1
|
Wijesekara T, Xu B. New Insights into Sources, Bioavailability, Health-Promoting Effects, and Applications of Chitin and Chitosan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17138-17152. [PMID: 39042786 DOI: 10.1021/acs.jafc.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chitin and chitosan are mostly derived from the exoskeletons of crustaceans, insects, and fungi. Chitin is the second most abundant biopolymer after cellulose, and it is a fibrous polysaccharide which resists enzymatic degradation in the stomach but undergoes microbial fermentation in the colon, producing beneficial metabolites. Chitosan, which is more soluble in the alkaline small intestine, is more susceptible to enzymatic action. Both biopolymers show limited absorption into the bloodstream, with smaller particles exhibiting better bioavailability. The health effects include anti-inflammatory properties, potential in immune system modulation, impacts on cholesterol levels, and antimicrobial effects, with a specific focus on implications for gut health. Chitin and chitosan exhibit anti-inflammatory properties by interacting with immune cells, influencing cytokine production, and modulating immune responses, which may benefit conditions characterized by chronic inflammation. These biopolymers can impact cholesterol levels by binding to dietary fats and reducing lipid absorption. Additionally, their antimicrobial properties contribute to gut health by controlling harmful pathogens and promoting beneficial gut microbiota. This review explores the extensive health benefits and applications of chitin and chitosan, providing a detailed examination of their chemical compositions, dietary sources, and applications, and critically assessing their health-promoting effects in the context of human well-being.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec H9X 3V9, Canada
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| |
Collapse
|
2
|
Kamal M, Kishk WH, Khalil HA, Abdel-Khalek AM, Ayoub MA, Swelum AA, Alqhtani AH, Ba-Awadh HA, Abd El-Hack ME. Effect of dietary chitosan supplementation on productive and physiological performance parameters of growing New Zealand white rabbits. Int J Biol Macromol 2023; 230:123166. [PMID: 36623627 DOI: 10.1016/j.ijbiomac.2023.123166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
This study aimed to investigate the effects of dietary chitosan supplementation on the growth performance, carcass traits, and some physiological parameters of weaned New Zealand White rabbits (NZW). Sixty-four NZWs were randomly distributed into four dietary experimental groups (n = 16) and fed a basal diet ad libitum for eight weeks: under Egyptian conditions. The basal diet without chitosan served as the control group, while the other three groups were fed diets containing 0.2, 0.4 and 0.6 g chitosan/kg diet. We observed significant (P ≤ 0.05) differences among chitosan treatments. Specifically, groups supplemented with chitosan in their diets had significantly (P ≤ 0.05) higher final body weight and weight gain, as well as an improved feed conversion ratio compared to the control group. Rabbits fed chitosan at 0.2 g/kg diet performed the best in growth traits compared to other treatment groups. Rabbits fed chitosan at 0.4 g/kg diet had significantly (P ≤ 0.05) higher levels of total protein in their blood than in the control group. However, levels did not differ significantly from that in the 0.2 group. Likewise, the highest (P ≤ 0.05) levels of glucose and HDL concentrations were detected in rabbits fed chitosan at a 0.2 g/kg diet. All chitosan-supplemented groups (especially at 0.2 g/kg diet) had higher economic efficiency and relative profit levels than the control group. Moreover, morphometric evaluations of the small intestine revealed higher villi number and crypt depth values in chitosan-treated animals compared to the control group. We conclude that using chitosan at levels of 0.2 or 0.4 g/kg diet can effectively improve the body weight gain, feed conversion ratio and economic efficiency, as well as the overall health status of NZW under Egyptian conditions.
Collapse
Affiliation(s)
- Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Waleid H Kishk
- Department of Animal Production, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Hassan A Khalil
- Department of Animal Production, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed M Abdel-Khalek
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Mostafa A Ayoub
- Department of Animal Production, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Kingdom of Saudi Arabia (KSA).
| | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Kingdom of Saudi Arabia (KSA)
| | - Hani A Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Kingdom of Saudi Arabia (KSA)
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
3
|
Hussain MA, Sumon TA, Mazumder SK, Ali MM, Jang WJ, Abualreesh MH, Sharifuzzaman S, Brown CL, Lee HT, Lee EW, Hasan MT. Essential oils and chitosan as alternatives to chemical preservatives for fish and fisheries products: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Liu SH, Feng SA, Chiu CY, Chiang MT. Influence of Dietary Chitosan Feeding Duration on Glucose and Lipid Metabolism in a Diabetic Rat Model. Molecules 2021; 26:5033. [PMID: 34443619 PMCID: PMC8400972 DOI: 10.3390/molecules26165033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
This study was designed to investigate the influence of dietary chitosan feeding-duration on glucose and lipid metabolism in diabetic rats induced by streptozotocin and nicotinamide [a non-insulin-dependent diabetes mellitus (NIDDM) model]. Male Sprague-Dawley rats were used as experimental animals and divided into short-term (6 weeks) and long-term (11 weeks) feeding durations, and each duration contained five groups: (1) control, (2) control + 5% chitosan, (3) diabetes, (4) diabetes + 0.8 mg/kg rosiglitazone (a positive control), and (5) diabetes + 5% chitosan. Whether the chitosan feeding was for 6 or 11 weeks, the chitosan supplementation decreased blood glucose and lipids levels and liver lipid accumulation. However, chitosan supplementation decreased plasma tumor necrosis factor (TNF)-α, insulin levels, alanine aminotransferase (ALT) activity, insulin resistance (HOMA-IR), and adipose tissue lipoprotein lipase activity. Meanwhile, it increased plasma high-density lipoproteins (HDL)-cholesterol level, plasma angiopoietin-like-4 protein expression, and plasma triglyceride levels (at 11-week feeding duration only). Taken together, 11-week (long-term) chitosan feeding may help to ameliorate the glucose and lipid metabolism in a NIDDM diabetic rat model.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Shih-An Feng
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Chen-Yuan Chiu
- Center of Consultation, Center for Drug Evaluation, Taipei 115, Taiwan;
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| |
Collapse
|
5
|
Effectiveness of Chitosan as a Dietary Supplement in Lowering Cholesterol in Murine Models: A Meta-Analysis. Mar Drugs 2021; 19:md19010026. [PMID: 33435383 PMCID: PMC7827691 DOI: 10.3390/md19010026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
This study presents a meta-analysis of studies that investigate the effectiveness of chitosan administration on lifestyle-related disease in murine models. A total of 34 published studies were used to evaluate the effect of chitosan supplementation. The effect sizes for various items after chitosan administration were evaluated using the standardized mean difference. Using Cochran’s Q test, the heterogeneity of effect sizes was assessed, after which a meta-ANOVA and -regression test was conducted to explain the heterogeneity of effect sizes using the mixed-effect model. Publication bias was performed using Egger’s linear regression test. Among the items evaluated, blood triglyceride and HDL-cholesterol showed the highest heterogeneity, respectively. Other than blood HDL-cholesterol, total cholesterol, and triglyceride in feces, most items evaluated showed a negative effect size with high significance in the fixed- and random-effect model (p < 0.0001). In the meta-ANOVA and -regression test, administering chitosan and resistant starch was revealed to be most effective in lowering body weight. In addition, chitosan supplementation proved to be an effective solution for serum TNF-α inhibition. In conclusion, chitosan has been shown to be somewhat useful in improving symptoms of lifestyle-related disease. Although there are some limitations in the results of this meta-analysis due to the limited number of animal experiments conducted, chitosan administration nevertheless shows promise in reducing the risk of cholesterol related metabolic disorder.
