 1" modes have better treatment effects for CRC. However, the "3 + 1" mode has higher safety and lower treatment cost, which can significantly improve the postoperative recovery process of patients and is more worthy to be promoted in clinical practice.
Collapse
Affiliation(s)
- Huaiwen Wang
- Department of Anorectal Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan, China.
| | - Yuanhao Wu
- Department of Anorectal Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan, China
| | - Ping Huang
- Department of Anorectal Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan, China
| | - Weijia Chen
- Department of Anorectal Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan, China
| | - Zhenfen Wang
- Department of Anorectal Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan, China
| | - Yuna Wang
- Department of Anorectal Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan, China
| |
Collapse
|
40
|
Li M, Song J, Wang L, Wang Q, Huang Q, Mo D. Natural killer cell-related prognosis signature predicts immune response in colon cancer patients. Front Pharmacol 2023; 14:1253169. [PMID: 38026928 PMCID: PMC10679416 DOI: 10.3389/fphar.2023.1253169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Natural killer (NK) cells are crucial components of the innate immune system that fight tumors and viral infections. Patients with colorectal cancer (CRC) have a poor prognosis, and immunotherapeutic tools play a key role in the treatment of CRC. Methods: Public data on CRC patients was collected from the TCGA and the GEO databases. Tissue data of CRC patients were collected from Guangxi Medical University Affiliated Cancer Hospital. An NK-related prognostic model was developed by the least absolute shrinkage and selection operator (LASSO) and Cox regression method. Validation data were collected from different clinical subgroups and an external independent validation cohort to verify the model's accuracy. In addition, multiple external independent immunotherapy datasets were collected to further examine the value of NK-related risk scores (NKRS) in the prediction of immunotherapy response. Potential biological functions of key genes were examined by methods of cell proliferation, apoptosis and Western blotting. Results: A novel prognostic model for CRC patients based on NK-related genes was developed and NKRS was generated. There was a significantly poorer prognosis among the high-NKRS group. Based on immune response prediction, patients with low NKRS may be more suitable for immunotherapy and they are more sensitive to immunotherapy. The proliferation rate of CRC cells was significantly reduced and apoptosis of CRC cells was increased after SLC2A3 was knocked down. SLC2A3 was also found to be associated with the TGF-β signaling pathway. Conclusion: NKRS has potential applications for predicting prognostic status and response to immunotherapy in CRC patients. SLC2A3 has potential as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Meiqin Li
- Department of Clinical Laboratory, Guang Xi Medical University Cancer Hospital, Nanning, China
| | - Jingqing Song
- Department of Gastrointestinal Surgery, Guang Xi Medical University Cancer Hospital, Nanning, China
| | - Lin Wang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qi Wang
- Department of Basic Medicine, Guangxi Health Science College, Nanning, China
| | - Qinghua Huang
- Department of Breast Surgery, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Dan Mo
- Department of Breast, Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
41
|
Kang Z, Chen B, Ma X, Yan F, Wang Z. Immune-related gene-based model predicts the survival of colorectal carcinoma and reflected various biological statuses. Front Mol Biosci 2023; 10:1277933. [PMID: 37920710 PMCID: PMC10619740 DOI: 10.3389/fmolb.2023.1277933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Bakcground: Prognosis of colorectal cancer (CRC) varies due to complex genetic-microenviromental interactions, and multiple gene-based prognostic models have been highlighted. Material and Method: In this work, the immune-related genes' expression-based model was developed and the scores of each sample were calculated. The correlation between the model and clinical information, immune infiltration, drug response and biological pathways were analyzed. Results: The high-score samples have a significantly longer survival (overall survival and progression-free survival) period than those with a low score, which was validated across seven datasets containing 1,325 samples (GSE17536 (N = 115), GSE17537 (N = 55), GSE33113 (N = 90), GSE37892 (N = 130), GSE38832 (N = 74), GSE39582 (N = 481), and TCGA (N = 380)). The score is significantly associated with clinical indicators, including age and stage, and further associated with PD-1/PD-L1 gene expression. Furthermore, high-score samples have significantly higher APC and a lower MUC5B mutation rate. The high-score samples show more immune infiltration (including CD4+ and CD8+ T cells, M1/M2 macrophages, and NK cells). Enriched pathway analyses showed that cancer-related pathways, including immune-related pathways, were significantly activated in high-score samples and that some drugs have significantly lower IC50 values than those with low score. Conclusion: The model developed based on immune-related genes is robust and reflected various statuses of CRC and may be a potential clinical indicator.
