1
|
Rusnáková DŠ, Aziri R, Dubovan P, Jurík M, Mego M, Pinďák D. Detection, significance and potential utility of circulating tumor cells in clinical practice in breast cancer (Review). Oncol Lett 2025; 29:10. [PMID: 39492933 PMCID: PMC11526295 DOI: 10.3892/ol.2024.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 11/05/2024] Open
Abstract
Although advances in diagnostic techniques, new therapeutic strategies and personalization of breast cancer (BC) care have improved the survival for a number of patients, BC remains a major cause of morbidity and mortality for women. The study of circulating tumor cells (CTCs) has significant potential in translational oncology since these cells represent promising biomarkers throughout the entire course of BC in patients. CTCs also have notable prognostic value in early BC as well as metastatic BC. Based on current knowledge, it seems that the dynamics of CTCs that change during therapy reflect therapy response, and CTCs could serve as a tool for risk stratification and real-time monitoring of treatment in patients with BC. The question of how to use this information in everyday clinical practice and how this information can guide or change therapy to affect the clinical outcome of patients with BC remains unanswered. The present review aims to discuss current completed and ongoing trials that have been designed to demonstrate the clinical significance of CTCs, offer insights into treatment efficacy and assess CTC utility, facilitating their implementation in the routine management of patients with BC.
Collapse
Affiliation(s)
- Dominika Šmičková Rusnáková
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Ramadan Aziri
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Peter Dubovan
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Miroslav Jurík
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Michal Mego
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Daniel Pinďák
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| |
Collapse
|
2
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
3
|
Thomas-Bonafos T, Pierga JY, Bidard FC, Cabel L, Kiavue N. Circulating tumor cells in breast cancer: clinical validity and utility. NPJ Breast Cancer 2024; 10:103. [PMID: 39613809 DOI: 10.1038/s41523-024-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/23/2024] [Indexed: 12/01/2024] Open
Abstract
Circulating tumor cells (CTCs) have been extensively studied in breast cancer (BC), with large studies establishing CTCs as a robust prognostic biomarker in early and metastatic breast cancer (MBC). Several phase II and phase III trials have investigated the clinical utility of CTCs in BC. Here, we outline the current landscape for the use of CTCs in the clinic at different stages of BC, focusing first on early BC, then on MBC, with a particular focus on interventional clinical trials based on CTCs.
Collapse
Affiliation(s)
- Thibault Thomas-Bonafos
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Jean Yves Pierga
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - François-Clément Bidard
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
- Université de Versailles Saint-Quentin, Université Paris-Saclay, Saint-Cloud, France
| | - Luc Cabel
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Nicolas Kiavue
- Institut Curie, Department of Medical Oncology, Paris, France.
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France.
| |
Collapse
|
4
|
Hsieh CH, Chang YH, Ling PY, Jin YT, Lo PH, Jou HJ. Detecting early-stage breast cancer with GATA3-positive circulating tumor cells. Taiwan J Obstet Gynecol 2024; 63:745-749. [PMID: 39266158 DOI: 10.1016/j.tjog.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVE This case demonstrated the possibility of using GATA3-positive circulating tumor cells (CTCs) to detect early-stage breast cancer (BrC). CASE REPORT The 86 years old female patient received a mammographic examination with no evidence of malignancy (Breast Imaging Reporting and Data System, (BI-RADS category 2). However, CTC testing on the same day revealed four GATA3-positive CTCs in 4 ml of peripheral blood. Core needle biopsy was performed in the suspicious area even with no evidence of malignant image on breast ultrasound. Pathologic examination showed invasive carcinoma of no special type of the breast. The patient then received an oncoplastic partial mastectomy of right breast and sentinel lymph node biopsy. The surgical staging was cT1N0M0. Post-operation follow-up examination showed absence of GATA3-positive CTCs and the presence of HER2/ER positive CTCs. CONCLUSION The role of GATA3-positive CTCs as a potential biomarker for early-stage BrC should be explored.
Collapse
Affiliation(s)
- Chun-Hsin Hsieh
- Departments of Obstetrics and Gynecology, Taiwan Adventist Hospital, Taiwan
| | - Ya-Herng Chang
- Department of Surgery, Taiwan Adventist Hospital, Taiwan
| | - Pei-Ying Ling
- Departments of Obstetrics and Gynecology, Taiwan Adventist Hospital, Taiwan
| | - Ying-Tai Jin
- Department of Pathology, Taiwan Adventist Hospital, Taiwan
| | - Pei-Hsuan Lo
- Departments of Obstetrics and Gynecology, Taiwan Adventist Hospital, Taiwan
| | - Hei-Jen Jou
- Departments of Obstetrics and Gynecology, Taiwan Adventist Hospital, Taiwan.
| |
Collapse
|
5
|
Wang L, Hong R, Shi S, Wang S, Chen Y, Han C, Li M, Ye F. The prognostic significance of circulating tumor cell enumeration and HER2 expression by a novel automated microfluidic system in metastatic breast cancer. BMC Cancer 2024; 24:1067. [PMID: 39210288 PMCID: PMC11360297 DOI: 10.1186/s12885-024-12818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The prognostic value of circulating tumor cells (CTCs) in metastatic breast cancer (MBC) has been extensively studied and verified by the CellSearch® system. Varieties of microfluidic systems have been developed to improve capture efficiency with the lack of standardization and automation. This study systematically verified the positive threshold for prognosis and its guidance value in anti-HER2 therapy based on a novel automated microfluidic system OmiCell®. METHODS CTCs isolation, enumeration and labeling were performed using the OmiCell® system. CTCs identification and reporting were performed using the DeepSight® scanning system. RESULTS The capture efficiency and specificity of OmiCell® system was 91.9% and 90%, respectively. Then, 65 MBC patients with known HER2 status of their metastatic tumors were enrolled. In the cohort, we detected ≥ 1 CTCs in 59 patients (90.8%, range: 1-55 CTCs, median = 6), < 8 CTCs in 45 (69.2%) and ≥ 8 CTCs in 20 (30.8%) patients at baseline. The patients with < 8 CTCs had longer PFS than ≥ 8 CTCs (median, 7 vs. 4.4 months, p = 0.028). CTC enumeration was found to be an independent prognostic factor in our cohort. Moreover, we found a weak concordance between tissue HER2 (tHER2) status and the corresponding CTCs (k = 0.16, p = 0.266). The patients with tHER2 positive and cHER2 negative had better PFS compared with patients with both tHER2 and cHER2 positive (median, 8.2 vs. 3.3 months, p = 0.022). CONCLUSIONS This clinical study shows the prognosis value of a new threshold of CTC number and meanwhile the guidance value of cHER2 status in anti-HER2 therapy.
Collapse
Affiliation(s)
- Liye Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou, Henan, 450052, China
| | - Ruoxi Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Simei Shi
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shusen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Paris, 75005, France
| | - Chao Han
- Anfang Biotechnology Co, Guanzhou Life&Science Center, LtdBio-Island, Guangzhou , 510120, China.
| | - Mei Li
- Department of Pathology Department, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Dongfengdong Road 651, Guangzhou, 510060, China.
| | - Feng Ye
- Department of Breast Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Dongfengdong Road 651, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Taylor RP, Lindorfer MA. Antibody-drug conjugate adverse effects can be understood and addressed based on immune complex clearance mechanisms. Blood 2024; 144:137-144. [PMID: 38643493 DOI: 10.1182/blood.2024024442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
ABSTRACT Numerous antibody-drug conjugates (ADCs) are being developed for cancer immunotherapy. Although several of these agents have demonstrated considerable clinical efficacy and have won Food and Drug Administration (FDA) approval, in many instances, they have been characterized by adverse side effects (ASEs), which can be quite severe in a fraction of treated patients. The key hypothesis in this perspective is that many of the most serious ASEs associated with the use of ADCs in the treatment of cancer can be most readily explained and understood due to the inappropriate processing of these ADCs via pathways normally followed for immune complex clearance, which include phagocytosis and trogocytosis. We review the key published basic science experiments and clinical observations that support this idea. We propose that it is the interaction of the ADC with Fcγ receptors expressed on off-target cells and tissues that can most readily explain ADC-mediated pathologies, which therefore provides a rationale for the design of protocols to minimize ASEs. We describe measurements that should help identify those patients most likely to experience ASE due to ADC, and we propose readily available treatments as well as therapies under development for other indications that should substantially reduce ASE associated with ADC. Our focus will be on the following FDA-approved ADC for which there are substantial literatures: gemtuzumab ozogamicin and inotuzumab ozogamicin; and trastuzumab emtansine and trastuzumab deruxtecan.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
7
|
Diloknawarit B, Lee K, Choo P, Odom TW. Nanoparticle Anisotropy Increases Targeting Interactions on Live-Cell Membranes. ACS NANO 2024; 18:12537-12546. [PMID: 38684051 PMCID: PMC11252448 DOI: 10.1021/acsnano.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This paper describes how branch lengths of anisotropic nanoparticles can affect interactions between grafted ligands and cell-membrane receptors. Using live-cell, single-particle tracking, we found that DNA aptamer-gold nanostar nanoconstructs with longer branches showed improved binding efficacy to human epidermal growth factor receptor 2 (HER2) on cancer cell membranes. Inhibiting nanoconstruct-HER2 binding promoted nonspecific interactions, which increased the rotational speed of long-branched nanoconstructs but did not affect that of short-branched constructs. Bivariate analysis of the rotational and translational dynamics showed that longer branch lengths increased the ratio of targeting to nontargeting interactions. We also found that longer branches increased the nanoconstruct-cell interaction times before internalization and decreased intracellular trafficking velocities. Differences in binding efficacy revealed by single-particle dynamics can be attributed to the distinct protein corona distributions on short- and long-branched nanoconstructs, as validated by transmission electron microscopy. Minimal protein adsorption at the high positive curvature tips of long-branched nanoconstructs facilitated binding of DNA aptamer ligands to HER2. Our study reveals the significance of nanoparticle branch length in regulating local chemical environment and interactions with live cells at the single-particle level.
