1
|
Yun CC, Han Y, McConnell B. Lysophosphatidic Acid Signaling in the Gastrointestinal System. Cell Mol Gastroenterol Hepatol 2024; 18:101398. [PMID: 39233124 PMCID: PMC11532463 DOI: 10.1016/j.jcmgh.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The intestinal epithelium undergoes continuous homeostatic renewal to conduct the digestion and absorption of nutrients. At the same time, the intestinal epithelial barrier separates the host from the intestinal lumen, preventing systemic infection from enteric pathogens. To maintain homeostasis and epithelial functionality, stem cells, which reside in the base of intestinal crypts, generate progenitor cells that ultimately differentiate to produce an array of secretory and absorptive cells. Intestinal regeneration is regulated by niche signaling pathways, specifically, Wnt, bone morphogenetic protein, Notch, and epidermal growth factor. In addition, growth factors and other peptides have emerged as potential modulators of intestinal repair and inflammation through their roles in cellular proliferation, differentiation, migration, and survival. Lysophosphatidic acid (LPA) is such a factor that modulates the proliferation, survival, and migration of epithelial cells while also regulating trafficking of immune cells, both of which are important for tissue homeostasis. Perturbation of LPA signaling, however, has been shown to promote cancer and inflammation. This review focuses on the recent advances in LPA-mediated signaling that contribute to physiological and pathophysiological regulation of the gastrointestinal system.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia.
| | - Yiran Han
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Beth McConnell
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
2
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
3
|
Kurano M, Saito Y, Uranbileg B, Saigusa D, Kano K, Aoki J, Yatomi Y. Modulations of bioactive lipids and their receptors in postmortem Alzheimer's disease brains. Front Aging Neurosci 2022; 14:1066578. [PMID: 36570536 PMCID: PMC9780287 DOI: 10.3389/fnagi.2022.1066578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Analyses of brain samples from Alzheimer's disease (AD) patients may be expected to help us improve our understanding of the pathogenesis of AD. Bioactive lipids, including sphingolipids, glycerophospholipids, and eicosanoids/related mediators have been demonstrated to exert potent physiological actions and to be involved in the pathogenesis of various human diseases. In this cross-sectional study, we attempted to elucidate the associations of these bioactive lipids with the pathogenesis/pathology of AD through postmortem studies of human brains. Methods We measured the levels of glycerophospholipids, sphingolipids, and eicosanoids/related mediators in the brains of patients with AD (AD brains), patients with Cerad score B (Cerad-b brains), and control subjects (control brains), using a liquid chromatography-mass spectrometry method; we also measured the mRNA levels of specific receptors for these bioactive lipids in the same brain specimens. Results The levels of several species of sphingomyelins and ceramides were higher in the Cerad-b and AD brains. Levels of several species of lysophosphatidic acids (LPAs), lysophosphatidylcholine, lysophosphatidylserine, lysophosphatidylethanolamine (LPE), lysophosphatidylinositol, phosphatidylcholine, phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol, and phosphatidylglycerol were especially high in the Cerad-b brains, while those of lysophosphatidylglycerol (LPG) were especially high in the AD brains. Several eicosanoids, including metabolites of prostaglandin E2, oxylipins, metabolites of epoxide, and metabolites of DHA and EPA, such as resolvins, were also modulated in the AD brains. Among the lipid mediators, the levels of S1P2, S1P5, LPA1, LPA2, LPA6, P2Y10, GPR174, EP1, DP1, DP2, IP, FP, and TXA2r were lower in the AD and/or Cerad-b brains. The brain levels of ceramides, LPC, LPI, PE, and PS showed strong positive correlations with the Aβ contents, while those of LPG showed rather strong positive correlations with the presence of senile plaques and neurofibrillary tangles. A discriminant analysis revealed that LPG is especially important for AD and the LPE/PE axis is important for Cerad-b. Conclusions Comprehensive lipidomics, together with the measurement of lipid receptor expression levels provided novel evidence for the associations of bioactive lipids with AD, which is expected to facilitate future translational research and reverse translational research.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,*Correspondence: Makoto Kurano,
| | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital, Institute of Gerontology, Tokyo, Japan
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Shimura T, Kurano M, Okamoto K, Jubishi D, Hashimoto H, Kano K, Igarashi K, Shimamoto S, Aoki J, Moriya K, Yatomi Y. Decrease in serum levels of autotaxin in COVID-19 patients. Ann Med 2022; 54:3189-3200. [PMID: 36369824 PMCID: PMC9665086 DOI: 10.1080/07853890.2022.2143554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION In order to identify therapeutic targets in Coronavirus disease 2019 (COVID-19), it is important to identify molecules involved in the biological responses that are modulated in COVID-19. Lysophosphatidic acids (LPAs) are involved in the pulmonary inflammation and fibrosis are one of the candidate molecules. The aim of this study was to evaluate the association between the serum levels of autotaxin (ATX), which are enzymes involved in the synthesis of lysophosphatidic acids. MATERIAL AND METHODS We enrolled 134 subjects with COVID-19 and 58 normal healthy subjects for the study. We measured serum ATX levels longitudinally in COVID-19 patients and investigated the time course and the association with severity and clinical parameters. RESULTS The serum ATX levels were reduced in all patients with COVID-19, irrespective of the disease severity, and were negatively associated with the serum CRP, D-dimer, and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels. DISCUSSION Considering the biological properties of LPAs in the pulmonary inflammation and fibrosis, modulation of ATX might be compensatory biological responses to suppress immunological overreaction especially in the lung, which is an important underlying mechanism for the mortality of the disease. CONCLUSIONS COVID-19 patients showed a decrease in the serum levels of ATX, irrespective of the disease severity. Key MessagesAutotaxin (ATX) is an enzyme involved in the synthesis of lysophosphatidic acid (LPA), which has been reported to be involved in pulmonary inflammation and fibrosis. Patients with COVID-19 show decrease in the serum levels of ATX. Modulation of ATX might be compensatory biological responses to suppress immunological overreaction.
