1
|
Liu J, Sebastià C, Jové-Juncà T, Quintanilla R, González-Rodríguez O, Passols M, Castelló A, Sánchez A, Ballester M, Folch JM. Identification of genomic regions associated with fatty acid metabolism across blood, liver, backfat and muscle in pigs. Genet Sel Evol 2024; 56:66. [PMID: 39327557 PMCID: PMC11426007 DOI: 10.1186/s12711-024-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The composition and distribution of fatty acids (FA) are important factors determining the quality, flavor, and nutrient value of meat. In addition, FAs synthesized in the body participate in energy metabolism and are involved in different regulatory pathways in the form of signaling molecules or by acting as agonist or antagonist ligands of different nuclear receptors. Finally, synthesis and catabolism of FAs affect adaptive immunity by regulating lymphocyte metabolism. The present study performed genome-wide association studies using FA profiles of blood, liver, backfat and muscle from 432 commercial Duroc pigs. RESULTS Twenty-five genomic regions located on 15 Sus scrofa chromosomes (SSC) were detected. Annotation of the quantitative trait locus (QTL) regions identified 49 lipid metabolism-related candidate genes. Among these QTLs, four were identified in more than one tissue. The ratio of C20:4n-6/C20:3n-6 was associated with the region on SSC2 at 7.56-14.26 Mb for backfat, liver, and muscle. Members of the fatty acid desaturase gene cluster (FADS1, FADS2, and FADS3) are the most promising candidate genes in this region. Two QTL regions on SSC14 (103.81-115.64 Mb and 100.91-128.14 Mb) were identified for FA desaturation in backfat and muscle. In addition, two separate regions on SSC9 at 0 - 14.55 Mb and on SSC12 at 0-1.91 Mb were both associated with the same multiple FA traits for backfat, with candidate genes involved in de novo FA synthesis and triacylglycerol (TAG) metabolism, such as DGAT2 and FASN. The ratio C20:0/C18:0 was associated with the region on SSC5 at 64.84-78.32 Mb for backfat. Furthermore, the association of the C16:0 content with the region at 118.92-123.95 Mb on SSC4 was blood specific. Finally, candidate genes involved in de novo lipogenesis regulate T cell differentiation and promote the generation of palmitoleate, an adipokine that alleviates inflammation. CONCLUSIONS Several SNPs and candidate genes were associated with lipid metabolism in blood, liver, backfat, and muscle. These results contribute to elucidating the molecular mechanisms implicated in the determination of the FA profile in different pig tissues and can be useful in selection programs that aim to improve health and energy metabolism in pigs.
Collapse
Affiliation(s)
- Junhui Liu
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| | - Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Teodor Jové-Juncà
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Josep M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| |
Collapse
|
2
|
Crisi PE, Giordano MV, Luciani A, Gramenzi A, Prasinou P, Sansone A, Rinaldi V, Ferreri C, Boari A. Evaluation of the fatty acid-based erythrocyte membrane lipidome in cats with food responsive enteropathy, inflammatory bowel disease and low-grade intestinal T-cell lymphoma. PLoS One 2024; 19:e0307757. [PMID: 39074116 DOI: 10.1371/journal.pone.0307757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Feline chronic enteropathies (FCE), include food-responsive-enteropathy (FRE), inflammatory bowel disease (IBD), and low-grade intestinal T-cell lymphoma (LGITL), and are common causes of chronic gastrointestinal signs in cats. Distinguishing between different subgroups of FCE can be challenging due to the frequent overlap of anamnestic, clinical, and laboratory data. While dysregulation in lipid metabolism has been reported in humans and dogs with chronic IBD, similar changes in cats are not yet completely understood. Assessing the fatty acid (FA) profile of red blood cell (RBC) membranes offers a valuable method for evaluating the quantity and quality of structural and functional molecular components in the membranes. Therefore, this study aimed to examine the FA composition of RBC membranes in FCE in comparison to healthy cats (HC). Gas-chromatography was used to quantitatively analyze a cluster of 11 FA, and based on these results, parameters of lipid homeostasis and enzyme activity indexes were calculated. A total of 41 FCE cats (17 FRE, 15 IBD, 9 LGITL) and 43 HC were enrolled. In FCE cats, the values of docosapentaenoic acid (p = 0.0002) and docosahexaenoic acid (p = 0.0246), were significantly higher, resulting in an overall increase in ω-3 polyunsaturated fatty acids (PUFA) (p = 0.006), and that of linoleic acid (p = 0.0026) was significantly lower. Additionally, FCE cats exhibited an increased PUFA balance (p = 0.0019) and Δ6-desaturase index (p = 0.0151), along with a decreased ω-6/ω-3 ratio (p = 0.0019). No differences were observed among cats affected by FRE, IBD and LGITL. Like humans and dogs, the results of this study indicate that FCE cats also display changes in their FA lipid profile at the level of the RBC membrane. The non-invasive analysis of RBC membrane shows promise as a potential tool for gaining a better understanding of lipid imbalances in this disease.
Collapse
Affiliation(s)
- Paolo Emidio Crisi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Maria Veronica Giordano
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Alessia Luciani
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Alessandro Gramenzi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Paraskevi Prasinou
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Anna Sansone
- Institute of Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Valentina Rinaldi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Carla Ferreri
- Institute of Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Andrea Boari
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Alves Vas FJ, Grijota Pérez FJ, Toro-Román V, Sánchez IB, Maynar Mariño M, Barrientos Vicho G. Changes in the Fatty Acid Profile in Erythrocytes in High-Level Endurance Runners during a Sports Season. Nutrients 2024; 16:1895. [PMID: 38931250 PMCID: PMC11206387 DOI: 10.3390/nu16121895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Fatty acids (FAs) are an essential component of the erythrocyte membrane, and nutrition and physical exercise are two variables that affect their structure and function. The aim of this study was to evaluate the erythrocyte profile in a group of high-level endurance runners, as well as the changes in different FAs, throughout a sports season in relation to the training performed. A total of 21 high-level male endurance runners (23 ± 4 years; height: 1.76 ± 0.05) were evaluated at four different times throughout a sports season. The athletes had at least 5 years of previous experience and participated in national and international competitions. The determination of the different FAs was carried out by gas chromatography. The runners exhibited low concentrations of docosahexaenoic acid (DHA) and omega-3 index (IND ω-3), as well as high values of stearic acid (SA), palmitic acid (PA), and arachidonic acid (AA), compared to the values of reference throughout the study. In conclusion, training modifies the erythrocyte FA profile in high-level endurance runners, reducing the concentrations of polyunsaturated fatty acids (PUFAs) such as DHA and AA and increasing the concentrations of saturated fatty acids (SFAs) such as SA and the PA. High-level endurance runners should pay special attention to the intake of PUFAs ω-3 in their diet or consider supplementation during training periods to avoid deficiency.
Collapse
Affiliation(s)
- Francisco Javier Alves Vas
- Faculty of Education, University Pontificia of Salamanca, 37007 Salamanca, Spain; (F.J.A.V.); (I.B.S.); (G.B.V.)
| | - Fco. Javier Grijota Pérez
- Sport Science Faculty, Department of Physiology, University of Extremadura, 10003 Caceres, Spain;
- Faculty of Health Sciences, Isabel I University, 09003 Burgos, Spain
| | - Víctor Toro-Román
- Research Group in Technology Applied to High Performance and Health, Department of Health Sciences, Universitat Pompeu Fabra, TecnoCampus, 08302 Mataró, Spain
| | - Ignacio Bartolomé Sánchez
- Faculty of Education, University Pontificia of Salamanca, 37007 Salamanca, Spain; (F.J.A.V.); (I.B.S.); (G.B.V.)
| | - Marcos Maynar Mariño
- Sport Science Faculty, Department of Physiology, University of Extremadura, 10003 Caceres, Spain;
| | - Gema Barrientos Vicho
- Faculty of Education, University Pontificia of Salamanca, 37007 Salamanca, Spain; (F.J.A.V.); (I.B.S.); (G.B.V.)
| |
Collapse
|
4
|
Piccolo B, Chen A, Louey S, Thornburg K, Jonker S. Physiological response to fetal intravenous lipid emulsion. Clin Sci (Lond) 2024; 138:117-134. [PMID: 38261523 PMCID: PMC10876438 DOI: 10.1042/cs20231419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
In preterm neonates unable to obtain sufficient oral nutrition, intravenous lipid emulsion is life-saving. The contribution of post-conceptional level of maturation to pathology that some neonates experience is difficult to untangle from the global pathophysiology of premature birth. In the present study, we determined fetal physiological responses to intravenous lipid emulsion. Fetal sheep were given intravenous Intralipid 20® (n = 4 females, 7 males) or Lactated Ringer's Solution (n = 7 females, 4 males) between 125 ± 1 and 133 ± 1 d of gestation (term = 147 d). Manufacturer's recommendation for premature human infants was followed: 0.5-1 g/kg/d initial rate, increased by 0.5-1 to 3 g/kg/d. Hemodynamic parameters and arterial blood chemistry were measured, and organs were studied postmortem. Red blood cell lipidomics were analyzed by LC-MS. Intravenous Intralipid did not alter hemodynamic or most blood parameters. Compared with controls, Intralipid infusion increased final day plasma protein (P=0.004; 3.5 ± 0.3 vs. 3.9 ± 0.2 g/dL), albumin (P = 0.031; 2.2 ± 0.1 vs. 2.4 ± 0.2 g/dL), and bilirubin (P<0.001; conjugated: 0.2 ± 0.1 vs. 0.6 ± 0.2 mg/dL; unconjugated: 0.2 ± 0.1 vs. 1.1 ± 0.4 mg/dL). Circulating IGF-1 decreased following Intralipid infusion (P<0.001; 66 ± 24 vs. 46 ± 24 ng/mL). Compared with control Oil Red O liver stains (median score 0), Intralipid-infused fetuses scored 108 (P=0.0009). Lipidomic analysis revealed uptake and processing of infused lipids into red blood cells, increasing abundance of saturated fatty acids. The near-term fetal sheep tolerates intravenous lipid emulsion well, although lipid accumulates in the liver. Increased levels of unconjugated bilirubin may reflect increased red blood cell turnover or impaired placental clearance. Whether Intralipid is less well tolerated earlier in gestation remains to be determined.
Collapse
Affiliation(s)
- Brian D. Piccolo
- USDA/ARS-Arkansas Children’s Nutrition Center, Little Rock, AR, U.S.A
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - Athena Chen
- Department of Pathology, Oregon Health and Science University, Portland, OR, U.S.A
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| | - Samantha Louey
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| | - Kent L.R. Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| | - Sonnet S. Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| |
Collapse
|
5
|
Marrugat G, Cano A, Amézaga J, Arranz S, Embade N, Millet Ó, Ferreri C, Tueros I. Effect of age and dietary habits on Red Blood Cell membrane fatty acids in a Southern Europe population (Basque Country). Prostaglandins Leukot Essent Fatty Acids 2024; 200:102602. [PMID: 38147804 DOI: 10.1016/j.plefa.2023.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
The levels of blood eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are very variable and, in general, low in most of the world population. In this study, the effects of age, sex, COVID-19, and dietary habits on the lipid profile of the erythrocyte membranes were assessed in a sub-cohort of healthy population (N = 203) from a large cohort of individuals from the Basque Country, Spain, (AKRIBEA). Sex did not have an effect on RBC lipid profile. COVID-19 infected participants showed higher levels of DGLA. Oldest participants showed higher oleic acid, EPA and DHA levels. Arachidonic acid in RBC correlated positively with the intake of sunflower oil, butter, eggs, processed and red meat, whereas DHA and EPA correlated positively with oily and lean fish. Basque Country population showed lipid profiles similar to other high fish consuming countries, such as Italy and Japan. Baseline levels of the whole lipidomic profile of the RBC including SFA, MUFA and PUFA should be examined to obtain a better description of the health and nutritional status.