Collapse
Affiliation(s)
| | | | | | - Feihu Yan
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhen Wang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
42
|
Zhang X, Huang Y, Li Q, Zhong Y, Zhang Y, Hu J, Liu R, Luo X. Senescence risk score: a multifaceted prognostic tool predicting outcomes, stemness, and immune responses in colorectal cancer. Front Immunol 2023; 14:1265911. [PMID: 37828981 PMCID: PMC10566297 DOI: 10.3389/fimmu.2023.1265911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Colorectal cancer (CRC) remains a primary cause of cancer mortality globally, necessitating precise prognostic indicators for effective clinical management. Our study introduces the Senescence Risk Score (SRRS), based on several senescence-related genes (SRGs), a potent prognostic tool designed to measure cellular senescence in CRC. The higher SRRS predicts a poorer prognosis, providing a novel and efficient approach to patient stratification. Notably, we found that SRRS correlates with methylation and mutation variations, and increased immune infiltration in the tumor microenvironment, thus revealing potential therapeutic targets. We also discovered an inverse relationship between SRRS and cell stemness, which could have significant implications for cancer treatment strategies. Utilizing bioinformatics resources and machine learning, we identified LIMK1 and WRN as key genes associated with SRRS, further enhancing its prognostic value. Importantly, the modulation of these genes significantly impacts cellular senescence, proliferation, and stemness in CRC cells. In summary, our development of SRRS offers a powerful tool for CRC prognosis and paves the way for novel therapeutic strategies, underscoring its potential in transforming CRC patient management.
Collapse
Affiliation(s)
- Xiaojun Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilan Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiqing Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanzhou Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Zhang T, Hei R, Huang Y, Shao J, Zhang M, Feng K, Qian W, Li S, Jin F, Chen Y. Construction and experimental validation of a necroptosis-related lncRNA signature as a prognostic model and immune-landscape predictor for lung adenocarcinoma. Am J Cancer Res 2023; 13:4418-4433. [PMID: 37818057 PMCID: PMC10560937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Necroptosis is a new form of cell death. Since the discovery that long non-coding RNAs can affect the proliferation of lung adenocarcinoma, much has been learned about it, yet those of necroptosis-related long non-coding RNAs (NRlncRNAs) in lung adenocarcinoma (LUAD) remain enigmatic. This study aims to explore novel biomarkers and therapeutic targets for LUAD. The LUAD data was downloaded from The Cancer Genome Atlas, and necroptosis-related genes were retrieved from published literature. Co-expression analysis, univariate Cox analysis, least absolute shrinkage and selection operator regression analysis were used to identify necroptosis-related prognostic long non-coding RNAs. A comprehensive evaluation of tumor immunity for necrosis-related features was performed, and we identified a 9-NRlncRNA signature. Kaplan-Meier and Cox regression analyses confirmed that the signature was an independent predictor of LUAD outcome in the test and train sets (all P < 0.05). The areas of 1-, 2-, and 3-year overall survival under the time-dependent receiver operating characteristics (ROC) curve (AUC) were 0.754, 0.746, and 0.720, respectively. The GSEA results showed that 9 NRlncRNAs were associated with multiple malignancy-associated and immunoregulatory pathways. Based on this model, we found that the immune status and level of response to chemotherapy and targeted therapy were significantly different in the low-risk group compared with the high-risk group. qRT-PCR assay revealed that 9 NRlncRNAs were involved in the regulation of tumor cell proliferation and may affect the expression of programmed cell death 1 (PD1) and CD28 at human immune checkpoints. Our results indicated that the novel signature involving 9 NRlncRNAs (AL031600.2, LINC01281, AP001178.1, AL157823.2, LINC01290, MED4-AS1, AC026355.2, AL606489.1, FAM83A-AS1) can predict the prognosis of LUAD and are associated with the immune response. This will provide new insights into the pathogenesis and development of therapies for LUAD.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Pulmonary Critical Care Medicine, The Second Affiliated Hospital of The Air Force Military Medical UniversityXinsi Road 569, Xi’an 710038, Shaanxi, PR China
