1
|
Zhang Y, Wang L, Peng L. The Role of Intestinal Fungi in the Pathogenesis and Treatment of Ulcerative Colitis. Microorganisms 2025; 13:794. [PMID: 40284630 PMCID: PMC12029736 DOI: 10.3390/microorganisms13040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease closely associated with dysbiosis of the gut microbiome, encompassing not only bacterial communities but also fungal populations. Despite the growing recognition of the gut microbiome's role in UC pathogenesis, the contribution of intestinal fungi has only recently garnered significant attention. In this review, we comprehensively examine the characteristics of intestinal fungi in both healthy individuals and UC patients, elucidating their role in disease pathogenesis and their interactions with bacterial communities. Additionally, we explore the impact of intestinal fungi on disease severity and therapeutic responses in UC. Furthermore, we evaluate the therapeutic potential of antifungal agents, probiotics, and fecal microbiota transplantation (FMT) in UC management, emphasizing the critical role of fungi in these treatment modalities. Future research should prioritize elucidating the multifunctional roles of fungi in UC pathogenesis and their implications for treatment strategies. Moreover, the identification of fungal biomarkers associated with FMT efficacy could pave the way for precision medicine approaches in FMT, offering novel insights into personalized therapeutic interventions for UC.
Collapse
Affiliation(s)
- Yujing Zhang
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Lin Wang
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Lihua Peng
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
| |
Collapse
|
2
|
Zheng ZL, Zheng QF, Wang LQ, Liu Y. Bowel preparation before colonoscopy: Consequences, mechanisms, and treatment of intestinal dysbiosis. World J Gastroenterol 2025; 31:100589. [PMID: 39811511 PMCID: PMC11684204 DOI: 10.3748/wjg.v31.i2.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The term "gut microbiota" primarily refers to the ecological community of various microorganisms in the gut, which constitutes the largest microbial community in the human body. Although adequate bowel preparation can improve the results of colonoscopy, it may interfere with the gut microbiota. Bowel preparation for colonoscopy can lead to transient changes in the gut microbiota, potentially affecting an individual's health, especially in vulnerable populations, such as patients with inflammatory bowel disease. However, measures such as oral probiotics may ameliorate these adverse effects. We focused on the bowel preparation-induced changes in the gut microbiota and host health status, hypothesized the factors influencing these changes, and attempted to identify measures that may reduce dysbiosis, thereby providing more information for individualized bowel preparation for colonoscopy in the future.
Collapse
Affiliation(s)
- Ze-Long Zheng
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Qing-Fan Zheng
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Li-Qiang Wang
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yi Liu
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
3
|
Duan D, Wang M, Han J, Li M, Wang Z, Zhou S, Xin W, Li X. Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications. Front Microbiol 2025; 15:1509117. [PMID: 39831120 PMCID: PMC11739165 DOI: 10.3389/fmicb.2024.1509117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The gut microbiota actually shares the host's physical space and affects the host's physiological functions and health indicators through a complex network of interactions with the host. However, its role as a determinant of host health and disease is often underestimated. With the emergence of new technologies including next-generation sequencing (NGS) and advanced techniques such as microbial community sequencing, people have begun to explore the interaction mechanisms between microorganisms and hosts at various omics levels such as genomics, transcriptomics, metabolomics, and proteomics. With the enrichment of multi-omics integrated analysis methods based on the microbiome, an increasing number of complex statistical analysis methods have also been proposed. In this review, we summarized the multi-omics research analysis methods currently used to study the interaction between the microbiome and the host. We analyzed the advantages and limitations of various methods and briefly introduced their application progress.