Collapse
Affiliation(s)
- Gerard Marrugat
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain
| | - Ainara Cano
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain
| | - Javier Amézaga
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, Derio 48160, Bizkaia, Spain
| | - Óscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, Derio 48160, Bizkaia, Spain
| | - Carla Ferreri
- Instituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, Bologna 40129, Italy
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain.
| |
Collapse
|
6
|
Léniz A, Fernández-Quintela A, Arranz S, Portune K, Tueros I, Arana E, Castaño L, Velasco O, Portillo MP. Altered Red Blood Cell Fatty Acid and Serum Adipokine Profiles in Subjects with Obesity. Biomedicines 2023; 11:3320. [PMID: 38137540 PMCID: PMC10742039 DOI: 10.3390/biomedicines11123320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Adipokines, as well as the fatty acid profile of red blood cell (RBC) membranes, are known to play important roles in the development and progression of metabolic complications induced by obesity. Thus, the objective of this study is to compare the serum adipokine profile and the RBC membrane fatty acid profile of normal-weight and obese adults, and to analyze their relationship with serum biochemical parameters. METHODS An observational case-control study was performed in 75 normal-weight and obese adult subjects. Biochemical serum parameters, eight serum adipokines and the RBC membrane fatty acid profiles were measured. Associations between parameters were established using regression analysis. RESULTS Subjects with obesity showed increased levels of leptin, fibroblast growth factor 21 (FGF21) and overexpressed nephroblastoma (NOV/CCN3), decreased adiponectin, and similar levels of vaspin and chemerin compared to normal-weight subjects. Significant positive and negative correlations were found with triglycerides and high-density lipoprotein-cholesterol (HDL-c), respectively. An increase in the total ω-6 fatty acids in the RBC membrane fatty acid profiles in subjects with obesity was observed, because of higher levels of both dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA), and decreased total ω-3 fatty acids, mainly due to lower levels of docosahexaenoic acid (DHA). The ω-6/ω-3 ratio in the RBCs was significantly higher, suggesting an inflammatory status, as was also suggested by a reduced adiponectin level. A negative association between DGLA and adiponectin, and a positive association between DHA and serum triglycerides, was observed. CONCLUSIONS Important alterations in serum adipokine and RBC fatty acid profiles are found in subjects with obesity.
Collapse
Affiliation(s)
- Asier Léniz
- Vitoria-Gasteiz Nursing School, Osakidetza-Basque Health Service, 01009 Vitoria-Gasteiz, Spain;
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Centre, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain
- Department Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Alfredo Fernández-Quintela
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Centre, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain
- Department Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.)
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.)
| | - Eunate Arana
- Hospital Universitario Cruces, BIOBIZKAIA Institute of Health, 48903 Barakaldo, Spain (O.V.)
| | - Luis Castaño
- Hospital Universitario Cruces, BIOBIZKAIA Institute of Health, 48903 Barakaldo, Spain (O.V.)
- Department Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- CIBER Diabetes and Associated Metabolic Diseases (CIBERdem), Institute of Health Carlos III, 48903 Barakaldo, Spain
- CIBER Rare Diseases (CIBERer), Institute of Health Carlos III, 48903 Barakaldo, Spain
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN), 48903 Barakaldo, Spain
| | - Olaia Velasco
- Hospital Universitario Cruces, BIOBIZKAIA Institute of Health, 48903 Barakaldo, Spain (O.V.)
- Department Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- CIBER Diabetes and Associated Metabolic Diseases (CIBERdem), Institute of Health Carlos III, 48903 Barakaldo, Spain
- CIBER Rare Diseases (CIBERer), Institute of Health Carlos III, 48903 Barakaldo, Spain
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN), 48903 Barakaldo, Spain
| | - María P. Portillo
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Centre, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain
- Department Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
7
|
Peña N, Amézaga J, Marrugat G, Landaluce A, Viar T, Arce J, Larruskain J, Lekue J, Ferreri C, Ordovás JM, Tueros I. Competitive season effects on polyunsaturated fatty acid content in erythrocyte membranes of female football players. J Int Soc Sports Nutr 2023; 20:2245386. [PMID: 37605439 PMCID: PMC10446798 DOI: 10.1080/15502783.2023.2245386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND An optimal and correctly balanced metabolic status is essential to improve sports performance in athletes. Recent advances in omic tools, such as the lipid profile of the mature erythrocyte membranes (LPMEM), allow to have a comprehensive vision of the nutritional and metabolic status of these individuals to provide personalized recommendations for nutrients, specifically, the essential omega-3 and omega-6 fatty acids, individuating deficiencies/unbalances that can arise from both habitual diet and sportive activity. This work aimed to study the LPMEM in professional female football players during the football season for the first time and compare it with those defined as optimal values for the general population and a control group. METHODS An observational study was carried out on female football players from the Athletic Club (Bilbao) playing in the first division of the Spanish league. Blood samples were collected at three points: at the beginning, mid-season, and end of the season for three consecutive seasons (2019-2020, 2020-2021, and 2021-2022), providing a total of 160 samples from 40 women. The LPMEM analysis was obtained by GC-FID by published method and correlated to other individual data, such as blood biochemical parameters, body composition, and age. RESULTS We observed a significant increase in docosahexaenoic acid (DHA) (p 0.048) and total polyunsaturated fatty acid (PUFA) (p 0.021) in the first season. In the second season, we observed a buildup in the membrane arachidonic acid (AA) (p < .001) and PUFA (p < .001) contents when high training accumulated. In comparison with the benchmark of average population values, 69% of the football players showed lower levels of omega-6 dihomo-γ-linolenic acid (DGLA), whereas 88%, 44%, and 81% of the participants showed increased values of AA, eicosapentaenoic acid (EPA), and the ratio of saturated and monounsaturated fatty acids (SFA/MUFA), respectively. Regarding relationships between blood biochemical parameters, body composition, and age with LPMEM, we observed some mild negative correlations, such as AA and SFA/MUFA ratio with vitamin D levels (coefficient = -0.34 p = .0019 and coefficient = -.25 p = .042); DGLA with urea and cortisol (coefficient = -0.27 p < .006 and coefficient = .28 p < .0028) and AA with age (coefficient = -0.33 p < .001). CONCLUSION In conclusion, relevant variations in several fatty acids of the membrane fatty acid profile of elite female football players were observed during the competitive season and, in comparison with the general population, increased PUFA contents were confirmed, as reported in other sportive activities, together with the new aspect of DGLA diminution, an omega-6 involved in immune and anti-inflammatory responses. Our results highlight membrane lipidomics as a tool to ascertain the molecular profile of elite female football players with a potential application for future personalized nutritional strategies (diet and supplementation) to address unbalances created during the competitive season.
Collapse
Affiliation(s)
- Nere Peña
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | - Javier Amézaga
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | - Gerard Marrugat
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | | | | | - Julen Arce
- Athletic Club, Medical Services, Lezama, Spain
| | | | | | - Carla Ferreri
- Consiglio Nazionale Delle Ricerche, Istituto per la Sintesi Organica E la Fotoreattività, Bologna, Italy
| | - José María Ordovás
- Nutrition and Genomics Laboratory, JM-USDA-HNRCA at Tufts University, Boston, MA, USA
- Instituto de Salud Carlos III (ISCIII), Consortium CIBERObn, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Itziar Tueros
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| |
Collapse
|
8
|
Olejnik A, Gornowicz-Porowska J, Jenerowicz D, Polańska A, Dobrzyńska M, Przysławski J, Sansone A, Ferreri C. Fatty Acids Profile and the Relevance of Membranes as the Target of Nutrition-Based Strategies in Atopic Dermatitis: A Narrative Review. Nutrients 2023; 15:3857. [PMID: 37686888 PMCID: PMC10489657 DOI: 10.3390/nu15173857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Recently, the prevalence of atopic dermatitis has increased drastically, especially in urban populations. This multifactorial skin disease is caused by complex interactions between various factors including genetics, environment, lifestyle, and diet. In eczema, apart from using an elimination diet, the adequate content of fatty acids from foods (saturated, monounsaturated, and polyunsaturated fatty acids) plays an important role as an immunomodulatory agent. Different aspects regarding atopic dermatitis include connections between lipid metabolism in atopic dermatitis, with the importance of the MUFA levels, as well as of the omega-6/omega-3 balance that affects the formation of long-chain (C20 eicosanoic and C22 docosaenoic) fatty acids and bioactive lipids from them (such as prostaglandins). Impair/repair of the functioning of epidermal barrier is influenced by these fatty acid levels. The purpose of this review is to drive attention to membrane fatty acid composition and its involvement as the target of fatty acid supplementation. The membrane-targeted strategy indicates the future direction for dermatological research regarding the use of nutritional synergies, in particular using red blood cell fatty acid profiles as a tool for checking the effects of supplementations to reach the target and influence the inflammatory/anti-inflammatory balance of lipid mediators. This knowledge gives the opportunity to develop personalized strategies to create a healthy balance by nutrition with an anti-inflammatory outcome in skin disorders.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Centre for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Rokietnicka 3, 60-806 Poznań, Poland
| | - Dorota Jenerowicz
- Department of Dermatology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-356 Poznań, Poland; (D.J.); (A.P.)
| | - Adriana Polańska
- Department of Dermatology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-356 Poznań, Poland; (D.J.); (A.P.)
| | - Małgorzata Dobrzyńska
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnica 3, 60-806 Poznań, Poland; (M.D.); (J.P.)
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnica 3, 60-806 Poznań, Poland; (M.D.); (J.P.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| |
Collapse
|
9
|
Hirata Y, Ferreri C, Yamada Y, Inoue A, Sansone A, Vetica F, Suzuki W, Takano S, Noguchi T, Matsuzawa A, Chatgilialoglu C. Geometrical isomerization of arachidonic acid during lipid peroxidation interferes with ferroptosis. Free Radic Biol Med 2023:S0891-5849(23)00461-6. [PMID: 37257700 DOI: 10.1016/j.freeradbiomed.2023.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Geometrical mono-trans isomers of arachidonic acid (mtAA) are endogenous products of free radical-induced cis-trans double bond isomerization occurring to natural fatty acids during cell metabolism, including lipid peroxidation (LPO). Very little is known about the functional roles of mtAA and in general on the effects of mono-trans isomers of polyunsaturated fatty acids (mtPUFA) in various types of programmed cell death, including ferroptosis. Using HT1080 and MEF cell cultures, supplemented with 20 μM PUFA (i.e., AA, EPA or DHA) and their mtPUFA congeners, ferroptosis occurred in the presence of RSL3 (a direct inhibitor of glutathione peroxidase 4) only with the PUFA in their natural cis configuration, whereas mtPUFA showed an anti-ferroptotic effect. By performing the fatty acid-based membrane lipidome analyses, substantial differences emerged in the membrane fatty acid remodeling of the two different cell fates. In particular, during ferroptosis mtPUFA formation and their incorporation, together with the enrichment of SFA, occurred. This opens new perspectives in the role of the membrane composition for a ferroptotic outcome. While pre-treatment with AA promoted cell death for treatment with H2O2 and RSL3, mtAA did not. Cell death by AA supplementation was suppressed also in the presence of either ferroptosis inhibitors, such as the lipophilic antioxidant ferrostatin-1, or NADPH oxidase (NOX) inhibitors, including diphenyleneiodonium chloride and apocynin. Our results confirm a more complex scenario for ferroptosis than actually believed. While LPO processes are active, the importance of environmental lipid levels, balance among SFA, MUFA and PUFA in lipid pools and formation of mtPUFA influence the membrane phospholipid turnover, with crucial effects in the occurrence of cell death by ferroptosis.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Yuto Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Fabrizio Vetica
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Saya Takano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan.
