1
|
Qin W, Su R, Chen X, Liang Z, Huang L, Qian X, Yang Y, Qi S, Luo X. Synergistic Anti-Ferroptosis with a Minimalistic, Peroxide-Triggered Carbon Monoxide Donor for Parkinson's Disease. J Med Chem 2025; 68:3547-3558. [PMID: 39895106 DOI: 10.1021/acs.jmedchem.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease, with current treatments primarily focusing on improving dopaminergic activity, providing symptomatic relief but failing to halt disease progression. Ferroptosis drives PD pathogenesis and is a potential therapeutic target. Herein, we introduce a novel peroxide-activated carbon monoxide (CO) donor, PCOD, featuring a streamlined structure designed to potentially enhance blood-brain barrier (BBB) penetration and optimize therapeutic outcomes. PCOD releases CO upon activation by nucleophilic peroxides, e.g., ONOO- and H2O2. This mechanism provides a potent strategy against ferroptosis: first, scavenging peroxides that generate oxidative radicals involved in ferroptosis, and second, CO is proposed to inhibit Fenton chemistry through coordination to Fe2+. In MPTP-treated mice, PCOD prevents dopaminergic neuron loss in the substantia nigra and alleviates PD symptoms. This peroxide-triggered CO release offers a promising and innovative strategy to combat ferroptosis and neurodegeneration in PD.
Collapse
Affiliation(s)
- Wenjie Qin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Ruiqi Su
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Xiaodie Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Zhiyan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Linyan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Xuhong Qian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
2
|
Copplestone D, Coates CJ, Lim J. Low dose γ-radiation induced effects on wax moth (Galleria mellonella) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162742. [PMID: 36906041 DOI: 10.1016/j.scitotenv.2023.162742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Larvae of the greater wax moth Galleria mellonella are common pests of beehives and commercial apiaries, and in more applied settings, these insects act as alternative in vivo bioassays to rodents for studying microbial virulence, antibiotic development, and toxicology. In the current study, our aim was to assess the putative adverse effects of background gamma radiation levels on G. mellonella. To achieve this, we exposed larvae to low (0.014 mGy/h), medium (0.056 mGy/h), and high (1.33 mGy/h) doses of caesium-137 and measured larval pupation events, weight, faecal discharge, susceptibility to bacterial and fungal challenges, immune cell counts, activity, and viability (i.e., haemocyte encapsulation) and melanisation levels. The effects of low and medium levels of radiation were distinguishable from the highest dose rates used - the latter insects weighed the least and pupated earlier. In general, radiation exposure modulated cellular and humoral immunity over time, with larvae showing heightened encapsulation/melanisation levels at the higher dose rates but were more susceptible to bacterial (Photorhabdus luminescens) infection. There were few signs of radiation impacts after 7 days exposure, whereas marked changes were recorded between 14 and 28 days. Our data suggest that G. mellonella demonstrates plasticity at the whole organism and cellular levels when irradiated and offers insight into how such animals may cope in radiologically contaminated environments (e.g. Chornobyl Exclusion Zone).