Collapse
Affiliation(s)
- Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mingyu Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jinyi Han
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Xinjian Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Blakeley-Ruiz JA, Bartlett A, McMillan AS, Awan A, Walsh MV, Meyerhoffer AK, Vintila S, Maier JL, Richie TG, Theriot CM, Kleiner M. Dietary protein source alters gut microbiota composition and function. THE ISME JOURNAL 2025; 19:wraf048. [PMID: 40116459 PMCID: PMC12066410 DOI: 10.1093/ismejo/wraf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
The source of protein in a person's diet affects their total life expectancy. However, the mechanisms by which dietary protein sources differentially impact human health and life expectancy are poorly understood. Dietary choices impact the composition and function of the intestinal microbiota that ultimately modulate host health. This raises the possibility that health outcomes based on dietary protein sources might be driven by interactions between dietary protein and the gut microbiota. In this study, we determined the effects of seven different sources of dietary protein on the gut microbiota of mice using an integrated metagenomics-metaproteomics approach. The protein abundances measured by metaproteomics can provide microbial species abundances, and evidence for the molecular phenotype of microbiota members because measured proteins indicate the metabolic and physiological processes used by a microbial community. We showed that dietary protein source significantly altered the species composition and overall function of the gut microbiota. Different dietary protein sources led to changes in the abundance of microbial proteins involved in the degradation of amino acids and the degradation of glycosylations conjugated to dietary protein. In particular, brown rice and egg white protein increased the abundance of amino acid degrading enzymes. Egg white protein increased the abundance of bacteria and proteins usually associated with the degradation of the intestinal mucus barrier. These results show that dietary protein sources can change the gut microbiota's metabolism, which could have major implications in the context of gut microbiota mediated diseases.
Collapse
Affiliation(s)
- J Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Alexandria Bartlett
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, United States
| | - Arthur S McMillan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Ayesha Awan
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Molly Vanhoy Walsh
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Alissa K Meyerhoffer
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Simina Vintila
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jessie L Maier
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Tanner G Richie
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
5
|
Marzano V, Levi Mortera S, Putignani L. Insights on Wet and Dry Workflows for Human Gut Metaproteomics. Proteomics 2024:e202400242. [PMID: 39740098 DOI: 10.1002/pmic.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
The human gut microbiota (GM) is a community of microorganisms that resides in the gastrointestinal (GI) tract. Recognized as a critical element of human health, the functions of the GM extend beyond GI well-being to influence overall systemic health and susceptibility to disease. Among the other omic sciences, metaproteomics highlights additional facets that make it a highly valuable discipline in the study of GM. Indeed, it allows the protein inventory of complex microbial communities. Proteins with associated taxonomic membership and function are identified and quantified from their constituent peptides by liquid chromatography coupled to mass spectrometry analyses and by querying specific databases (DBs). The aim of this review was to compile comprehensive information on metaproteomic studies of the human GM, with a focus on the bacterial component, to assist newcomers in understanding the methods and types of research conducted in this field. The review outlines key steps in a metaproteomic-based study, such as protein extraction, DB selection, and bioinformatic workflow. The importance of standardization is emphasized. In addition, a list of previously published studies is provided as hints for researchers interested in investigating the role of GM in health and disease states.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Olson S, Welton L, Jahansouz C. Perioperative Considerations for the Surgical Treatment of Crohn's Disease with Discussion on Surgical Antibiotics Practices and Impact on the Gut Microbiome. Antibiotics (Basel) 2024; 13:317. [PMID: 38666993 PMCID: PMC11047551 DOI: 10.3390/antibiotics13040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Crohn's disease, a chronic inflammatory process of the gastrointestinal tract defined by flares and periods of remission, is increasing in incidence. Despite advances in multimodal medical therapy, disease progression often necessitates multiple operations with high morbidity. The inability to treat Crohn's disease successfully is likely in part because the etiopathogenesis is not completely understood; however, recent research suggests the gut microbiome plays a critical role. How traditional perioperative management, including bowel preparation and preoperative antibiotics, further changes the microbiome and affects outcomes is not well described, especially in Crohn's patients, who are unique given their immunosuppression and baseline dysbiosis. This paper aims to outline current knowledge regarding perioperative management of Crohn's disease, the evolving role of gut dysbiosis, and how the microbiome can guide perioperative considerations with special attention to perioperative antibiotics as well as treatment of Mycobacterium avium subspecies paratuberculosis. In conclusion, dysbiosis is common in Crohn's patients and may be exacerbated by malnutrition, steroids, narcotic use, diarrhea, and perioperative antibiotics. Dysbiosis is also a major risk factor for anastomotic leak, and special consideration should be given to limiting factors that further perturb the gut microbiota in the perioperative period.