Collapse
Affiliation(s)
- Bundit Diloknawarit
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kwahun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Bae SY, Kamalanathan KJ, Galeano-Garces C, Konety BR, Antonarakis ES, Parthasarathy J, Hong J, Drake JM. Dissemination of Circulating Tumor Cells in Breast and Prostate Cancer: Implications for Early Detection. Endocrinology 2024; 165:bqae022. [PMID: 38366552 PMCID: PMC10904107 DOI: 10.1210/endocr/bqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.
Collapse
Affiliation(s)
| | | | | | - Badrinath R Konety
- Astrin Biosciences, St. Paul, MN 55114, USA
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jiarong Hong
- Astrin Biosciences, St. Paul, MN 55114, USA
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
| | - Justin M Drake
- Astrin Biosciences, St. Paul, MN 55114, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Brockhoff G. Complementary Tumor Diagnosis by Single Cell-Based Cytogenetics Using Multi-marker Fluorescence In Situ Hybridization (mFISH). Curr Protoc 2023; 3:e942. [PMID: 37984366 DOI: 10.1002/cpz1.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Multi-color (or multi-marker) fluorescence in situ hybridization (mFISH) is a well-established, valuable, complementary tool for prenatal and pathological (tumor) diagnosis. A variety of chromosomal abnormalities, such as partial or total chromosomal gains, losses, inversions, or translocations, which are considered to cause genetic syndromes, can relatively easily be detected on a cell-by-cell basis. Individual cells either in suspension (e.g., in the form of a cytological specimen derived from body fluids) or within a tissue (e.g., a solid tumor specimen or biopsy) can be quantitatively evaluated with respect to the chromosomal hybridization markers of interest (e.g., a gene or centromeric region) and with due consideration of cellular heterogeneity. FISH is helpful or even essential for the (sub-)classification, stratification, and unambiguous diagnosis of a number of malignant diseases and contributes to treatment decision in many cases. Here, the diagnostic power and limitations of typical FISH and mFISH approaches (except chromosome painting and RNA hybridization) are discussed, with special emphasis on tumor and single-cell diagnostics. Well-established and novel FISH protocols, the latter addressed to accelerate and flexibilize the preparation and hybridization of formalin-fixed and paraffin-embedded tissues, are provided. Moreover, guidelines and molecular aspects important for data interpretation are discussed. Finally, sophisticated multiplexed approaches and those that analyze very rare single-cell events, which are not yet implemented in diagnostic procedures, will be touched upon. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: (m)FISH applied to formaldehyde-fixed paraffin-embedded tissues Basic Protocol 2: (m)FISH applied to cytological specimens.
Collapse
Affiliation(s)
- Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Leitão TP, Corredeira P, Kucharczak S, Rodrigues M, Piairo P, Rodrigues C, Alves P, Cavaco AM, Miranda M, Antunes M, Ferreira J, Palma Reis J, Lopes T, Diéguez L, Costa L. Clinical Validation of a Size-Based Microfluidic Device for Circulating Tumor Cell Isolation and Analysis in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24098404. [PMID: 37176111 PMCID: PMC10178884 DOI: 10.3390/ijms24098404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Renal cell carcinoma (RCC) presents as metastatic disease in one third of cases. Research on circulating tumor cells (CTCs) and liquid biopsies is improving the understanding of RCC biology and metastases formation. However, a standardized, sensitive, specific, and cost-effective CTC detection technique is lacking. The use of platforms solely relying on epithelial markers is inappropriate in RCC due to the frequent epithelial-mesenchymal transition that CTCs undergo. This study aimed to test and clinically validate RUBYchip™, a microfluidic label-free CTC detection platform, in RCC patients. The average CTC capture efficiency of the device was 74.9% in spiking experiments using three different RCC cell lines. Clinical validation was performed in a cohort of 18 patients, eight non-metastatic (M0), five metastatic treatment-naïve (M1TN), and five metastatic progressing-under-treatment (M1TP). An average CTC detection rate of 77.8% was found and the average (range) total CTC count was 6.4 (0-27), 101.8 (0-255), and 3.2 (0-10), and the average mesenchymal CTC count (both single and clustered cells) was zero, 97.6 (0-255), and 0.2 (0-1) for M0, M1TN, and M1TP, respectively. CTC clusters were detected in 25% and 60% of M0 and M1TN patients, respectively. These results show that RUBYchip™ is an effective CTC detection platform in RCC.
Collapse
Affiliation(s)
- Tito Palmela Leitão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Urology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sandra Kucharczak
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Erling Skjalgsons gate 1, 7491 Trondheim, Norway
| | - Margarida Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Biological Engineering Department, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal
| | - Carolina Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Martins Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Miranda
- Urology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marília Antunes
- CEAUL-Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - José Palma Reis
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Urology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tomé Lopes
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
11
|
Nicolò E, Boscolo Bielo L, Curigliano G, Tarantino P. The HER2-low revolution in breast oncology: steps forward and emerging challenges. Ther Adv Med Oncol 2023; 15:17588359231152842. [PMID: 36844387 PMCID: PMC9943960 DOI: 10.1177/17588359231152842] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Approximately half of breast cancers (BCs), historically categorized as human epidermal growth factor receptor 2 (HER2)-negative, have low expression of HER2 defined as an immunohistochemical (IHC) score of 1+ or 2+ with negative in situ hybridization. Retrospective evidence suggest that HER2-low BC does not represent a distinct subtype from a biological and prognostic perspective. Nonetheless, it currently constitutes an essential biomarker to guide treatment selection and its introduction has led to reconsidering the binary classification of HER2 status according to which only patients with HER2-positive BC were thought to derive benefit from anti-HER2 therapies. Trastuzumab deruxtecan has recently been approved by the U.S. Food and Drug Administration for the treatment of patients with HER2-low metastatic BC based on the results of the DESTINY-Breast04 phase III trial, and other antibody-drug conjugates (ADCs) targeting HER2 are showing promising results. Treatment paradigms for both triple-negative and hormone receptor-positive BCs exhibiting HER2-low expression are thus rapidly evolving. Given its therapeutic implications, it is essential to accurately recognize the level of HER2 expression, and the development of more sensitive and reliable methods for HER2 testing and scoring is warranted, especially since the minimum threshold of HER2 expression required for T-DXd efficacy is currently under investigation. Given the signs of activity of T-DXd even in patients with HER2-0 (IHC 0) disease, an evolution in the way we define HER2-low is anticipated. Considering the expansion of the therapeutic armamentarium for BC patients, with several ADCs approaching the clinic, research efforts are needed to clarify whether the expression level of targets can enrich for responders to a given ADC as well as to understand mechanisms of resistance with the goal of optimizing the sequencing of ADCs.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Division of New Drugs and Early Drug
Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug
Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug
Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy
| | - Paolo Tarantino
- Division of New Drugs and Early Drug
Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy
- Breast Oncology Center, Dana-Farber Cancer
Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, Boston, USA
| |
Collapse
|
12
|
Wei Y, Yang W, Huang Q, Chen Y, Zeng K, Chen J, Chen J. Clinical significance of circulating tumor cell (CTC)-specific microRNA (miRNA) in breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:229-234. [PMID: 36574883 DOI: 10.1016/j.pbiomolbio.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
As a noninvasive method, circulating tumor cell (CTC) provides ideal liquid biopsy specimens for early cancer screening and diagnosis. CTCs detection in breast cancer is correlated with patient prognosis such as disease-free survival (DFS) and overall survival (OS). Besides, accumulating evidence supported that CTCs count may be indicator for chemotherapy response as well. The functional roles of microRNA (miRNA) in breast cancer have been well-recognized for the last few years. Due to its stability in circulation, numerous studies have proven that circulating miRNA may serve as promising diagnostic and prognostic biomarkers in breast cancer. The potential ability of miRNAs in disease screening, staging or even molecular subtype classification makes them valuable tools for early breast cancer patients. It would be of great significance to characterize the miRNA expression profile in CTCs, which could provide reliable biological information originated from tumor. However, some issues need to be addressed before the utility of CTC-specific miRNAs in clinical setting. Taken together, we believe that CTC-specific miRNA detection will be trend for early breast cancer screening, diagnosis and treatment monitor in near future.
Collapse
Affiliation(s)
- Yanghui Wei
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese, University of Hong Kong, Hong Kong, China.
| | - Qingnan Huang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| | - Yong Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| | - Kai Zeng
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| | - Juan Chen
- Department of Medicine & Rehabilitation, Tung Wah Eastern Hospital, Hong Kong, China.
| | - Jiawei Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| |
Collapse
|
13
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Interrogating breast cancer heterogeneity using single and pooled circulating tumor cell analysis. NPJ Breast Cancer 2022; 8:79. [PMID: 35790747 PMCID: PMC9256697 DOI: 10.1038/s41523-022-00445-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Single cell technologies allow the interrogation of tumor heterogeneity, providing insights into tumor evolution and treatment resistance. To better understand whether circulating tumor cells (CTCs) could complement metastatic biopsies for tumor genomic profiling, we characterized 11 single CTCs and 10 pooled CTC samples at the mutational and copy number aberration (CNA) levels, and compared these results with matched synchronous tumor biopsies from 3 metastatic breast cancer patients with triple-negative (TNBC), HER2-positive and estrogen receptor-positive (ER+) tumors. Similar CNA profiles and the same patient-specific driver mutations were found in bulk tissue and CTCs for the HER2-positive and TNBC tumors, whereas different CNA profiles and driver mutations were identified for the ER+ tumor, which presented two distinct clones in CTCs defined by mutations in ESR1 Y537N and TP53, respectively. Furthermore, de novo mutational signatures derived from CTCs described patient-specific biological processes. These data suggest that tumor tissue and CTCs provide complementary clinically relevant information to map tumor heterogeneity and tumor evolution.