Collapse
|
6
|
Sarkar S, Das D, Dutta P, Kalita J, Wann SB, Manna P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr Polym 2020; 247:116594. [PMID: 32829787 DOI: 10.1016/j.carbpol.2020.116594] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
|
7
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
8
|
Ishihara M, Kishimoto S, Nakamura S, Sato Y, Hattori H. Polyelectrolyte Complexes of Natural Polymers and Their Biomedical Applications. Polymers (Basel) 2019; 11:polym11040672. [PMID: 31013742 PMCID: PMC6523548 DOI: 10.3390/polym11040672] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/15/2023] Open
Abstract
Polyelectrolyte complexes (PECs), composed of natural and biodegradable polymers, (such as positively charged chitosan or protamine and negatively charged glycosaminoglycans (GAGs)) have attracted attention as hydrogels, films, hydrocolloids, and nano-/micro-particles (N/MPs) for biomedical applications. This is due to their biocompatibility and biological activities. These PECs have been used as drug and cell delivery carriers, hemostats, wound dressings, tissue adhesives, and scaffolds for tissue engineering. In addition to their comprehensive review, this review describes our original studies and provides an overview of the characteristics of chitosan-based hydrogel, including photo-cross-linkable chitosan hydrogel and hydrocolloidal PECs, as well as molecular-weight heparin (LH)/positively charged protamine (P) N/MPs. These are generated by electrostatic interactions between negatively charged LH and positively charged P together with their potential biomedical applications.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Yoko Sato
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Hidemi Hattori
- Department of Biochemistry and Applied Sciences, University of Miyazaki, Miyazaki 889-2162, Japan.
| |
Collapse
|
9
|
Do AR, Cho SJ, Cho YY, Kwon EY, Choi JY, Lee JH, Han Y, Kim YS, Piao Z, Shin YC, Choi MS. Antiobesity Effects of Short-Chain Chitosan in Diet-Induced Obese Mice. J Med Food 2018; 21:927-934. [PMID: 30183503 DOI: 10.1089/jmf.2017.4115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary chitosan is known for its antiobesity effects by combining with bile acid and lipid droplets. When the chitosan structure is broken into short chains, the fat-binding capacity increases. The aim of this study was to compare long-chain chitosan (LC) with short-chain chitosan (SC) for their antiobesity effects in high-fat diet (HFD)-induced obese C57BL/6J mice for 12 weeks. The body weights of mice in both chitosan groups were decreased, especially in the SC group compared with the LC group. Total white adipose tissue and visceral fat weights were also decreased in mice of the SC group more than those of the HFD group. Moreover, SC supplementation lowered plasma triglyceride (TG) and cholesterol levels, whereas LC only lowered plasma free fatty acid level. Fecal lipids were increased in mice of both LC and SC groups, and hepatic TG and cholesterol levels were decreased in both groups. SC lowered phosphatidate phosphohydrolase activity and elevated β-oxidation in the liver. Furthermore, SC decreased the expression of the hepatic lipid-regulating genes, including fatty acid synthase, peroxisome proliferator-activated receptor (PPAR)γ1, and PPARγ2; and increased the expression of carnitine palmitoyl transferase 1α and peroxisome proliferator-activated receptor γ coactivator (PGC)1α genes. In conclusion, we demonstrated that long-term supplementation of SC can ameliorate body weight and lipid levels by increasing lipid excretion and regulating lipid metabolism, including some enzyme activities and gene expression levels, in HFD-induced obese mice.
Collapse
Affiliation(s)
- Ah Ra Do
- 1 Department of Food Science and Nutrition, Daegu, Republic of Korea.,2 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Republic of Korea
| | - Su-Jung Cho
- 1 Department of Food Science and Nutrition, Daegu, Republic of Korea.,2 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Republic of Korea
| | | | - Eun-Young Kwon
- 1 Department of Food Science and Nutrition, Daegu, Republic of Korea.,2 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Republic of Korea
| | - Ji-Young Choi
- 1 Department of Food Science and Nutrition, Daegu, Republic of Korea.,2 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Republic of Korea
| | - Jeong Hyeon Lee
- 1 Department of Food Science and Nutrition, Daegu, Republic of Korea.,2 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Republic of Korea
| | - Youngji Han
- 1 Department of Food Science and Nutrition, Daegu, Republic of Korea.,2 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Republic of Korea
| | - Yi Soo Kim
- 3 Amicogen, Inc. , Jinju, Republic of Korea
| | - Zhe Piao
- 3 Amicogen, Inc. , Jinju, Republic of Korea
| | | | - Myung-Sook Choi
- 1 Department of Food Science and Nutrition, Daegu, Republic of Korea.,2 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
10
|
Bahijri SM, Alsheikh L, Ajabnoor G, Borai A. Effect of Supplementation With Chitosan on Weight, Cardiometabolic, and Other Risk Indices in Wistar Rats Fed Normal and High-Fat/High-Cholesterol Diets Ad Libitum. Nutr Metab Insights 2017; 10:1178638817710666. [PMID: 28579799 PMCID: PMC5443416 DOI: 10.1177/1178638817710666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/06/2017] [Indexed: 12/25/2022] Open
Abstract
The aim was to investigate effect of chitosan on markers of obesity and cardiometabolic risk in rats fed normal chow (NC) or high-fat/high-cholesterol diet (HF/HCD). Forty male rats were fed NC or HF/HCD for 3 months, then divided into 4 groups: group A fed NC, group B: NC + chitosan, group C: HF/HCD, and group D: HF/HCD + chitosan. Food intake and weight were recorded, and serum glucose, lipid profile, insulin, leptin, gamma glutamyl transferase (GGT), and tumor necrosis factor α were measured at beginning and after 12 weeks. Atherogenic index (AI), low-density lipoprotein cholesterol:high-density lipoprotein cholesterol (LDL-C:HDL-C), and homeostatic model assessment of insulin resistance (HOMA-IR) were calculated. At the end of study, food intake was significantly increased in group B; mean values of triglycerides, total cholesterol, LDL-C, LDL-C:HDL-C, and AI were decreased in group B and group D; mean leptin was increased in group A and decreased in group B; and mean values of insulin, HOMA-IR, and GGT were increased in group C. The results from this study suggest that chitosan improved lipid profile, insulin sensitivity, and oxidative stress caused by HF/HCD.