Collapse
Affiliation(s)
- Takuya Shimura
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koh Okamoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Jubishi
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Hideki Hashimoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Igarashi
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | | | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Wang S, Chen J, Guo XZ. KAI1/CD82 gene and autotaxin-lysophosphatidic acid axis in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:1388-1405. [PMID: 36160748 PMCID: PMC9412925 DOI: 10.4251/wjgo.v14.i8.1388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably correlated with tumor invasion and prognosis. Cell metabolism dysregulation is an important cause of tumor occurrence, development, and metastasis. As one of the important characteristics of tumors, cell metabolism dysregulation is attracting increasing research attention. Phospholipids are an indispensable substance in the metabolism in various tumor cells. Phospholipid metabolites have become important cell signaling molecules. The pathological role of lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. Currently, LPA inhibitors have entered clinical trials but are not yet used in clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD are abnormally expressed in various gastrointestinal tumors. According to our recent pre-experimental results, KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant research has been reported. Clarifying the mechanism of ATX-LPA in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy. In this paper, the molecular compositions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Jiang Chen
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| |
Collapse
|
6
|
Wang Y, Qi Z, Li Z, Bai S, Damirin A. LPAR2-mediated action promotes human renal cell carcinoma via MAPK/NF-κB signaling to regulate cytokine network. J Cancer Res Clin Oncol 2022; 149:2041-2055. [PMID: 35857125 DOI: 10.1007/s00432-022-04197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Lysophosphatidic acid (LPA) exerts various physiological and pathological effects by activating its distinct G-protein-coupled LPA receptors. We demonstrated that LPA can increase the migration and proliferation of renal carcinoma cells. Meanwhile, LPAR1 and LPAR2 were preferentially expressed in renal cancer (RC) cell lines. So, the study aimed to determine the LPA receptor subtypes involved in LPA-induced actions and whether they could be used as a precision therapeutic target for renal cancer. METHODS Biological approaches combined with big data analysis were used to demonstrate the role of LPAR2 in the progression of renal cancer. RESULTS We found that the proliferation, clone formation, and migration in response to LPA were enhanced in LPAR2-overexpressing renal cancer cells, whereas, the actions were suppressed by LPAR2 antagonist in the cells. LPAR2 has also shown clinical diagnostic and prognostic value in renal carcinoma based on bioinformatics analysis and clinical tissue microarray analysis. In vivo study shown that tumor growth and metastasis were significantly increased in the LPAR2-overexpressing cells-derived solid tumors. LPA stimulated MAPK and NF-κB activation, and LPA-induced actions were inhibited by MAPKs and NF-κB inhibitors, respectively. Subsequently, the transcriptomic results revealed that LPAR2 strongly affected the cytokines production, and the increased IL6, CXCL8, and TNF were confirmed again using Kit assay. CONCLUSIONS We have identified that LPAR2 is critical for LPA-promoted renal cancer progression, and the actions mainly dependent the MAPK and NF-κB activation mechanism. Then, the expression of inflammatory factors activated by NF-κB is also suspected to be involved in LPAR2-mediated carcinogenesis. Thus, LPAR2 may be a promising therapeutic target for renal cancer.
Collapse
Affiliation(s)
- Yuewu Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Zhimin Qi
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China
| | - Ze Li
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China
| | - Shuyu Bai
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China
| | - Alatangaole Damirin
- School of Life Sciences, Inner Mongolia University, Hohhot, 010110, Inner Mongolia, China.
| |
Collapse
|
7
|
Association between the Expression Levels of MicroRNA-101, -103, and -29a with Autotaxin and Lysophosphatidic Acid Receptor 2 Expression in Gastric Cancer Patients. JOURNAL OF ONCOLOGY 2022; 2022:8034038. [PMID: 35444696 PMCID: PMC9015865 DOI: 10.1155/2022/8034038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Background Gastric cancer (GC) is regarded as the most prevalent malignancy with the high mortality rate, worldwide. However, gastroscopy, a biopsy of suspected sample, and detecting CEA, CA19-9, and CA72-4 are presently used, but these diagnostic approaches have several limitations. Recently, microRNAs as the most important member of noncoding RNAs (ncRNAs) have received attention; recent evidence demonstrates that they can be used as the promising candidate biomarkers for GC diagnosis. We aimed to investigate the association between the microRNA-29a, -101, and -103 expression and autotaxin (ATX) and lysophosphatidic acid receptor 2 (LPA2) expression in GC patients. Material and Methods. The present study was conducted on 40 paired samples of primary GC tissue and adjacent noncancerous tissue. The gene expression levels of miR-101, -103, -29, ATX, and LPA2 were analyzed by quantitative reverse-transcription PCR (qRT-PCR). Besides, the protein levels of ATX and LPA2 were evaluated using western blot. Results The expression levels of miR-29 and miR-101 were significantly lower (p value < 0.0001), but the miR-103 and LPA2 were significantly higher in gastric tumor samples compared to the corresponding nontumor tissues (p value < 0.0001). Moreover, the diagnostic accuracy of miRs to discrimine the GC patients from noncancerous controls was reliable (miR-101, sensitivity: 82.5% and specificity: 85%; miR-103, sensitivity: 72.5% and specificity: 90%; miR-29, sensitivity: 77.5% and specificity: 70%). Conclusion It seems that determining the expression level of miR-101, -103, and -29, as the novel diagnostic biomarkers, has diagnostic value to distinguish GC patients from healthy individuals.