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy; Center for Advanced Technologies, Adam Mickiewicz University, 61-614, Poznan, Poland.
| |
Collapse
|
10
|
Wang C, Li Z, Wu W. Understanding fatty acid composition and lipid profile of rapeseed oil in response to nitrogen management strategies. Food Res Int 2023; 165:112565. [PMID: 36869550 DOI: 10.1016/j.foodres.2023.112565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The fatty acid composition of rapeseed seeds plays an important role in oil quality for human nutrition and a healthy diet. A deeper understanding of fatty acid composition and lipid profiles in response to different nitrogen managements is critical for producing healthier rapeseed oil for the human diet. The fatty acid composition and lipid profiles were characterized through targeted GC-MS and lipidomics analysis (UPLC-MS) in this study. The results showed that nitrogen management significantly altered the fatty acid composition, thereby influencing oil quality when it is used to maximize the seed yield of rapeseed. Several fatty acid components (particularly oleic acid, linoleic acid, and linolenic acid) decreased significantly with increasing N application rate. A total of 1212 differential lipids in response to different N levels in the two varieties were clearly identified, that can be categorized into five classes, including 815 glycerolipids (GLs), 195 glycerophospholipids (GPs), 155 sphingolipids (SPs), 32 sterols (STs), and 15 fatty acyls (FAs). These differential lipids are likely to participate in lipid metabolism and signal transduction. Co-expression lipid modules were determined, and the key lipids, such as triglyceride (20:0/16:0/16:0; 18:0/18:1/18:3; 8:0/11:3/18:1), were found to be strongly related to several predominant fatty acids such as oleic acid and linoleic acid. The results further imply that some identified lipids are involved with lipid metabolism and could affect the fatty acid composition, which provide a theoretical guidance for increasing seed oil in Brassica napus.
Collapse
Affiliation(s)
- Cheng Wang
- College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaojie Li
- College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Wu
- College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Burzynska-Pedziwiatr I, Dudzik D, Sansone A, Malachowska B, Zieleniak A, Zurawska-Klis M, Ferreri C, Chatgilialoglu C, Cypryk K, Wozniak LA, Markuszewski MJ, Bukowiecka-Matusiak M. Targeted and untargeted metabolomic approach for GDM diagnosis. Front Mol Biosci 2023; 9:997436. [PMID: 36685282 PMCID: PMC9849575 DOI: 10.3389/fmolb.2022.997436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a disorder which manifests itself for the first time during pregnancy and is mainly connected with glucose metabolism. It is also known that fatty acid profile changes in erythrocyte membranes and plasma could be associated with obesity and insulin resistance. These factors can lead to the development of diabetes. In the reported study, we applied the untargeted analysis of plasma in GDM against standard glucose-tolerant (NGT) women to identify the differences in metabolomic profiles between those groups. We found higher levels of 2-hydroxybutyric and 3-hydroxybutyric acids. Both secondary metabolites are associated with impaired glucose metabolism. However, they are products of different metabolic pathways. Additionally, we applied lipidomic profiling using gas chromatography to examine the fatty acid composition of cholesteryl esters in the plasma of GDM patients. Among the 14 measured fatty acids characterizing the representative plasma lipidomic cluster, myristic, oleic, arachidonic, and α-linoleic acids revealed statistically significant changes. Concentrations of both myristic acid, one of the saturated fatty acids (SFAs), and oleic acid, which belong to monounsaturated fatty acids (MUFAs), tend to decrease in GDM patients. In the case of polyunsaturated fatty acids (PUFAs), some of them tend to increase (e.g., arachidonic), and some of them tend to decrease (e.g., α-linolenic). Based on our results, we postulate the importance of hydroxybutyric acid derivatives, cholesteryl ester composition, and the oleic acid diminution in the pathophysiology of GDM. There are some evidence suggests that the oleic acid can have the protective role in diabetes onset. However, metabolic alterations that lead to the onset of GDM are complex; therefore, further studies are needed to confirm our observations.
Collapse
Affiliation(s)
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Beata Malachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland,Department of Nursing and Obstetrics, Medical University of Lodz, Lodz, Poland,Department of Clinic Nursing, Medical University of Lodz, Lodz, Poland,Department of Diabetology and Metabolic Diseases Lodz, Medical University of Lodz, Lodz, Poland
| | - Andrzej Zieleniak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Radiation Oncology, Einstein College of Medicine, Bronx, NY, United States
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | | | - Katarzyna Cypryk
- Department of Radiation Oncology, Einstein College of Medicine, Bronx, NY, United States
| | - Lucyna A. Wozniak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Michal J. Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Bukowiecka-Matusiak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland,*Correspondence: Malgorzata Bukowiecka-Matusiak,
| |
Collapse
|
12
|
Fatty-Acid-Based Membrane Lipidome Profile of Peanut Allergy Patients: An Exploratory Study of a Lifelong Health Condition. Int J Mol Sci 2022; 24:ijms24010120. [PMID: 36613559 PMCID: PMC9820545 DOI: 10.3390/ijms24010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Peanut allergy is a lifelong, increasingly prevalent, and potentially life-threatening disease burdening families and communities. Dietary, particularly polyunsaturated fatty acids (PUFAs), intakes can exert positive effects on immune and inflammatory responses, and the red blood cell (RBC) membrane lipidome contains stabilized metabolic and nutritional information connected with such responses. The fatty-acid-based membrane lipidome profile has been exploratorily evaluated in a small cohort of patients (eight males and one female, age range 4.1−21.7 years old, body mass index BMI < 25) with angioedema and/or anaphylaxis after peanut ingestion. This analysis was performed according to an ISO 17025 certified robotic protocol, isolating mature RBCs, extracting membrane lipids, and transforming them to fatty acid methyl esters for gas chromatography recognition and quantification. Comparison with a group of age- and BMI-matched healthy individuals and with benchmark interval values of a healthy population evidenced significant differences, such as higher levels of ω-6 (arachidonic acid), lower values of ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), together with an increased ω-6/ω-3 ratio in allergic patients. A significant inverse correlation was also found between specific immunoglobulin E (IgE) levels and ω-6 di-homo-gamma-linolenic acid (DGLA) and total PUFAs. Results of this preliminary study encourage screenings in larger cohorts, also in view of precision nutrition and nutraceuticals strategies, and stimulate interest to expand basic and applied research for unveiling molecular mechanisms that are still missing and individuating treatments in chronic allergic disorders.
Collapse
|
13
|
The Lipidomics of Spermatozoa and Red Blood Cells Membrane Profile of Martina Franca Donkey: Preliminary Evaluation. Animals (Basel) 2022; 13:ani13010008. [PMID: 36611618 PMCID: PMC9817730 DOI: 10.3390/ani13010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Fatty acid-based lipidomic analysis has been widely used to evaluate health status in human medicine as well as in the veterinary field. In equine species, there has been a developing interest in fertility and sperm quality. Fatty acids, being the principal components of the membranes, play an active role in the regulation of the metabolic activities, and their role on spermiogenesis seems to be of great importance for the resulting quality of the sperm and, thus, fertility. With the application of widely used lipidomic techniques, the aim of this study was to evaluate: (a) the fatty acid content of the spermatozoa's membranes of 26 healthy male Martina Franca donkeys and its possible correlation with sperm parameters, and (b) the evaluation of the composition of the red blood cells' membrane. PUFA omega-6 are the principal components (40.38%) of the total PUFA content (47.79%) in both types of cells; however, DPA is the predominant one on the spermatozoa's membrane (27.57%) but is not present in the erythrocyte's membrane. Spermatozoa's motility (%) is positively correlated with stearic acid and EPA, and progressive motility (%), with oleic acid. These findings offer information on the composition of both types of cells' membranes in healthy male MF donkeys and reflect the metabolic transformations of the spermatozoa's membrane during the maturation period, providing a better perception of the role of fatty acids in sperm parameters and fertility.
Collapse
|
14
|
Krokidis MG, Prasinou P, Efthimiadou EK, Boari A, Ferreri C, Chatgilialoglu C. Effects of Aging and Disease Conditions in Brain of Tumor-Bearing Mice: Evaluation of Purine DNA Damages and Fatty Acid Pool Changes. Biomolecules 2022; 12:1075. [PMID: 36008969 PMCID: PMC9405824 DOI: 10.3390/biom12081075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The consequences of aging and disease conditions in tissues involve reactive oxygen species (ROS) and related molecular alterations of different cellular compartments. We compared a murine model of immunodeficient (SCID) xenografted young (4 weeks old) and old (17 weeks old) mice with corresponding controls without tumor implantation and carried out a compositional evaluation of brain tissue for changes in parallel DNA and lipids compartments. DNA damage was measured by four purine 5',8-cyclo-2'-deoxynucleosides, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA). In brain lipids, the twelve most representative fatty acid levels, which were mostly obtained from the transformation of glycerophospholipids, were followed up during the aging and disease progressions. The progressive DNA damage due to age and tumoral conditions was confirmed by raised levels of 5'S-cdG and 5'S-cdA. In the brain, the remodeling involved a diminution of palmitic acid accompanied by an increase in arachidonic acid, along both age and tumor progressions, causing increases in the unsaturation index, the peroxidation index, and total TFA as indicators of increased oxidative and free radical reactivity. Our results contribute to the ongoing debate on the central role of DNA and genome instability in the aging process, and on the need for a holistic vision, which implies choosing the best biomarkers for such monitoring. Furthermore, our data highlight brain tissue for its lipid remodeling response and inflammatory signaling, which seem to prevail over the effects of DNA damage.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Paraskevi Prasinou
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Eleni K. Efthimiadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
15
|
Ferreri C, Sansone A, Krokidis MG, Masi A, Pascucci B, D’Errico M, Chatgilialoglu C. Effects of Oxygen Tension for Membrane Lipidome Remodeling of Cockayne Syndrome Cell Models. Cells 2022; 11:1286. [PMID: 35455966 PMCID: PMC9032135 DOI: 10.3390/cells11081286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Oxygen is important for lipid metabolism, being involved in both enzymatic transformations and oxidative reactivity, and is particularly influent when genetic diseases impair the repair machinery of the cells, such as described for Cockayne syndrome (CS). We used two cellular models of transformed fibroblasts defective for CSA and CSB genes and their normal counterparts, grown for 24 h under various oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%) to examine the fatty acid-based membrane remodeling by GC analysis of fatty acid methyl esters derived from membrane phospholipids. Overall, we first distinguished differences due to oxygen tensions: (a) hyperoxia induced a general boost of desaturase enzymatic activity in both normal and defective CSA and CSB cell lines, increasing monounsaturated fatty acids (MUFA), whereas polyunsaturated fatty acids (PUFA) did not undergo oxidative consumption; (b) hypoxia slowed down desaturase activities, mostly in CSA cell lines and defective CSB, causing saturated fatty acids (SFA) to increase, whereas PUFA levels diminished, suggesting their involvement in hypoxia-related signaling. CSB-deprived cells are the most sensitive to oxidation and CSA-deprived cells are the most sensitive to the radical-based formation of trans fatty acids (TFA). The results point to the need to finely differentiate biological targets connected to genetic impairments and, consequently, suggest the better definition of cell protection and treatments through accurate molecular profiling that includes membrane lipidomes.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
| | - Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, Athens 15310, Greece;
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy;
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy;
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Mariarosaria D’Errico
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
16
|
Sot J, García-Arribas AB, Abad B, Arranz S, Portune K, Andrade F, Martín-Nieto A, Velasco O, Arana E, Tueros I, Ferreri C, Gaztambide S, Goñi FM, Castaño L, Alonso A. Erythrocyte Membrane Nanomechanical Rigidity Is Decreased in Obese Patients. Int J Mol Sci 2022; 23:ijms23031920. [PMID: 35163842 PMCID: PMC8836476 DOI: 10.3390/ijms23031920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022] Open
Abstract
This work intends to describe the physical properties of red blood cell (RBC) membranes in obese adults. The hypothesis driving this research is that obesity, in addition to increasing the amount of body fat, will also modify the lipid composition of membranes in cells other than adipocytes. Forty-nine control volunteers (16 male, 33 female, BMI 21.8 ± 5.6 and 21.5 ± 4.2 kg/m2, respectively) and 52 obese subjects (16 male and 36 female, BMI 38.2± 11.0 and 40.7 ± 8.7 kg/m2, respectively) were examined. The two physical techniques applied were atomic force microscopy (AFM) in the force spectroscopy mode, which allows the micromechanical measurement of penetration forces, and fluorescence anisotropy of trimethylammonium diphenylhexatriene (TMA-DPH), which provides information on lipid order at the membrane polar–nonpolar interface. These techniques, in combination with lipidomic studies, revealed a decreased rigidity in the interfacial region of the RBC membranes of obese as compared to control patients, related to parallel changes in lipid composition. Lipidomic data show an increase in the cholesterol/phospholipid mole ratio and a decrease in sphingomyelin contents in obese membranes. ω-3 fatty acids (e.g., docosahexaenoic acid) appear to be less prevalent in obese patient RBCs, and this is the case for both the global fatty acid distribution and for the individual major lipids in the membrane phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS). Moreover, some ω-6 fatty acids (e.g., arachidonic acid) are increased in obese patient RBCs. The switch from ω-3 to ω-6 lipids in obese subjects could be a major factor explaining the higher interfacial fluidity in obese patient RBC membranes.