Collapse
Affiliation(s)
- Suhad M Bahijri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.,Saudi Diabetes Research Group, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Lubna Alsheikh
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.,Saudi Diabetes Research Group, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Ghada Ajabnoor
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.,Saudi Diabetes Research Group, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Anwar Borai
- Saudi Diabetes Research Group, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Department of Pathology, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Thaipitakwong T, Aramwit P. A Review of the Efficacy, Safety, and Clinical Implications of Naturally Derived Dietary Supplements for Dyslipidemia. Am J Cardiovasc Drugs 2017; 17:27-35. [PMID: 27637494 DOI: 10.1007/s40256-016-0191-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dyslipidemia is recognized as a major cause of cardiovascular disease. A number of evidence-based guidelines recommend conventional synthetic drugs as standard therapy for dyslipidemia in clinical practice. However, antihyperlipidemic drugs have some serious side effects. Naturally derived dietary supplements are becoming attractive as an alternative strategy because of their high efficacy and safety, as supported by numerous data. Moreover, they could be considered an initial treatment for dyslipidemia. The aims of this literature review were to demonstrate the efficacy, safety, and clinical implications of dietary supplements for treating dyslipidemia. We reviewed the literature, including data from in vitro, in vivo, and human studies, and clinical guideline recommendations. We classified dietary supplements by their proposed mechanisms of action on lipid metabolism and also collected daily dosage recommendations, interactions with concurrent drugs and/or foods, dosage forms, and examples of commercially available products. Various types of naturally derived dietary supplements exhibit lipid-improving properties. Efficacy and safety are acceptable; however, their use in clinical practice will require further well-designed investigations and the support of scientific data.
Collapse
Affiliation(s)
- Thanchanit Thaipitakwong
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
12
|
Teodoro JS, Gomes AP, Varela AT, Duarte FV, Rolo AP, Palmeira CM. Hepatic and skeletal muscle mitochondrial toxicity of chitosan oligosaccharides of normal and diabetic rats. Toxicol Mech Methods 2016; 26:650-657. [PMID: 27790925 DOI: 10.1080/15376516.2016.1222643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetes and associated conditions are now considered a worldwide epidemic, with increasing costs and burdens with no cure yet developed. The chitin-derived glucosamine biopolymer chitosan has shown promising results when supplied to diabetic patients. However, no study has investigated the possible toxic side effects of chitosan treatments, in particular when regarding the most important bioenergetic organelle, mitochondria. As such, we aimed to understand if supplementation of chitosan to the diet of normal and diabetic rats could compromise mitochondrial function on two of the major organs involved in diabetes, obesity, and metabolic regulation, the liver and skeletal muscle. We supplemented the drinking water of normal Wistar and diabetic Goto-Kakizaki rats with 0.5% chitosan for 6 weeks. We show here that, in terms of hepatic bioenergetics, chitosan was relatively inert and had no major side effects. However, regarding skeletal muscle bioenergetics, chitosan significantly affected various bioenergetic parameters. As such, we conclude that chitosan, at the tested doses, is relatively safe for treatment of diabetic situations. Nonetheless, the potential for adverse toxicological side effects appears to be present, which might be relevant if higher doses are utilized.
Collapse
Affiliation(s)
- João Soeiro Teodoro
- a Center for Neurosciences and Cell Biology , Department of Life Sciences of the Faculty of Sciences and Technology of the University of Coimbra , Coimbra , Portugal
| | - Ana Patrícia Gomes
- a Center for Neurosciences and Cell Biology , Department of Life Sciences of the Faculty of Sciences and Technology of the University of Coimbra , Coimbra , Portugal
| | - Ana Teresa Varela
- a Center for Neurosciences and Cell Biology , Department of Life Sciences of the Faculty of Sciences and Technology of the University of Coimbra , Coimbra , Portugal
| | - Filipe Valente Duarte
- a Center for Neurosciences and Cell Biology , Department of Life Sciences of the Faculty of Sciences and Technology of the University of Coimbra , Coimbra , Portugal
| | - Anabela Pinto Rolo
- a Center for Neurosciences and Cell Biology , Department of Life Sciences of the Faculty of Sciences and Technology of the University of Coimbra , Coimbra , Portugal
| | - Carlos Marques Palmeira
- a Center for Neurosciences and Cell Biology , Department of Life Sciences of the Faculty of Sciences and Technology of the University of Coimbra , Coimbra , Portugal
| |
Collapse
|
13
|
Li Q, Gooneratne S, Wang R, Zhang R, An L, Chen J, Pan W. Effect of different molecular weight of chitosans on performance and lipid metabolism in chicken. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2015.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Abdel-Gawad FK, Khalil WK, El-Kady AA, Waly AI, Abdel-Wahhab MA. Carboxymethyl chitosan modulates the genotoxic risk and oxidative stress of perfluorooctanoic acid in Nile tilapia (Oreochromis niloticus). JOURNAL OF THE SAUDI SOCIETY OF AGRICULTURAL SCIENCES 2016; 15:57-66. [DOI: 10.1016/j.jssas.2014.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
15
|
van der Gronde T, Hartog A, van Hees C, Pellikaan H, Pieters T. Systematic review of the mechanisms and evidence behind the hypocholesterolaemic effects of HPMC, pectin and chitosan in animal trials. Food Chem 2015; 199:746-59. [PMID: 26776032 DOI: 10.1016/j.foodchem.2015.12.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/07/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023]
Abstract
Dietary fibres have diverse mechanisms in reducing plasma cholesterol, which could be useful for treating high levels of low-density lipoprotein cholesterol (LDL-C). The objective of this review is to determine the state of the evidence for the cholesterol-lowering effects of three selected fibres and their mechanisms, using the most recent animal trials. Therefore, a systematic review was conducted for hydroxypropyl methylcellulose (HPMC), pectin and chitosan in Pubmed, Embase and the Cochrane Library. All fibres reviewed reduced total cholesterol, very low-density lipoprotein cholesterol (VLDL-C) and LDL-C. Pectin gave a small, and chitosan an impressive rise in high-density lipoprotein cholesterol (HDL-C). A limitation of this study is the variety of animal models, each with distinct cholesterol profiles. Possible publication bias was also detected. In conclusion, chitosan seems to be the most promising of the studied fibres. A dietary fibre could be designed that yields the best cholesterol-lowering effect, using experiences in tailoring physicochemical properties and primarily exploiting the biophysical mechanisms of action.