Collapse
|
15
|
Hu Y, Chen D, Napoleon JV, Srinivasarao M, Singhal S, Savran CA, Low PS. Efficient capture of circulating tumor cells with low molecular weight folate receptor-specific ligands. Sci Rep 2022; 12:8555. [PMID: 35595733 PMCID: PMC9122947 DOI: 10.1038/s41598-022-12118-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Retrieval of circulating tumor cells (CTC) has proven valuable for assessing a patient's cancer burden, evaluating response to therapy, and analyzing which drug might treat a cancer best. Although most isolation methods retrieve CTCs based on size, shape, or capture by tumor-specific antibodies, we explore here the use of small molecule tumor-specific ligands linked to magnetic beads for CTC capture. We have designed folic acid-biotin conjugates with different linkers for the capture of folate receptor (FR) + tumor cells spiked into whole blood, and application of the same technology to isolate FR + CTCs from the peripheral blood of both tumor-bearing mice and non-small cell lung patients. We demonstrate that folic acid linked via a rigid linker to a flexible PEG spacer that is in turn tethered to a magnetic bead enables optimal CTC retrieval, reaching nearly 100% capture when 100 cancer cells are spiked into 1 mL of aqueous buffer and ~ 90% capture when the same quantity of cells is diluted into whole blood. In a live animal model, the same methodology is shown to efficiently retrieve CTCs from tumor-bearing mice, yielding cancer cell counts that are proportional to total tumor burden. More importantly, the same method is shown to collect ~ 29 CTCs/8 mL peripheral blood from patients with non-small cell lung cancer. Since the ligand-presentation strategy optimized here should also prove useful in targeting other nanoparticles to other cells, the methods described below should have general applicability in the design of nanoparticles for cell-specific targeting.
Collapse
Affiliation(s)
- Yingwen Hu
- Department of Chemistry, Purdue Center for Cancer Research, Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA
| | - Danyang Chen
- Department of Chemistry, Purdue Center for Cancer Research, Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA
| | - John V Napoleon
- Department of Chemistry, Purdue Center for Cancer Research, Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA
| | - Madduri Srinivasarao
- Department of Chemistry, Purdue Center for Cancer Research, Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cagri A Savran
- School of Mechanical Engineering, Birck Nanotechnology Center, Purdue Center for Cancer Research, Purdue University, 1205 W. State St., West Lafayette, IN, 47907, USA
| | - Philip S Low
- Department of Chemistry, Purdue Center for Cancer Research, Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
De Renzi G, De Marco G, De Meo M, Del Rosso E, Gazzaniga P, Nicolazzo C. In vitro cultures of circulating tumor cells: a potential tool to unravel drug sensitivity. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:245-260. [PMID: 35582538 PMCID: PMC8992597 DOI: 10.20517/cdr.2021.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Since taking part as leading actors in driving the metastatic process, circulating tumor cells (CTCs) have displayed a wide range of potential applications in the cancer-related research field. Besides their well-proved prognostic value, the role of CTCs in both predictive and diagnostics terms might be extremely informative about cancer properties and therefore highly helpful in the clinical decision-making process. Unfortunately, CTCs are scarcely released in the blood circulation and their counts vary a lot among different types of cancer, therefore CTC detection and consequent characterization are still highly challenging. In this context, in vitro CTC cultures could potentially offer a great opportunity to expand the number of tumor cells isolated at different stages of the disease and thus simplify the analysis of their biological and molecular features, allowing a deeper comprehension of the nature of neoplastic diseases. The aim of this review is to highlight the main attempts to establish in vitro CTC cultures from patients harboring different tumor types in order to highlight how powerful this practice could be, especially in optimizing the therapeutic strategies available in clinical practice and potentially preventing or contrasting the development of treatment resistance.
Collapse
Affiliation(s)
- Gianluigi De Renzi
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Giulia De Marco
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Michela De Meo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Eleonora Del Rosso
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Paola Gazzaniga
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Chiara Nicolazzo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| |
Collapse
|
17
|
Chedid J, Allam S, Chamseddine N, Bou Zerdan M, El Nakib C, Assi HI. Role of circulating tumor DNA and circulating tumor cells in breast cancer: History and updates. SAGE Open Med 2022; 10:20503121221077838. [PMID: 35223029 PMCID: PMC8874178 DOI: 10.1177/20503121221077838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Circulating tumor DNA, cell-free DNA, and circulating tumor cells have been at the epitome of recent research in breast cancer. These forms of liquid biopsies have been used in monitoring disease progression, estimating the risk of relapse, and response to treatment. Much has been done in relation to serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. Some studies have also explored their use in monitoring treatment response. As the field of liquid biopsies expands, more prospective studies are needed to tailor management in an individualistic approach. In this literature review, the authors explore the multiple uses of circulating tumor DNA and circulating tumor cells in breast cancer.
Collapse
Affiliation(s)
- Julien Chedid
- Department of Obstetrics and Gynecology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Sabine Allam
- Faculty of Medicine, University of Balamand, Beirut, Lebanon
| | - Nathalie Chamseddine
- Department of Obstetrics and Gynecology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I Assi
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
18
|
Verschoor N, Deger T, Jager A, Sleijfer S, Wilting SM, Martens JW. Validity and utility of HER2/ERBB2 copy number variation assessed in liquid biopsies from breast cancer patients: a systematic review. Cancer Treat Rev 2022; 106:102384. [DOI: 10.1016/j.ctrv.2022.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
|
19
|
He S, Yu S, Wei J, Ding L, Yang X, Wu Y. New horizons in the identification of circulating tumor cells (CTCs): An emerging paradigm shift in cytosensors. Biosens Bioelectron 2022; 203:114043. [PMID: 35121449 DOI: 10.1016/j.bios.2022.114043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/02/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells that are shed from a primary tumor into the bloodstream and function as seeds for cancer metastasis at distant locations. Enrichment and identification methods of CTCs in the blood of patients plays an important role in diagnostic assessments and personalized treatments of cancer. However, the current traditional identification methods not only impact the viability of cells, but also cannot determine the type of cancer cells when the disease is unknown. Hence, new methods to identify CTCs are urgently needed. In this context, many advanced and safe technologies have emerged to distinguish between cancer cells and blood cells, and to distinguish specific types of cancer cells. In this review, at first we have briefly discussed recent advances in technologies related to the enrichment of CTCs, which lay a good foundation for the identification of CTCs. Next, we have summarized state-of-the-art technologies to confirm whether a given cell is indeed a tumor cell and determine the type of tumor cell. Finally, the challenges for application and potential directions of the current identification methods in clinical analysis of CTCs have been discussed.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinlan Wei
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
20
|
Grüntkemeier L, Khurana A, Bischoff FZ, Hoffmann O, Kimmig R, Moore M, Cotter P, Kasimir-Bauer S. Single HER2-positive tumor cells are detected in initially HER2-negative breast carcinomas using the DEPArray™-HER2-FISH workflow. Breast Cancer 2022; 29:487-497. [PMID: 35025065 PMCID: PMC9021056 DOI: 10.1007/s12282-022-01330-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Background In breast cancer (BC), overexpression of HER2 on the primary tumor (PT) is determined by immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) to stratify samples as negative, equivocal and positive to identify patients (pts) for anti-HER2 therapy. CAP/ASCO guidelines recommend FISH for analyzing HER2/neu (ERBB2) gene amplification and for resolving equivocal HER2 IHC results. However, pre-analytical and analytical aspects are often confounded by sample related limitations and tumor heterogeneity and HER2 expression may differ between the PT and circulating tumor cells (CTCs), the precursors of metastasis. We used a validation cohort of BC patients to establish a new DEPArray™-PT-HER2-FISH workflow for further application in a development cohort, characterized as PT-HER2-negative but CTC-HER2/neu-positive, to identify patients with PT-HER2 amplified cells not detected by routine pathology. Methods 50 µm FFPE tumor curls from the validation cohort (n = 49) and the development cohort (n = 25) underwent cutting, deparaffinization and antigen retrieval followed by dissociation into a single-cell suspension. After staining for cytokeratin, vimentin, DAPI and separation via DEPArray™, single cells were processed for HER2-FISH analysis to assess the number of chromosome 17 and HER2 loci signals for comparison, either with available IHC or conventional tissue section FISH. CTC-HER2/neu status was determined using the AdnaTest BreastCancer (QIAGEN, Hilden, Germany). Results Applying CAP/ASCO guidelines for HER2 evaluation of single PT cells, the comparison of routine pathology and DEPArray™-HER2-FISH analysis resulted in a concordance rate of 81.6% (40/49 pts) in the validation cohort and 84% (21/25 pts) in the development cohort, respectively. In the latter one, 4/25 patients had single HER2-positive tumor cells with 2/25 BC patients proven to be HER2-positive, despite being HER2-negative in routine pathology. The two other patients showed an equivocal HER2 status in the DEPArray™-HER2-FISH workflow but a negative result in routine pathology. Whereas all four patients with discordant HER2 results had already died, 17/21 patients with concordant HER2 results are still alive. Conclusions The DEPArray™ system allows pure tumor cell recovery for subsequent HER2/neu FISH analysis and is highly concordant with conventional pathology. For PT-HER2-negative patients, harboring HER2/neu-positive CTCs, this approach might allow caregivers to more effectively offer anti-HER2 treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-022-01330-8.