Collapse
Affiliation(s)
- Shelbi Olson
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.O.); (L.W.)
| | - Lindsay Welton
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.O.); (L.W.)
| | - Cyrus Jahansouz
- Division of Colon and Rectal Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Meade S, Liu Chen Kiow J, Massaro C, Kaur G, Squirell E, Bressler B, Lunken G. Gut microbiome-associated predictors as biomarkers of response to advanced therapies in inflammatory bowel disease: a systematic review. Gut Microbes 2023; 15:2287073. [PMID: 38044504 PMCID: PMC10730146 DOI: 10.1080/19490976.2023.2287073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
Loss of response to therapy in inflammatory bowel disease (IBD) has led to a surge in research focusing on precision medicine. Three systematic reviews have been published investigating the associations between gut microbiota and disease activity or IBD therapy. We performed a systematic review to investigate the microbiome predictors of response to advanced therapy in IBD. Unlike previous studies, our review focused on predictors of response to therapy; so the included studies assessed microbiome predictors before the proposed time of response or remission. We also provide an update of the available data on mycobiomes and viromes. We highlight key themes in the literature that may serve as future biomarkers of treatment response: the abundance of fecal SCFA-producing bacteria and opportunistic bacteria, metabolic pathways related to butyrate synthesis, and non-butyrate metabolomic predictors, including bile acids (BAs), amino acids, and lipids, as well as mycobiome predictors of response.
Collapse
Affiliation(s)
- Susanna Meade
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Jeremy Liu Chen Kiow
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Cristian Massaro
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Gurpreet Kaur
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
| | - Elizabeth Squirell
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Brian Bressler
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Genelle Lunken
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
8
|
Kleikamp HBC, Grouzdev D, Schaasberg P, van Valderen R, van der Zwaan R, Wijgaart RVD, Lin Y, Abbas B, Pronk M, van Loosdrecht MCM, Pabst M. Metaproteomics, metagenomics and 16S rRNA sequencing provide different perspectives on the aerobic granular sludge microbiome. WATER RESEARCH 2023; 246:120700. [PMID: 37866247 DOI: 10.1016/j.watres.2023.120700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
The tremendous progress in sequencing technologies has made DNA sequencing routine for microbiome studies. Additionally, advances in mass spectrometric techniques have extended conventional proteomics into the field of microbial ecology. However, systematic studies that provide a better understanding of the complementary nature of these 'omics' approaches, particularly for complex environments such as wastewater treatment sludge, are urgently needed. Here, we describe a comparative metaomics study on aerobic granular sludge from three different wastewater treatment plants. For this, we employed metaproteomics, whole metagenome, and 16S rRNA amplicon sequencing to study the same granule material with uniform size. We furthermore compare the taxonomic profiles using the Genome Taxonomy Database (GTDB) to enhance the comparability between the different approaches. Though the major taxonomies were consistently identified in the different aerobic granular sludge samples, the taxonomic composition obtained by the different omics techniques varied significantly at the lower taxonomic levels, which impacts the interpretation of the nutrient removal processes. Nevertheless, as demonstrated by metaproteomics, the genera that were consistently identified in all techniques cover the majority of the protein biomass. The established metaomics data and the contig classification pipeline are publicly available, which provides a valuable resource for further studies on metabolic processes in aerobic granular sludge.
Collapse
Affiliation(s)
- Hugo B C Kleikamp
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| | | | - Pim Schaasberg
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van Valderen
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van der Zwaan
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Roel van de Wijgaart
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
9
|
Longitudinal Study of the Effects of Flammulina velutipes Stipe Wastes on the Cecal Microbiota of Laying Hens. mSystems 2023; 8:e0083522. [PMID: 36511708 PMCID: PMC9948703 DOI: 10.1128/msystems.00835-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Because antibiotics have been phased out of use in poultry feed, measures to improve intestinal health have been sought. Dietary fiber may be beneficial to intestinal health by modulating gut microbial composition, but the exact changes it induces remain unclear. In this study, we evaluated the effect of Flammulina velutipes stipe wastes (FVW) on the cecal microbiotas of laying chickens at ages spanning birth to 490 days. Using clonal sequencing and 16S rRNA high-throughput sequencing, we showed that FVW improved the microbial diversity when they under fluctuated. The evolvement of the microbiota enhanced the physiological development of laying hens. Supplementation of FVW enriched the relative abundance of Sutterella, Ruminiclostridium, Synergistes, Anaerostipes, and Rikenellaceae, strengthened the positive connection between Firmicutes and Bacteroidetes, and increased the concentration of short-chain fatty acids (SCFAs) in early life. FVW maintains gut microbiota homeostasis by regulating Th1, Th2, and Th17 balance and secretory IgA (S-IgA) level. In conclusion, we showed that FVW induces microbial changes that are potentially beneficial for intestinal immunity. IMPORTANCE Dietary fiber is popularly used in poultry farming to improve host health and metabolism. Microbial composition is known to be influenced by dietary fiber use, although the exact FVW-induced changes remain unclear. This study provided a first comparison of the effects of FVW and the most commonly used antibiotic growth promoter (flavomycin) on the cecal microbiotas of laying hens from birth to 490 days of age. We found that supplementation with FVW altered cecal microbial composition, thereby affecting the correlation network between members of the microbiota, and subsequently affecting the intestinal immune homeostasis.