Collapse
Affiliation(s)
- Toon van der Gronde
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Anita Hartog
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3583 CT Utrecht, The Netherlands
| | - Charlotte van Hees
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | | | - Toine Pieters
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands; Freudenthal Institute, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Ji J, Torrealba D, Ruyra À, Roher N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. BIOLOGY 2015; 4:664-96. [PMID: 26492276 PMCID: PMC4690013 DOI: 10.3390/biology4040664] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
Abstract
Fish disease treatments have progressed significantly over the last few years and have moved from the massive use of antibiotics to the development of vaccines mainly based on inactivated bacteria. Today, the incorporation of immunostimulants and antigens into nanomaterials provide us with new tools to enhance the performance of immunostimulation. Nanoparticles are dispersions or solid particles designed with specific physical properties (size, surface charge, or loading capacity), which allow controlled delivery and therefore improved targeting and stimulation of the immune system. The use of these nanodelivery platforms in fish is in the initial steps of development. Here we review the advances in the application of nanoparticles to fish disease prevention including: the type of biomaterial, the type of immunostimulant or vaccine loaded into the nanoparticles, and how they target the fish immune system.
Collapse
Affiliation(s)
- Jie Ji
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Debora Torrealba
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Àngels Ruyra
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
17
|
Pokhis K, Bitterlich N, Cornelli U, Cassano G. Efficacy of polyglucosamine for weight loss-confirmed in a randomized double-blind, placebo-controlled clinical investigation. BMC OBESITY 2015. [PMID: 26217540 PMCID: PMC4511026 DOI: 10.1186/s40608-015-0053-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The purpose of this clinical study was to ascertain whether low molecular weight chitosan polyglucosamine is able to produce significantly better weight loss than placebo. METHOD 115 participants were included in the study. We used a two-center randomized, double blind, placebo-controlled design. The participants followed a standard treatment (ST), which included the combination of a low-calorie diet achieved through creating a daily calorie deficit (500 cal) and an increased daily physical activity (7 MET-h/week). They were randomized to receive standard treatment plus placebo (ST + PL) or standard treatment plus polyglucosamine (ST + PG), respectively. Participants were instructed to take 2 × 2 tablets before the two meals containing the highest fat content for at least 24 weeks. Body weight, BMI, waist circumference and the time needed for a 5 % body weight reduction (5R) were taken as main variables. RESULTS The average weight loss over a period of 25 weeks in the ITT population was 5.8 ± 4.09 kg in the ST + PG group versus 4.0 ± 2.94 kg in the ST + PL (pU = 0.023; pt = 0.010). After 25 weeks, 34 participants achieved 5R in the ST + PG group (64.1 %) compared to only 23 participants in the ST + PL group (42.6 %) (ITT) (p Fisher = 0.033). Weight loss through hypo-caloric diets have been found to be effective. The additional effect of PG in combination with standard treatment is able to produce significantly better weight loss than placebo. CONCLUSIONS Participants treated with ST + PG showed a significant amount of weight loss, an additional 1.8 kg, compared to controls treated with ST + PL. TRIAL REGISTRATION Trial Registration at ClinicalTrials.gov: NCT02410785 Registered 07 April 2015.
Collapse
Affiliation(s)
- Karina Pokhis
- Salztal Klinik GmbH, Parkstrasse 18, D-63628 Bad Soden-Salmünster, Germany
| | - Norman Bitterlich
- Medizin & Service GmbH, Abt. Biostatistik, Boettcherstr. 10, D-09117 Chemnitz, Germany
| | - Umberto Cornelli
- Loyola University, School of Medicine-Chicago, 2160 South Fist Avenue, Maywood, IL USA
| | | |
Collapse
|
18
|
Kerch G. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 2015; 13:2158-82. [PMID: 25871293 PMCID: PMC4413205 DOI: 10.3390/md13042158] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed.
Collapse
Affiliation(s)
- Garry Kerch
- Department of Materials Science and Applied Chemistry, Riga Technical University, Azenes 14/24, Riga, LV-1048, Latvia.
| |
Collapse
|
19
|
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 2015; 13:1133-74. [PMID: 25738328 PMCID: PMC4377977 DOI: 10.3390/md13031133] [Citation(s) in RCA: 1114] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/16/2015] [Indexed: 02/07/2023] Open
Abstract
This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA) and molecular weight (MW). In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone). Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Islem Younes
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering, PO Box 1173-3038, Sfax, Tunisia.