Collapse
|
8
|
Kurano M, Sakai E, Yatomi Y. Understanding modulations of lipid mediators in cancer using a murine model of carcinomatous peritonitis. Cancer Med 2022; 11:3491-3507. [PMID: 35315587 PMCID: PMC9487885 DOI: 10.1002/cam4.4699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have investigated the possible involvement of eicosanoids, lysophospholipids, and sphingolipids in cancer. We considered that comprehensive measurement of these lipid mediators might provide a better understanding of their involvement in the pathogenesis of cancer. In the present study, we attempted to elucidate the modulations of sphingolipids, lysophospholipids, diacyl‐phospholipids, eicosanoids, and related mediators in cancer by measuring their levels simultaneously by a liquid chromatography‐mass spectrometry method in a mouse model of carcinomatous peritonitis. Methods We investigated the modulations of these lipids in both ascitic fluid and plasma specimens obtained from Balb/c mice injected intraperitoneally with Colon‐26 cells, as well as the modulations of the lipid contents in the cancer cells obtained from the tumor xenografts. Results The results were as follows: the levels of sphingosine 1‐phosphate were increased, while those of lysophosphatidic acid (LysoPA), especially unsaturated long‐chain LysoPA, tended to be increased, in the ascitic fluid. Our findings suggested that ceramides, sphingomyelin, and phosphatidylcholine, their precursors, were supplied by both de novo synthesis and from elsewhere in the body. The levels of lysophosphatidylserine (LysoPS), lysophosphatidylinositol, lysophosphatidylglycerol, and lysophosphatidylethanolamine were also increased in the ascitic fluid, while those of phosphatidylserine (PS), a precursor of LysoPS, were markedly decreased. The levels of arachidonic acid derivatives, especially PGE2‐related metabolites, were increased, while the plasma levels of eicosanoids and related mediators were decreased. Comprehensive statistical analyses mainly identified PS in the ascitic fluid and eicosanoids in the plasma as having highly negative predictive values for cancer. Conclusions The results proposed many unknown associations of lipid mediators with cancer, underscoring the need for further studies. In particular, the PS/LysoPS pathway could be a novel therapeutic target, and plasma eicosanoids could be useful biomarkers for cancer.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
9
|
She S, Zhang Q, Shi J, Yang F, Dai K. Roles of Autotaxin/Autotaxin-Lysophosphatidic Acid Axis in the Initiation and Progression of Liver Cancer. Front Oncol 2022; 12:922945. [PMID: 35769713 PMCID: PMC9236130 DOI: 10.3389/fonc.2022.922945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Autotaxin (ATX) is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA), a growth factor-like signaling phospholipid. ATX has been abundantly detected in the culture medium of various cancer cells, tumor tissues, and serum or plasma of cancer patients. Biological actions of ATX are mediated by LPA. The ATX-LPA axis mediates a plethora of activities, such as cell proliferation, survival, migration, angiogenesis, and inflammation, and participates in the regulation of various physiological and pathological processes. In this review, we have summarized the physiological function of ATX and the ATX-LPA axis in liver cancer, analyzed the role of the ATX-LPA axis in tumorigenesis and metastasis, and discussed the therapeutic strategies targeting the ATX-LPA axis, paving the way for new therapeutic developments.
Collapse
Affiliation(s)
| | | | | | - Fan Yang
- *Correspondence: Fan Yang, ; Kai Dai,
| | - Kai Dai
- *Correspondence: Fan Yang, ; Kai Dai,
| |
Collapse
|
10
|
Deng W, Chen F, Zhou Z, Huang Y, Lin J, Zhang F, Xiao G, Liu C, Liu C, Xu L. Hepatitis B Virus Promotes Hepatocellular Carcinoma Progression Synergistically With Hepatic Stellate Cells via Facilitating the Expression and Secretion of ENPP2. Front Mol Biosci 2021; 8:745990. [PMID: 34805271 PMCID: PMC8602366 DOI: 10.3389/fmolb.2021.745990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Hepatitis B virus (HBV) infection is a major risk factor causing hepatocellular carcinoma (HCC) development, but the molecular mechanisms are not fully elucidated. It has been reported that virus infection induces ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) expression, the latter participates in tumor progression. Therefore, the aim of the present study was to investigate whether HBV induced HCC malignancy via ENPP2. Methods: HCC patient clinical data were collected and prognosis was analyzed. Transient transfection and stable ectopic expression of the HBV genome were established in hepatoma cell lines. Immunohistochemical staining, RT-qPCR, western blot, and ELISA assays were used to detect the expression and secretion of ENPP2. Finally, CCK-8, colony formation, and migration assays as well as a subcutaneous xenograft mouse model were used to investigate the influence of HBV infection, ENPP2 expression, and activated hepatic stellate cells (aHSCs) on HCC progression in vitro and in vivo. Results: The data from cancer databases indicated that the level of ENPP2 was significant higher in HCC compared within normal liver tissues. Clinical relevance analysis using 158 HCC patients displayed that ENPP2 expression was positively correlated with poor overall survival and disease-free survival. Statistical analysis revealed that compared to HBV-negative HCC tissues, HBV-positive tissues expressed a higher level of ENPP2. In vitro, HBV upregulated ENPP2 expression and secretion in hepatoma cells and promoted hepatoma cell proliferation, colony formation, and migration via enhancement of ENPP2; downregulation of ENPP2 expression or inhibition of its function suppressed HCC progression. In addition, aHSCs strengthened hepatoma cell proliferation, migration in vitro, and promoted tumorigenesis synergistically with HBV in vivo; a loss-function assay further verified that ENPP2 is essential for HBV/aHSC-induced HCC progression. Conclusion: HBV enhanced the expression and secretion of ENPP2 in hepatoma cells, combined with aHSCs to promote HCC progression via ENPP2.
Collapse
Affiliation(s)
- Wanyu Deng
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,College of Life Science, Shangrao Normal University, Shangrao, China
| | - Fu Chen
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Ziyu Zhou
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yipei Huang
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlong Lin
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fapeng Zhang
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Xiao
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaoqun Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Leibo Xu
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Dong S, Li GX, Fang JH, Chen X, Sun YT. Advances in understanding of relationship between Hhip and Lpar2 gene expression and gastric cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1049-1054. [DOI: 10.11569/wcjd.v29.i18.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor derived from gastric mucosal epithelial cells. In recent years, it has been found that the Hhip and Lpar2 genes play an important role in the development of GC. The Hhip gene can inhibit the proliferation and invasion of GC cells by participating in the Hedgehog signaling pathway, while the Lpar2 gene promotes the development of GC by activating the ATX-LPA signaling pathway. In this paper, we will review the changes of expression levels, molecular mechanism, and clinical application of Hhip and Lpar2 genes in GC patients.
Collapse
Affiliation(s)
- Sai Dong
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Guo-Xiong Li
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Jia-Heng Fang
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Xin Chen
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Yi-Tian Sun
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| |
Collapse
|
12
|
Lysophosphatidic Acid Signaling in Cancer Cells: What Makes LPA So Special? Cells 2021; 10:cells10082059. [PMID: 34440828 PMCID: PMC8394178 DOI: 10.3390/cells10082059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) refers to a family of simple phospholipids that act as ligands for G protein-coupled receptors. While LPA exerts effects throughout the body in normal physiological circumstances, its pathological role in cancer is of great interest from a therapeutic viewpoint. The numerous LPA receptors (LPARs) are coupled to a variety of G proteins, and more than one LPAR is typically expressed on any given cell. While the individual receptors signal through conventional GPCR pathways, LPA is particularly efficacious in stimulating cancer cell proliferation and migration. This review addresses the mechanistic aspects underlying these pro-tumorigenic effects. We provide examples of LPA signaling responses in various types of cancers, with an emphasis on those where roles have been identified for specific LPARs. While providing an overview of LPAR signaling, these examples also reveal gaps in our knowledge regarding the mechanisms of LPA action at the receptor level. The current understanding of the LPAR structure and the roles of LPAR interactions with other receptors are discussed. Overall, LPARs provide insight into the potential molecular mechanisms that underlie the ability of individual GPCRs (or combinations of GPCRs) to elicit a unique spectrum of responses from their agonist ligands. Further knowledge of these mechanisms will inform drug discovery, since GPCRs are promising therapeutic targets for cancer.