| | - Ruoxuan Hei
- Department of Clinical Diagnose, The Second Affiliated Hospital of The Air Force Military Medical UniversityXinsi Road 569, Xi’an 710038, Shaanxi, PR China
| | - Yue Huang
- Department of Pulmonary Critical Care Medicine, The 1st Affiliated Hospital of Shenzhen UniversityShenzhen 518035, Guangdong, PR China
| | - Jingjin Shao
- Department of Pulmonary Critical Care Medicine, The 1st Affiliated Hospital of Shenzhen UniversityShenzhen 518035, Guangdong, PR China
| | - Min Zhang
- Department of Pulmonary Critical Care Medicine, The 1st Affiliated Hospital of Shenzhen UniversityShenzhen 518035, Guangdong, PR China
| | - Kai Feng
- Department of Pulmonary Critical Care Medicine, The Second Affiliated Hospital of The Air Force Military Medical UniversityXinsi Road 569, Xi’an 710038, Shaanxi, PR China
| | - Weishen Qian
- Department of Pulmonary Critical Care Medicine, The Second Affiliated Hospital of The Air Force Military Medical UniversityXinsi Road 569, Xi’an 710038, Shaanxi, PR China
| | - Simin Li
- Department of Clinical Diagnose, The Second Affiliated Hospital of The Air Force Military Medical UniversityXinsi Road 569, Xi’an 710038, Shaanxi, PR China
| | - Faguang Jin
- Department of Pulmonary Critical Care Medicine, The Second Affiliated Hospital of The Air Force Military Medical UniversityXinsi Road 569, Xi’an 710038, Shaanxi, PR China
| | - Yanwei Chen
- Department of Pulmonary Critical Care Medicine, The 1st Affiliated Hospital of Shenzhen UniversityShenzhen 518035, Guangdong, PR China
- Department of Pulmonary Critical Care Medicine, The Second Affiliated Hospital of The Air Force Military Medical UniversityXinsi Road 569, Xi’an 710038, Shaanxi, PR China
| |
Collapse
|
44
|
Wu Y, Zhuang J, Zhang Q, Zhao X, Chen G, Han S, Hu B, Wu W, Han S. Aging characteristics of colorectal cancer based on gut microbiota. Cancer Med 2023; 12:17822-17834. [PMID: 37548332 PMCID: PMC10524056 DOI: 10.1002/cam4.6414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Aging is one of the factors leading to cancer. Gut microbiota is related to aging and colorectal cancer (CRC). METHODS A total of 11 metagenomic data sets related to CRC were collected from the R package curated Metagenomic Data. After batch effect correction, healthy individuals and CRC samples were divided into three age groups. Ggplot2 and Microbiota Process packages were used for visual description of species composition and PCA in healthy individuals and CRC samples. LEfSe analysis was performed for species relative abundance data in healthy/CRC groups according to age. Spearman correlation coefficient of age-differentiated bacteria in healthy individuals and CRC samples was calculated separately. Finally, the age prediction model and CRC risk prediction model were constructed based on the age-differentiated bacteria. RESULTS The structure and composition of the gut microbiota were significantly different among the three groups. For example, the abundance of Bacteroides vulgatus in the old group was lower than that in the other two groups, the abundance of Bacteroides fragilis increased with aging. In addition, seven species of bacteria whose abundance increases with aging were screened out. Furthermore, the abundance of pathogenic bacteria (Escherichia_coli, Butyricimonas_virosa, Ruminococcus_bicirculans, Bacteroides_fragilis and Streptococcus_vestibularis) increased with aging in CRCs. The abundance of probiotics (Eubacterium_eligens) decreased with aging in CRCs. The age prediction model for healthy individuals based on the 80 age-related differential bacteria and model of CRC patients based on the 58 age-related differential bacteria performed well, with AUC of 0.79 and 0.71, respectively. The AUC of CRC risk prediction model based on 45 disease differential bacteria was 0.83. After removing the intersection between the disease-differentiated bacteria and the age-differentiated bacteria from the healthy samples, the AUC of CRC risk prediction model based on remaining 31 bacteria was 0.8. CRC risk prediction models for each of the three age groups showed no significant difference in accuracy (young: AUC=0.82, middle: AUC=0.83, old: AUC=0.85). CONCLUSION Age as a factor affecting microbial composition should be considered in the application of gut microbiota to predict the risk of CRC.