| | | |
Collapse
|
20
|
In vivo postprandial bioavailability of interesterified-lipids in sodium-caseinate or chitosan based O/W emulsions. Food Chem 2015; 171:266-71. [DOI: 10.1016/j.foodchem.2014.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/23/2014] [Accepted: 09/02/2014] [Indexed: 11/24/2022]
|
21
|
In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. Eur J Pharm Biopharm 2014; 88:635-42. [PMID: 25305585 DOI: 10.1016/j.ejpb.2014.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022]
|
22
|
Ozcelik E, Uslu S, Erkasap N, Karimi H. Protective effect of chitosan treatment against acetaminophen-induced hepatotoxicity. Kaohsiung J Med Sci 2014; 30:286-290. [PMID: 24835348 DOI: 10.1016/j.kjms.2014.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/14/2013] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (APAP) is the most commonly reported toxic ingestion in the world. Severe liver injury resulting from overdose or chronic use of APAP remains a significant clinical problem. In recent years, the mechanisms underlying liver injury caused by APAP have become much better understood. We have studied the protective effect of chitosan supplementation against APAP-induced hepatotoxicity with respect to changes in the levels of total and lipid-bound sialic acid in the serum and in the liver tissue and changes in the activity of diagnostic marker enzymes, lipid peroxidation, and ceruloplasmin oxidase enzyme in normal and experimental groups of rats. During the experimental period, chitosan (200 mg/kg body weight per day) was administered to APAP + chitosan-treated rats by oral gavage. Results showed that treatment with APAP induced a significant increase in the serum alanine aminotransferase and alkaline phosphatase activities, in total and lipid-bound sialic acids levels, and in the liver lipid peroxide content. The administration of chitosan significantly prevented APAP-induced alterations in the levels of diagnostic marker enzymes, total sialic acid, lipid-bound sialic acid, and malondialdehyde in the experimental groups of rats. Furthermore, chitosan administration increased the activity of ceruloplasmin oxidase. In conclusion, our results suggest that chitosan has a protective effect on APAP-induced hepatic injury in rats. The study sheds light on the therapeutic potential of chitosan in an APAP-induced hepatotoxicity model.
Collapse
Affiliation(s)
- Eda Ozcelik
- Department of Nutrition and Dietetics, School of Healthy Sciences, Artvin Coruh University, Artvin, Turkey.
| | - Sema Uslu
- Department of Biochemistry, School of Medicine, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Nilufer Erkasap
- Department of Physiology, School of Medicine, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Hadi Karimi
- Department of Biochemistry, School of Medicine, Eskisehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
23
|
Khan A, Mehmood S, Shafiq M, Yasin T, Akhter Z, Ahmad S. Structural and antimicrobial properties of irradiated chitosan and its complexes with zinc. Radiat Phys Chem Oxf Engl 1993 2013. [DOI: 10.1016/j.radphyschem.2013.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Tapola NS, Lyyra ML, Kolehmainen RM, Sarkkinen ES, Schauss AG. Safety Aspects and Cholesterol-Lowering Efficacy of Chitosan Tablets. J Am Coll Nutr 2013; 27:22-30. [DOI: 10.1080/07315724.2008.10719671] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
|
26
|
Choi CR, Kim EK, Kim YS, Je JY, An SH, Lee JD, Wang JH, Ki SS, Jeon BT, Moon SH, Park PJ. Chitooligosaccharides decreases plasma lipid levels in healthy men. Int J Food Sci Nutr 2011; 63:103-6. [PMID: 21781022 DOI: 10.3109/09637486.2011.602051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chitosan, which is derived from chitin, has drawn much attention due to its low toxicity and potential use in medical and pharmaceutical applications. The biological activities of chitosan have been shown to depend on its molecular weight (MW) and degree of deacetylation. In this study, we investigated whether oral chitooligosaccharides, which are easily absorbed into the body, can reduce the plasma level of lipid in smokers and non-smokers because smoking is a high-risk factor for cardiovascular diseases. All healthy men (11 smokers and 8 non-smokers) consumed 500 mg of chitooligosaccharides in water twice daily before a meal (breakfast and dinner) over a 6-week period. Total cholesterol and low-density lipoprotein cholesterol levels were significantly decreased in both the smoker group and non-smoker group when compared with baseline. These results suggest that low MW chitooligosaccharides would be an effective dietary supplement for lowering cholesterol level.
Collapse
Affiliation(s)
- Cheong-Rak Choi
- Division of Sport Science, Konkuk University, Chungju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Anraku M, Michihara A, Yasufuku T, Akasaki K, Tsuchiya D, Nishio H, Maruyama T, Otagiri M, Maezaki Y, Kondo Y, Tomida H. The antioxidative and antilipidemic effects of different molecular weight chitosans in metabolic syndrome model rats. Biol Pharm Bull 2011; 33:1994-8. [PMID: 21139239 DOI: 10.1248/bpb.33.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of high and low molecular weight chitosans (HMC; 1000 kDa, LMC; 30 kDa) on oxidative stress and hypercholesterolemia was investigated using male 6-week-old Wistar Kyoto rats as a normal model (Normal-rats) and spontaneously hypertensive rat/ND mcr-cp (SHP/ND) as a metabolic syndrome model (MS-rats), respectively. In Normal-rats, the ingestion of both chitosans over a 4 week period resulted in a significant decrease in total body weight (BW), glucose (Gl), triglyceride (TG), low density lipoprotein (LDL) and serum creatinine (Cre) levels. The ingestion of both chitosans also resulted in a lowered ratio of oxidized to reduced albumin and an increase in total plasma antioxidant activity. In addition to similar results in Normal-rats, the ingestion of only HMC over a 4 week period resulted in a significant decrease in total cholesterol levels in MS-rats. Further, the ingestion of LMC resulted in a significantly higher antioxidant activity than was observed for HMC in both rat models. In in vitro studies, LMC caused a significantly higher reduction in the levels of two stable radicals, compared to HMC, and the effect was both dose- and time-dependent. The findings also show that LDL showed strong binding in the case of HMC. These results suggest that LMC has a high antioxidant activity as well as antilipidemic effects, while HMC results in a significant reduction in the levels of pro-oxidants such as LDL in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress in the systemic circulation in metabolic model rats.