Collapse
Affiliation(s)
- Lisa Grüntkemeier
- Department of Gynecology and Obstetrics, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
21
|
Chelakkot C, Yang H, Shin YK. Relevance of Circulating Tumor Cells as Predictive Markers for Cancer Incidence and Relapse. Pharmaceuticals (Basel) 2022; 15:75. [PMID: 35056131 PMCID: PMC8781286 DOI: 10.3390/ph15010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Shedding of cancer cells from the primary site or undetectable bone marrow region into the circulatory system, resulting in clinically overt metastasis or dissemination, is the hallmark of unfavorable invasive cancers. The shed cells remain in circulation until they extravasate to form a secondary metastatic lesion or undergo anoikis. The circulating tumor cells (CTCs) found as single cells or clusters carry a plethora of information, are acknowledged as potential biomarkers for predicting cancer prognosis and cancer progression, and are supposed to play key roles in determining tailored therapies for advanced diseases. With the advent of novel technologies that allow the precise isolation of CTCs, more and more clinical trials are focusing on the prognostic and predictive potential of CTCs. In this review, we summarize the role of CTCs as a predictive marker for cancer incidence, relapse, and response to therapy.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Genobio Corp., Seoul 08394, Korea
| | - Hobin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
| | - Young Kee Shin
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08226, Korea
| |
Collapse
|
22
|
Place des biopsies liquides dans le diagnostic et la caractérisation moléculaire des cancers du sein. Bull Cancer 2022; 108:11S46-11S54. [PMID: 34969515 DOI: 10.1016/s0007-4551(21)00636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tumor biopsy remains essential for breast cancer diagnosis and characterization. Indeed, the treatment is decided according to histological subtype, and according to the presence of targetable molecular alterations. Notably, the presence of hormone receptors, ERBB2 hyperexpression or the existence of PIK3CA or ESR1 mutations are among the alterations commonly investigated. But these biological characteristics are determined only partially by tumor biopsy, due to tumor heterogeneity or tumor plasticity that happens spontaneously or under treatment. Liquid biopsy, and in particular circulating tumor DNA and circulating tumor cells, is a non-invasive method to identify and characterize the presence of cancer in the blood. The aim of this review is to determine the value of liquid biopsy to enhance or replace the data provided by a tumor biopsy.
Collapse
|
23
|
Scerri J, Scerri C, Schäfer-Ruoff F, Fink S, Templin M, Grech G. PKC-mediated phosphorylation and activation of the MEK/ERK pathway as a mechanism of acquired trastuzumab resistance in HER2-positive breast cancer. Front Endocrinol (Lausanne) 2022; 13:1010092. [PMID: 36329884 PMCID: PMC9623415 DOI: 10.3389/fendo.2022.1010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Protein expression, activation and stability are regulated through inter-connected signal transduction pathways resulting in specific cellular states. This study sought to differentiate between the complex mechanisms of intrinsic and acquired trastuzumab resistance, by quantifying changes in expression and activity of proteins (phospho-protein profile) in key signal transduction pathways, in breast cancer cellular models of trastuzumab resistance. To this effect, we utilized a multiplex, bead-based protein assay, DigiWest®, to measure around 100 proteins and protein modifications using specific antibodies. The main advantage of this methodology is the quantification of multiple analytes in one sample, utilising input volumes of a normal western blot. The intrinsically trastuzumab-resistant cell line JIMT-1 showed the largest number of concurrent resistance mechanisms, including PI3K/Akt and RAS/RAF/MEK/ERK activation, β catenin stabilization by inhibitory phosphorylation of GSK3β, cell cycle progression by Rb suppression, and CREB-mediated cell survival. MAPK (ERK) pathway activation was common to both intrinsic and acquired resistance cellular models. The overexpression of upstream RAS/RAF, however, was confined to JIMT 1; meanwhile, in a cellular model of acquired trastuzumab resistance generated in this study (T15), entry into the ERK pathway seemed to be mostly mediated by PKCα activation. This is a novel observation and merits further investigation that can lead to new therapeutic combinations in HER2-positive breast cancer with acquired therapeutic resistance.
Collapse
Affiliation(s)
- Jeanesse Scerri
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta
| | - Christian Scerri
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta
| | - Felix Schäfer-Ruoff
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Simon Fink
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Godfrey Grech
- Department of Pathology, University of Malta, Msida, Malta
- *Correspondence: Godfrey Grech,
| |
Collapse
|
24
|
D’Amico P, Reduzzi C, Qiang W, Zhang Y, Gerratana L, Zhang Q, Davis AA, Shah AN, Manai M, Curigliano G, Cristofanilli M. Single-Cells Isolation and Molecular Analysis: Focus on HER2-Low CTCs in Metastatic Breast Cancer. Cancers (Basel) 2021; 14:cancers14010079. [PMID: 35008244 PMCID: PMC8750036 DOI: 10.3390/cancers14010079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary While the concept of HER2-low expression is gaining momentum in the scientific landscape of breast cancer research, HER2-low circulating tumor cells (CTCs) also have promising relevance as biomarkers. Unveiling the biological features behind this recently highlighted evidence on CTCs might achieve both goals of speeding up the interpretation of the general understanding of HER2-low expressing breast cancer and declaring their independent biological and predictive value. If, on the one hand, studying CTCs allows to drill down more easily to a single cell resolution, on the other hand, CTC collection still remains a challenging procedure. In order to improve and standardize this process, we developed a structured pipeline for HER2-low CTC detection and collection. We defined and validated the optimal thresholds to select this specific subtype of CTCs using breast cancer cell lines of known HER2 expression. Our study represents the technical and procedural milestone that will allow a standardized collection process for future molecular investigations. Abstract Although the detection of CTCs expressing HER2 at low intensity (HER2-low CTCs) has been shown to have a negative prognostic value in metastatic breast cancer (MBC) patients, the biological intrinsic nature of HER2-low CTCs remains unexplored. Considering the technical challenges behind the selective collection of immunophenotype-specific CTCs, we developed a pipeline to individually capture HER2-low CTCs. Four different breast cancer cell lines (MDA-MB-231, T47D, MDA-MB-453, and SKBR3), that are known to express HER2 at different immunohistochemistry levels (respectively classified as 0, 1+, 2+, and 3+), were spiked in healthy donor blood tubes (7.5 mL) and processed with the CellSearch® (Menarini Silicon Biosystems, Bologna, Italy) for enrichment and the DEPArray NxT™ for single cell selection. The HER2 signal-intensities of each cell line was compared using the nonparametric Mann–Whitney U test. The optimal cut-offs to distinguish HER2 1+ from 0 and 2+ cells were calculated performing the Receiver operating characteristic (ROC) curve. Median HER2 signal-intensities detected with the DEPArray NxT™ were: 2.59 (0), 3.58 (1+), 5.23 (2+) and 38.37 (3+). DEPArray NxT efficiently differentiated each single cell line (p < 0.001). The area under the ROC curve was 0.69 and 0.70 (respectively 0 vs. 1+ and 1+ vs. 2+) and the optimal calculated cut-offs were 2.85 (lower) and 4.64 (upper). HER2-low CTCs can be detected and separately collected using predetermined intensity cut-offs. This study will allow standardized single-cell or pooled collection of HER2-low CTCs for downstream molecular analyses.
Collapse
Affiliation(s)
- Paolo D’Amico
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.R.); (W.Q.); (Y.Z.); (Q.Z.); (A.N.S.); (M.M.); (M.C.)
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, University of Milano, 20141 Milano, Italy;
- Correspondence: or ; Tel.: +1-646-359-4224
| | - Carolina Reduzzi
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.R.); (W.Q.); (Y.Z.); (Q.Z.); (A.N.S.); (M.M.); (M.C.)
| | - Wenan Qiang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.R.); (W.Q.); (Y.Z.); (Q.Z.); (A.N.S.); (M.M.); (M.C.)
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Youbin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.R.); (W.Q.); (Y.Z.); (Q.Z.); (A.N.S.); (M.M.); (M.C.)
| | - Lorenzo Gerratana
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Qiang Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.R.); (W.Q.); (Y.Z.); (Q.Z.); (A.N.S.); (M.M.); (M.C.)
| | - Andrew A. Davis
- Division of Oncology, Washington University, St. Louis, MO 63110, USA;
| | - Ami N. Shah
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.R.); (W.Q.); (Y.Z.); (Q.Z.); (A.N.S.); (M.M.); (M.C.)
| | - Maroua Manai
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.R.); (W.Q.); (Y.Z.); (Q.Z.); (A.N.S.); (M.M.); (M.C.)
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, University of Milano, 20141 Milano, Italy;
| | - Massimo Cristofanilli
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.R.); (W.Q.); (Y.Z.); (Q.Z.); (A.N.S.); (M.M.); (M.C.)
| |
Collapse
|
25
|
Evaluation of Liquid Biopsy in Patients with HER2-Positive Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6388492. [PMID: 34901275 PMCID: PMC8664526 DOI: 10.1155/2021/6388492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
Breast cancer is one of the common malignant tumors, and liquid biopsy has become a hot spot for clinical testing. To clarify the detection effect of liquid biopsy in breast cancer, we collected peripheral blood of HER2-positive (human epidermal growth factor receptor 2-positive) patients. Circulating tumor cells (CTCs) were isolated and analyzed. HER2 expression on CTCs was detected. The results showed that in the 198 HER2-positive samples, the CTC detection rate was 79.8% (158/198), and the mean number of CTCs was 21, ranging from 1 to 63/7.5 mL peripheral blood. Only 41.1% (65/158) of patients had histology and CTC HER2 status consistent with the remaining 58.9% (93/158) of patients, although their histological HER2 was positive, and CTC HER2 was negative. Our study confirmed the value of CTC HER2 real-time status testing in HER2-positive breast cancer patients. The inconsistency in HER2 status between CTCs and histology may be related to the time interval between CTCs and histological HER2 detection, suggesting that real-time HER2 detection is necessary for histological HER2-positive patients.
Collapse
|
26
|
Lopes C, Piairo P, Chícharo A, Abalde-Cela S, Pires LR, Corredeira P, Alves P, Muinelo-Romay L, Costa L, Diéguez L. HER2 Expression in Circulating Tumour Cells Isolated from Metastatic Breast Cancer Patients Using a Size-Based Microfluidic Device. Cancers (Basel) 2021; 13:4446. [PMID: 34503260 PMCID: PMC8431641 DOI: 10.3390/cancers13174446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
HER2 is a prognostic and predictive biomarker in breast cancer, normally assessed in tumour biopsy and used to guide treatment choices. Circulating tumour cells (CTCs) escape the primary tumour and enter the bloodstream, exhibiting great metastatic potential and representing a real-time snapshot of the tumour burden. Liquid biopsy offers the unique opportunity for low invasive sampling in cancer patients and holds the potential to provide valuable information for the clinical management of cancer patients. This study assesses the performance of the RUBYchip™, a microfluidic system for CTC capture based on cell size and deformability, and compares it with the only FDA-approved technology for CTC enumeration, CellSearch®. After optimising device performance, 30 whole blood samples from metastatic breast cancer patients were processed with both technologies. The expression of HER2 was assessed in isolated CTCs and compared to tissue biopsy. Results show that the RUBYchipTM was able to isolate CTCs with higher efficiency than CellSearch®, up to 10 times more, averaging all samples. An accurate evaluation of different CTC subpopulations, including HER2+ CTCs, was provided. Liquid biopsy through the use of the RUBYchipTM in the clinic can overcome the limitations of histological testing and evaluate HER2 status in patients in real-time, helping to tailor treatment during disease evolution.