Collapse
Affiliation(s)
- Jesús Sot
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
| | - Aritz B. García-Arribas
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
| | - Beatriz Abad
- SGIKER, Servicios Generales de Investigación (SGiker), Universidad del País Vasco, 48940 Leioa, Spain;
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (K.P.); (I.T.)
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (K.P.); (I.T.)
| | - Fernando Andrade
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Alicia Martín-Nieto
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Olaia Velasco
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Eunate Arana
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (K.P.); (I.T.)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy;
| | - Sonia Gaztambide
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Félix M. Goñi
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
| | - Luis Castaño
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Alicia Alonso
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
- Correspondence:
| |
Collapse
|
17
|
Reductive Stress of Sulfur-Containing Amino Acids within Proteins and Implication of Tandem Protein-Lipid Damage. Int J Mol Sci 2021; 22:ijms222312863. [PMID: 34884668 PMCID: PMC8657892 DOI: 10.3390/ijms222312863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Reductive radical stress represents the other side of the redox spectrum, less studied but equally important compared to oxidative stress. The reactivity of hydrogen atoms (H•) and hydrated electrons (e-aq) connected with peptides/proteins is summarized, focusing on the chemical transformations of methionine (Met) and cystine (CysS-SCys) residues into α-aminobutyric acid and alanine, respectively. Chemical and mechanistic aspects of desulfurization processes with formation of diffusible sulfur-centered radicals, such as methanethiyl (CH3S•) and sulfhydryl (HS•) radicals, are discussed. These findings are further applied to biomimetic radical chemistry, modeling the occurrence of tandem protein-lipid damages in proteo-liposomes and demonstrating that generation of sulfur-centered radicals from a variety of proteins is coupled with the cis-trans isomerization of unsaturated lipids in membranes. Recent applications to pharmaceutical and pharmacological contexts are described, evidencing novel perspectives in the stability of formulations and mode of action of drugs, respectively.
Collapse
|
18
|
Amézaga J, Ugartemendia G, Larraioz A, Bretaña N, Iruretagoyena A, Camba J, Urruticoechea A, Ferreri C, Tueros I. Omega 6 polyunsaturated fatty acids in red blood cell membrane are associated with xerostomia and taste loss in patients with breast cancer. Prostaglandins Leukot Essent Fatty Acids 2021; 173:102336. [PMID: 34500308 DOI: 10.1016/j.plefa.2021.102336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Chemosensory and physical complaints are common disorders in cancer patients under chemotherapy treatments that may affect the food intake, leading to a decreased quality of life. Lipid metabolism is a major pathway of cancer proliferation, where erythrocyte membrane phospholipids and their fatty acid composition are promising tools for monitoring metabolic pathways. Relationship between lipid profile in erythrocyte membrane phospholipids and chemosensory alterations in 44 newly diagnosed patients with breast cancer was here investigated. Smell changes and xerostomia were the most common complaints, with xerostomia as the main influencing factor on the development of other taste disorders. Lipid profiles revealed significant negative correlation between diminution of linoleic acid levels and xerostomia as well as positive correlation between increased arachidonic acid and salty taste. The involvement of these polyunsaturated lipids suggests the importance of oxidative and nutritional conditions of cancer patients, which can affect the molecular status for taste signals.
Collapse
Affiliation(s)
- J Amézaga
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio - Bizkaia, Spain
| | - G Ugartemendia
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - A Larraioz
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - N Bretaña
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - A Iruretagoyena
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - J Camba
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - A Urruticoechea
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - C Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - I Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio - Bizkaia, Spain.
| |
Collapse
|
19
|
The Fatty Acid-Based Erythrocyte Membrane Lipidome in Dogs with Chronic Enteropathy. Animals (Basel) 2021; 11:ani11092604. [PMID: 34573570 PMCID: PMC8469057 DOI: 10.3390/ani11092604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Canine chronic enteropathies (CEs) are inflammatory processes resulting from complex interplay between the mucosal immune system, intestinal microbiome, and dietary components in susceptible dogs. Fatty acids (FAs) play important roles in the regulation of physiologic and metabolic pathways and their role in inflammation seems to be dual, as they exhibit pro-inflammatory and anti-inflammatory functions. Analysis of red blood cell (RBC) membrane fatty acid profile represents a tool for assessing the quantity and quality of structural and functional molecular components. This study was aimed at comparing the FA membrane profile, determined by Gas Chromatography and relevant lipid parameter of 48 CE dogs compared with 68 healthy dogs. In CE patients, the levels of stearic (p < 0.0001), dihomo-gamma-linolenic, eicosapentaenoic (p = 0.02), and docosahexaenoic (p = 0.02) acids were significantly higher, and those of palmitic (p < 0.0001) and linoleic (p = 0.0006) acids were significantly lower. Non-responder dogs presented higher percentages of vaccenic acid (p = 0.007), compared to those of dogs that responded to diagnostic trials. These results suggest that lipidomic status may reflect the "gut health", and the non-invasive analysis of RBC membrane might have the potential to become a candidate biomarker in the evaluation of dogs affected by CE.
Collapse
|
20
|
Potential of Erythrocyte Membrane Lipid Profile as a Novel Inflammatory Biomarker to Distinguish Metabolically Healthy Obesity in Children. J Pers Med 2021; 11:jpm11050337. [PMID: 33922764 PMCID: PMC8145511 DOI: 10.3390/jpm11050337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolically healthy obesity (MHO) has been described as BMI ≥ 30 kg/m2, without metabolic disorders traditionally associated with obesity. Beyond this definition, a standardized criterion, for adults and children, has not been established yet to explain the absence of those metabolic disorders. In this context, biomarkers of inflammation have been proposed as suitable candidates to describe MHO. The use of mature red blood cell fatty acid (RBC FA) profile is here proposed since its membrane lipidome includes biomarkers of pro- and anti-inflammatory conditions with a strict relationship with metabolic and nutritional status. An observational study was carried out in 194 children (76 children with obesity and 118 children with normal weight) between 6 and 16 years old. RBC FAs were analyzed by gas chromatography-flame ionization detector (GC-FID). An unsupervised hierarchical clustering method was conducted on children with obesity, based on the RBC FA profile, to isolate the MHO cluster. The MHO cluster showed FA levels similar to children with normal weight, characterized by lower values of arachidonic acid, (total ω-6 FA, ω6/ω3 FA ratios and higher values for EPA, DHA, and total ω-3 FA) (for all of them p ≤ 0.01) compared to the rest of the children with obesity (obese cluster). The MHO cluster also presented lipid indexes for higher desaturase enzymatic activity and lower SFA/MUFA ratio compared to the obese cluster. These differences are relevant for the follow-up of patients, also in view of personalized protocols providing tailored nutritional recommendations for the essential fatty acid intakes.
Collapse
|
21
|
Jauregibeitia I, Portune K, Gaztambide S, Rica I, Tueros I, Velasco O, Grau G, Martín A, Castaño L, Larocca AV, Di Nolfo F, Ferreri C, Arranz S. Molecular Differences Based on Erythrocyte Fatty Acid Profile to Personalize Dietary Strategies between Adults and Children with Obesity. Metabolites 2021; 11:43. [PMID: 33435565 PMCID: PMC7827034 DOI: 10.3390/metabo11010043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
As the obesity epidemic continues to grow inexorably worldwide, the need to develop effective strategies to prevent and control obesity seems crucial. The use of molecular tools can be useful to characterize different obesity phenotypes to provide more precise nutritional recommendations. This study aimed to determine the fatty acid (FA) profile of red blood cell (RBC) membranes, together with the evaluation of their dietary intake and biochemical parameters, of children and adults with obesity. An observational study was carried out on 196 children (113 with normal weight and 83 with obesity) and 91 adults (30 with normal weight and 61 with obesity). Mature RBC membrane phospholipids were analyzed for FA composition by gas chromatography-mass spectrometry (GC-MS). Dietary habits were evaluated using validated food frequency questionnaires (FFQ). Children with obesity presented higher levels of ω-6 polyunsaturated FAs (mainly linoleic acid, p = 0.01) and lower values of ω-3 FAs (mainly DHA, p < 0.001) compared with adults. Regarding blood biochemical parameters, children with obesity presented lower levels of glucose, LDL cholesterol, and alanine aminotransferase compared with adults with obesity. These lipidomic differences could be considered to provide specific nutritional recommendations for different age groups, based on an adequate fat intake.
Collapse
Affiliation(s)
- Iker Jauregibeitia
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio–Bizkaia, Spain; (I.J.); (K.P.); (I.T.)
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio–Bizkaia, Spain; (I.J.); (K.P.); (I.T.)
| | - Sonia Gaztambide
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, CIBERDEM/CIBERER, UPV/EHU, Endo–ERN, 48903 Barakaldo, Spain; (S.G.); (I.R.); (O.V.); (G.G.); (A.M.); (L.C.)
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, CIBERDEM/CIBERER, UPV/EHU, Endo–ERN, 48903 Barakaldo, Spain; (S.G.); (I.R.); (O.V.); (G.G.); (A.M.); (L.C.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio–Bizkaia, Spain; (I.J.); (K.P.); (I.T.)
| | - Olaia Velasco
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, CIBERDEM/CIBERER, UPV/EHU, Endo–ERN, 48903 Barakaldo, Spain; (S.G.); (I.R.); (O.V.); (G.G.); (A.M.); (L.C.)
| | - Gema Grau
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, CIBERDEM/CIBERER, UPV/EHU, Endo–ERN, 48903 Barakaldo, Spain; (S.G.); (I.R.); (O.V.); (G.G.); (A.M.); (L.C.)
| | - Alicia Martín
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, CIBERDEM/CIBERER, UPV/EHU, Endo–ERN, 48903 Barakaldo, Spain; (S.G.); (I.R.); (O.V.); (G.G.); (A.M.); (L.C.)