Collapse
|
28
|
Bondiolotti G, Cornelli U, Strabbioli RS, Frega NG, Cornelli M, Bareggi SR. Effect of a polyglucosamine on the body weight of male rats: Mechanisms of action. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Anraku M, Fujii T, Kondo Y, Kojima E, Hata T, Tabuchi N, Tsuchiya D, Goromaru T, Tsutsumi H, Kadowaki D, Maruyama T, Otagiri M, Tomida H. Antioxidant properties of high molecular weight dietary chitosan in vitro and in vivo. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Properties of nanopowdered chitosan and its cholesterol lowering effect in rats. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0208-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
31
|
Ruiz-Caro R, Veiga MD. In vitro Evaluation of Acyclovir/Chitosan Floating Systems. MATERIALS 2010; 3:5195-5211. [PMID: 28883376 PMCID: PMC5445812 DOI: 10.3390/ma3125195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/18/2022]
Abstract
Chitosan (CS) floating lyophilized formulations (L) for gastric drug delivery of acyclovir (ACV) have been developed. The freeze-dried formulations were obtained from acidic aqueous suspensions prepared with different ACV/CS ratios. No changes in ACV crystallinity were observed during X-ray diffraction powder studies as a consequence of the manufacturing process. Considering that fed and fasted states modified the intragastric pH, swelling and in vitro dissolution studies were carried out in different acidic media (0.1 M HCl and progressive pH medium) in order to understand the influence of these physiological states on ACV/CS formulations. Swelling behavior of the floating lyophilized formulations was dependent on CS and ACV proportions within L and on medium nature due to pH dependent CS solubility. Furthermore, no interactions between ACV and CS were detected in solid state according to the X-ray studies. In vitro dissolution of ACV from L was influenced by the swelling behavior. However, it is feasible to optimize the ACV/CS ratios to achieve a desired formulation that releases the total quantity of ACV at a specific time. Moreover, floatability was assessed by buoyancy tests. The results demonstrated that the freeze-drying process achieved effective floating systems capable of remaining within the stomach while the total amount of ACV is released from L.
Collapse
Affiliation(s)
- Roberto Ruiz-Caro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain.
| | - María D Veiga
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain.
- Unidad de Biotransformaciones Industriales, Parque Científico de Madrid PTM, 28760-Tres Cantos, Madrid, Spain.
| |
Collapse
|
32
|
Jun SC, Jung EY, Kang DH, Kim JM, Chang UJ, Suh HJ. Vitamin C increases the fecal fat excretion by chitosan in guinea-pigs, thereby reducing body weight gain. Phytother Res 2010; 24:1234-41. [DOI: 10.1002/ptr.2970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Yasufuku T, Anraku M, Kondo Y, Hata T, Hirose J, Kobayashi N, Tomida H. Useful Extend-release Chitosan Tablets with High Antioxidant Activity. Pharmaceutics 2010; 2:245-257. [PMID: 27721354 PMCID: PMC3986719 DOI: 10.3390/pharmaceutics2020245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 05/21/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
The antioxidant properties of different low molecular weight (LMW) chitosans (CS1; 22 kDa, CS2; 38 kDa, CS3; 52 kDa, CS4; 81 kDa) were examined for possible use in extended-release tablets. The criteria used were the ability of the chitosans to reduce Cu2+, and hydroxyl and superoxide radicals and N-centered radicals derived from 1,1'-diphenyl-2-picrylhydrazyl, via the use of ESR spectrometry. CS2 showed the highest scavenging activity. CS1 and CS3, however, were much less effective and CS4 was not a viable antioxidant. The results suggest that CS2 could be useful in combating the development of oxidative stress. A series of chitosan tablets were prepared using a spray drying method and evaluated as an extended-release matrix tablet using theophylline (TPH) as a model drug. The release of TPH from the different MW chitosan tablets increased with increasing MW of the chitosan used. CS2, CS3 and CS4 showed a reasonable release activity, but CS1 showed the shortest release activity. Moreover, the CS2-TPH tablet showed the highest scavenging activity of the three chitosan tablets (CS2-CS4) using 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radicals. These results suggest that a CS2-TPH tablet could be potentially useful in an extended-release matrix tablet with a high antioxidant activity.
Collapse
Affiliation(s)
- Taira Yasufuku
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Makoto Anraku
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Yuko Kondo
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Toshiyuki Hata
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Junzo Hirose
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Nobuyuki Kobayashi
- Dainichiseika Color & Chemicals Mfg. Co., Ltd., 7-6, Nihonbashi Bakuro-cho 1-chome, Chuo-ku, Tokyo, 103-8383, Japan
| | - Hisao Tomida
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan.
| |
Collapse
|
34
|
Liu SH, Chang YH, Chiang MT. Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5795-5800. [PMID: 20397731 DOI: 10.1021/jf100662r] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chitosan is a natural and versatile biomaterial with a blood-glucose-lowering effect in diabetic animals, but the mechanism of action is still unknown. This study was designed to investigate the possible mechanisms involved in the hypoglycemic activity of chitosan in rats with streptozotocin (STZ)-induced diabetes. Male Sprague-Dawley (SD) rats were divided into non-diabetic with cellulose (control), diabetic with cellulose (DM), and diabetic with low- (DM + LCS) and high- (DM + HCS) molecular-weight chitosan groups. After a 4 week feeding study, plasma glucose and fructosamine levels were increased while plasma leptin was decreased in the DM group when compared to the control group. These alternations caused by diabetes could be effectively reversed by both chitosan treatments. The increased gluconeogenesis-related signals including phosphoenolpyruvate carboxykinase (PEPCK) expression and phosphorylations of p38 and AMP-activated kinase (AMPK) in the livers of diabetic rats were attenuated by chitosans. Moreover, chitosan significantly increased muscle glucose uptake-related signals including Akt phosphorylation and glucose transporter-4 (GLUT4) translocation from the cytosol to membrane in the soleus muscles of diabetic rats. These results indicate that chitosan may possess a potential for alleviating type-1 diabetic hyperglycemia through the decrease in liver gluconeogenesis and increase in skeletal muscle glucose uptake and use.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
35
|
Yao HT, Lii CK, Chou RH, Lin JH, Yang HT, Chiang MT. Effect of chitosan on hepatic drug-metabolizing enzymes and oxidative stress in rats fed low- and high-fat diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5187-5193. [PMID: 20334365 DOI: 10.1021/jf903857m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chitosan is sold worldwide as a lipid-lowering functional food and may be taken with certain medications. To investigate the effect of chitosan on drug-metabolizing enzymes and oxidative stress in the liver, male Wistar rats were fed a low- or high-fat diet with cellulose or chitosan for 4 weeks. A significant decrease in cytochrome P450 (CYP) 3A-catalyzed testosterone 6beta-hydroxylation in liver microsomes was observed in rats fed the chitosan with low- and high-fat diets. The expression of CYP 3A1 and 3A2, however, was suppressed by chitosan in rats fed the low-fat diet only. Furthermore, rats fed the low-fat diet with chitosan had lower hepatic glutathione S-transferase (GST) activity and superoxide dismutase activity and higher total tissue and microsomal lipid hydroperoxides. Hepatic alpha-tocopherol was lower in rats fed the chitosan-containing diet. The results suggest that chitosan is likely to modulate CYP 3A activity and protein expression and GST activity partially in a dietary fat-dependent manner. This change may cause a decrease in the metabolism of drugs catalyzed by these enzymes in liver tissues. Moreover, decrease of alpha-tocopherol level and SOD activity by chitosan partly accounts for the increase of hepatic lipid peroxidation.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
36
|
Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, Cooke M, Earnest CP, Greenwood M, Kalman DS, Kerksick CM, Kleiner SM, Leutholtz B, Lopez H, Lowery LM, Mendel R, Smith A, Spano M, Wildman R, Willoughby DS, Ziegenfuss TN, Antonio J. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr 2010. [PMCID: PMC2853497 DOI: 10.1186/1550-2783-7-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients.