Collapse
Affiliation(s)
- Cláudia Lopes
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Liliana R. Pires
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal;
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| |
Collapse
|
27
|
Chantzara E, Xenidis N, Kallergi G, Georgoulias V, Kotsakis A. Circulating tumor cells as prognostic biomarkers in breast cancer: current status and future prospects. Expert Rev Mol Diagn 2021; 21:1037-1048. [PMID: 34328384 DOI: 10.1080/14737159.2021.1962710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction : Despite advances in diagnostic and therapeutic techniques breast cancer is still associated with significant morbidity and mortality. CTCs play a crucial role in the metastatic process, which is the main cause of death in BC patients.Areas covered : This review discusses the prognostic and predictive value of CTCs and their prospective in management of BC patients.Expert opinion : The analysis of CTCs through improved technologies offers a new insight into the metastatic cascade. Assessment of the number and molecular profile of CTCs holds great promises for disease monitoring and therapeutic decisions. However, more research is needed until they can be used in therapeutic decisions in clinical practice.
Collapse
Affiliation(s)
- Evagelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece
| | - Nikolaos Xenidis
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Alexandroupolis, Thrace, Greece
| | - Galatea Kallergi
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), Athens, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Thessaly, Greece
| |
Collapse
|
28
|
Yektaniroumand Digehsaraei S, Salouti M, Amini B, Mahmazi S, Kalantari M, Kazemizadeh A, Mehrvand J. Developing a fluorescence immunosensor for detection of HER2-positive breast cancer based on graphene and magnetic nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
29
|
Enkhbat M, Liu Y, Kim J, Xu Y, Yin Z, Liu T, Deng C, Zou C, Xie X, Li X, Wang P. Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yung‐Chiang Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Jua Kim
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Yanshan Xu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Zongyi Yin
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Tzu‐Ming Liu
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chu‐Xia Deng
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chang Zou
- The First Affiliated Hospital of Southern University Shenzhen People's Hospital Shenzhen Guangdong 518020 China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Peng‐Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- Department of Chemistry and Biotechnology Swinburne University of Technology Victoria 3122 Australia
| |
Collapse
|
30
|
Labib M, Kelley SO. Circulating tumor cell profiling for precision oncology. Mol Oncol 2021; 15:1622-1646. [PMID: 33448107 PMCID: PMC8169448 DOI: 10.1002/1878-0261.12901] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Analysis of circulating tumor cells (CTCs) collected from patient's blood offers a broad range of opportunities in the field of precision oncology. With new advances in profiling technology, it is now possible to demonstrate an association between the molecular profiles of CTCs and tumor response to therapy. In this Review, we discuss mechanisms of tumor resistance to therapy and their link to phenotypic and genotypic properties of CTCs. We summarize key technologies used to isolate and analyze CTCs and discuss recent clinical studies that examined CTCs for genomic and proteomic predictors of responsiveness to therapy. We also point out current limitations that still hamper the implementation of CTCs into clinical practice. We finally reflect on how these shortcomings can be addressed with the likely contribution of multiparametric approaches and advanced data analytics.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical SciencesUniversity of TorontoCanada
| | - Shana O. Kelley
- Department of Pharmaceutical SciencesUniversity of TorontoCanada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoCanada
- Department of BiochemistryUniversity of TorontoCanada
- Department of ChemistryUniversity of TorontoCanada
| |
Collapse
|
31
|
Matsushita D, Uenosono Y, Arigami T, Yanagita S, Okubo K, Kijima T, Miyazono F, Hamanoue M, Hokita S, Nakashima S, Ohtsuka T, Natsugoe S. Clinical significance of circulating tumor cells in the response to trastuzumab for HER2-negative metastatic gastric cancer. Cancer Chemother Pharmacol 2021; 87:789-797. [PMID: 33641065 DOI: 10.1007/s00280-021-04251-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE The prognosis of metastatic gastric cancer has improved due to trastuzumab in patients with HER2 positive. Circulating tumor cells (CTCs) have been examined as a prognostic predictor in gastric cancer. The clinical advantage of trastuzumab was examined in gastric cancer patients with HER2-negative tumor tissues and HER2-positive CTCs. METHODS A total of 105 patients with metastatic or recurrence gastric cancer were enrolled. All patients were examined HER2 expression in CTC using the CellSearch system in blood specimens. RESULTS CTCs were detected in 65 of 105 patients (61.9%) and 61 patients were divided into three groups: Group A (n = 27), histological HER2-positive; Group B (n = 17), histological HER2-negative and HER2-positive CTCs; and Group C (n = 17), HER2-negative on histology and CTCs. Patients received capecitabine plus cisplatin. Groups A and B were additionally treated by trastuzumab. There was no relationship between tumor tissues and CTCs in HER2 expression. Even if group B had no histological HER2 expression, group B showed a good prognosis as same as group A, and group C had a significantly worse overall survival than groups A and B. The multivariate analysis demonstrated that HER2-expression on CTCs was an independent prognostic factor for both overall and progression-free survival. CONCLUSION The present results indicate the potential clinical utility of trastuzumab combined chemotherapy in patients with HER2-positive CTCs even if they are histologically HER2-negative.
Collapse
Affiliation(s)
- Daisuke Matsushita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Yoshikazu Uenosono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shigehiro Yanagita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Keishi Okubo
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takashi Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Futoshi Miyazono
- Department of Surgery, National Hospital Organization Satsunan Hospital, Minami Satsuma, Japan
| | | | - Shuichi Hokita
- Department of Surgery, Jiaikai Imamura General Hospital, Kagoshima, Japan
| | - Saburo Nakashima
- Department of Surgery, Kagoshima Kouseiren Hospital, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
32
|
Spiliotaki M, Kallergi G, Nikolaou C, Xenidis N, Politaki E, Apostolaki S, Georgoulia N, Koinis F, Tsoukalas N, Hatzidaki D, Kotsakis A, Georgoulias V. Dynamic changes of CTCs in patients with metastatic HR(+)/HER2(-) breast cancer receiving salvage treatment with everolimus/exemestane. Cancer Chemother Pharmacol 2021; 87:277-287. [PMID: 33515073 DOI: 10.1007/s00280-020-04227-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/29/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Detection of CTCs represents a poor prognostic factor in patients with early and metastatic breast cancer (mBC) and treatment with everolimus-exemestane (E/E) is an established effective treatment in hormone receptor-positive/HER2-negative mBC patients. The effect of E/E on CTCs in mBC patients was prospectively investigated. METHODS CTCs from 50 pre-treated patients with mBC receiving E/E were analyzed using the CellSearch (CS) platform and triple immunofluorescence (IF) staining for cytokeratin, M30 and Ki67 expression to assess their proliferative and apoptotic status. RESULTS CTCs (by CS) were detected in 64% of patients before treatment and E/E administration resulted in their decreased prevalence [(n = 18; 36%, p = 0.004) and (n = 7; 19.4%, p = 0.019) post-1st and post-3rd treatment cycle, respectively] whereas it was significantly increased at disease progression (PD: 61%) compared to post-1st and post-3rd cycle (p = 0.049 and p = 0.021, respectively). Ki67-positive CTCs were detected in 60%, 60%, 17% and 50% of patients before treatment, post-1st, post-3rd cycle and at PD, respectively, while the opposite was observed for M30-positive CTCs (0% at baseline, 10% after the 1st cycle, 50% after the 3rd cycle and 0% at PD). The detection of even ≥ 1 CTC/5 ml after one cycle was associated with decreased PFS (3.3 vs 9.0 months, p = 0.025) whereas the detection of even ≥ 2 CTCs at PD was associated with decreased OS (32.4 vs 19.5 months; p = 0.009). CONCLUSIONS The combination of E/E resulted in early elimination of proliferating CTCs in mBC patients and this effect was associated with a favorable clinical outcome.
Collapse
Affiliation(s)
- Maria Spiliotaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece
| | - Galatea Kallergi
- Department of Biochemistry, University of Crete Medical School, Heraklion, Crete, Greece
| | - Christos Nikolaou
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece
| | - Nikolaos Xenidis
- Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.,Department of Medical Oncology, Medical School, Democritus University of Thrace, Xanthi, Greece
| | - Eleni Politaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece
| | - Stella Apostolaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece
| | - Nefeli Georgoulia
- Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece
| | - Filippos Koinis
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece.,Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.,Department of Medical Oncology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa & Laboratory of Oncology, University of Thessaly Mezourlo, Larissa, Thessaly, Greece
| | - Nikolaos Tsoukalas
- Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.,Medical Oncology Unit, NIMITS Hospital, Athens, Greece
| | - Dora Hatzidaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece.,Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece
| | - Athanasios Kotsakis
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece.,Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.,Department of Medical Oncology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa & Laboratory of Oncology, University of Thessaly Mezourlo, Larissa, Thessaly, Greece
| | - Vassilis Georgoulias
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece. .,Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.