Collapse
|
13
|
Lysophosphatidic Acid Receptor Antagonists and Cancer: The Current Trends, Clinical Implications, and Trials. Cells 2021; 10:cells10071629. [PMID: 34209775 PMCID: PMC8306951 DOI: 10.3390/cells10071629] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from membrane phospholipids. LPA initiates cellular effects upon binding to a family of G protein-coupled receptors, termed LPA receptors (LPAR1 to LPAR6). LPA signaling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, angiogenesis, and lymphangiogenesis. Since the expression and function of LPA receptors are critical for cellular effects, selective antagonists may represent a potential treatment for a broad range of illnesses, such as cardiovascular diseases, idiopathic pulmonary fibrosis, voiding dysfunctions, and various types of cancers. More new LPA receptor antagonists have shown their therapeutic potentials, although most are still in the preclinical trial stage. This review provided integrative information and summarized preclinical findings and recent clinical trials of different LPA receptor antagonists in cancer progression and resistance. Targeting LPA receptors can have potential applications in clinical patients with various diseases, including cancer.
Collapse
|
14
|
Meduri B, Pujar GV, Durai Ananda Kumar T, Akshatha HS, Sethu AK, Singh M, Kanagarla A, Mathew B. Lysophosphatidic acid (LPA) receptor modulators: Structural features and recent development. Eur J Med Chem 2021; 222:113574. [PMID: 34126459 DOI: 10.1016/j.ejmech.2021.113574] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Lysophosphatidic acid (LPA) activates six LPA receptors (LPAR1-6) and regulates various cellular activities such as cell proliferation, cytoprotection, and wound healing. Many studies elucidated the pathological outcomes of LPA are due to the alteration in signaling pathways, which include migration and invasion of cancer cells, fibrosis, atherosclerosis, and inflammation. Current pathophysiological research on LPA and its receptors provides a means that LPA receptors are new therapeutic targets for disorders associated with LPA. Various chemical modulators are developed and are under investigation to treat a wide range of pathological complications. This review summarizes the physiological and pathological roles of LPA signaling, development of various LPA modulators, their structural features, patents, and their clinical outcomes.
Collapse
Affiliation(s)
- Bhagyalalitha Meduri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Gurubasavaraj Veeranna Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India.
| | - T Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - H S Akshatha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Abhinav Kanagarla
- Department of Pharmaceutical Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
15
|
Bang G, Ghil S. BRET analysis reveals interaction between the lysophosphatidic acid receptor LPA2 and the lysophosphatidylinositol receptor GPR55 in live cells. FEBS Lett 2021; 595:1806-1818. [PMID: 33959968 DOI: 10.1002/1873-3468.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
Lysophosphatidic acid (LPA) and lysophosphatidylinositol bind to the G protein-coupled receptors (GPCRs) LPA and GPR55, respectively. LPA2 , a type 2 LPA receptor, and GPR55 are highly expressed in colon cancer and involved in cancer progression. However, crosstalk between the two receptors and potential effects on cellular physiology are not fully understood. Here, using BRET analysis, we found that LPA2 and GPR55 interact in live cells. In the presence of both receptors, LPA2 and/or GPR55 activation facilitated co-internalization, and activation of GPR55, uncoupled with Gαi , induced reduction of intracellular cAMP. Notably, co-activation of receptors synergistically triggered further decline in the cAMP level, promoted cell proliferation, and increased the expression of cancer progression-related genes, suggesting that physical and functional crosstalk between LPA2 and GRR55 is involved in cancer progression.
Collapse
Affiliation(s)
- Gwantae Bang
- Department of Life Science, Kyonggi University, Suwon, Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Korea
| |
Collapse
|
16
|
Saleh SAB, Abdelwahab KM, Mady AM, Mohamed GA. The impact of achieving a sustained virological response with direct-acting antivirals on serum autotaxin levels in chronic hepatitis C patients. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00060-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Autotaxin (ATX) is an emerging biomarker for liver fibrosis. Achievement of sustained virological response (SVR) by direct-acting antivirals (DAAs) results in hepatic fibrosis regression in chronic hepatitis C (CHC) patients. In this context, the clinical implications of ATX have not yet been well-defined. In this study, we aimed to assess the impact of achieving SVR with DAA therapy on serum ATX levels and whether these levels can reflect the regression of hepatic fibrosis in CHC patients. We evaluated serum ATX levels at baseline and 12 weeks post-DAA therapy in 48 CHC patients. We compared ATX with FIB4 score and AST-to-Platelet Ratio Index (APRI) as regards the detection of grade F3–4 fibrosis.
Results
Serum ATX levels were significantly declined in 47 patients after the achievement of SVR12 (p < 0.001). The diagnostic ability of ATX for the detection of grade F3–4 fibrosis was inferior to FIB4 and APRI scores at baseline and SVR12.
Conclusion
Achievement of SVR with DAA therapy causes a significant decline in serum autotaxin concentrations, suggesting early regression of hepatic fibrosis in CHC patients. However, its diagnostic capability for routine patient monitoring and follow-up is still under debate.
Collapse
|
17
|
Tang X, Brindley DN. Lipid Phosphate Phosphatases and Cancer. Biomolecules 2020; 10:biom10091263. [PMID: 32887262 PMCID: PMC7564803 DOI: 10.3390/biom10091263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of three enzymes (LPP1–3) that belong to a phospholipid phosphatase (PLPP) family. The LPPs dephosphorylate a wide spectrum of bioactive lipid phosphates, among which lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are two important extracellular signaling molecules. The LPPs are integral membrane proteins, which are localized on plasma membranes and intracellular membranes, including the endoplasmic reticulum and Golgi network. LPPs regulate signaling transduction in cancer cells and demonstrate different effects in cancer progression through the breakdown of extracellular LPA and S1P and other intracellular substrates. This review is intended to summarize an up-to-date understanding about the functions of LPPs in cancers.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David N. Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence:
| |
Collapse
|
18
|
Regulation of Tumor Immunity by Lysophosphatidic Acid. Cancers (Basel) 2020; 12:cancers12051202. [PMID: 32397679 PMCID: PMC7281403 DOI: 10.3390/cancers12051202] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.