Collapse
Affiliation(s)
- David Copplestone
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK; Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
3
|
Anderson JM, Boardman AA, Bates R, Zou X, Huang W, Cao L. Hypothalamic TrkB.FL overexpression improves metabolic outcomes in the BTBR mouse model of autism. PLoS One 2023; 18:e0282566. [PMID: 36893171 PMCID: PMC9997972 DOI: 10.1371/journal.pone.0282566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
BTBR T+ Itpr3tf/J (BTBR) mice are used as a model of autism spectrum disorder (ASD), displaying similar behavioral and physiological deficits observed in patients with ASD. Our recent study found that implementation of an enriched environment (EE) in BTBR mice improved metabolic and behavioral outcomes. Brain-derived neurotrophic factor (Bdnf) and its receptor tropomyosin kinase receptor B (Ntrk2) were upregulated in the hypothalamus, hippocampus, and amygdala by implementing EE in BTBR mice, suggesting that BDNF-TrkB signaling plays a role in the EE-BTBR phenotype. Here, we used an adeno-associated virus (AAV) vector to overexpress the TrkB full-length (TrkB.FL) BDNF receptor in the BTBR mouse hypothalamus in order to assess whether hypothalamic BDNF-TrkB signaling is responsible for the improved metabolic and behavioral phenotypes associated with EE. Normal chow diet (NCD)-fed and high fat diet (HFD)-fed BTBR mice were randomized to receive either bilateral injections of AAV-TrkB.FL or AAV-YFP as control, and were subjected to metabolic and behavioral assessments up to 24 weeks post-injection. Both NCD and HFD TrkB.FL overexpressing mice displayed improved metabolic outcomes, characterized as reduced percent weight gain and increased energy expenditure. NCD TrkB.FL mice showed improved glycemic control, reduced adiposity, and increased lean mass. In NCD mice, TrkB.FL overexpression altered the ratio of TrkB.FL/TrkB.T1 protein expression and increased phosphorylation of PLCγ in the hypothalamus. TrkB.FL overexpression also upregulated expression of hypothalamic genes involved in energy regulation and altered expression of genes involved in thermogenesis, lipolysis, and energy expenditure in white adipose tissue and brown adipose tissue. In HFD mice, TrkB.FL overexpression increased phosphorylation of PLCγ. TrkB.FL overexpression in the hypothalamus did not improve behavioral deficits in either NCD or HFD mice. Together, these results suggest that enhancing hypothalamic TrkB.FL signaling improves metabolic health in BTBR mice.
Collapse
Affiliation(s)
- Jacqueline M. Anderson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Amber A. Boardman
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Rhiannon Bates
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Xunchang Zou
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Wei Huang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
4
|
Hernandez SE, Avila-Flores R, De Villa-Meza A, Romano MC. Evaluation of stress response in black-tailed prairie dogs (Cynomys ludovicianus) in arid regions from colonies in Chihuahua Mexico. Gen Comp Endocrinol 2023; 330:114150. [PMID: 36349607 DOI: 10.1016/j.ygcen.2022.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
Abstract
Among all the regulatory homeostatic networks in vertebrates, the activation of the hypothalamic-pituitaryadrenal axis during the stress response, has gained considerable attention, and the measurement of fecal glucocorticoids (FGC) has become an invaluable tool to assess adrenocortical activity related to stressful events in wild and captive animals. However, the use of FGC requires the validation of measurement techniques and the proper selection of the specific hormone according to the study species. The main objective of this study was to identify the dominant glucocorticoid (GC) hormone in the stress response of black-tailed prairie dogs (Cynomys ludovicianus) in an arid grassland of Chihuahua, Mexico. A capture stress challenge in the field was developed to determine if the levels of glucocorticoids (cortisol and corticosterone) both in serum and fecal samples could be attributed to stress in Cynomys ludovicianus. The samples were analysed with the technique of liquid phase radioimmunoassay , and this study showed that both cortisol and corticosterone are present at measurable levels in serum and fecal samples of black-tailed prairie dogs. We found that both GCs were present in similar concentrations in serum, however, corticosterone concentration in fecal samples was higher than cortisol. Likewise, biochemical validations performed in this study to test the assay reached acceptable levels of reliability. Therefore, we confirm that fecal analysis can be implemented as a method to measure stress responses in wild prairie dogs.
Collapse
Affiliation(s)
- S E Hernandez
- Cuerpo Académico en Ciencia Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, CP 87274, Mexico.
| | - R Avila-Flores
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, CP 86150, Mexico
| | - A De Villa-Meza
- Independent consultant, Benito Juárez, Ciudad de México, CP 03610, Mexico
| | - M C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Ciudad de México, CP 07360, Mexico
| |
Collapse
|
5
|
Rico JL, Muñoz-Tabares LF, Lamprea MR, Hurtado-Parrado C. Diazepam Reduces Escape and Increases Closed-Arms Exploration in Gerbils After 5 min in the Elevated Plus-Maze. Front Psychol 2019; 10:748. [PMID: 31001181 PMCID: PMC6454108 DOI: 10.3389/fpsyg.2019.00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
Despite the wide implementation of the elevated plus-maze (EPM) test to assess anxiety-related behaviors in rodents, the interpretation of these measures in gerbils has received limited attention. Here, male gerbils were treated with vehicle or diazepam, followed by a 20-min EPM session. EPM data were subjected to minute-by-minute, 5-min bins and factor analyses. During the first 5-min, gerbils avoided the closed arms in favor of the open arms and diazepam increased open-arms entries; furthermore, a single factor (escape behavior) explained all the analyzed measures. Only after 5-min, gerbils reduced open-arms exploration and three independent factors emerged for each subsequent 5-min bin. These findings suggest that EPM data from gerbils should be analyzed in at least two 5-min bins. Measures from the standard 5-min session seem to be related to an escape response from the EPM through the open arms. Once habituated, measures from the second 5-min bin seem to be related to a conflictive situation: keep trying to escape unsuccessfully (due to open-arms height) or seek protection in the closed arms (unsafe places). Diazepam seems to reduce this conflict by mitigating the escape response (Factor 1 - Anxiety) and increasing closed-arms approach (Factor 2) and risk assessment (Factor 3). Unlike mice and rats, a decrease in open-arms exploration and an increase in risk assessment could be interpreted as an anxiolytic-like effect in gerbils.