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, CIBERDEM/CIBERER, UPV/EHU, Endo–ERN, 48903 Barakaldo, Spain; (S.G.); (I.R.); (O.V.); (G.G.); (A.M.); (L.C.)
| | - Anna Vita Larocca
- Lipidomic Laboratory, Lipinutragen srl, Via di Corticella 181/4, 40128 Bologna, Italy; (A.V.L.); (F.D.N.)
| | - Federica Di Nolfo
- Lipidomic Laboratory, Lipinutragen srl, Via di Corticella 181/4, 40128 Bologna, Italy; (A.V.L.); (F.D.N.)
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio–Bizkaia, Spain; (I.J.); (K.P.); (I.T.)
| |
Collapse
|
22
|
Altered Levels of Desaturation and ω-6 Fatty Acids in Breast Cancer Patients' Red Blood Cell Membranes. Metabolites 2020; 10:metabo10110469. [PMID: 33212920 PMCID: PMC7698438 DOI: 10.3390/metabo10110469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Red blood cell (RBC) membrane can reflect fatty acid (FA) contribution from diet and biosynthesis. In cancer, membrane FAs are involved in tumorigenesis and invasiveness, and are indicated as biomarkers to monitor the disease evolution as well as potential targets for therapies and nutritional strategies. The present study provides RBC membrane FA profiles in recently diagnosed breast cancer patients before starting chemotherapy treatment. Patients and controls were recruited, and their dietary habits were collected. FA lipidomic analysis of mature erythrocyte membrane phospholipids in blood samples was performed. Data were adjusted to correct for the effects of diet, body mass index (BMI), and age, revealing that patients showed lower levels of saturated fatty acids (SFA) and higher levels of monounsaturated fatty acid, cis-vaccenic (25%) than controls, with consequent differences in desaturase enzymatic index (∆9 desaturase, -13.1%). In the case of polyunsaturated fatty acids (PUFA), patients had higher values of ω-6 FA (C18:2 (+11.1%); C20:4 (+7.4%)). RBC membrane lipidomic analysis in breast cancer revealed that ω-6 pathways are favored. These results suggest new potential targets for treatments and better nutritional guidelines.
Collapse
|
23
|
Luque de Castro M, Quiles-Zafra R. Lipidomics: An omics discipline with a key role in nutrition. Talanta 2020; 219:121197. [DOI: 10.1016/j.talanta.2020.121197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
|
24
|
Krokidis MG, Louka M, Efthimiadou EK, Ferreri C, Chatgilialoglu C. Fatty Acid Remodeling of Membrane Glycerophospholipids Induced by Bleomycin and Iron Oxide Nanoparticles in Human Embryonic Kidney Cells. Chem Res Toxicol 2020; 33:2565-2572. [PMID: 32865980 DOI: 10.1021/acs.chemrestox.0c00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bleomycin has a long-studied mechanism of action through the formation of a complex with metals, such as iron. The bleomycin-iron complex was recently shown to induce membrane damage by free radical reactivity. Because the use of Fe nanoparticles is spreading for drug delivery strategies, molecular mechanisms of cell damage must include different compartments in order to observe the progression of the cell reactivity. In this study, human embryonic kidney (HEK-293) cells were exposed for 24 h to bleomycin and polymeric iron oxide nanoparticles (Fe-NPs), alone or in combination. The fatty acid-based membrane lipidomic analysis evidenced the fatty acid remodeling in response to the treatments. Bleomycin alone caused the increase of saturated fatty acid (SFA) moieties in cell membrane glycerophospholipids with concomitant diminution of monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acid levels. Under Fe-NPs treatment, omega-6 PUFA decreased and trans fatty acid isomers increased. Under coadministration bleomycin and Fe-NPs, all membrane remodeling changes disappeared compared to those of the controls, with only an increase of omega-6 PUFA that elevates peroxidation index remaining. Our results highlight the important role of fatty-acid-based membrane lipidome monitoring to follow up the fatty acid reorganization induced by the drug, to be considered as a side effect of the pharmacological activity, suggesting the need of an integrated approach for the investigation of drug and carrier molecular mechanisms.
Collapse
Affiliation(s)
- Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece
| | - Maria Louka
- Lipidomics Laboratory, Lipinutragen Srl, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Eleni K Efthimiadou
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Carla Ferreri
- Lipidomics Laboratory, Lipinutragen Srl, Via Piero Gobetti 101, 40129 Bologna, Italy.,ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Lipidomics Laboratory, Lipinutragen Srl, Via Piero Gobetti 101, 40129 Bologna, Italy.,ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy.,Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
25
|
Álvarez R, Torres J, Artola G, Epelde G, Arranz S, Marrugat G. OBINTER: A Holistic Approach to Catalyse the Self-Management of Chronic Obesity. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5060. [PMID: 32899921 PMCID: PMC7570655 DOI: 10.3390/s20185060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
Obesity is a preventable chronic condition that, in 2016, affected more than 1.9 billion people globally. Several factors have been identified that have a positive impact on long-term weight loss programs such as personalized recommendations, adherence strategies, weight and diet follow-up or physical activity tracking. Recently, various applications have been developed which help patients to self-manage their condition. These apps implement either one or some of these identified factors; however, there is not a single application that combines all of them following a holistic approach. In this context, we developed the OBINTER platform, which assists patients during the weight loss process by targeting user engagement during the longer term. The solution includes a mobile application which allows users to fill out dietetic questionnaires, receive dietetic and nutraceutical plans, track the evolution of their weight and adherence to the diet, as well as track their physical activity via a wearable device. Furthermore, an adherence strategy has been developed as a tool to foster the app usage during the whole weight loss process. In this paper, we present how the OBINTER approach gathers all of these features as well as the positive results of a usability testing study performed to assess the performance and usability of the OBINTER platform.
Collapse
Affiliation(s)
- Roberto Álvarez
- Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián, Spain; (J.T.); (G.A.)
- Biodonostia Health Research Institute, eHealth Group, 20014 San Sebastián, Spain
| | - Jordi Torres
- Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián, Spain; (J.T.); (G.A.)
| | - Garazi Artola
- Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián, Spain; (J.T.); (G.A.)
| | - Gorka Epelde
- Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián, Spain; (J.T.); (G.A.)
- Biodonostia Health Research Institute, eHealth Group, 20014 San Sebastián, Spain
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (G.M.)
| | - Gerard Marrugat
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (G.M.)
| |
Collapse
|
26
|
Prasinou P, Crisi PE, Chatgilialoglu C, Di Tommaso M, Sansone A, Gramenzi A, Belà B, De Santis F, Boari A, Ferreri C. The Erythrocyte Membrane Lipidome of Healthy Dogs: Creating a Benchmark of Fatty Acid Distribution and Interval Values. Front Vet Sci 2020; 7:502. [PMID: 32974399 PMCID: PMC7472600 DOI: 10.3389/fvets.2020.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Molecular-based approaches are rapidly developing in medicine for the evaluation of physiological and pathological conditions and discovery of new biomarkers in prevention and therapy. Fatty acid diversity and roles in health and disease in humans are topical subjects of lipidomics. In particular, membrane fatty acid-based lipidomics provides molecular data of relevance in the study of human chronic diseases, connecting metabolic, and nutritional aspects to health conditions. In veterinary medicine, membrane lipidomics, and fatty acid profiles have not been developed yet in nutritional approaches to health and in disease conditions. Using a protocol widely tested in human profiling, in the present study erythrocyte membrane lipidome was examined in 68 clinically healthy dogs, with different ages, sex, and sizes. In particular, a cluster composed of 10 fatty acids, present in membrane glycerophospholipids and representative of structural and functional properties of cell membrane, was chosen, and quantitatively analyzed. The interval values and distribution for each fatty acid of the cluster were determined, providing the first panel describing the healthy dog lipidomic membrane profile, with interesting correlation to bodyweight increases. This molecular information can be advantageously developed as benchmark in veterinary medicine for the evaluation of metabolic and nutritional status in healthy and diseased dogs.
Collapse
Affiliation(s)
- Paraskevi Prasinou
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Paolo E Crisi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | | | - Morena Di Tommaso
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Anna Sansone
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Alessandro Gramenzi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Benedetta Belà
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Francesca De Santis
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Andrea Boari
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| |
Collapse
|
27
|
Abstract
Abstract
Lipid disorders have been implicated in overweight and menopause. However, evidence on lipidomic analysis of fatty acids in erythrocytes of menopausal women is scarce. The aim of this study was to investigate the relationship between the body mass index within or beyond 5 years of menopause and erythrocyte fatty acid profile. This case-control study was conducted on out of 37 menopausal women total patients, 22 with body mass index ≥ 25 and 12 matched controls (body mass index <25). Experimental procedures were performed on the blood through robotic equipment for isolation of erythrocyte and cell membrane fatty acids were analyzed by using gas-liquid chromatography. Results showed that erythrocyte membranes did not change significantly in lipid composition between case and control group. However, the percentage of women who had a physiological content of saturated fatty acids was lower in case than in control group, and the percentage of women who had a physiological content of monounsaturated fatty acids and polyunsaturated fatty acids was lower in control than in case group. Woman with BMI>25 and non-physiological content of fatty acids, were richer in percentage of saturated fatty acids and poorer of monounsaturated fatty acids and polyunsaturated fatty acids than women with BMI<25. The percentage of physiological n-6/n-3 polyunsaturated ratio was lower in women with BMI>25 than in women with BMI<25. Interestingly, the percentage of patients that had physiological values of lipids beyond 5 years of menopause increased in comparison patients within 5 years of menopause. Notably, n-6/n-3 polyunsaturated fatty acids physiological ratio beyond 5 years of menopause increased in both case and control patients, indicating normalization over time. In conclusion erythrocytes fatty acids composition may be related to the body mass index and to the time from menopause.
Collapse
|
28
|
Collodel G, Castellini C, Lee JCY, Signorini C. Relevance of Fatty Acids to Sperm Maturation and Quality. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7038124. [PMID: 32089776 PMCID: PMC7025069 DOI: 10.1155/2020/7038124] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/11/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Almost 50% of infertility cases are associated with human male infertility. The sperm membrane is a key structure influencing sperm morphology and function in normal and pathological conditions. The fatty acid profile determines the performance not only of sperm motility but also of acrosomal reaction and sperm-oocyte fusion. This review presents available knowledge on the role of fatty acid composition in human sperm and spermatogenesis and discusses the influence of dietary fatty acids on the sperm fatty acid profile. Recent studies in biological sciences and clinical researches in this field are also reported. The topic object of this review has potential application in medicine by identifying potential causes of infertility.
Collapse
Affiliation(s)
- Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| | | | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy
| |
Collapse
|
29
|
Bolotta A, Pini A, Abruzzo PM, Ghezzo A, Modesti A, Gamberi T, Ferreri C, Bugamelli F, Fortuna F, Vertuani S, Manfredini S, Zucchini C, Marini M. Effects of tocotrienol supplementation in Friedreich's ataxia: A model of oxidative stress pathology. Exp Biol Med (Maywood) 2020; 245:201-212. [PMID: 31795754 PMCID: PMC7045332 DOI: 10.1177/1535370219890873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
Friedreich’s ataxia is an autosomal recessive disorder characterized by impaired mitochondrial function, resulting in oxidative stress. In this study, we aimed at evaluating whether tocotrienol, a phytonutrient that diffuses easily in tissues with saturated fatty layers, could complement the current treatment with idebenone, a quinone analogue with antioxidant properties. Five young Friedreich’s ataxia patients received a low-dose tocotrienol supplementation (5 mg/kg/day), while not discontinuing idebenone treatment. Several oxidative stress markers and biological parameters related to oxidative stress were evaluated at the time of initiation of treatment and 2 and 12 months post-treatment. Some oxidative stress-related parameters and some inflammation indices were altered in Friedreich’s ataxia patients taking idebenone alone and tended to be normal values following tocotrienol supplementation; likewise, a cardiac magnetic resonance study showed some improvement following one-year tocotrienol treatment. The pathway by which tocotrienol affects the Nrf2 modulation of hepcidin gene expression, a peptide involved in iron handling and in inflammatory responses, is viewed in the light of the disruption of the iron intracellular distribution and of the Nrf2 anergy characterizing Friedreich’s ataxia. This research provides a suitable model to analyze the efficacy of therapeutic strategies able to counteract the excess free radicals in Friedreich’s ataxia, and paves the way to long-term clinical studies.