Collapse
|
19
|
Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158716. [PMID: 32305571 DOI: 10.1016/j.bbalip.2020.158716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidate (LPA), which signals through six G-protein coupled receptors (GPCRs). Signaling through LPA is terminated by its degradation by a family of three lipid phosphate phosphatases (LPPs). LPP1 also attenuates signaling downstream of the activation of LPA receptors and some other GPCRs. The ATX-LPA axis mediates a plethora of activities such as cell proliferation, survival, migration, angiogenesis and inflammation, which perform an important role in facilitating wound healing. This wound healing response is hijacked by cancers where there is decreased expression of LPP1 and LPP3 and increased expression of ATX. This maladaptive regulation of LPA signaling also causes chronic inflammation, which has been recognized as one of the hallmarks in cancer. The increased LPA signaling promotes cell survival and migration and attenuates apoptosis, which stimulates tumor growth and metastasis. The wound healing functions of increased LPA signaling also protect cancer cells from effects of chemotherapy and radiotherapy. In this review, we will summarize knowledge of the ATX-LPA axis and its role in the development of resistance to chemotherapy and radiotherapy. We will also offer insights for developing strategies of targeting ATX-LPA axis as a novel part of cancer treatment. This article is part of a Special Issue entitled Lysophospholipids and their receptors: New data and new insights into their function edited by Susan Smyth, Viswanathan Natarajan and Colleen McMullen.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada
| | - Matthew G K Benesch
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada; Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada.
| |
Collapse
|
20
|
Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic Acid Receptors: Biochemical and Clinical Implications in Different Diseases. J Cancer 2020; 11:3519-3535. [PMID: 32284748 PMCID: PMC7150451 DOI: 10.7150/jca.41841] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-acyl-2-hemolytic-sn-glycerol-3-phosphate) extracted from membrane phospholipid is a kind of simple bioactive glycophospholipid, which has many biological functions such as stimulating cell multiplication, cytoskeleton recombination, cell survival, drug-fast, synthesis of DNA and ion transport. Current studies have shown that six G-coupled protein receptors (LPAR1-6) can be activated by LPA. They stimulate a variety of signal transduction pathways through heterotrimeric G-proteins (such as Gα12/13, Gαq/11, Gαi/o and GαS). LPA and its receptors play vital roles in cancers, nervous system diseases, cardiovascular diseases, liver diseases, metabolic diseases, etc. In this article, we discussed the structure of LPA receptors and elucidated their functions in various diseases, in order to better understand them and point out new therapeutic schemes for them.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Shao
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
21
|
Possible involvement of PS-PLA1 and lysophosphatidylserine receptor (LPS1) in hepatocellular carcinoma. Sci Rep 2020; 10:2659. [PMID: 32060356 PMCID: PMC7021726 DOI: 10.1038/s41598-020-59590-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/30/2020] [Indexed: 01/10/2023] Open
Abstract
Lysophosphatidylserine (LysoPS) is a lysophospholipid, its generating enzyme, phosphatidylserine-specific phospholipase A1 (PS-PLA1), reportedly plays roles in stomach and colon cancers. Here, we examined the potential roles of LysoPS in hepatocellular carcinoma (HCC). The ninety-seven HCC patients who underwent surgical treatment were enrolled in this study and approved by the institutional review board. Among LysoPS-related enzymes and receptors, increased PS-PLA1 or LysoPS receptor 1 (LPS1) mRNA was observed in HCC tissues compared to non-HCC tissues. PS-PLA1 mRNA in HCC was associated with no clinical parameters, while LPS1 mRNA in HCC was correlated inversely with tumor differentiation. Furthermore, higher serum PS-PLA1 was observed in HCC patients compared to healthy control and correlated with PS-PLA1 mRNA in non-HCC tissues and with serum AST or ALT. Additionally, serum levels of PS-PLA1 were higher in HCC patients with HCV-related liver injury than in those with HBV or non-HBV-, non-HCV-related liver diseases. In conclusion, among LysoPS-related enzymes and receptors, PS-PLA1 and LPS1 mRNA were increased in HCC. Based on the correlation between the serum PS-PLA1 and the mRNA level of PS-PLA1 in non-HCC tissues, the liver may be the main source of serum PS-PLA1, and serum PS-PLA1 levels may be a useful marker for liver injury.
Collapse
|
22
|
Gnocchi D, Kapoor S, Nitti P, Cavalluzzi MM, Lentini G, Denora N, Sabbà C, Mazzocca A. Novel lysophosphatidic acid receptor 6 antagonists inhibit hepatocellular carcinoma growth through affecting mitochondrial function. J Mol Med (Berl) 2019; 98:179-191. [PMID: 31863151 DOI: 10.1007/s00109-019-01862-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide and the commonest liver cancer. It is expected to become the third leading cause of cancer-related deaths in Western countries by 2030. Effective pharmacological approaches for HCC are still unavailable, and the currently approved systemic treatments are unsatisfactory in terms of therapeutic results, showing many side effects. Thus, searching for new effective and nontoxic molecules for HCC treatment is of paramount importance. We previously demonstrated that lysophosphatidic acid (LPA) is an important contributor to the pathogenesis of HCC and that lysophosphatidic acid receptor 6 (LPAR6) actively supports HCC tumorigenicity. Here, we screened for novel LPAR6 antagonists and found that two compounds, 4-methylene-2-octyl-5-oxotetra-hydrofuran-3-carboxylic acid (C75) and 9-xanthenylacetic acid (XAA), efficiently inhibit HCC growth, both in vitro and in vitro, without displaying toxic effects at the effective doses. We further investigated the mechanisms of action of C75 and XAA and found that these compounds determine a G1-phase cell cycle arrest, without inducing apoptosis at the effective doses. Moreover, we discovered that both molecules act on mitochondrial homeostasis, by increasing mitochondrial biogenesis and reducing mitochondrial membrane potential. Overall, our results show two newly identified LPAR6 antagonists with a concrete potential to be translated into effective and side effect-free molecules for HCC therapy.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India
| | - Patrizia Nitti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, I-34127, Trieste, Italy
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
23
|
Elevated Autotaxin and LPA Levels During Chronic Viral Hepatitis and Hepatocellular Carcinoma Associate with Systemic Immune Activation. Cancers (Basel) 2019; 11:cancers11121867. [PMID: 31769428 PMCID: PMC6966516 DOI: 10.3390/cancers11121867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Circulating autotaxin (ATX) is elevated in persons with liver disease, particularly in the setting of chronic hepatitis C virus (HCV) and HCV/HIV infection. It is thought that plasma ATX levels are, in part, attributable to impaired liver clearance that is secondary to fibrotic liver disease. In a discovery data set, we identified plasma ATX to be associated with parameters of systemic immune activation during chronic HCV and HCV/HIV infection. We and others have observed a partial normalization of ATX levels within months of starting interferon-free direct-acting antiviral (DAA) HCV therapy, consistent with a non-fibrotic liver disease contribution to elevated ATX levels, or HCV-mediated hepatocyte activation. Relationships between ATX, lysophosphatidic acid (LPA) and parameters of systemic immune activation will be discussed in the context of HCV infection, age, immune health, liver health, and hepatocellular carcinoma (HCC).