Collapse
|
10
|
Morrison AG, Sarkar S, Umar S, Lee STM, Thomas SM. The Contribution of the Human Oral Microbiome to Oral Disease: A Review. Microorganisms 2023; 11:318. [PMID: 36838283 PMCID: PMC9962706 DOI: 10.3390/microorganisms11020318] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent methods of microbiome characterization including cutting edge omics, databases for the microbiome, and areas with current gaps in knowledge. This article also describes reports on microorganisms contained in the oral microbiome which include viruses, archaea, fungi, and bacteria, and provides an in-depth analysis of their significant roles in tissue homeostasis. Finally, we detail key bacteria involved in oral disease, including oral cancer, and the current research surrounding their role in stimulation of inflammatory cytokines, the role of gingival crevicular fluid in periodontal disease, the creation of a network of interactions between microorganisms, the influence of the planktonic microbiome and cospecies biofilms, and the implications of antibiotic resistance. This paper provides a comprehensive literature analysis while also identifying gaps in knowledge to enable future studies to be conducted.
Collapse
Affiliation(s)
- Austin Gregory Morrison
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- 1717 Claflin Road, 136 Ackert Hall, Manhattan, KS 66506, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- 3901 Rainbow Blvd., 4031 Wahl Hall East, MS 3040, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Salvato F, Vintila S, Finkel OM, Dangl JL, Kleiner M. Evaluation of Protein Extraction Methods for Metaproteomic Analyses of Root-Associated Microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:977-988. [PMID: 35876747 DOI: 10.1094/mpmi-05-22-0116-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metaproteomics is a powerful tool for the characterization of metabolism, physiology, and functional interactions in microbial communities, including plant-associated microbiota. However, the metaproteomic methods that have been used to study plant-associated microbiota are very laborious and require large amounts of plant tissue, hindering wider application of these methods. We optimized and evaluated different protein extraction methods for metaproteomics of plant-associated microbiota in two different plant species (Arabidopsis and maize). Our main goal was to identify a method that would work with low amounts of input material (40 to 70 mg) and that would maximize the number of identified microbial proteins. We tested eight protocols, each comprising a different combination of physical lysis method, extraction buffer, and cell-enrichment method on roots from plants grown with synthetic microbial communities. We assessed the performance of the extraction protocols by liquid chromatography-tandem mass spectrometry-based metaproteomics and found that the optimal extraction method differed between the two species. For Arabidopsis roots, protein extraction by beating whole roots with small beads provided the greatest number of identified microbial proteins and improved the identification of proteins from gram-positive bacteria. For maize, vortexing root pieces in the presence of large glass beads yielded the greatest number of microbial proteins identified. Based on these data, we recommend the use of these two methods for metaproteomics with Arabidopsis and maize. Furthermore, detailed descriptions of the eight tested protocols will enable future optimization of protein extraction for metaproteomics in other dicot and monocot plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, U.S.A
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, U.S.A
| | - Omri M Finkel
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, U.S.A
| |
Collapse
|
12
|
Wang B, Zhong H, Liu Y, Ruan L, Kong Z, Mou X, Wu L. Diet drives the gut microbiome composition and assembly processes in winter migratory birds in the Poyang Lake wetland, China. Front Microbiol 2022; 13:973469. [PMID: 36212828 PMCID: PMC9537367 DOI: 10.3389/fmicb.2022.973469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The complex gut bacterial communities may facilitate the function, distribution, and diversity of birds. For migratory birds, long-distance traveling poses selection pressures on their gut microbiota, ultimately affecting the birds’ health, fitness, ecology, and evolution. However, our understanding of mechanisms that underlie the assembly of the gut microbiome of migratory birds is limited. In this study, the gut microbiota of winter migratory birds in the Poyang Lake wetland was characterized using MiSeq sequencing of 16S rRNA genes. The sampled bird included herbivorous, carnivorous, and omnivorous birds from a total of 17 species of 8 families. Our results showed that the gut microbiota of migratory birds was dominated by four major bacterial phyla: Firmicutes (47.8%), Proteobacteria (18.2%), Fusobacteria (12.6%), and Bacteroidetes (9.1%). Dietary specialization outweighed the phylogeny of birds as an important factor governing the gut microbiome, mainly through regulating the deterministic processes of homogeneous selection and stochastic processes of homogeneous dispersal balance. Moreover, the omnivorous had more bacterial diversity than the herbivorous and carnivorous. Microbial networks for the gut microbiome of the herbivorous and carnivorous were less integrated, i.e., had lower average node degree and greater decreased network stability upon node attack removal than those of the omnivorous birds. Our findings advance the understanding of host-microbiota interactions and the evolution of migratory bird dietary flexibility and diversification.