Collapse
Affiliation(s)
- Javier Leonardo Rico
- Animal Behavior Laboratory, Fundación Universitaria Konrad Lorenz, Bogotá, Colombia
| | | | - Marisol R. Lamprea
- Neurosciences Laboratory, Psychology Department, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camilo Hurtado-Parrado
- Animal Behavior Laboratory, Fundación Universitaria Konrad Lorenz, Bogotá, Colombia
- Department of Psychology, Troy University, Alabama, AL, United States
| |
Collapse
|
6
|
Sharma P, Dedeurwaerdere S, Vandenberg MAD, Fang K, Johnston LA, Shultz SR, O'Brien TJ, Gilby KL. Neuroanatomical differences in FAST and SLOW rat strains with differential vulnerability to kindling and behavioral comorbidities. Epilepsy Behav 2016; 65:42-48. [PMID: 27866083 DOI: 10.1016/j.yebeh.2016.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The neurobiological factors underlying a predisposition towards developing epilepsy and its common behavioral comorbidities are poorly understood. FAST rats are a strain that has been selectively bred for enhanced vulnerability to kindling, while the SLOW strain has been bred to be resistant to kindling. FAST rats also exhibit behavioral traits reminiscent of those observed in neurodevelopmental disorders (autism spectrum disorder (ASD)/attention-deficit/hyperactivity disorder (ADHD)) commonly comorbid with epilepsy. In this study, we aimed to investigate neuroanatomical differences between these strains that may be associated with a differential vulnerability towards these interrelated disorders. METHODS Ex vivo high-resolution magnetic resonance imaging on adult male FAST and SLOW rat brains was performed to identify morphological differences in regions of interest between the two strains. Behavioral examination using open-field, water consumption, and restraint tests was also conducted on a subgroup of these rats to document their differential ASD/ADHD-like behavior phenotype. Using optical stereological methods, the volume of cerebellar granule, white matter, and molecular layer and number of Purkinje cells were compared in a separate cohort of adult FAST and SLOW rats. RESULTS Behavioral testing demonstrated hyperactivity, impulsivity, and polydipsia in FAST versus SLOW rats, consistent with an ASD/ADHD-like phenotype. Magnetic resonance imaging analysis identified brain structural differences in FAST compared with SLOW rats, including increased volume of the cerebrum, corpus callosum, third ventricle, and posterior inferior cerebellum, while decreased volume of the anterior cerebellar vermis. Stereological measurements on histological slices indicated significantly larger white matter layer volume, reduced number of Purkinje cells, and smaller molecular layer volume in the cerebellum in FAST versus SLOW rats. SIGNIFICANCE These findings provide evidence of structural differences between the brains of FAST and SLOW rats that may be mechanistically related to their differential vulnerability to kindling and associated comorbid ASD/ADHD-like behaviors.