Collapse
Affiliation(s)
- Yinhang Wu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Jing Zhuang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Qi Zhang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
| | - Xingming Zhao
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Gong Chen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Shugao Han
- Second Affiliated Hospital of School of MedicineZhejiang UniversityHangzhouChina
| | - Boyang Hu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Wei Wu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| | - Shuwen Han
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central HospitalHuzhouChina
| |
Collapse
|
45
|
Gui C, Wei J, Mo C, Liang Y, Cen J, Chen Y, Wang D, Luo J. Therapeutic implications for localized prostate cancer by multiomics analyses of the ageing microenvironment landscape. Int J Biol Sci 2023; 19:3951-3969. [PMID: 37564213 PMCID: PMC10411471 DOI: 10.7150/ijbs.85209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Background: Numerous studies have substantiated the association between aging and the progression of malignant tumors in humans, notably prostate cancer (PCa). Nevertheless, to the best of our knowledge, no studies have comprehensively elucidated the intricate characteristics of the aging microenvironment (AME) in PCa. Methods: AME regulatory patterns were determined using the NMF algorithm. Then an ageing microenvironment index (AMI) was constructed, with excellent prognostic and immunotherapy prediction ability, and its' clinical relevance was surveyed through spatial transcriptomics. Further, the drug response was analysed using the Genomics of Drug Sensitivity in Cancer (GDSC), the Connectivity Map (CMap) and CellMiner database for patients with PCa. Finally, the AME was studied using in vitro and vivo experiments. Results: Three different AME regulatory patterns were identified across 813 PCa patients, associated with distinct clinical prognosis and physiological pathways. Based on the AMI, patients with PCa were divided into the high-score and low-score subsets. Higher AMI score was significantly infiltrated with more immune cells, higher rate of biochemical recurrence (BCR) and worse response to immunotherapy, antiandrogen therapy and chemotherapy in PCa. In addition, we found that the combination of bicalutamide and embelin was capable of suppressing tumor growth of PCa. Besides, as the main components of AMI, COL1A1 and BGLAP act as oncogenes and were verified via in vivo and in vitro experiments. Conclusions: AME regulation is significantly associated with the diversity and complexity of TME. Quantitative evaluation of the AME regulatory patterns may provide promising novel molecular markers for individualised therapy in PCa.
Collapse
Affiliation(s)
- Chengpeng Gui
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jinhuan Wei
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chengqiang Mo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanping Liang
- Department of Laboratory Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junjie Cen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhang Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daohu Wang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junhang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Ke P, Zhu Q, Xu T, Yang X, Wang Y, Qiu H, Wu D, Bao X, Chen S. Identification and validation of a 7-genes prognostic signature for adult acute myeloid leukemia based on aging-related genes. Aging (Albany NY) 2023; 15:5826-5853. [PMID: 37367950 PMCID: PMC10333094 DOI: 10.18632/aging.204843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
To explore effects of aging-related genes (ARGs) on the prognosis of Acute Myeloid Leukemia (AML), a seven-ARGs signature was developed and validated in AML patients. The numbers of seven-ARG sequences were selected to construct the survival prognostic signature in TCGA-LAML cohort, and two GEO datasets were used independently to verify the prognostic values of signature. According to seven-ARGs signature, patients were categorized into two subgroups. Patients with high-risk prognostic score were defined as HRPS-group/high-risk group, while others were set as LRPS-group/low-risk group. HRPS-group presented adverse overall survival (OS) than LRPS-group in TCGA-AML cohort (HR=3.39, P<0.001). In validation, the results emphasized a satisfactory discrimination in different time points, and confirmed the poor OS of HRPS-group both in GSE37642 (HR=1.96, P=0.001) and GSE106291 (HR=1.88, P<0.001). Many signal pathways, including immune- and tumor-related processes, especially NF-κB signaling, were highly enriched in HRPS-group. Coupled with high immune-inflamed infiltration, the HRPS-group was highly associated with the driver gene and oncogenic signaling pathway of TP53. Prediction of blockade therapy targeting immune checkpoint indicated varied benefits base on the different ARGs signature score, and the results of predicted drug response suggested that Pevonedistat, an inhibitor of NEDD8-activating enzyme, targeting NF-κB signaling, may have potential therapeutic value for HRPS-group. Compared with clinical factors alone, the signature had an independent value and more predictive power of AML prognosis. The 7-ARGs signature may help to guide clinical-decision making to predict drug response, and survival in AML patients.