Collapse
|
37
|
Tomida H, Fujii T, Furutani N, Michihara A, Yasufuku T, Akasaki K, Maruyama T, Otagiri M, Gebicki JM, Anraku M. Antioxidant properties of some different molecular weight chitosans. Carbohydr Res 2009; 344:1690-6. [DOI: 10.1016/j.carres.2009.05.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/27/2009] [Accepted: 05/07/2009] [Indexed: 11/29/2022]
|
38
|
Bangoura M, Wenshui X, Jiali Z. In vitro Binding Capacity of Cholesterol and Bile Salts by Partially Depolymerized Chitosans. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/ajft.2009.126.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
A novel supramolecular compound 2,2′-bipyridyl-phosphotungstic acid: synthesis and catalysis. Carbohydr Res 2009; 344:679-82. [DOI: 10.1016/j.carres.2009.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 12/21/2008] [Accepted: 01/13/2009] [Indexed: 11/21/2022]
|
40
|
Rosseinsky DR, Winlove CP, Strawbridge SM, James CR, Kersey TL. Comparative amperometry on ocular-surgery electrolytes in eye-splinter trauma from galvanized-steel electrochemistry. J APPL ELECTROCHEM 2009. [DOI: 10.1007/s10800-009-9839-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Anraku M, Fujii T, Furutani N, Kadowaki D, Maruyama T, Otagiri M, Gebicki JM, Tomida H. Antioxidant effects of a dietary supplement: reduction of indices of oxidative stress in normal subjects by water-soluble chitosan. Food Chem Toxicol 2008; 47:104-9. [PMID: 18996432 DOI: 10.1016/j.fct.2008.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/08/2008] [Accepted: 10/15/2008] [Indexed: 11/30/2022]
Abstract
The effect of water-soluble chitosan, a natural polymer derived from chitin, on indices of oxidative stress was investigated in normal volunteers. Treatment with chitosan for 4 weeks produced a significant decrease in levels of plasma glucose, atherogenic index and led to increase in high density lipoprotein cholesterol (HDL). Chitosan treatment also lowered the ratio of oxidized to reduced albumin and increased total plasma antioxidant activity (TPA). There was good correlation between TPA and oxidized albumin ratio. The results indicate that oxidized albumin ratio represents a potentially useful marker of oxidative stress. In in vitro studies, albumin carbonyls and hydroperoxides were significantly decreased in a time-dependent manner in the presence of chitosan, compared with controls (p<0.05). Chitosan also reduced two stable radicals in a dose- and time-dependent manner. The results suggest that chitosan has a direct antioxidant activity in systemic circulation by lowering the indices of oxidative stress in both in vitro and in vivo studies. This may confer benefits additional to the reduction in plasma carbohydrate and increase in HDL levels. It may also inhibit oxidation of serum albumin commonly observed in patients undergoing hemodialysis, resulting in reduction of oxidative stress associated with uremia.
Collapse
Affiliation(s)
- Makoto Anraku
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Antioxidant protection of human serum albumin by chitosan. Int J Biol Macromol 2008; 43:159-64. [DOI: 10.1016/j.ijbiomac.2008.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/02/2008] [Accepted: 04/10/2008] [Indexed: 11/20/2022]
|
43
|
Yao HT, Huang SY, Chiang MT. A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food Chem Toxicol 2008; 46:1525-34. [PMID: 18255211 DOI: 10.1016/j.fct.2007.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 11/27/2007] [Accepted: 12/09/2007] [Indexed: 11/25/2022]
Abstract
The hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan were evaluated in streptozotocin (STZ)-induced diabetic rats. Rats were divided into three groups of normal rats (Experiment I) and three groups of diabetic rats (Experiment II). The first group received a cellulose (control) diet, the second group received a low MW (1.4 x 10(4)Da) chitosan diet and the third group received a high MW (1.0 x 10(6)Da) chitosan diet. All three diets were containing 0.5% cholesterol. Experiment I: rats fed with high MW or low MW chitosan diet had increased high density lipoprotein (HDL) cholesterol. However, chitosan did not affect plasma glucose in normal rats. Experiment II: significantly decreased plasma glucose and total cholesterol and increased HDL cholesterol and fecal cholesterol excretion were observed in diabetic rats fed with high MW chitosan diet than animals fed with cellulose diet. However, no statistical significant difference in plasma glucose and total cholesterol was observed in diabetic rats fed with low MW chitosan. The total content of SCFAs in cecum was significantly increased and the ratio of acetate to propionate was slight but significantly decreased in diabetic rats after consuming high MW chitosan diet. The activities of hepatic hexokinase were significantly increased and the intestinal disaccharidases including sucrase and maltase were significantly decreased in normal and diabetic rats fed with high MW chitosan diet. Results obtained from the present study demonstrated the potential of high MW chitosan in reducing hyperglycemia and hypercholesterolemia in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | | | | |
Collapse
|
44
|
Kittikaiwan P, Powthongsook S, Pavasant P, Shotipruk A. Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Moon MS, Lee MS, Kim CT, Kim Y. Dietary chitosan enhances hepatic CYP7A1 activity and reduces plasma and liver cholesterol concentrations in diet-induced hypercholesterolemia in rats. Nutr Res Pract 2007; 1:175-9. [PMID: 20368934 PMCID: PMC2849018 DOI: 10.4162/nrp.2007.1.3.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 07/13/2007] [Accepted: 08/06/2007] [Indexed: 11/20/2022] Open
Abstract
The present study was performed to elucidate the hypocholesterolemic action of chitosan on the diet-induced hypercholesterolemia in rats. Male Sprague-Dawley rats (n=24) were fed with chitosan-free diet (Control), diets containing 2% or 5% chitosan for 4 weeks. Hypercholesterolemia was induced by adding 1% cholesterol and 0.5% cholic acid to all diets. Body weight gain and food intake of rats did not differ among the groups. The chitosan treated groups showed significant improvement in the plasma concentration of total cholesterol and LDL-cholesterol compared to the control group (p<0.05). Also, the chitosan treated groups decreased the liver concentration of total lipid and total cholesterol compared to the control group (p<0.05). The activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in the conversion of cholesterol to bile acids, was increased by 123% and 165% for the 2% or 5% chitosan diets, respectively. These findings suggest that enhancement of hepatic CYP7A1 activity may be a mechanism, which can partially account for the hypocholesterolemic effect of dietary chitosan in cholesterol metabolism.