Collapse
|
24
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|
25
|
Lysophosphatidic Acid and Autotaxin-associated Effects on the Initiation and Progression of Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11070958. [PMID: 31323936 PMCID: PMC6678549 DOI: 10.3390/cancers11070958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium interacts dynamically with the immune system to maintain its barrier function to protect the host, while performing the physiological roles in absorption of nutrients, electrolytes, water and minerals. The importance of lysophosphatidic acid (LPA) and its receptors in the gut has been progressively appreciated. LPA signaling modulates cell proliferation, invasion, adhesion, angiogenesis, and survival that can promote cancer growth and metastasis. These effects are equally important for the maintenance of the epithelial barrier in the gut, which forms the first line of defense against the milieu of potentially pathogenic stimuli. This review focuses on the LPA-mediated signaling that potentially contributes to inflammation and tumor formation in the gastrointestinal tract.
Collapse
|
26
|
Ren Z, Zhang C, Ma L, Zhang X, Shi S, Tang D, Xu J, Hu Y, Wang B, Zhang F, Zhang X, Zheng H. Lysophosphatidic acid induces the migration and invasion of SGC-7901 gastric cancer cells through the LPA2 and Notch signaling pathways. Int J Mol Med 2019; 44:67-78. [PMID: 31115486 PMCID: PMC6559315 DOI: 10.3892/ijmm.2019.4186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidic acid (LPA), a simple water‑soluble glycerophospholipid with growth factor‑like activity, regulates certain behaviors of multiple cancer types by binding to its receptor, LPA receptor 2 (LPA2). Notch1 is a key mediator in multiple human cancer cell types. The association between LPA2 and Notch1 in gastric cancer cells is not well known. The present study aimed to investigate the function of LPA2 and Notch1 in controlling the migration and invasion activities of SGC‑7901 gastric cancer cells following stimulation with LPA. It was revealed that LPA may stimulate the expression of Notch1 and Hes family bHLH transcription factor 1, and the phosphorylation of protein kinase B which belongs to the Notch pathway. Furthermore, by performing transwell migration and invasion assays, immunofluorescent staining, analyzing the expression of markers for the epithelial‑mesenchymal transition (EMT) and downregulating LPA2 and Notch1 expression, it was verified that LPA2 and Notch1 mediated the metastasis, invasion, EMT and rebuilding of the cytoskeleton of SGC‑7901 cells upon LPA treatment. An immunoprecipitation assay revealed that LPA2 interacted with Notch1 in SGC‑7901 cells. The present study may provide novel ideas and an experimental basis for identifying the factors that affect the functions of SGC‑7901 cells.
Collapse
Affiliation(s)
- Zhiheng Ren
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chenli Zhang
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Linna Ma
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiao Zhang
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shuxia Shi
- Clinical Teaching Department of Lanzhou Modern Vocational College, Lanzhou, Gansu 730000, P.R. China
| | - Deng Tang
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jinyu Xu
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Hu
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Binsheng Wang
- Department of Third General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fangfang Zhang
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xu Zhang
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Haixue Zheng
- National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
27
|
Yang F, Chen GX. Production of extracellular lysophosphatidic acid in the regulation of adipocyte functions and liver fibrosis. World J Gastroenterol 2018; 24:4132-4151. [PMID: 30271079 PMCID: PMC6158478 DOI: 10.3748/wjg.v24.i36.4132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA), a glycerophospholipid, consists of a glycerol backbone connected to a phosphate head group and an acyl chain linked to sn-1 or sn-2 position. In the circulation, LPA is in sub-millimolar range and mainly derived from hydrolysis of lysophosphatidylcholine, a process mediated by lysophospholipase D activity in proteins such as autotaxin (ATX). Intracellular and extracellular LPAs act as bioactive lipid mediators with diverse functions in almost every mammalian cell type. The binding of LPA to its receptors LPA1-6 activates multiple cellular processes such as migration, proliferation and survival. The production of LPA and activation of LPA receptor signaling pathways in the events of physiology and pathophysiology have attracted the interest of researchers. Results from studies using transgenic and gene knockout animals with alterations of ATX and LPA receptors genes, have revealed the roles of LPA signaling pathways in metabolic active tissues and organs. The present review was aimed to summarize recent progresses in the studies of extracellular and intracellular LPA production pathways. This includes the functional, structural and biochemical properties of ATX and LPA receptors. The potential roles of LPA production and LPA receptor signaling pathways in obesity, insulin resistance and liver fibrosis are also discussed.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, United States
| |
Collapse
|
28
|
Ando W, Yokomori H, Kaneko F, Kaneko M, Igarashi K, Suzuki H. Serum Autotaxin Concentrations Reflect Changes in Liver Stiffness and Fibrosis After Antiviral Therapy in Patients with Chronic Hepatitis C. Hepatol Commun 2018; 2:1111-1122. [PMID: 30202824 PMCID: PMC6128230 DOI: 10.1002/hep4.1230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/07/2016] [Indexed: 01/14/2023] Open
Abstract
The purpose of this study was to determine whether serum autotaxin concentrations reflect liver stiffness in patients with chronic hepatitis C virus (HCV) treated with direct‐acting antiviral agents. Adult patients with chronic HCV were enrolled from January 2016 to August 2017. Autotaxin concentrations in these patients were compared with those of a control group consisting of healthy individuals. Liver stiffness was determined by transient elastography. The relationship between fibrosis markers and fibrosis scores was evaluated before and after treatment. Data from 155 HCV patients and 56 control subjects were analyzed. Autotaxin concentrations were significantly higher in HCV patients with liver stiffness scores less than or equal to 7.4 kPa versus controls. Autotaxin concentrations at the end of treatment and beyond were significantly lower than those prior to treatment. Pretreatment and posttreatment autotaxin concentrations in male and female patients with liver stiffness scores greater than 14.9 kPa changed significantly (P < 0.01 and P < 0.01, respectively). From the start of treatment to 6 months following treatment, the fibrosis marker/liver stiffness score ratios changed as follows: autotaxin: 0.189 (95% confidence interval [CI]: 0.169‐0.209) to 0.191 (95% CI: 0.166‐0.216; P= 0.88); Wisteria floribundaagglutinin‐positive Mac‐2‐binding protein: 0.294 (95% CI: 0.256‐0.332) to 0.223 (95% CI: 0.191‐0.255; P< 0.001); hyaluronic acid: 19.05 (95% CI: 14.29‐23.81) to 13.92 (95% CI: 11.16‐16.70; P = 0.044); and type IV collagen 7S: 0.560 (95% CI: 0.515‐0.604) to 0.546 (95% CI: 0.497‐0.895; P = 0.052). Conclusion: Autotaxin concentrations reflect liver stiffness before and after antiviral treatment in patients with chronic HCV infection.