Collapse
Affiliation(s)
- Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qian Zhu
- Soochow Hopes Hematonosis Hospital, Suzhou, China
| | - Ting Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaofei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
47
|
Jia J, Guo P, Zhang L, Kong W, Wang F. LINC01614 Promotes Colorectal Cancer Cell Growth and Migration by Regulating miR-217-5p/HMGA1 Axis. Anal Cell Pathol (Amst) 2023; 2023:6833987. [PMID: 39282156 PMCID: PMC11401691 DOI: 10.1155/2023/6833987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 09/18/2024] Open
Abstract
Colorectal cancer (CRC) substantially contributes to cancer-related deaths worldwide. Recently, a long non-coding RNA (lncRNA), LINC01614, has emerged as a vital gene regulator in cancer progression. Yet, how LINC01614 affects CRC progression remains enigmatic. Here, we defined LINC01614 expression in CRC, investigated the performance of CRC cells lacking LINC01614, and elucidated the underpinning mechanism. We observed that LINC01614 was upregulated in both CRC tissues and cell lines. LINC01614 knockdown repressed the proliferation and metastasis capacity of CRC cell lines. Consistently, an in vivo LINC01614 deficiency model exhibited slow tumor growth rate. Moreover, luciferase reporter assay, RNA pull-down, and immunoprecipitation confirmed that LINC01614 targeted miR-217-5p. LINC01614 knockdown reduced the expression of HMGA1 and N-cadherin, while increasing that of E-cadherin, resulting in decreased viability, proliferation, migration, and invasion capacity of CRC cells. Our results demonstrate that LINC01614 regulates CRC progression by modulating the miR-217-5p/HMGA1 axis, thus holding great potential as a prognostic biomarker for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Jiwei Jia
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Pei Guo
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Li Zhang
- Department of Pathology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Wenqing Kong
- Central Ward Operating Room, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Fangfang Wang
- Outpatient Operating Room, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| |
Collapse
|
48
|
Liu Z, Ren C, Cai J, Yin B, Yuan J, Ding R, Ming W, Sun Y, Li Y. A Novel Aging-Related Prognostic lncRNA Signature Correlated with Immune Cell Infiltration and Response to Immunotherapy in Breast Cancer. Molecules 2023; 28:molecules28083283. [PMID: 37110517 PMCID: PMC10141963 DOI: 10.3390/molecules28083283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is among the most universal malignant tumors in women worldwide. Aging is a complex phenomenon, caused by a variety of factors, that plays a significant role in tumor development. Consequently, it is crucial to screen for prognostic aging-related long non-coding RNAs (lncRNAs) in BC. The BC samples from the breast-invasive carcinoma cohort were downloaded from The Cancer Genome Atlas (TCGA) database. The differential expression of aging-related lncRNAs (DEarlncRNAs) was screened by Pearson correlation analysis. Univariate Cox regression, LASSO-Cox analysis, and multivariate Cox analysis were performed to construct an aging-related lncRNA signature. The signature was validated in the GSE20685 dataset from the Gene Expression Omnibus (GEO) database. Subsequently, a nomogram was constructed to predict survival in BC patients. The accuracy of prediction performance was assessed through the time-dependent receiver operating characteristic (ROC) curves, Kaplan-Meier analysis, principal component analyses, decision curve analysis, calibration curve, and concordance index. Finally, differences in tumor mutational burden, tumor-infiltrating immune cells, and patients' response to chemotherapy and immunotherapy between the high- and low-risk score groups were explored. Analysis of the TCGA cohort revealed a six aging-related lncRNA signature consisting of MCF2L-AS1, USP30-AS1, OTUD6B-AS1, MAPT-AS1, PRR34-AS1, and DLGAP1-AS1. The time-dependent ROC curve proved the optimal predictability for prognosis in BC patients with areas under curves (AUCs) of 0.753, 0.772, and 0.722 in 1, 3, and 5 years, respectively. Patients in the low-risk group had better overall survival and significantly lower total tumor mutational burden. Meanwhile, the high-risk group had a lower proportion of tumor-killing immune cells. The low-risk group could benefit more from immunotherapy and some chemotherapeutics than the high-risk group. The aging-related lncRNA signature can provide new perspectives and methods for early BC diagnosis and therapeutic targets, especially tumor immunotherapy.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Chongkang Ren
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Jinyi Cai
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Baohui Yin
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Jingjie Yuan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Rongjuan Ding
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Wenzhuo Ming