Collapse
Affiliation(s)
- Pragati Sharma
- Department of Medicine, Royal Melbourne Hospital, The Melbourne Brain Centre, University of Melbourne, Melbourne, Australia.
| | - Stefanie Dedeurwaerdere
- Department of Medicine, Royal Melbourne Hospital, The Melbourne Brain Centre, University of Melbourne, Melbourne, Australia; Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | | | - Ke Fang
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Leigh A Johnston
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Sandy R Shultz
- Department of Medicine, Royal Melbourne Hospital, The Melbourne Brain Centre, University of Melbourne, Melbourne, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, The Melbourne Brain Centre, University of Melbourne, Melbourne, Australia
| | - Krista L Gilby
- Department of Medicine, Royal Melbourne Hospital, The Melbourne Brain Centre, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Fujita W, Gomes I, Dove LS, Prohaska D, McIntyre G, Devi LA. Molecular characterization of eluxadoline as a potential ligand targeting mu-delta opioid receptor heteromers. Biochem Pharmacol 2014; 92:448-56. [PMID: 25261794 PMCID: PMC4769596 DOI: 10.1016/j.bcp.2014.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/21/2022]
Abstract
Eluxadoline, an orally active mixed μ opioid receptor (μOR) agonist δ opioid receptor (δOR) antagonist developed for the treatment of diarrhea-predominant irritable bowel syndrome, normalizes gastrointestinal (GI) transit and defecation under conditions of novel environment stress or post-inflammatory altered GI function. Furthermore, compared to loperamide, which is used to treat non-specific diarrhea, the effects of eluxadoline on GI transit occur over a wider dosage range. However, the mechanisms of action of eluxadoline are unclear. In this study, we compared the ability of eluxadoline and loperamide to activate G-protein- and β-arrestin-mediated signaling at μOR homomers or μOR-δOR heteromers in heterologous cells. We also examined the ability of both compounds to reduce castor oil induced diarrhea in wild type (WT) and mice lacking δOR. We find that eluxadoline is more potent than loperamide in eliciting G-protein activity and β-arrestin recruitment in μOR expressing cells. However, in cells expressing μOR-δOR heteromers, the potency of eluxadoline is higher, but its maximal effect is lower than that of loperamide. Moreover, in these cells the signaling mediated by eluxadoline but not loperamide is reduced by μOR-δOR heteromer-selective antibodies. We find that in castor oil-induced diarrhea eluxadoline is more efficacious compared to loperamide in WT mice, and δOR appears to play a role in this process. Taken together these results indicate that eluxadoline behaves as a potent μOR agonist in the absence of δOR, while in the presence of δOR eluxadoline's effects are mediated through the μOR-δOR heteromer.
Collapse
MESH Headings
- Animals
- Arrestins/metabolism
- Castor Oil/adverse effects
- Diarrhea/chemically induced
- Diarrhea/drug therapy
- Humans
- Imidazoles/pharmacology
- Ligands
- Loperamide/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Phenylalanine/analogs & derivatives
- Phenylalanine/pharmacology
- Protein Multimerization
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- beta-Arrestins
Collapse
Affiliation(s)
- Wakako Fujita
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leonard S Dove
- Furiex Pharmaceuticals, Inc., 3900 Paramount Parkway, Suite 150, Morrisville, NC 27560, USA
| | - David Prohaska
- Furiex Pharmaceuticals, Inc., 3900 Paramount Parkway, Suite 150, Morrisville, NC 27560, USA
| | - Gail McIntyre
- Furiex Pharmaceuticals, Inc., 3900 Paramount Parkway, Suite 150, Morrisville, NC 27560, USA
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Rho SG, Kim YS, Choi SC, Lee MY. Sweet food improves chronic stress-induced irritable bowel syndrome-like symptoms in rats. World J Gastroenterol 2014; 20:2365-73. [PMID: 24605034 PMCID: PMC3942840 DOI: 10.3748/wjg.v20.i9.2365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/06/2013] [Accepted: 01/03/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether palatable sweet foods have a beneficial effect on chronic stress-induced colonic motility and inflammatory cytokines. METHODS Adult male rats were divided into 3 groups: control (CON, n = 5), chronic variable stress with chow (CVS-A, n = 6), and chronic variable stress with chow and sweet food (CVS-B, n = 6). The rats were fed standard rodent chow as the chow food and/or AIN-76A as the sweet food. A food preference test for