| |
Collapse
|
33
|
Tellez-Gabriel M, Knutsen E, Perander M. Current Status of Circulating Tumor Cells, Circulating Tumor DNA, and Exosomes in Breast Cancer Liquid Biopsies. Int J Mol Sci 2020; 21:E9457. [PMID: 33322643 PMCID: PMC7763984 DOI: 10.3390/ijms21249457] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Although the five-, ten- and fifteen-year survival rates are good for breast cancer patients diagnosed with early-stage disease, some cancers recur many years after completion of primary therapy. Tumor heterogeneity and clonal evolution may lead to distant metastasis and therapy resistance, which are the main causes of breast cancer-associated deaths. In the clinic today, imaging techniques like mammography and tissue biopsies are used to diagnose breast cancer. Even though these methods are important in primary diagnosis, they have limitations when it comes to longitudinal monitoring of residual disease after treatment, disease progression, therapy responses, and disease recurrence. Over the last few years, there has been an increasing interest in the diagnostic, prognostic, and predictive potential of circulating cancer-derived material acquired through liquid biopsies in breast cancer. Thanks to the development of sensitive devices and platforms, a variety of tumor-derived material, including circulating cancer cells (CTCs), circulating DNA (ctDNA), and biomolecules encapsulated in extracellular vesicles, can now be extracted and analyzed from body fluids. Here we will review the most recent studies on breast cancer, demonstrating the clinical potential and utility of CTCs and ctDNA. We will also review literature illustrating the potential of circulating exosomal RNA and proteins as future biomarkers in breast cancer. Finally, we will discuss some of the advantages and limitations of liquid biopsies and the future perspectives of this field in breast cancer management.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, 9011 Tromsø, Norway; (E.K.); (M.P.)
| | | | | |
Collapse
|
34
|
The Role of Circulating Tumor Cells in Breast Cancer and Implications for Radiation Treatment Decisions. Int J Radiat Oncol Biol Phys 2020; 109:44-59. [PMID: 32882354 DOI: 10.1016/j.ijrobp.2020.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Tumor biomarkers are used routinely in oncology to assign risk categorization, screen and assist in diagnosis of malignancy, allow for prognostication and prediction of outcomes and treatment response, and allow for monitoring of patients after treatment completion. Although tissue-based biomarkers have a long history of use, the emergence of liquid-based biomarkers, including circulating tumor cells (CTCs), may soon revolutionize the management of patients with cancer. Here, we review the discovery of CTCs and their role as prognostic and predictive biomarkers, with an emphasis on breast cancer. We discuss the platforms for CTC enumeration and focus on studies using the only US Food and Drug Administration-approved platform for CTC enumeration (CellSearch). In addition, we examine the role of CTCs in women with metastatic, inflammatory, and nonmetastatic breast cancer, as well as the clinical evidence for their use as a surrogate for radiation treatment response as well as surveillance after treatment. Finally, we conclude by investigating ongoing clinical studies assessing CTCs as radiation response predictors and discuss unanswered questions.
Collapse
|
35
|
Cortés-Hernández LE, Eslami-S Z, Pantel K, Alix-Panabières C. Molecular and Functional Characterization of Circulating Tumor Cells: From Discovery to Clinical Application. Clin Chem 2020; 66:97-104. [PMID: 31811001 DOI: 10.1373/clinchem.2019.303586] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND One of the objectives for the liquid biopsy is to become a surrogate to tissue biopsies in diagnosis of cancer as a minimally invasive method, with clinical utility in real-time follow-ups of patients. To achieve this goal, it is still necessary to achieve a better understanding of the mechanisms of cancer and the biological principles that govern its behavior, particularly with regard to circulating tumor cells (CTCs). CONTENT The isolation, enumeration, detection, and characterization of CTCs have already proven to provide relevant clinical information about patient prognosis and treatment prediction. Moreover, CTCs can be analyzed at the genome, proteome, transcriptome, and secretome levels and can also be used for functional studies in in vitro and in vivo models. These features, taken together, have made CTCs a very valuable biosource. SUMMARY To further advance the field and discover new clinical applications for CTCs, several studies have been performed to learn more about these cells and better understand the biology of metastasis. In this review, we describe the recent literature on the topic of liquid biopsy with particular focus on the biology of CTCs.
Collapse
Affiliation(s)
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| |
Collapse
|
36
|
Yee-de León JF, Soto-García B, Aráiz-Hernández D, Delgado-Balderas JR, Esparza M, Aguilar-Avelar C, Wong-Campos JD, Chacón F, López-Hernández JY, González-Treviño AM, Yee-de León JR, Zamora-Mendoza JL, Alvarez MM, Trujillo-de Santiago G, Gómez-Guerra LS, Sánchez-Domínguez CN, Velarde-Calvillo LP, Abarca-Blanco A. Characterization of a novel automated microfiltration device for the efficient isolation and analysis of circulating tumor cells from clinical blood samples. Sci Rep 2020; 10:7543. [PMID: 32372001 PMCID: PMC7200708 DOI: 10.1038/s41598-020-63672-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The detection and analysis of circulating tumor cells (CTCs) may enable a broad range of cancer-related applications, including the identification of acquired drug resistance during treatments. However, the non-scalable fabrication, prolonged sample processing times, and the lack of automation, associated with most of the technologies developed to isolate these rare cells, have impeded their transition into the clinical practice. This work describes a novel membrane-based microfiltration device comprised of a fully automated sample processing unit and a machine-vision-enabled imaging system that allows the efficient isolation and rapid analysis of CTCs from blood. The device performance was characterized using four prostate cancer cell lines, including PC-3, VCaP, DU-145, and LNCaP, obtaining high assay reproducibility and capture efficiencies greater than 93% after processing 7.5 mL blood samples spiked with 100 cancer cells. Cancer cells remained viable after filtration due to the minimal shear stress exerted over cells during the procedure, while the identification of cancer cells by immunostaining was not affected by the number of non-specific events captured on the membrane. We were also able to identify the androgen receptor (AR) point mutation T878A from 7.5 mL blood samples spiked with 50 LNCaP cells using RT-PCR and Sanger sequencing. Finally, CTCs were detected in 8 out of 8 samples from patients diagnosed with metastatic prostate cancer (mean ± SEM = 21 ± 2.957 CTCs/mL, median = 21 CTCs/mL), demonstrating the potential clinical utility of this device.
Collapse
Affiliation(s)
| | | | | | - Jesús Rolando Delgado-Balderas
- Delee Corp., Mountain View, CA, 94041, USA.,Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | | | | | - J D Wong-Campos
- Delee Corp., Mountain View, CA, 94041, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | | | | | | | | | - Mario M Alvarez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico.,Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Lauro S Gómez-Guerra
- Servicio de Urología, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | - Celia N Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | | | | |
Collapse
|
37
|
Clinical Relevance and Therapeutic Application of CTCs in Advanced Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32304085 DOI: 10.1007/978-3-030-35805-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Precision medicine through liquid biopsy represents an emerging approach in the management of cancer. The CTC count in blood samples from patients with advanced breast cancer is a powerful prognostic factor for both progression free and overall survival. Moreover, high levels of CTCs at any time during the treatment can reliably predict progression before imaging studies and/or tumor markers. Furthermore, there are works on the molecular characterization of the CTCs and their potential ability to guide the treatment in a dynamic way. However, their role remains controversial. Detection and enumeration of CTCs is variable among different tumors and is subjected to biases related mainly to their methodology, which is not completely standardized. In addition, they must demonstrate their clinical value to guide the treatment and a translation on patient's survival.
Collapse
|
38
|
Fabisiewicz A, Szostakowska-Rodzos M, Zaczek AJ, Grzybowska EA. Circulating Tumor Cells in Early and Advanced Breast Cancer; Biology and Prognostic Value. Int J Mol Sci 2020; 21:E1671. [PMID: 32121386 PMCID: PMC7084781 DOI: 10.3390/ijms21051671] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer metastasis is the leading cause of cancer deaths in women and is difficult to combat due to the long periods in which disseminated cells retain a potential to be re-activated and start the relapse. Assessing the number and molecular profile of circulating tumor cells (CTCs) in breast cancer patients, especially in early breast cancer, should help in identifying the possibility of relapse in time for therapeutic intervention to prevent or delay recurrence. While metastatic breast cancer is considered incurable, molecular analysis of CTCs still have a potential to define particular susceptibilities of the cells representing the current tumor burden, which may differ considerably from the cells of the primary tumor, and offer more tailored therapy to the patients. In this review we inspect the routes to metastasis and how they can be linked to specific features of CTCs, how CTC analysis may be used in therapy, and what is the current status of the research and efforts to include CTC analysis in clinical practice.
Collapse
Affiliation(s)
- Anna Fabisiewicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (A.F.); (M.S.-R.)
| | - Malgorzata Szostakowska-Rodzos
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (A.F.); (M.S.-R.)
| | - Anna J. Zaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Debinki 1, 80-211 Gdansk, Poland;
| | - Ewa A. Grzybowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (A.F.); (M.S.-R.)
| |
Collapse
|
39
|
Martos T, Casadevall D, Albanell J. Circulating Tumor Cells: Applications for Early Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:135-146. [PMID: 32304084 DOI: 10.1007/978-3-030-35805-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy among women. Most of breast cancer patients are diagnosed in early stages and will be treated with curative intent. Despite this, some patients will relapse. The identification of patients at high risk remains an important challenge. CTCs can be useful to identify this patients, to assess tumor dynamics and to monitoring therapy. There is definitive evidence on the prognostic role of CTCs in early breast cancer (eBC) but its clinical utility in daily practice is still lacking. We have to take into consideration that the studies published to date mainly evaluated the presence of CTC based on the expression of epithelial surface markers. Future studies need to overcome this limitation and important advances in technical methods can assess CTCs and capture the heterogeneity of the tumor landscape. It is also tempting to speculate that CTCs may also provide complementary information on the interplay of tumor cells with the immune system. The combination of different methods to detect tumoral disease by liquid biopsy may provide new ways to personalize in an unprecedented manner the management of patients with eBC.