Collapse
Affiliation(s)
- Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| | - Antonella Pini
- Child Neurology and Psychiatry Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Provvidenza M Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Firenze 50134, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Firenze 50134, Italy
| | | | - Francesca Bugamelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Filippo Fortuna
- Neurochemistry Laboratory, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro 61121, Italy
| | - Silvia Vertuani
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara 44100, Italy
| | - Stefano Manfredini
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara 44100, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| |
Collapse
|
30
|
Purine DNA Lesions at Different Oxygen Concentration in DNA Repair-Impaired Human Cells (EUE-siXPA). Cells 2019; 8:cells8111377. [PMID: 31683970 PMCID: PMC6912421 DOI: 10.3390/cells8111377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Xeroderma Pigmentosum (XP) is a DNA repair disease characterized by nucleotide excision repair (NER) malfunction, leading to photosensitivity and increased incidence of skin malignancies. The role of XP-A in NER pathways has been well studied while discrepancies associated with ROS levels and the role of radical species between normal and deficient XPA cell lines have been observed. Using liquid chromatography tandem mass spectrometry we have determined the four 5’,8-cyclopurines (cPu) lesions (i.e., 5′R-cdG, 5′S-cdG, 5′R-cdA and 5′S-cdA), 8-oxo-dA and 8-oxo-dG in wt (EUE-pBD650) and XPA-deficient (EUE-siXPA) human embryonic epithelial cell lines, under different oxygen tension (hyperoxic 21%, physioxic 5% and hypoxic 1%). The levels of Fe and Cu were also measured. The main findings of our study were: (i) the total amount of cPu (1.82–2.52 lesions/106 nucleotides) is the same order of magnitude as 8-oxo-Pu (3.10–4.11 lesions/106 nucleotides) in both cell types, (ii) the four cPu levels are similar in hyperoxic and physioxic conditions for both wt and deficient cell lines, whereas 8-oxo-Pu increases in all cases, (iii) both wt and deficient cell lines accumulated high levels of cPu under hypoxic compared to physioxic conditions, whereas the 8-oxo-Pu levels show an opposite trend, (iv) the diastereoisomeric ratios 5′R/5′S are independent of oxygen concentration being 0.29 for cdG and 2.69 for cdA for EUE-pBD650 (wt) and 0.32 for cdG and 2.94 for cdA for EUE-siXPA (deficient), (v) in deficient cell lines Fe levels were significantly higher. The data show for the first time the connection of oxygen concentration in cells with different DNA repair ability and the levels of different DNA lesions highlighting the significance of cPu. Membrane lipidomic data at 21% O2 indicated differences in the fatty acid contents between wild type and deficient cells, envisaging functional effects on membranes associated with the different repair capabilities, to be further investigated.
Collapse
|
31
|
Parchem K, Sasson S, Ferreri C, Bartoszek A. Qualitative analysis of phospholipids and their oxidised derivatives - used techniques and examples of their applications related to lipidomic research and food analysis. Free Radic Res 2019; 53:1068-1100. [PMID: 31419920 DOI: 10.1080/10715762.2019.1657573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterised by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics that targets both the analysis of membrane lipid distribution as well as correlates composition of lipids with their effects on functioning of cells, tissues and organs. Lipidomic assessments follow-up the changes occurring in living organisms, such as free radical attack and oxidative modifications of the polyunsaturated fatty acids (PUFAs) build in PL structures. Oxidised PLs (oxPLs) can be generated exogenously and supplied to organisms with processed food or formed endogenously as a result of oxidative stress. Cellular and tissue oxPLs can be a biomarker predictive of the development of numerous diseases such as atherosclerosis or neuroinflammation. Therefore, suitable high-throughput analytical techniques, which enable comprehensive analysis of PL molecules in terms of the structure of hydrophilic group, fatty acid (FA) composition and oxidative modifications of FAs, have been currently developed. This review addresses all aspects of PL analysis, including lipid isolation, chromatographic separation of PL classes and species, as well as their detection. The bioinformatic tools that enable handling of a large amount of data generated during lipidomic analysis are also discussed. In addition, imaging techniques such as confocal microscopy and mass spectrometry imaging for analysis of cellular lipid maps, including membrane PLs, are presented.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
32
|
Carillon J, Saby M, Barial S, Sansone A, Scanferlato R, Gayrard N, Lajoix AD, Jover B, Chatgilialoglu C, Ferreri C. Melon juice concentrate supplementation in an animal model of obesity: Involvement of relaxin and fatty acid pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Membrane Lipidome Reorganization and Accumulation of Tissue DNA Lesions in Tumor-Bearing Mice: An Exploratory Study. Cancers (Basel) 2019; 11:cancers11040480. [PMID: 30987375 PMCID: PMC6520748 DOI: 10.3390/cancers11040480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
Increased rates of reactive oxygen/nitrogen species (ROS/RNS) are involved in almost all cancer types, associated with tumor development and progression, causing damage to biomolecules such as proteins, nucleic acids and membrane lipids, in different biological compartments. We used a human tumor xenograft mouse model to evaluate for the first time in parallel the remodeling of fatty acid moieties in erythrocyte membrane phospholipids and the level of ROS-induced DNA lesions in liver and kidney tissues. Using liquid chromatography tandem mass spectrometry the 5'R and 5'S diastereoisomers of 5',8-cyclo-2'-deoxyadenosine and 5',8-cyclo-2'-deoxyguanosine, together with 8-oxo-7,8-dihydro-2'-deoxyadenosine, were determined in mice at young (4- and 5-weeks) and old (17-weeks) ages and compared with control SCID mice without tumor implantation. Tumor-bearing mice showed a higher level of ROS-damaged nucleosides in genomic DNA as the age and tumor progress, compared to controls (1.07-1.53-fold in liver and 1.1-1.4-fold in kidney, respectively). The parallel fatty acid profile of erythrocyte membranes showed a profound lipid remodeling during tumor and age progression consisting of PUFA consumption and SFA enrichment (ca 28% and 58%, respectively, in late stage tumor-bearing mice), markers of enhanced oxidative and proliferative processes, respectively. Membrane lipid remodeling and ROS-induced DNA lesions may be combined to afford an integrated scenario of cancer progression and ageing, reinforcing a holistic vision among molecular markers rather than the biomarker identification in a single compartment.
Collapse
|
34
|
|
35
|
Amézaga J, Arranz S, Urruticoechea A, Ugartemendia G, Larraioz A, Louka M, Uriarte M, Ferreri C, Tueros I. Altered Red Blood Cell Membrane Fatty Acid Profile in Cancer Patients. Nutrients 2018; 10:nu10121853. [PMID: 30513730 PMCID: PMC6315925 DOI: 10.3390/nu10121853] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/04/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
The fatty acid (FA) composition of red blood cell (RBC) membrane phospholipids of cancer patients can reflect tumor status, dietary intakes, and cancer type or therapy. However, the characteristic membrane profiles have so far not yet defined as a potential biomarker to monitor disease evolution. The present work provides the first evidence of cancer metabolic signatures affecting cell membranes that are independent of nutritional habits. From the Oncology Outpatient Unit of the Onkologikoa hospital, two groups of cancer patients (n = 54) and healthy controls (n = 37) were recruited, and mature RBCs membrane phospholipids were analyzed for FA profiling (GC-MS). Dietary habits were evaluated using a validated food frequency questionnaire. The adjusted Analysis of Covariance Test (ANCOVA) model revealed cancer patients to have a lower relative percentage of saturated fatty acids (SFA) (C16:0 (5.7%); C18:0 (15.9%)), and higher monounsaturated fatty acids (MUFA) (9c-C18:1 (12.9%) and 11c-C18:1 (54.5%)), compared to controls. In line with this, we observe that the desaturase enzymatic index (delta-9 desaturase (Δ9D), +28.3%) and the membrane saturation index (SI = SFA/MUFA; −27.3%) were similarly modulated. Polyunsaturated fatty acids (PUFA) families showed an increase of n-6 C18:2 and C20:3 (15.7% and 22.2% respectively), with no differences in n-6 C20:4 and n-3 PUFA (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)). Importantly, these changes were found independent of foods and fat intakes from the diet. The membrane lipid profile in RBC was useful to ascertain the presence of two main metabolic signatures of increased desaturation activity and omega-6 in cancer patients, statistically independent from dietary habits.
Collapse
Affiliation(s)
- Javier Amézaga
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, 609, 48160 Derio, Bizkaia, Spain.
| | - Sara Arranz
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, 609, 48160 Derio, Bizkaia, Spain.
| | - Ander Urruticoechea
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain.
| | - Gurutze Ugartemendia
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain.
| | - Aitziber Larraioz
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain.
| | - Maria Louka
- Lipinutragen, Via di Corticella, 181/4, 40128 Bologna, Italy.
| | - Matxalen Uriarte
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, 609, 48160 Derio, Bizkaia, Spain.
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy.
| | - Itziar Tueros
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, 609, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
36
|
Bukowiecka-Matusiak M, Burzynska-Pedziwiatr I, Sansone A, Malachowska B, Zurawska-Klis M, Ferreri C, Chatgilialoglu C, Ochedalski T, Cypryk K, Wozniak LA. Lipid profile changes in erythrocyte membranes of women with diagnosed GDM. PLoS One 2018; 13:e0203799. [PMID: 30216387 PMCID: PMC6138398 DOI: 10.1371/journal.pone.0203799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a glucose intolerance that begins or is first recognized during pregnancy. It is currently a growing health problem worldwide affecting from 1% to 14% of all pregnant women depending on racial and ethnic group as well as the diagnostic and screening criteria. Our preliminary study aimed at investigating the erythrocyte membrane fatty acid profiles of pregnant women, in particular with diagnosed with gestational diabetes mellitus (GDM), and with normal glucose tolerant (NGT) pregnant women as a control group. The study group comprised 43 pregnant women, 32 of whom were diagnosed with GDM according to the WHO criteria, and 11 with normal glucose tolerance. The erythrocyte membrane phospholipids were obtained according to the Folch extraction procedure. Fatty acids (FA) were analyzed by gas chromatography (GC) as the corresponding fatty acid methyl esters (FAME). A cluster of 14 fatty acids identified contained >98% of the recognized peaks in the GC analysis. The analysis of fatty acids from erythrocytes revealed important differences between GDM and NGT women in the third trimester, and the results were correlated with biochemical data. Among the 14 measured FA representing the membrane lipidomic profile, the levels of three saturated FA (myristic, palmitic, stearic acids) tended to decrease in GDM patients, with the percentage content of stearic acid significantly changed. The relative content of monounsaturated fatty acids (MUFA) tended to increase, in particular the oleic acid and vaccenic acid contents were significantly increased in erythrocyte membranes of the GDM group in comparison with the NGT group. The GDM group demonstrated higher sapienic acid levels (+29%) but this change was not statistically significant. This study revealed association between an impaired cis-vaccenic acid concentration in erythrocytes membrane and GDM development. No significant changes of polyunsaturated fatty acids (PUFA) were observed in GDM and NGT erythrocytes. We postulate, basing on the differences between the GDM and NGT lipidomic profiles, that stearic and cis-vaccenic acids can be considered as dual biomarkers of specific SFA-MUFA conversion pathway, involving the coupling of delta-9 desaturase and elongase enzymes. Our results indicate that the SFA-MUFA families may be involved in the pathophysiology of metabolic diseases such as GDM, but the further studies are needed to confirm our hypothesis. In conclusion, the erythrocyte membranes of GDM women undergo remodeling resulting in abnormal fatty acid profiles, which are reflection of the long-term status of organism and can have great impact on both the mother and her offspring.