Collapse
Affiliation(s)
- Wataru Ando
- Department of Clinical Pharmacy, School of Pharmacy Kitasato University Tokyo Japan
| | - Hiroaki Yokomori
- Department of Gastroenterology Kitasato University Medical Center Saitama Japan
| | - Fumihiko Kaneko
- Department of Internal Medicine Saitama Medical Center Saitama Japan
| | - Mana Kaneko
- Department of Clinical Pharmacy, School of Pharmacy Kitasato University Tokyo Japan
| | - Koji Igarashi
- Bioscience Division, Research and Development Management Department Tosoh Corporation Kanagawa Japan
| | - Hidekazu Suzuki
- Fellowship Training Center and Medical Education Center Keio University School of Medicine Keio University Tokyo Japan
| |
Collapse
|
29
|
Benesch MGK, MacIntyre ITK, McMullen TPW, Brindley DN. Coming of Age for Autotaxin and Lysophosphatidate Signaling: Clinical Applications for Preventing, Detecting and Targeting Tumor-Promoting Inflammation. Cancers (Basel) 2018; 10:cancers10030073. [PMID: 29543710 PMCID: PMC5876648 DOI: 10.3390/cancers10030073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
A quarter-century after the discovery of autotaxin in cell culture, the autotaxin-lysophosphatidate (LPA)-lipid phosphate phosphatase axis is now a promising clinical target for treating chronic inflammatory conditions, mitigating fibrosis progression, and improving the efficacy of existing cancer chemotherapies and radiotherapy. Nearly half of the literature on this axis has been published during the last five years. In cancer biology, LPA signaling is increasingly being recognized as a central mediator of the progression of chronic inflammation in the establishment of a tumor microenvironment which promotes cancer growth, immune evasion, metastasis, and treatment resistance. In this review, we will summarize recent advances made in understanding LPA signaling with respect to chronic inflammation and cancer. We will also provide perspectives on the applications of inhibitors of LPA signaling in preventing cancer initiation, as adjuncts extending the efficacy of current cancer treatments by blocking inflammation caused by either the cancer or the cancer therapy itself, and by disruption of the tumor microenvironment. Overall, LPA, a simple molecule that mediates a plethora of biological effects, can be targeted at its levels of production by autotaxin, LPA receptors or through LPA degradation by lipid phosphate phosphatases. Drugs for these applications will soon be entering clinical practice.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Iain T K MacIntyre
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
| | - Todd P W McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G7, Canada.
| | - David N Brindley
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
30
|
YATOMI Y, KURANO M, IKEDA H, IGARASHI K, KANO K, AOKI J. Lysophospholipids in laboratory medicine. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:373-389. [PMID: 30541965 PMCID: PMC6374142 DOI: 10.2183/pjab.94.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lysophospholipids (LPLs), such as lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), and lysophosphatidylserine (LysoPS), are attracting attention as second-generation lipid mediators. In our laboratory, the functional roles of these lipid mediators and the mechanisms by which the levels of these mediators are regulated in vivo have been studied. Based on these studies, the clinical introduction of assays for LPLs and related proteins has been pursued and will be described in this review. Although assays of these lipids themselves are possible, autotaxin (ATX), apolipoprotein M (ApoM), and phosphatidylserine-specific phospholipase A1 (PS-PLA1) are more promising as alternate biomarkers for LPA, S1P, and LysoPS, respectively. Presently, ATX, which produces LPA through its lysophospholipase D activity, has been shown to be a useful laboratory test for the diagnosis and staging of liver fibrosis, whereas PS-PLA1 and ApoM are considered to be promising clinical markers reflecting the in vivo actions induced by LysoPS and S1P.
Collapse
Affiliation(s)
- Yutaka YATOMI
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: Y. Yatomi, Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan (e-mail: )
| | - Makoto KURANO
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi IKEDA
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji IGARASHI
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | - Kuniyuki KANO
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Junken AOKI
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| |
Collapse
|
31
|
Brown A, Hossain I, Perez LJ, Nzirorera C, Tozer K, D’Souza K, Trivedi PC, Aguiar C, Yip AM, Shea J, Brunt KR, Legare JF, Hassan A, Pulinilkunnil T, Kienesberger PC. Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans. PLoS One 2017; 12:e0189402. [PMID: 29236751 PMCID: PMC5728537 DOI: 10.1371/journal.pone.0189402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/26/2017] [Indexed: 11/19/2022] Open
Abstract
Background Lysophosphatidic acid (LPA) receptor signaling has been implicated in cardiovascular and obesity-related metabolic disease. However, the distribution and regulation of LPA receptors in the myocardium and adipose tissue remain unclear. Objectives This study aimed to characterize the mRNA expression of LPA receptors (LPA1-6) in the murine and human myocardium and adipose tissue, and its regulation in response to obesity. Methods LPA receptor mRNA levels were determined by qPCR in i) heart ventricles, isolated cardiomyocytes, and perigonadal adipose tissue from chow or high fat-high sucrose (HFHS)-fed male C57BL/6 mice, ii) 3T3-L1 adipocytes and HL-1 cardiomyocytes under conditions mimicking gluco/lipotoxicity, and iii) human atrial and subcutaneous adipose tissue from non-obese, pre-obese, and obese cardiac surgery patients. Results LPA1-6 were expressed in myocardium and white adipose tissue from mice and humans, except for LPA3, which was undetectable in murine adipocytes and human adipose tissue. Obesity was associated with increased LPA4, LPA5 and/or LPA6 levels in mice ventricles and cardiomyocytes, HL-1 cells exposed to high palmitate, and human atrial tissue. LPA4 and LPA5 mRNA levels in human atrial tissue correlated with measures of obesity. LPA5 mRNA levels were increased in HFHS-fed mice and insulin resistant adipocytes, yet were reduced in adipose tissue from obese patients. LPA4, LPA5, and LPA6 mRNA levels in human adipose tissue were negatively associated with measures of obesity and cardiac surgery outcomes. This study suggests that obesity leads to marked changes in LPA receptor expression in the murine and human heart and white adipose tissue that may alter LPA receptor signaling during obesity.