Collapse
Affiliation(s)
- Binhua Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Hui Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Yajun Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Luzhang Ruan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Zhaoyu Kong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, OH, United States
- *Correspondence: Xiaozhen Mou,
| | - Lan Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
- Lan Wu,
| |
Collapse
|
13
|
Blakeley-Ruiz JA, McClintock CS, Shrestha HK, Poudel S, Yang ZK, Giannone RJ, Choo JJ, Podar M, Baghdoyan HA, Lydic R, Hettich RL. Morphine and high-fat diet differentially alter the gut microbiota composition and metabolic function in lean versus obese mice. ISME COMMUNICATIONS 2022; 2:66. [PMID: 37938724 PMCID: PMC9723762 DOI: 10.1038/s43705-022-00131-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2023]
Abstract
There are known associations between opioids, obesity, and the gut microbiome, but the molecular connection/mediation of these relationships is not understood. To better clarify the interplay of physiological, genetic, and microbial factors, this study investigated the microbiome and host inflammatory responses to chronic opioid administration in genetically obese, diet-induced obese, and lean mice. Samples of feces, urine, colon tissue, and plasma were analyzed using targeted LC-MS/MS quantification of metabolites, immunoassays of inflammatory cytokine levels, genome-resolved metagenomics, and metaproteomics. Genetic obesity, diet-induced obesity, and morphine treatment in lean mice each showed increases in distinct inflammatory cytokines. Metagenomic assembly and binning uncovered over 400 novel gut bacterial genomes and species. Morphine administration impacted the microbiome's composition and function, with the strongest effect observed in lean mice. This microbiome effect was less pronounced than either diet or genetically driven obesity. Based on inferred microbial physiology from the metaproteome datasets, a high-fat diet transitioned constituent microbes away from harvesting diet-derived nutrients and towards nutrients present in the host mucosal layer. Considered together, these results identified novel host-dependent phenotypes, differentiated the effects of genetic obesity versus diet induced obesity on gut microbiome composition and function, and showed that chronic morphine administration altered the gut microbiome.
Collapse
Affiliation(s)
- J Alfredo Blakeley-Ruiz
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Carlee S McClintock
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Pain Consultants of East Tennessee, PLLC, Knoxville, TN, 37909, USA
| | - Him K Shrestha
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Suresh Poudel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zamin K Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Richard J Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - James J Choo
- Pain Consultants of East Tennessee, PLLC, Knoxville, TN, 37909, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Helen A Baghdoyan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ralph Lydic
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
14
|
Liu C, Boeren S, Rietjens IMCM. Intra- and Inter-individual Differences in the Human Intestinal Microbial Conversion of (-)-Epicatechin and Bioactivity of Its Major Colonic Metabolite 5-(3′,4′-Dihydroxy-Phenyl)-γ-Valerolactone in Regulating Nrf2-Mediated Gene Expression. Front Nutr 2022; 9:910785. [PMID: 35845790 PMCID: PMC9281540 DOI: 10.3389/fnut.2022.910785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 12/28/2022] Open
Abstract
(-)-Epicatechin (EC) is one of the most popular polyphenols present in various food products in daily life. Upon intake, it is intensively metabolized by microbiota in the large intestine. In the present study, intra- and inter-individual variations in this gut microbial conversion of EC and the concomitant formation of its major metabolites, including 5-(3′,4′-dihydroxy phenyl)-γ-valerolactone (3,4-diHPV), were identified and quantified via liquid chromatography triple quadrupole mass spectrometry (LC-TQ-MS) in anaerobic fecal incubations. In addition, the bioactivity of EC and 3,4-diHPV in activating Nrf2-mediated gene expression was tested quantifying their effects in the U2OS Nrf2 CALUX assay (a reporter gene assay that is used to test the potency of chemicals in activation of Nrf2 signaling), and on the expression levels of Nrf2-related proteins in Hepa1c1c7 and Caco-2 cells via nanoLC-MSMS. A quantitative real-time polymerase chain reaction (RT-qPCR) was carried out to confirm selected Nrf2-regulated gene expressions at the mRNA level. Results obtained show that both intra- and inter-individual differences exist in human gut microbial EC degradation and 3,4-diHPV formation, with inter-individual differences being more distinct than intra-individual differences. The metabolite, 3,4-diHPV, showed higher potency in the U2OS Nrf2 CALUX assay than EC itself. Among the obviously altered Nrf2-related proteins, 14 and 10 Nrf2-associated proteins were upregulated to a higher extent upon 3,4-diHPV treatment than in the EC