Collapse
Affiliation(s)
- Tamara Martos
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain
| | - David Casadevall
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain.,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joan Albanell
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain. .,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,CEXS Department, Pompeu Fabra University, Barcelona, Spain. .,CIOCC HM Delfos, Barcelona, Spain.
| |
Collapse
|
40
|
Vajhadin F, Ahadian S, Travas-Sejdic J, Lee J, Mazloum-Ardakani M, Salvador J, Aninwene GE, Bandaru P, Sun W, Khademhossieni A. Electrochemical cytosensors for detection of breast cancer cells. Biosens Bioelectron 2019; 151:111984. [PMID: 31999590 DOI: 10.1016/j.bios.2019.111984] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
Breast cancer is one of lethal cancers among women with its metastasis leading to cancer-related morbidity and mortality. Circulating tumor cells (CTCs) derived from a primary tumor can be detected in the venous blood of cancer patients. Monitoring CTCs in blood samples has increased exponentially over the past decades and holds great promise in the diagnosis and treatment of metastatic breast cancer. Electrochemical cytosensors, classified as a class of electrochemical biosensors for sensitive detection and enumeration of targeted cells with minimally invasive methods, have the advantages of electrochemical biosensors, such as simplicity, low cost, and low limit of detection. Here, we review recent progress in the detection of CTCs from breast cancer with a focus on electrochemical cytosensors. This review describes platforms benefiting from these cytosensors to identify cancerous breast cells. Furthermore, strategies for signal amplification and also generation of reusable electrochemical cytosensors are introduced. In addition, breast cancer markers and biorecognition elements for cell capturing are reviewed.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry, University of Yazd, Yazd, Yazd, 89195-741, Iran; Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Samad Ahadian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Junmin Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Jocelynda Salvador
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - George E Aninwene
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Praveen Bandaru
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhossieni
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA; Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
41
|
Mijnes J, Tiedemann J, Eschenbruch J, Gasthaus J, Bringezu S, Bauerschlag D, Maass N, Arnold N, Weimer J, Anzeneder T, Fasching PA, Rübner M, Bruno B, Heindrichs U, Freres J, Schulz H, Hilgers RD, Ortiz-Brüchle N, von Serenyi S, Knüchel R, Kloten V, Dahl E. SNiPER: a novel hypermethylation biomarker panel for liquid biopsy based early breast cancer detection. Oncotarget 2019; 10:6494-6508. [PMID: 31741713 PMCID: PMC6849652 DOI: 10.18632/oncotarget.27303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/19/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction Mammography is the gold standard for early breast cancer detection, but shows important limitations. Blood-based approaches on basis of cell-free DNA (cfDNA) provide minimally invasive screening tools to characterize epigenetic alterations of tumor suppressor genes and could serve as a liquid biopsy, complementing mammography. Methods Potential biomarkers were identified from The Cancer Genome Atlas (TCGA), using HumanMethylation450-BeadChip data. Promoter methylation status was evaluated quantitatively by pyrosequencing in a serum test cohort (n = 103), a serum validation cohort (n = 368) and a plasma cohort (n = 125). Results SPAG6, NKX2-6 and PER1 were identified as novel biomarker candidates. ITIH5 was included on basis of our previous work. In the serum test cohort, a panel of SPAG6 and ITIH5 showed 63% sensitivity for DCIS and 51% sensitivity for early invasive tumor (pT1, pN0) detection at 80% specificity. The serum validation cohort revealed 50% sensitivity for DCIS detection on basis of NKX2-6 and ITIH5. Furthermore, an inverse correlation between methylation frequency and cfDNA concentration was uncovered. Therefore, markers were tested in a plasma cohort, achieving a 64% sensitivity for breast cancer detection using SPAG6, PER1 and ITIH5. Conclusions Although liquid biopsy remains challenging, a combination of SPAG6, NKX2-6, ITIH5 and PER1 (SNiPER) provides a promising tool for blood-based breast cancer detection.
Collapse
Affiliation(s)
- Jolein Mijnes
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Janina Tiedemann
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julian Eschenbruch
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Janina Gasthaus
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sarah Bringezu
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Arnold
- Department of Gynecology and Obstetrics, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, University Medical Centre Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - Jörg Weimer
- Department of Gynecology and Obstetrics, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Tobias Anzeneder
- Patients' Tumor Bank of Hope (PATH-Biobank) Foundation, München, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Rübner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Benjamin Bruno
- Department of Gynecology and Obstetrics Luisenhospital, Aachen, Germany
| | - Uwe Heindrichs
- Department of Gynecology and Obstetrics Luisenhospital, Aachen, Germany
| | - Jennifer Freres
- Department of Gynecology and Obstetrics Luisenhospital, Aachen, Germany
| | - Hanna Schulz
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf-Dieter Hilgers
- Institute of Medical Statistics, University Hospital RWTH Aachen, Aachen, Germany
| | - Nadina Ortiz-Brüchle
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja von Serenyi
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ruth Knüchel
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Vera Kloten
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.,Current address: Bayer AG, Pharmaceuticals Division, Biomarker Research, Wuppertal, Germany.,Share equal senior authorship
| | - Edgar Dahl
- Molecular Oncology Group, Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.,RWTH centralized Biomaterial Bank (RWTH cBMB) at the Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.,Share equal senior authorship
| |
Collapse
|
42
|
Circulating Tumor Cells in Pancreatic Cancer: Current Perspectives. Cancers (Basel) 2019; 11:cancers11111659. [PMID: 31717773 PMCID: PMC6895979 DOI: 10.3390/cancers11111659] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death in the USA and Europe; early symptoms and screenings are lacking, and it is usually diagnosed late with a poor prognosis. Circulating tumor cells (CTCs) have been promising new biomarkers in solid tumors. In the last twenty years (1999-2019), 140 articles have contained the key words "Circulating tumor cells, pancreatic cancer, prognosis and diagnosis." Articles were evaluated for the use of CTCs as prognostic markers and their correlation to survival in pancreatic ductal adenocarcinoma (PDAC). In the final selected 17 articles, the CTC detection rate varied greatly between different enrichment methodologies and ranged from 11% to 92%; the majority of studies used the antigen-dependent CellSearch© system for CTC detection. Fifteen of the reviewed studies showed a correlation between CTC presence and a worse overall survival. The heterogeneity of CTC-detection methods and the lack of uniform results hinder a comparison of the evaluated studies. However, CTCs can be detected in pancreatic cancer and harbor a hope to serve as an early detection tool. Larger studies are needed to corroborate CTCs as valid biomarkers in pancreatic cancer.
Collapse
|
43
|
Fabbri F, Salvi S, Bravaccini S. Know your enemy: Genetics, aging, exposomic and inflammation in the war against triple negative breast cancer. Semin Cancer Biol 2019; 60:285-293. [PMID: 31669505 DOI: 10.1016/j.semcancer.2019.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/11/2023]
Abstract
Triple negative breast cancer (TNBC) is one of the most biologically aggressive and very often lethal breast disease. It is one of the most puzzling women malignancies, and it currently appears not to be a good candidate to a standardized, unanimously accepted and sufficiently active therapeutic strategy. Fast proliferating and poorly differentiated, it is histopathologically heterogeneous, and even more ambiguous at the molecular level, offering few recurrent actionable targets to the clinicians. It is a formidable and vicious enemy that requires a huge investigational effort to find its vital weak spots. Here, we provide a broad review of "old but gold" biological aspects that taken together may help in finding new TNBC management strategies. A better and updated knowledge of the origins, war-like tactics, refueling mechanisms and escape routes of TNBC, will help in moving the decisive steps towards its final defeat.
Collapse
Affiliation(s)
- Francesco Fabbri
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Samanta Salvi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - Sara Bravaccini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
44
|
Yap YS, Leong MC, Chua YW, Loh KWJ, Lee GE, Lim EH, Dent R, Ng RCH, Lim JHC, Singh G, Tan A, Guan G, Wu A, Lee YF, Bhagat AAS, Lim DWT. Detection and prognostic relevance of circulating tumour cells (CTCs) in Asian breast cancers using a label-free microfluidic platform. PLoS One 2019; 14:e0221305. [PMID: 31553731 PMCID: PMC6760773 DOI: 10.1371/journal.pone.0221305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/04/2019] [Indexed: 12/22/2022] Open
Abstract
Objectives We aimed to study the prevalence of CTCs in breast cancer (BC) patients undergoing neoadjuvant or palliative therapy with a label-free microfluidic platform (ClearCell FX), and its prognostic relevance in metastatic BC (mBC). Materials and methods Peripheral blood samples were collected from 108 BC patients before starting a new line of treatment (“baseline”), majority of whom had mBC (76/108; 70.4%). CTCs were retrieved by dean flow fractionation that enriched for larger cells, and enumerated using immunofluorescence-based staining. Progression-free survival (PFS) in mBC patients was analysed using Kaplan-Meier method; cox proportional hazard models were used for univariable and multivariable analyses. Results The detection rate of CTCs before starting a new line of treatment was 75.9% (n = 108; median: 8 CTCs/7.5 ml blood) at a cut off of ≥2 CTCs. PFS was inferior for mBC patients with baseline CTC count ≥5 CTCs/7.5 ml blood vs. those with < 5 CTCs/7.5 ml blood (median PFS: 4.3 vs. 7.0 months; p-value: 0.037). The prognostic relevance of CTCs was most significant in patients with HER2- mBC (median PFS: 4.1 vs. 8.3 months; p-value: 0.032), luminal (HR+HER2-) subtype (median PFS: 4.2 vs. 8.3 months; p-value: 0.048), and patients who had one or more prior treatments (median PFS: 4.2 vs. 7.0 months; p-value: 0.02). On multivariable analysis, baseline CTC level (hazard ratio (HR): 1.84, p-value: 0.02) and pre-treatment status (HR: 1.87, p-value: 0.05) were independent predictors of PFS. Conclusions This work demonstrates the prognostic significance of CTCs in mBC detected using a label-free size-based enrichment platform.