Collapse
Affiliation(s)
- Amy Brown
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Intekhab Hossain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Lester J. Perez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Carine Nzirorera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Kathleen Tozer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Kenneth D’Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Christie Aguiar
- Cardiovascular Research New Brunswick, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Alexandra M. Yip
- Cardiovascular Research New Brunswick, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Jennifer Shea
- Department of Pathology, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Keith R. Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Jean-Francois Legare
- Cardiovascular Research New Brunswick, Saint John Regional Hospital, Saint John, New Brunswick, Canada
- Department of Cardiac Surgery, New Brunswick Heart Centre, Saint John, New Brunswick, Canada
| | - Ansar Hassan
- Cardiovascular Research New Brunswick, Saint John Regional Hospital, Saint John, New Brunswick, Canada
- Department of Cardiac Surgery, New Brunswick Heart Centre, Saint John, New Brunswick, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Petra C. Kienesberger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
- * E-mail:
| |
Collapse
|
32
|
Ikeda H, Kobayashi M, Kumada H, Enooku K, Koike K, Kurano M, Sato M, Nojiri T, Kobayashi T, Ohkawa R, Shimamoto S, Igarashi K, Aoki J, Yatomi Y. Performance of autotaxin as a serum marker for liver fibrosis. Ann Clin Biochem 2017; 55:469-477. [PMID: 29065699 DOI: 10.1177/0004563217741509] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background Because autotaxin reportedly has a better performance than hyaluronic acid as a marker for liver fibrosis for the prediction of cirrhosis caused by hepatitis C, we aimed to further evaluate the role of autotaxin in liver fibrosis of other aetiologies. Methods Autotaxin antigen was measured in serum samples from 108 patients with chronic hepatitis B and 128 patients with non-alcoholic fatty liver disease who had undergone a liver biopsy as well as healthy subjects and patients with chronic kidney disease, diabetes mellitus, rheumatoid arthritis and cardiac dysfunction. Results When evaluated using receiver operator characteristics curves, the performance of autotaxin for the prediction of significant fibrosis (F2-F4) in chronic hepatitis B patients was better than that of hyaluronic acid or type IV collagen 7S. In non-alcoholic fatty liver disease patients, however, the performance of autotaxin for the prediction of significant fibrosis was poorer than that of hyaluronic acid or type IV collagen 7S. The increase in the serum autotaxin concentrations was less notable than that of hyaluronic acid or type IV collagen in patients with chronic kidney disease, diabetes mellitus, rheumatoid arthritis or cardiac dysfunction. Food intake did not affect the serum autotaxin concentrations. Conclusions Autotaxin is useful as a serum marker for liver fibrosis caused by not only chronic viral hepatitis C but also by hepatitis B, although it was less useful in patients with non-alcoholic fatty liver disease. The increase in serum autotaxin concentrations is fairly specific for liver fibrosis, and the serum autotaxin concentrations can be analysed without consideration of food intake before blood collection.
Collapse
Affiliation(s)
- Hitoshi Ikeda
- 1 Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Kobayashi
- 2 Department of Hepatology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Hiromitsu Kumada
- 2 Department of Hepatology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Kenichiro Enooku
- 3 Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiko Koike
- 3 Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Kurano
- 1 Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaya Sato
- 1 Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,3 Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Nojiri
- 4 Department of Clinical Laboratory, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Tamaki Kobayashi
- 4 Department of Clinical Laboratory, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Ryunosuke Ohkawa
- 5 Analytical Laboratory Chemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Shimamoto
- 6 Bioscience Division, Reagent Development Department, AIA Research Group, TOSOH Corporation, Ayase, Kanagawa, Japan
| | - Koji Igarashi
- 6 Bioscience Division, Reagent Development Department, AIA Research Group, TOSOH Corporation, Ayase, Kanagawa, Japan
| | - Junken Aoki
- 7 Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yutaka Yatomi
- 1 Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Xu X, Chen J, Wang F, Ni Q, Naimat U, Chen Z. Recurrence of Hepatocellular Carcinoma After Laparoscopic Hepatectomy: Risk Factors and Treatment Strategies. J Laparoendosc Adv Surg Tech A 2017; 27:676-684. [PMID: 28326886 DOI: 10.1089/lap.2016.0541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the risk factors for recurrence and treatment strategies after patients with hepatocellular carcinoma (HCC) undergo total laparoscopic hepatectomy (LH). METHODS The study included 109 patients who underwent LH (laparoscopy resection [LR] group, n = 50) or open hepatectomy [OH] (open resection [OR] group, n = 59) for HCC in our hospital between March 2011 and June 2016. Perioperative outcomes, disease recurrence, survival, and risk factors for recurrence were analyzed. RESULTS Patient characteristics did not significantly differ between groups. The 1- and 3-year survival rates were 90.7% and 78.1%, respectively, for the LR group and 83.1% and 74.4%, respectively, for the OR group (P = .71). The 1- and 3-year disease-free survival rates were 89.6% and 51.4%, respectively, for the LR group and 84.7% and 59.6%, respectively, for the OR group (P = .935). Tumor size, differentiation, vascular invasion, surgical bleeding, and surgical resection margin were risk factors for tumor recurrence after LH. CONCLUSION LH for HCC did not increase the risk of recurrence compared with OH. Tumor size, differentiation, vascular invasion, surgical bleeding, and surgical resection margin were risk factors for tumor recurrence. Reducing bleeding during surgery and ensuring sufficient surgical margins were the most important measures to reduce postoperative recurrence of HCC.
Collapse
Affiliation(s)
- Xiaodong Xu
- 1 Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University , Nantong, P.R. China
| | - Jiahui Chen
- 2 Department of Cardiology, Zhongshan Hospital, Fudan University , Shanghai, P.R. China
| | - Feiran Wang
- 1 Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University , Nantong, P.R. China
| | - Qinggan Ni
- 1 Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University , Nantong, P.R. China
| | - Ullah Naimat
- 1 Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University , Nantong, P.R. China
| | - Zhong Chen
- 1 Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong University, Research Institute of Hepatobiliary Surgery of Nantong University , Nantong, P.R. China
| |
Collapse
|