treated group for Hepa1c1c7 and Caco-2 cells, respectively. While only three and four of these Nrf2-associated proteins were induced at a higher level upon EC than upon 3,4-diHPV treatment for Hepa1c1c7 and Caco-2 cells, respectively. RT-qPCR results showed that indeed Nrf2-mediated genes (e.g., Nqo1 and Ugt1a) were only induced significantly in 3,4-diHPV treated and not in EC treated Hepa1c1c7 cells. Taken together, the results suggest that the major colonic EC metabolite, 3,4-diHPV, was more capable of inducing Nrf2-mediated gene expression than its parent compound EC. This implies that the evident inter- and intra-individual differences in the microbial conversion of EC to this major metabolite 3,4-diHPV may affect the overall health-promoting effects of EC consumption related to the Nrf2 pathway activation.
Collapse
Affiliation(s)
- Chen Liu
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Chen Liu
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
15
|
Stamboulian M, Canderan J, Ye Y. Metaproteomics as a tool for studying the protein landscape of human-gut bacterial species. PLoS Comput Biol 2022; 18:e1009397. [PMID: 35302987 PMCID: PMC8967034 DOI: 10.1371/journal.pcbi.1009397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/30/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a powerful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry data to reveal the protein landscapes of these species, which enables the characterization of the expression levels of proteins of different functions and underlying regulatory mechanisms, such as operons. Finally, we were able to recover a large number of open reading frames (ORFs) with spectral support, which were missed by de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-coding genes, but on opposite strands or in different frames. Together, these demonstrate applications of metaproteomics for the characterization of important gut bacterial species. Many reference genomes for studying human gut microbiome are available, but knowledge about how microbial organisms work is limited. Identification of proteins at individual species or community level provides direct insight into the functionality of microbial organisms. By analyzing more than a thousand metaproteomics datasets, we examined protein landscapes of more than two thousands of microbial species that may be important to human health and diseases. This work demonstrated new applications of metaproteomic datasets for studying individual genomes. We made the analysis results available through a website (called GutBac), which we believe will become a resource for studying microbial species important for human health and diseases.
Collapse
Affiliation(s)
- Moses Stamboulian
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
| | - Jamie Canderan
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
| | - Yuzhen Ye
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sánchez-Sánchez P, Santonja FJ, Benítez-Páez A. Assessment of human microbiota stability across longitudinal samples using iteratively growing-partitioned clustering. Brief Bioinform 2022; 23:6539136. [PMID: 35226073 DOI: 10.1093/bib/bbac055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 11/15/2022] Open
Abstract
Microbiome research is advancing rapidly, and every new study should definitively be based on updated methods, trends and milestones in this field to avoid the wrong interpretation of results. Most human microbiota surveys rely on data captured from snapshots-single data points from subjects-and have permitted uncovering the recognized interindividual variability and major covariates of such microbial communities. Currently, changes in individualized microbiota profiles are under the spotlight to serve as robust predictors of clinical outcomes (e.g. weight loss via dietary interventions) and disease anticipation. Therefore, novel methods are needed to provide robust evaluation of longitudinal series of microbiota data with the aim of assessing intrapersonally short-term to long-term microbiota changes likely linked to health and disease states. Consequently, we developed microbiota STability ASsessment via Iterative cluStering (μSTASIS)-a multifunction R package to evaluate individual-centered microbiota stability. μSTASIS targets the recognized interindividual variability inherent to microbiota data to stress the tight relationships observed among and characteristic of longitudinal samples derived from a single individual via iteratively growing-partitioned clustering. The algorithms and functions implemented in this framework deal properly with the sparse and compositional nature of microbiota data. Moreover, the resulting metric is intuitive and independent of beta diversity distance methods and correlation coefficients, thus estimating stability for each microbiota sample rather than giving nonconsensus magnitudes that are difficult to interpret within and between datasets. Our method is freely available under GPL-3 licensing. We demonstrate its utility by assessing gut microbiota stability from three independent studies published previously with multiple longitudinal series of multivariate data and respective metadata.