AIN-76A was performed in another group of normal rats (n = 10) for twelve days. Fecal pellet output (FPO) was measured for 6 wk during water bedding stress in the CVS groups. The weight of the adrenal glands, adrenocorticotropic hormone (ACTH) and corticosterone levels in plasma were measured. The expression levels of transforming growth factor-β, interleukin (IL)-2, and interferon-gamma (IFN-γ) were measured in the distal part of colonic tissues and plasma using Western blot analysis. RESULTS In sweet preference test, all rats initially preferred sweet food to chow food. However, the consumption rate of sweet food gradually decreased and reduced to below 50% of total intake eight days after sweet food feeding. Accumulated FPO was higher in the CVS-A group compared with the CVS-B group over time. All stress groups showed significant increases in the adrenal to body weight ratio (CVS-A, 0.14 ± 0.01; CVS-B, 0.14 ± 0.01) compared with the control group (0.12 ± 0.01, P < 0.05). The plasma corticosterone and ACTH levels were significantly higher in the CVS-A (537.42 ± 32.95, 44.44 ± 6.54 pg/mL) and CVS-B (655.07 ± 30.82, 65.46 ± 4.44 pg/mL) groups than in the control group (46.96 ± 13.29, 8.51 ± 1.35 pg/mL, P < 0.05). Notably, the ratio of corticosterone to ACTH was significantly increased in the CVS-A group only. Rats exposed to CVS displayed significantly increased expression of IL-2 and IFN-γ in the plasma and distal colon compared to the control group, whereas this effect was significantly attenuated in the CVS-B group. CONCLUSION These results suggest that concurrent sweet food ingestion during CVS might have an effect on the reduction of stress-induced colonic hyper-motility and pro-inflammatory cytokine production in rats.
Collapse
|
9
|
The role of learning in risk-avoidance strategies during spider-ant interactions. Anim Cogn 2013; 17:185-95. [PMID: 23771493 DOI: 10.1007/s10071-013-0651-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Cognitive abilities used by arthropods, particularly predators, when interacting in a natural context have been poorly studied. Two neotropical sympatric predators, the golden silk spider Nephila clavipes and the ectatommine ant Ectatomma tuberculatum, were observed in field conditions where their interactions occurred regularly due to the exploitation of the same patches of vegetation. Repeated presentations of E. tuberculatum workers ensnared in their web triggered a progressive decrease in the capture response of N. clavipes. All the spiders that stopped trying to catch the ant on the second and/or third trial were individuals that had been bitten during a previous trial. Behavioural tests in natural field conditions showed that after a single confrontation with ant biting, spiders were able to discriminate this kind of prey more quickly from a defenceless prey (fruit flies) and to selectively and completely suppress their catching response. This one-trial aversive learning was still effective after 24 h. Likewise, E. tuberculatum workers entangled once on a N. clavipes web and having succeeded in escaping, learned to escape more quickly, breaking through the web by preferentially cutting spiral threads (sticky traps) rather than radial threads (stronger structural unsticky components) or pursuing the cutting of radials but doing it more quickly. Both strategies, based on a one-trial learning capability, obviously minimize the number of physical encounters between the two powerful opponents and may enhance their fitness by diminishing the risk of potential injuries resulting from predatory interactions.
Collapse
|
10
|
Sheriff MJ, Wheeler H, Donker SA, Krebs CJ, Palme R, Hik DS, Boonstra R. Mountain-top and valley-bottom experiences: the stress axis as an integrator of environmental variability in arctic ground squirrel populations. J Zool (1987) 2012. [DOI: 10.1111/j.1469-7998.2011.00888.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - S. A. Donker
- Department of Zoology; University of British Columbia; Vancouver; BC; Canada
| | - C. J. Krebs
- Department of Zoology; University of British Columbia; Vancouver; BC; Canada
| | - R. Palme
- Department of Biomedical Sciences/Biochemistry; University of Veterinary Medicine; Vienna; Austria
| | - D. S. Hik
- Department of Biological Sciences; University of Alberta; Edmonton; AB; Canada
| | - R. Boonstra
- Centre for the Neurobiology of Stress; University of Toronto Scarborough; Toronto; ON; Canada
| |
Collapse
|
11
|