Collapse
Affiliation(s)
- Min-Sun Moon
- Department of Food and Nutritional Sciences, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | |
Collapse
|
46
|
XIONG SHUANGLI, LI ANLIN, JIN ZHENGYU, CHEN MING. EFFECTS OF ORAL CHONDROITIN SULFATE ON LIPID AND ANTIOXIDANT METABOLISMS IN RATS FED A HIGH-FAT DIET. J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2007.00115.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Bondiolotti G, Bareggi SR, Frega NG, Strabioli S, Cornelli U. Activity of two different polyglucosamines, L112 and FF45, on body weight in male rats. Eur J Pharmacol 2007; 567:155-8. [PMID: 17482159 DOI: 10.1016/j.ejphar.2007.03.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 03/13/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
L112 and FF45 are two polyglucosamines with similar characteristics and molecular weights. Three groups of 15 young male rats each were fed a standard diet or a diet containing 2% L112 or FF45 for 4 weeks, and we measured their body weight; water and food intake; triglyceride and total, low-density lypoproteins (LDL) and high-density lypoproteins (HDL) cholesterol levels; and the amount of feces and fecal water and lipid concentrations. The results showed that both L112 and FF45 reduced the increase in body weight in comparison with controls (respectively 152+/-18.7 g and 155+/-18.7 g vs 166+/-18.1 g; ANOVA P<0.05). Total food intake during the study period was significantly greater in the animals treated with L112 or FF45 (respectively 780+/-49.9 g and 787+/-61.7 g vs 742+/-53.0 g), with a significant loss of "food efficiency". Water intake was similar in all three groups. There was no significant change in plasma lipid profiles in any of the groups except for a significant decrease in HDL cholesterol in the animals treated with L112. Twenty-four-hour fecal weight was 7.8+/-1.70 g in the controls, 10.1+/-1.98 g in the rats treated with L112, and 9.0+/-1.21 g in those treated with FF45 (Dunnet's test vs controls: P<0.05). Fecal lipid and water concentrations were significantly higher in the polyglucosamine-treated groups (P<0.05 Dunnet's test).
Collapse
Affiliation(s)
- Giampietro Bondiolotti
- Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, University of Milan, Italy
| | | | | | | | | |
Collapse
|
48
|
Wibowo S, Savant V, Cherian G, Savage TF, Velazquez G, Torres JA. A Feeding Study to Assess Nutritional Quality and Safety of Surimi Wash Water Proteins Recovered by a Chitosan-Alginate Complex. J Food Sci 2007; 72:S179-84. [DOI: 10.1111/j.1750-3841.2007.00291.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Cho IJ, Lee C, Ha TY. Hypolipidemic effect of soluble fiber isolated from seeds of Cassia tora Linn. in rats fed a high-cholesterol diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:1592-6. [PMID: 17300158 DOI: 10.1021/jf0622127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Soluble fibers isolated from the seeds of Cassia tora Linn. (SFC) have attracted considerable attention in recent years due to their phenomenal rheological behavior. In this study were investigated the effects of SFC on lipid metabolism. Male Sprague-Dawley rats were fed one of three experimental diets, a normal diet, a high-cholesterol diet, or a high-cholesterol diet with 5% SFC, for 5 weeks. The serum concentration of total cholesterol in rats fed SFC was 27% lower (p < 0.05) compared to that of the control group, but the serum high-density lipoprotein cholesterol level was increased in the SFC group. Liver total cholesterol and triglyceride levels were reduced significantly (p < 0.05) in rats fed the SFC diet. In addition, fecal bile acid and lipid excretion was significantly increased by SFC consumption. These results indicate that SFC enhances fecal lipid excretion and may cause a reduction in serum and hepatic lipid concentrations in rats.
Collapse
Affiliation(s)
- Il Jin Cho
- Division of Food Function Research, Korea Food Research Institute, 46-1 Baekhyun-Dong, Bundang-Gu, Songnam-Si, Kyunggi-Do 463-746, Republic of Korea
| | | | | |
Collapse
|
50
|
Liu B, Liu WS, Han BQ, Sun YY. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol 2007; 13:725-31. [PMID: 17278195 PMCID: PMC4066005 DOI: 10.3748/wjg.v13.i5.725] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of chitooligosaccharides on proliferation of pancreatic islet cells, release of insulin and 2 h plasma glucose in streptozotocin-induced diabetic rats.
METHODS: In vitro, the effect of chitooligosaccharides on proliferation of pancreatic islet cells and release of insulin was detected with optical microscopy, colorimetric assay, and radioimmunoassay respectively. In vivo, the general clinical symptoms, 2 h plasma glucose, urine glucose, oral glucose tolerance were examined after sixty days of feeding study to determine the effect of chitooligosaccharides in streptozotocin-induced diabetic rats.
RESULTS: Chitooligosaccharides could effectively accelerate the proliferation of pancreatic islet cells. Chitooligosaccharides (100 mg/L) had direct and prominent effect on pancreastic β cells and insulin release from islet cells. All concentrations of chitooligosaccharides could improve the general clinical symptoms of diabetic rats, decrease the 2 h plasma glucose and urine glucose, and normalize the disorders of glucose tolerance.
CONCLUSION: Chitooligosaccharides possess various biological activities and can be used in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Bing Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, Shandong Province, China
| | | | | | | |
Collapse
|