Collapse
Affiliation(s)
| | | | - Anna Sansone
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Beata Malachowska
- Medical University of Lodz, Department of Biostatistics and Translational Medicine, Lodz, Poland
| | - Monika Zurawska-Klis
- Medical University of Lodz, Department of Nursing and Obstetrics, Department of Clinic Nursing, Department of Diabetology and Metabolic Diseases Lodz, Poland
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | | | - Tomasz Ochedalski
- Medical University of Lodz, Department of Comparative Endocrinology, Lodz, Poland
| | - Katarzyna Cypryk
- Medical University of Lodz, Department of Nursing and Obstetrics, Department of Clinic Nursing, Department of Diabetology and Metabolic Diseases Lodz, Poland
| | | |
Collapse
|
37
|
Fragopoulou AF, Polyzos A, Papadopoulou M, Sansone A, Manta AK, Balafas E, Kostomitsopoulos N, Skouroliakou A, Chatgilialoglu C, Georgakilas A, Stravopodis DJ, Ferreri C, Thanos D, Margaritis LH. Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to GSM 1800 MHz mobile phone radiation: An exploratory study. Brain Behav 2018; 8:e01001. [PMID: 29786969 PMCID: PMC5991598 DOI: 10.1002/brb3.1001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The widespread use of wireless devices during the last decades is raising concerns about adverse health effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted from these devices. Recent research is focusing on unraveling the underlying mechanisms of RF-EMR and potential cellular targets. The "omics" high-throughput approaches are powerful tools to investigate the global effects of RF-EMR on cellular physiology. METHODS In this work, C57BL/6 adult male mice were whole-body exposed (nExp = 8) for 2 hr to GSM 1800 MHz mobile phone radiation at an average electric field intensity range of 4.3-17.5 V/m or sham-exposed (nSE = 8), and the RF-EMR effects on the hippocampal lipidome and transcriptome profiles were assessed 6 hr later. RESULTS The data analysis of the phospholipid fatty acid residues revealed that the levels of four fatty acids [16:0, 16:1 (6c + 7c), 18:1 9c, eicosapentaenoic acid omega-3 (EPA, 20:5 ω3)] and the two fatty acid sums of saturated and monounsaturated fatty acids (SFA and MUFA) were significantly altered (p < 0.05) in the exposed group. The observed changes indicate a membrane remodeling response of the tissue phospholipids after nonionizing radiation exposure, reducing SFA and EPA, while increasing MUFA residues. The microarray data analysis demonstrated that the expression of 178 genes changed significantly (p < 0.05) between the two groups, revealing an impact on genes involved in critical biological processes, such as cell cycle, DNA replication and repair, cell death, cell signaling, nervous system development and function, immune system response, lipid metabolism, and carcinogenesis. CONCLUSIONS This study provides preliminary evidence that mobile phone radiation induces hippocampal lipidome and transcriptome changes that may explain the brain proteome changes and memory deficits previously shown by our group.
Collapse
Affiliation(s)
- Adamantia F. Fragopoulou
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
- Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden
| | - Alexandros Polyzos
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
- Present address:
Joan and Sanford I. Weill Department of MedicineWeill Cornell Medical CollegeNew York10065New York
| | - Maria‐Despoina Papadopoulou
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Anna Sansone
- Consiglio Nazionale delle RicercheISOFBolognaItaly
| | - Areti K. Manta
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| | - Evangelos Balafas
- Laboratory Animal FacilitiesCenter of Clinical, Experimental Surgery and Translational ResearchBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal FacilitiesCenter of Clinical, Experimental Surgery and Translational ResearchBiomedical Research FoundationAcademy of AthensAthensGreece
| | | | - Chryssostomos Chatgilialoglu
- Consiglio Nazionale delle RicercheISOFBolognaItaly
- Institute of Nanoscience and Nanotechnology (INN)NCSR DemokritosAthensGreece
| | - Alexandros Georgakilas
- DNA Damage LaboratoryDepartment of PhysicsSchool of Applied Mathematical and Physical SciencesNational Technical University of Athens (NTUA)AthensGreece
| | - Dimitrios J. Stravopodis
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| | | | - Dimitris Thanos
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Lukas H. Margaritis
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| |
Collapse
|
38
|
Presentato A, Cappelletti M, Sansone A, Ferreri C, Piacenza E, Demeter MA, Crognale S, Petruccioli M, Milazzo G, Fedi S, Steinbüchel A, Turner RJ, Zannoni D. Aerobic Growth of Rhodococcus aetherivorans BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources. Front Microbiol 2018; 9:672. [PMID: 29706937 PMCID: PMC5906575 DOI: 10.3389/fmicb.2018.00672] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Anna Sansone
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Elena Piacenza
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Marc A. Demeter
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Silvia Crognale
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alexander Steinbüchel
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
- Department of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Effect of 5-trans Isomer of Arachidonic Acid on Model Liposomal Membranes Studied by a Combined Simulation and Experimental Approach. J Membr Biol 2018; 251:475-489. [PMID: 29610947 DOI: 10.1007/s00232-018-0029-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Unsaturated fatty acids are found in humans predominantly in the cis configuration. Fatty acids in the trans configuration are primarily the result of human processing (trans fats), but can also be formed endogenously by radical stress. The cis-trans isomerization of fatty acids by free radicals could be connected to several pathologies. Trans fats have been linked to an increased risk of coronary artery disease; however, the reasons for the resulting pathogenesis remain unclear. Here, we investigate the effect of a mono-trans isomer of arachidonic acid (C20:4-5trans, 8cis, 11cis, 14cis) produced by free radicals in physiological concentration on a model erythrocyte membrane using a combined experimental and theoretical approach. Molecular Dynamics (MD) simulations of two model lipid bilayers containing arachidonic acid and its 5-trans isomer in 3 mol% were carried out for this purpose. The 5-trans isomer formation in the phospholipids was catalyzed by HOCH2CH2S· radicals, generated from the corresponding thiol by γ-irradiation, in multilamellar vesicles of SAPC. Large unilamellar vesicles were made by the extrusion method (LUVET) as a biomimetic model for cis-trans isomerization. Atomic Force Microscopy and Dynamic Light Scattering were used to measure the average size, morphology, and the z-potential of the liposomes. Both results from MD simulations and experiments are in agreement and indicate that the two model membranes display different physicochemical properties in that the bilayers containing the trans fatty acids were more ordered and more rigid than those containing solely the cis arachidonic acid. Correspondingly, the average size of the liposomes containing trans isomers was smaller than the ones without.
Collapse
|
40
|
Tueros I, Uriarte M. Innovative food products for cancer patients: future directions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1647-1652. [PMID: 29168190 DOI: 10.1002/jsfa.8789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/19/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
One of the main challenges for cancer patients under treatment is to prevent and tackle malnutrition. The current clinical nutrition market offers different food supplements or oral nutritional support products (mainly milkshakes or modified texture products) for cancer patients under risk of malnutrition. However, it is worth mentioning that these products do not address the pleasure of eating, since they do not meet sensory requirements, such as taste and smell alterations, nor patients' food preferences, leading to a big impact on their quality of life (QOL). Still, controversy remains regarding the specific nutritional requirements for cancer patients during the disease. Several randomized controlled clinical trials yield opposite results when using different bioactive compounds such as omega-3 fatty acids or antioxidants in order to prevent malnutrition or improve QOL. The use of 'omics' technologies in oncology, such as membrane lipidomics, as a powerful tool to provide new insights for the understanding of diet and cancer and their interacting metabolic pathways, will be discussed. The better knowledge of specific requirements (nutrients, sensory parameters and food preferences) for cancer patients provides valuable information for the food industry in the design of customized food products capable of preventing malnutrition, alleviating symptoms and improving QOL. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Itziar Tueros
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain
| | - Matxalen Uriarte
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain
| |
Collapse
|
41
|
Huang J, Fan XX, He J, Pan H, Li RZ, Huang L, Jiang Z, Yao XJ, Liu L, Leung ELH, He JX. SCD1 is associated with tumor promotion, late stage and poor survival in lung adenocarcinoma. Oncotarget 2018; 7:39970-39979. [PMID: 27223066 PMCID: PMC5129985 DOI: 10.18632/oncotarget.9461] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/23/2016] [Indexed: 12/21/2022] Open
Abstract
The discovery of Warburg effect opens a new era in anti-cancer therapy. Aerobic glycolysis is regarded as a hallmark of cancer cells and increasing literatures indicates that metabolic changes are critical for the maintenance and progression of cancer cells. Besides aerobic glycolysis, increased fatty acid synthesis is also required for the rapid growth of cancer cells, and is considered as one of the most typical metabolic symbols of cancer either. Thus, targeting fatty acid metabolism may provide a potential avenue for the diagnosis and therapeutic treatment of cancer. In this study, we have identified Sterol-CoA desaturase-1 (SCD1) which is the rate-limiting enzyme of unsaturated fatty acid synthesis, universally and highly expressed in lung adenocarcinoma and was required for the cell proliferation, migration and invasion. Both in vitro and in vivo studies demonstrated that high expression of SCD1 remarkably enhanced the ability of tumor formation and invasion, while knockdown of SCD1 significantly repressed tumorigenesis and induced cell apoptosis. Clinical association study suggested that high expression of SCD1 is more frequently observed in late stage patients and presents poor prognosis. Taken together, our results suggested that SCD1 is a potentially novel biomarker of lung adenocarcinoma, and targeting SCD1 may represent a new anti-cancer strategy.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Jiaxi He
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Liyan Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zebo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Jian-Xing He
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
42
|
High predictive values of RBC membrane-based diagnostics by biophotonics in an integrated approach for Autism Spectrum Disorders. Sci Rep 2017; 7:9854. [PMID: 28852136 PMCID: PMC5574882 DOI: 10.1038/s41598-017-10361-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Membranes attract attention in medicine, concerning lipidome composition and fatty acid correlation with neurological diseases. Hyperspectral dark field microscopy (HDFM), a biophotonic imaging using reflectance spectra, provides accurate characterization of healthy adult RBC identifying a library of 8 spectral end-members. Here we report hyperspectral RBC imaging in children affected by Autism Spectrum Disorder (ASD) (n = 21) compared to healthy age-matched subjects (n = 20), investigating if statistically significant differences in their HDFM spectra exist, that can comprehensively map a membrane impairment involved in disease. A significant difference concerning one end-member (spectrum 4) was found (P value = 0.0021). A thorough statistical treatment evidenced: i) diagnostic performance by the receiving operators curve (ROC) analysis, with cut-offs and very high predictive values (P value = 0.0008) of spectrum 4 for identifying disease; ii) significant correlations of spectrum 4 with clinical parameters and with the RBC membrane deficit of the omega-3 docosahexaenoic acid (DHA) in ASD patients; iii) by principal component analysis, very high affinity values of spectrum 4 to the factor that combines behavioural parameters and the variable “cc” discriminating cases and controls. These results foresee the use of biophotonic methodologies in ASD diagnostic panels combining with molecular elements for a correct neuronal growth.