Cluny NL, Keenan CM, Lutz B, Piomelli D, Sharkey KA. The identification of peroxisome proliferator-activated receptor alpha-independent effects of oleoylethanolamide on intestinal transit in mice. Neurogastroenterol Motil 2009; 21:420-9. [PMID: 19140957 DOI: 10.1111/j.1365-2982.2008.01248.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oleoylethanolamide (OEA) is an endogenous lipid produced in the intestine that mediates satiety by activation of peroxisome proliferator-activated receptor alpha (PPARalpha). OEA inhibits gastric emptying and intestinal motility, but the mechanism of action remains to be determined. We investigated whether OEA inhibits intestinal motility by activation of PPARalpha. PPARalpha immunoreactivity was examined in whole mount preparations of mouse gastrointestinal (GI) tract. The effect of OEA on motility was assessed in wildtype, PPARalpha, cannabinoid CB(1) receptor and CB(2) receptor gene-deficient mice and in a model of accelerated GI transit. In addition, the effect of OEA on motility was assessed in mice injected with the PPARalpha antagonist GW6471, transient receptor potential vanilloid 1 antagonist SB366791 or the glucagon-like peptide 1 antagonist exendin-3(9-39) amide. PPARalpha immunoreactivity was present in neurons in the myenteric and submucosal plexuses throughout the GI tract. OEA inhibited upper GI transit in a dose-dependent manner, but was devoid of an effect on whole gut transit or colonic propulsion. OEA-induced inhibition of motility was still present in PPARalpha, CB(1) and CB(2) receptor gene-deficient mice and in the presence of GW6471, SB366791 and exendin-3(9-39) amide, suggesting neither PPARalpha nor the cannabinoids and other likely receptors are involved in mediating the effects of OEA. OEA blocked stress-induced accelerated upper GI transit at a dose that had no effect on physiological transit. We show that PPARalpha is found in the enteric nervous system, but our results suggest that PPARalpha is not involved in the suppression of motility by OEA.
Collapse
Affiliation(s)
- N L Cluny
- Department of Physiology and Biophysics, Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
12
|
Hirata T, Funatsu T, Keto Y, Akuzawa S, Sasamata M, Miyata K. Inhibitory Effects of Ramosetron, a Potent and Selective 5-HT3–Receptor Antagonist, on Conditioned Fear Stress–Induced Abnormal Defecation and Normal Defecation in Rats: Comparative Studies With Antidiarrheal and Spasmolytic Agents. J Pharmacol Sci 2008; 106:264-70. [DOI: 10.1254/jphs.fp0071943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Kakol-Palm D, Brusberg M, Sand E, Larsson H, Martinez V, Johansson A, von Mentzer B, Påhlman I, Lindström E. Role of tachykinin NK(1) and NK(2) receptors in colonic sensitivity and stress-induced defecation in gerbils. Eur J Pharmacol 2007; 582:123-31. [PMID: 18234189 DOI: 10.1016/j.ejphar.2007.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/23/2007] [Accepted: 12/06/2007] [Indexed: 01/02/2023]
Abstract
The pharmacology of tachykinin NK receptors varies greatly among species. The aim of the present study was to assess the role of NK(1) and NK(2) receptors in mediating colorectal distension-evoked nociception and psychological stress-induced defecation in gerbils, a species with human-like NK receptor pharmacology. The effects of the selective NK(1) and NK(2) receptor antagonists, aprepitant and saredutant, on acute (1 h) restraint stress-evoked defecation and plasma adenocorticotropin (ACTH) levels in gerbils were assessed. The effects of antagonists alone or in combination on colorectal distension-evoked visceral pain in conscious gerbils were evaluated using the visceromotor response as a surrogate marker of pain. Restraint stress increased fecal pellet output 2-3-fold and plasma ACTH levels 9-fold. Aprepitant inhibited the defecatory and endocrine responses to stress by 50%, while saredutant completely normalized the same parameters. Visceral pain responses during colorectal distension were attenuated by both compounds, but aprepitant (19+/-6% inhibition, P<0.01) was slightly more effective than saredutant (10+/-9% inhibition, P<0.05). A combination of both compounds resulted in an additive effect (30+/-10% inhibition, P<0.01). The results demonstrate that NK(1) and NK(2) receptors are involved in stress-related colonic motor alterations and visceral pain responses in gerbils and that combined antagonism provides enhanced inhibition of visceral pain responses. This suggests that for therapeutic use in for instance functional gastrointestinal disorders, dual NK(1)/NK(2) receptor antagonists may provide better clinical outcome than selective compounds.
Collapse
|