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
49
|
Marx O, Mankarious M, Yochum G. Molecular genetics of early-onset colorectal cancer. World J Biol Chem 2023; 14:13-27. [PMID: 37034132 PMCID: PMC10080548 DOI: 10.4331/wjbc.v14.i2.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/24/2023] Open
Abstract
Early-onset colorectal cancer (EOCRC) has been rising in global prevalence and incidence over the past several decades. Environmental influences, including generational lifestyle changes and rising obesity, contribute to these increased rates. While the rise in EOCRC is best documented in western countries, it is seen throughout the world, although EOCRC may have distinct genetic mutations in patients of different ethnic backgrounds. Pathological and molecular characterizations show that EOCRC has a distinct presentation compared with later-onset colorectal cancer (LOCRC). Recent studies have identified DNA, RNA, and protein-level alterations unique to EOCRC, revealing much-needed biomarkers and potential novel therapeutic targets. Many molecular EOCRC studies have been performed with Caucasian and Asian EOCRC cohorts, however, studies of other ethnic backgrounds are limited. In addition, certain molecular characterizations that have been conducted for LOCRC have not yet been repeated in EOCRC, including high-throughput analyses of histone modifications, mRNA splicing, and proteomics on large cohorts. We propose that the complex relationship between cancer and aging should be considered when studying the molecular underpinnings of EOCRC. In this review, we summarize current EOCRC literature, focusing on sporadic molecular alterations in tumors, and their clinical implications. We conclude by discussing current challenges and future directions of EOCRC research efforts.
Collapse
Affiliation(s)
- Olivia Marx
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Marc Mankarious
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033, United States
| | - Gregory Yochum
- Department of Biochemistry & Molecular Biology & Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| |
Collapse
|
50
|
Ma Y, Zheng S, Xu M, Chen C, He H. Establishing and Validating an Aging-Related Prognostic Signature in Osteosarcoma. Stem Cells Int 2023; 2023:6245160. [PMID: 37964984 PMCID: PMC10643040 DOI: 10.1155/2023/6245160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2023] Open
Abstract
Aging is an inevitable process that biological changes accumulate with time and results in increased susceptibility to different tumors. But currently, aging-related genes (ARGs) in osteosarcoma were not clear. We investigated the potential prognostic role of ARGs and established an ARG-based prognostic signature for osteosarcoma. The transcriptome data and corresponding clinicopathological information of patients with osteosarcoma were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Molecular subtypes were generated based on prognosis-related ARGs obtained from univariate Cox analysis. With ARGs, a risk signature was built by univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Differences in clinicopathological features, immune infiltration, immune checkpoints, responsiveness to immunotherapy and chemotherapy, and biological pathways were assessed according to molecular subtypes and the risk signature. Based on risk signature and clinicopathological variables, a nomogram was established and validated. Three molecular subtypes with distinct clinical outcomes were classified based on 36 prognostic ARGs for osteosarcoma. A nine-ARG-based signature in the TCGA cohort, including BMP8A, CORT, SLC17A9, VEGFA, GAL, SSX1, RASGRP2, SDC3, and EVI2B, has been created and developed and could well perform patient stratification into the high- and low-risk groups. There were significant differences in clinicopathological features, immune checkpoints and infiltration, responsiveness to immunotherapy and chemotherapy, cancer stem cell, and biological pathways among the molecular subtypes. The risk signature and metastatic status were identified as independent prognostic factors for osteosarcoma. A nomogram combining ARG-based risk signature and metastatic status was established, showing great prediction accuracy and clinical benefit for osteosarcoma OS. We characterized three ARG-based molecular subtypes with distinct characteristics and built an ARG-based risk signature for osteosarcoma prognosis, which could facilitate prognosis prediction and making personalized treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yibo Ma
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China 116044
| | - Shuo Zheng
- The Second Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, China 116000
| | - Mingjun Xu
- The Second Hospital of Dalian Medical University, Dalian Medical University, Dalian, China 116000
| | - Changjian Chen
- The First Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, China 116000
| | - Hongtao He
- The Third Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, Dalian, China 116000
| |
Collapse
|