Collapse
|
43
|
Pironi L, Guidetti M, Verrastro O, Iacona C, Agostini F, Pazzeschi C, Sasdelli AS, Melchiorre M, Ferreri C. Functional lipidomics in patients on home parenteral nutrition: Effect of lipid emulsions. World J Gastroenterol 2017; 23:4604-4614. [PMID: 28740349 PMCID: PMC5504376 DOI: 10.3748/wjg.v23.i25.4604] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/07/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the fatty acid-based functional lipidomics of patients on long-term home parenteral nutrition receiving different intravenous lipid emulsions.
METHODS A cross-sectional comparative study was carried out on 3 groups of adults on home parenteral nutrition (HPN), receiving an HPN admixture containing an olive-soybean oil-based intravenous lipid emulsion (IVLE) (OO-IVLE; n = 15), a soybean- medium-chain triacylglycerol-olive-fish oil-based IVLE (SMOF-IVLE; n = 8) or HPN without IVLE (No-IVLE; n = 8) and 42 healthy controls (HCs). The inclusion criteria were: duration of HPN ≥ 3 mo, current HPN admixtures ≥ 2 mo and HPN infusions ≥ 2/wk. Blood samples were drawn 4-6 h after the discontinuation of the overnight HPN infusion. The functional lipidomics panel included: the red blood cell (RBC) fatty acid (FA) profile, molecular biomarkers [membrane fluidity: saturated/monounsaturated FA ratio = saturated fatty acid (SFA)/monounsaturated fatty acid (MUFA) index; inflammatory risk: n-6/n-3 polyunsaturated fatty acid (PUFA) ratio = n-6/n-3 index; cardiovascular risk: sum of n-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) = n-3 index; free radical stress: sum of FA trans isomers = %trans index] and FA pathway enzyme activity estimate (delta-9-desaturase = D9D; delta-6-desaturase = D6D; delta-5-desaturase = D5D; elongase = ELO). Statistics were carried out using nonparametric tests. The amount of each FA was calculated as a percentage of the total FA content (relative%).
RESULTS In the OO-IVLE group, the percentage of oleic acid in the RBCs was positively correlated with the weekly load of OO-IVLE (r = 0.540, P = 0.043). In the SMOF-IVLE cohort, the RBC membrane EPA and DHA were positively correlated with the daily amount of SMOF-IVLE (r = 0.751, P = 0.044) and the number of HPN infusions per week (r = 0.753; P = 0.046), respectively. The SMOF-IVLE group showed the highest EPA and DHA and the lowest arachidonic acid percentages (P < 0.001). The RBC membrane linoleic acid content was lower, and oleic and vaccenic acids were higher in all the HPN groups in comparison to the HCs. Vaccenic acid was positively correlated with the weekly HPN load of glucose in both the OO-IVLE (r = 0.716; P = 0.007) and the SMOF-IVLE (r = 0.732; P = 0.053) groups. The estimated activity of D9D was higher in all the HPN groups than in the HCs (P < 0.001). The estimated activity of D5D was lower in the SMOF-IVLE group than in the HCs (P = 0.013). The SFA/MUFA ratio was lower in all the HPN groups than in the HCs (P < 0.001). The n-6/n-3 index was lower and the n-3 index was higher in the SMOF-IVLE group in comparison to the HCs and to the other HPN groups (P < 0.001). The %trans index did not differ among the four groups.
CONCLUSION The FA profile of IVLEs significantly influenced the cell membrane functional lipidomics. The amount of glucose in the HPN may play a relevant role, mediated by the insulin regulation of the FA pathway enzyme activities.
Collapse
|
44
|
Fatty acid-based lipidomics and membrane remodeling induced by apoE3 and apoE4 in human neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1967-1973. [PMID: 28688796 DOI: 10.1016/j.bbamem.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein E (apoE) is a major lipid carrier of the lipoprotein transport system that plays critical roles in various pathologies. Human apoE has three common isoforms, the apoE4 being associated with Alzheimer's disease. This is the first study in the literature investigating the effects of apoE (apoE3 and apoE4 isoforms) on membrane fatty acid profile in neuroblastoma SK-N-SH cells. Fatty acid analyses were carried out by gas chromatography of the corresponding methyl esters (FAME). We observed the occurrence of membrane fatty acid remodeling in the presence of each of the two apoE isoforms. ApoE3 increased the membrane level of stearic acid and dihomo-gamma-linolenic acid (DGLA), whereas apoE4 had opposite effects. Both apoE3 and apoE4 increased saturated and monounsaturated fatty acids (SFA and MUFA), omega-6/omega-3 ratio and decreased total polyunsaturated fatty acid (PUFA) amount, but with various intensities. Moreover, both apoE isoforms decreased membrane homeostasis indexes such as PUFA balance, unsaturation index and peroxidation index. Our results highlight membrane property changes connected to the apoE isoforms suggesting membrane lipidomics to be inserted in further model studies of apolipoproteins in health and disease.
Collapse
|
45
|
Chatgilialoglu C, Ferreri C, Guerra M, Samadi A, Bowry VW. The Reaction of Thiyl Radical with Methyl Linoleate: Completing the Picture. J Am Chem Soc 2017; 139:4704-4714. [PMID: 28253623 DOI: 10.1021/jacs.6b11320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cis lipids can be converted by thiols and free radicals into trans lipids, which are therefore a valuable tell-tale for free radical activity in the cell's lipidome. Our previous studies have shown that polyunsaturated lipids are isomerized by alkanethiyl radicals (S•) in a cycle propagated by reversible double-bond addition and terminated by radical H-abstraction from the lipid. A critical flaw in this picture has long been that the reported lipid abstraction rate from radiolysis studies is faster than addition-isomerization, implying that the "cycle" must be terminating faster than it is propagating! Herein, we resolved this longstanding puzzle by combining a detailed product analysis, with reinvestigation of the time-resolved kinetics, DFT calculations of the indicated pathways, and reformulation of the radical-stasis equations. We have determined thiol-coupled products in dilute solutions arise mainly from addition to the inside position of the bisallylic group, followed by rapid intramolecular H• transfer, yielding allylic radicals (LZZ + S• ⇄ SL• → SL'•) that are slowly reduced by thiol (SL'• + SH → SL'H + S•). The first-order grow-in rate of the L-H• signal (kexp280nm) may therefore be dominated by the addition-H-translocation rather than slower direct H•-abstraction. Steady-state kinetic analysis of the new mechanism is consistent with products and the rates and trends for polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), and mixtures, with and without physiological [O2]. Implications of this new paradigm for the thiol-ene reactivity fall in an interdisciplinary research area spanning from synthetic applications to metabolomics.
Collapse
Affiliation(s)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche , Via P. Gobetti 101, 40129 Bologna, Italy
| | - Maurizio Guerra
- ISOF, Consiglio Nazionale delle Ricerche , Via P. Gobetti 101, 40129 Bologna, Italy
| | - Abdelouahid Samadi
- Department of Chemistry, United Arab Emirates University , P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
46
|
Caro M, Sansone A, Amezaga J, Navarro V, Ferreri C, Tueros I. Wine lees modulate lipid metabolism and induce fatty acid remodelling in zebrafish. Food Funct 2017; 8:1652-1659. [DOI: 10.1039/c6fo01754a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study investigates the ability of a polyphenolic extract obtained from a wine lees by-product to modulate zebrafish lipid metabolism.
Collapse
Affiliation(s)
- M. Caro
- New Foods
- AZTI
- 48160 Derio
- Spain
| | | | | | - V. Navarro
- Department of Pharmacy and Food Sciences
- University of the Basque Country
- 01006 Vitoria-Gasteiz
- Spain
| | | | | |
Collapse
|
47
|
Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics. Diagnostics (Basel) 2016; 7:diagnostics7010001. [PMID: 28025506 PMCID: PMC5373010 DOI: 10.3390/diagnostics7010001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.
Collapse
|
48
|
Wang J, Xu Y, Zhu L, Zou Y, Kong W, Dong B, Huang J, Chen Y, Xue W, Huang Y, Zhang J. High Expression of Stearoyl-CoA Desaturase 1 Predicts Poor Prognosis in Patients with Clear-Cell Renal Cell Carcinoma. PLoS One 2016; 11:e0166231. [PMID: 27861513 PMCID: PMC5115711 DOI: 10.1371/journal.pone.0166231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1), the rate-limiting enzymes in the biosynthesis of monounsaturated fatty acids from saturated fatty acids, have been gradually recognized as a potential therapeutic target for various malignancies, particularly in clear-cell renal cell carcinoma (ccRCC). However, the prognostic value of SCD1 in ccRCC is still unknown. The aim of this study is to evaluate the clinical significance of SCD1 expression in patients with ccRCC. SCD1 expression in tumor tissues obtained from 359 patients who underwent nephrectomy for ccRCC are retrospectively assessed. During a median follow-up of 63 months (range: 1–144month), 56 patients in total died before the last follow-up in this study. Survival curves were plotted with the Kaplan–Meier method and compared with the log-rank test. Meanwhile, univariate and multivariate Cox regression models were applied to evaluate the prognostic value of SCD1 expression in overall survival (OS) for ccRCC patients. Moreover, SCD1 was enrolled into a newly built nomogram with factors selected by multivariate analysis, and the calibration was built to evaluate the predictive accuracy of nomogram. High SCD1 expression occurred in 61.6% (221/359) of ccRCC patients, which was significantly associated with age (p = 0.030), TNM stage (p = 0.021), pN stage (p = 0.014), Fuhrman grade (p = 0.014) and tumor sizes (p = 0.040). In multivariate analysis, SCD1 expression was confirmed as an adverse independent prognostic factor for OS. The prognostic accuracy of TNM stage, Fuhrman grade and tumor sizes was significantly increased when SCD1 expression was added. The independent prognostic factors, pT stage, pN stage, Fuhrman grade and tumor sizes, as well as SCD1 expression were integrated to establish a predictive nomogram with high predictive accuracy. Calibration curves revealed optimal consistency between observations and prognosis. In conclusion, high SCD1 expression is an independent prognostic factor for OS in patients with ccRCC. Our data suggest that the expression of SCD1 might guide the clinical decisions for patients with ccRCC.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yunze Xu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liangsong Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yun Zou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wen Kong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiwei Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (JZ); (YH)
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (JZ); (YH)
| |
Collapse
|
49
|
Tartaro Bujak I, Mihaljević B, Ferreri C, Chatgilialoglu C. The influence of antioxidants in the thiyl radical induced lipid peroxidation and geometrical isomerization in micelles of linoleic acid. Free Radic Res 2016; 50:S18-S23. [DOI: 10.1080/10715762.2016.1231401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ivana Tartaro Bujak
- Division of Materials Chemistry, Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branka Mihaljević
- Division of Materials Chemistry, Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Zagreb, Croatia
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens, Greece
| |
Collapse
|
50
|
Ciccoli L, De Felice C, Leoncini S, Signorini C, Cortelazzo A, Zollo G, Pecorelli A, Rossi M, Hayek J. Red blood cells in Rett syndrome: oxidative stress, morphological changes and altered membrane organization. Biol Chem 2016; 396:1233-40. [PMID: 26040005 DOI: 10.1515/hsz-2015-0117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/07/2015] [Indexed: 11/15/2022]
Abstract
In this review, we summarize the current evidence on the erythrocyte as a previously unrecognized target cell in Rett syndrome, a rare (1:10 000 females) and devastating neurodevelopmental disorder caused by loss-of-function mutations in a single gene (i.e. MeCP2, CDKL5, or rarely FOXG1). In particular, we focus on morphological changes, membrane oxidative damage, altered membrane fatty acid profile, and aberrant skeletal organization in erythrocytes from patients with typical Rett syndrome and MeCP2 gene mutations. The beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) are also summarized for this condition to be considered as a 'model' condition for autism spectrum disorders.
Collapse
|