Collapse
Affiliation(s)
- Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- * E-mail:
| | | | - Yong Wei Chua
- Department of Pathology, Singapore General Hospital, Singapore
| | - Kiley Wei Jen Loh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Guek Eng Lee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology, A*Star, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | | | - John Heng-Chi Lim
- Clinical Trials and Epidemiology Office, National Cancer Centre Singapore, Singapore
| | | | | | | | | | | | | | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology, A*Star, Singapore
| |
Collapse
|
45
|
Kallergi G, Tsintari V, Sfakianakis S, Bei E, Lagoudaki E, Koutsopoulos A, Zacharopoulou N, Alkahtani S, Alarifi S, Stournaras C, Zervakis M, Georgoulias V. The prognostic value of JUNB-positive CTCs in metastatic breast cancer: from bioinformatics to phenotypic characterization. Breast Cancer Res 2019; 21:86. [PMID: 31370904 PMCID: PMC6676640 DOI: 10.1186/s13058-019-1166-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background Circulating tumor cells (CTCs) are important for metastatic dissemination of cancer. They can provide useful information, regarding biological features and tumor heterogeneity; however, their detection and characterization are difficult due to their limited number in the bloodstream and their mesenchymal characteristics. Therefore, new biomarkers are needed to address these questions. Methods Bioinformatics functional enrichment analysis revealed a subgroup of 24 genes, potentially overexpressed in CTCs. Among these genes, the chemokine receptor CXCR4 plays a central role. After prioritization according to the CXCR4 corresponding pathways, five molecules (JUNB, YWHAB, TYROBP, NFYA, and PRDX1) were selected for further analysis in biological samples. The SKBR3, MDA-MB231, and MCF7 cell lines, as well as PBMCs from normal (n = 10) blood donors, were used as controls to define the expression pattern of all the examined molecules. Consequently, 100 previously untreated metastatic breast cancer (mBC) patients (n = 100) were analyzed using the following combinations of antibodies: CK (cytokeratin)/CXCR4/JUNB, CK/NFYA/ΥWHΑΒ (14-3-3), and CK/TYROBP/PRDX1. A threshold value for every molecule was considered the mean expression in normal PBMCs. Results Quantification of CXCR4 revealed overexpression of the receptor in SKBR3 and in CTCs, following the subsequent scale (SKBR3>CTCs>Hela>MCF7>MDA-MB231). JUNB was also overexpressed in CTCs (SKBR3>CTCs>MCF7>MDA-MB231>Hela). According to the defined threshold for each molecule, CXCR4-positive CTCs were identified in 90% of the patients with detectable tumor cells in their blood. In addition, 65%, 75%, 14.3%, and 12.5% of the patients harbored JUNB-, TYROBP-, NFYA-, and PRDX-positive CTCs, respectively. Conversely, none of the patients revealed YWHAB-positive CTCs. Interestingly, JUNB expression in CTCs was phenotypically and statistically enhanced compared to patients’ blood cells (p = 0.002) providing a possible new biomarker for CTCs. Furthermore, the detection of JUNB-positive CTCs in patients was associated with poorer PFS (p = 0.015) and OS (p = 0.002). Moreover, JUNB staining of 11 primary and 4 metastatic tumors from the same cohort of patients revealed a dramatic increase of JUNB expression in metastasis. Conclusions CXCR4, JUNB, and TYROBP were overexpressed in CTCs, but only the expression of JUNB was associated with poor prognosis, providing a new biomarker and a potential therapeutic target for the elimination of CTCs. Electronic supplementary material The online version of this article (10.1186/s13058-019-1166-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Galatea Kallergi
- Laboratory of Τumor Cell Βiology, Medical School, University of Crete, Heraklion, Greece. .,Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece. .,Hellenic Oncology Research Group (HORG), Athens, Greece.
| | - Vasileia Tsintari
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital, Tübingen, Germany
| | - Stelios Sfakianakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology, Heraklion, Greece
| | - Ekaterini Bei
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
| | - Eleni Lagoudaki
- Department of Pathology, University General Hospital of Heraklion, Heraklion, Crete, Greece
| | | | - Nefeli Zacharopoulou
- Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece
| | - Saad Alkahtani
- Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece.,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece.,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece
| | - Michalis Zervakis
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
| | - Vassilis Georgoulias
- Laboratory of Τumor Cell Βiology, Medical School, University of Crete, Heraklion, Greece.,Hellenic Oncology Research Group (HORG), Athens, Greece
| |
Collapse
|
46
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
47
|
Ren J, Li J, Li Y, Xiao P, Liu Y, Tsang CM, Tsao SW, Lau D, Chan KWY, Lam RHW. Elasticity-Modulated Microbeads for Classification of Floating Normal and Cancer Cells Using Confining Microchannels. ACS Biomater Sci Eng 2019; 5:3889-3898. [DOI: 10.1021/acsbiomaterials.8b01273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Yongshu Li
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Chi Man Tsang
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Sai Wah Tsao
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Denvid Lau
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| |
Collapse
|
48
|
Thery L, Meddis A, Cabel L, Proudhon C, Latouche A, Pierga JY, Bidard FC. Circulating Tumor Cells in Early Breast Cancer. JNCI Cancer Spectr 2019; 3:pkz026. [PMID: 31360902 PMCID: PMC6649836 DOI: 10.1093/jncics/pkz026] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/24/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are particularly rare in non-metastatic breast cancer, and the clinical validity of CTC detection in that clinical setting was initially not well recognized. A cytological CTC detection device (CellSearch) fulfilling the CLIA requirements for analytical validity was subsequently developed and, in 2008, we reported the first study (REMAGUS02) showing that distant metastasis-free survival was shorter in early breast cancer patients with one or more CTCs. In the past 10 years, other clinical studies and meta-analyses have established CTC detection as a level-of-evidence 1 prognostic biomarker for local relapses, distant relapses, and overall survival. This review summarizes available data on CTC detection and the promises of this proliferation- and subtype-independent metastasis-associated biomarker in early breast cancer patients.
Collapse
Affiliation(s)
- Laura Thery
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France
| | | | - Luc Cabel
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France.,Circulating Tumor Biomarkers Laboratory, Institut Curie, Inserm CIC 1428, PSL Research University, Paris, France.,UVSQ, Paris Saclay University, Saint Cloud, France
| | - Charlotte Proudhon
- Circulating Tumor Biomarkers Laboratory, Institut Curie, Inserm CIC 1428, PSL Research University, Paris, France
| | - Aurelien Latouche
- Inserm U900, Institut Curie, Saint Cloud, France.,Conservatoire national des arts et métiers, Paris, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France.,Circulating Tumor Biomarkers Laboratory, Institut Curie, Inserm CIC 1428, PSL Research University, Paris, France.,Université Paris Descartes, Paris, France
| | - Francois-Clement Bidard
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France.,Circulating Tumor Biomarkers Laboratory, Institut Curie, Inserm CIC 1428, PSL Research University, Paris, France.,UVSQ, Paris Saclay University, Saint Cloud, France
| |
Collapse
|
49
|
Smith J, Mathisen AF, Funch Richardt N, Vander Plaetsen AS, Van Nieuwerburgh F, Stender H, Hillig T. Feasibility of single-cell analysis of model cancer and foetal cells in blood after isolation by cell picking. Tumour Biol 2019; 41:1010428318823361. [PMID: 30808252 DOI: 10.1177/1010428318823361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The objective of the present feasibility study was to transfer single cell line cells to either microscopy slides for downstream immune characterization or to polymerase chain reaction tubes for downstream DNA quantitation. Tumour cell lines, SKBR3 and MCF7 and trophoblast cell line JEG-3 were spiked in healthy donor blood. The CytoTrack system was used to scan the spiked blood samples to identify target cells. Individual target cells were identified, picked by use of a CytoPicker and deposited to either a microscopic slide or a polymerase chain reaction tube (PCR). Single tumour cells on microscopic slides were further immunostained with human epidermal growth factor receptor 2 (Her2) and epithelial cell adhesion molecule (EpCAM). From the picked cells in polymerase chain reaction tubes, DNA was amplified, quantified and used for Short Tandem Repeat genotyping. Depositing rare cells to microscopy slides was laborious with only five cells per hour. In this study with a trained operator, the picked cells had an 80.5% recovery rate. Depositing single trophoblast cells in PCR tubes was a faster process with 10 cells in 5 min. Immunostaining of isolated cells by both Her2 and EpCAM was possible but showed varying staining intensity. Presence of trophoblasts and contaminating white blood cells in PCR tubes after cell picking was confirmed based on DNA yield and mixed Short Tandem Repeat profiles in five out of eight samples. Using the CytoPicker tool, single tumour and trophoblast cells were successfully isolated and moved from blood samples, allowing subsequent immunostaining or Short Tandem Repeat genotyping.
Collapse
Affiliation(s)
- Julie Smith
- 1 Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark
| | - Andreas Frøslev Mathisen
- 1 Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark
| | - Nadja Funch Richardt
- 1 Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark
| | | | | | | | - Thore Hillig
- 4 Department of Clinical Biochemistry, Nordsjællands Hospital, Hillerød, Denmark
| |
Collapse
|
50
|
Profiling of Invasive Breast Carcinoma Circulating Tumour Cells-Are We Ready for the 'Liquid' Revolution? Cancers (Basel) 2019; 11:cancers11020143. [PMID: 30691008 PMCID: PMC6406427 DOI: 10.3390/cancers11020143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
As dissemination through blood and lymph is the critical step of the metastatic cascade, circulating tumour cells (CTCs) have attracted wide attention as a potential surrogate marker to monitor progression into metastatic disease and response to therapy. In patients with invasive breast carcinoma (IBC), CTCs are being considered nowadays as a valid counterpart for the assessment of known prognostic and predictive factors. Molecular characterization of CTCs using protein detection, genomic and transcriptomic panels allows to depict IBC biology. Such molecular profiling of circulating cells with increased metastatic abilities appears to be essential, especially after tumour resection, as well as in advanced disseminated disease, when information crucial for identification of therapeutic targets becomes unobtainable from the primary site. If CTCs are truly representative of primary tumours and metastases, characterization of the molecular profile of this easily accessible ‘biopsy’ might be of prime importance for clinical practice in IBC patients. This review summarizes available data on feasibility and documented benefits of monitoring of essential IBC biological features in CTCs, with special reference to multifactorial proteomic, genomic, and transcriptomic panels of known prognostic or predictive value.
Collapse
|