Collapse
Affiliation(s)
- Pedro Sánchez-Sánchez
- Host-Microbe Interactions in Metabolic Health Laboratory, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Francisco J Santonja
- Department of Statistics and Operational Research, Faculty of Mathematics, University of Valencia (UV) 46100 Burjassot-Valencia, Spain
| | - Alfonso Benítez-Páez
- Host-Microbe Interactions in Metabolic Health Laboratory, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
| |
Collapse
|
17
|
Nalpas N, Hoyles L, Anselm V, Ganief T, Martinez-Gili L, Grau C, Droste-Borel I, Davidovic L, Altafaj X, Dumas ME, Macek B. An integrated workflow for enhanced taxonomic and functional coverage of the mouse fecal metaproteome. Gut Microbes 2022; 13:1994836. [PMID: 34763597 PMCID: PMC8726736 DOI: 10.1080/19490976.2021.1994836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal microbiota plays a key role in shaping host homeostasis by regulating metabolism, immune responses and behavior. Its dysregulation has been associated with metabolic, immune and neuropsychiatric disorders and is accompanied by changes in bacterial metabolic regulation. Although proteomics is well suited for analysis of individual microbes, metaproteomics of fecal samples is challenging due to the physical structure of the sample, presence of contaminating host proteins and coexistence of hundreds of taxa. Furthermore, there is a lack of consensus regarding preparation of fecal samples, as well as downstream bioinformatic analyses following metaproteomics data acquisition. Here we assess sample preparation and data analysis strategies applied to mouse feces in a typical mass spectrometry-based metaproteomic experiment. We show that subtle changes in sample preparation protocols may influence interpretation of biological findings. Two-step database search strategies led to significant underestimation of false positive protein identifications. Unipept software provided the highest sensitivity and specificity in taxonomic annotation of the identified peptides of unknown origin. Comparison of matching metaproteome and metagenome data revealed a positive correlation between protein and gene abundances. Notably, nearly all functional categories of detected protein groups were differentially abundant in the metaproteome compared to what would be expected from the metagenome, highlighting the need to perform metaproteomics when studying complex microbiome samples.
Collapse
Affiliation(s)
- Nicolas Nalpas
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Lesley Hoyles
- Biomolecular Medicine Section, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK,Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Viktoria Anselm
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Tariq Ganief
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Laura Martinez-Gili
- Biomolecular Medicine Section, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Cristina Grau
- Pharmacology unit, Bellvitge Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | | | | | - Xavier Altafaj
- Pharmacology unit, Bellvitge Biomedical Research Institute, University of Barcelona, Barcelona, Spain,Neurophysiology Unit, University of Barcelona – Idibaps, Barcelona, Spain
| | - Marc-Emmanuel Dumas
- Biomolecular Medicine Section, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK,Genomic and Environmental Medicine, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, UK,European Genomic Institute for Diabetes, Inserm Umr 1283, Cnrs Umr 8199, Institut Pasteur De Lille, Lille University Hospital, University of Lille, Lille, France
| | - Boris Macek
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany,CONTACT Boris Macek Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, Auf Der Morgenstelle 15, Tuebingen72076, Germany
| |
Collapse
|
18
|
Thuy-Boun PS, Wang AY, Crissien-Martinez A, Xu JH, Chatterjee S, Stupp GS, Su AI, Coyle WJ, Wolan DW. Quantitative metaproteomics and activity-based protein profiling of patient fecal microbiome identifies host and microbial serine-type endopeptidase activity associated with ulcerative colitis. Mol Cell Proteomics 2022; 21:100197. [PMID: 35033677 PMCID: PMC8941213 DOI: 10.1016/j.mcpro.2022.100197] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays an important yet incompletely understood role in the induction and propagation of ulcerative colitis (UC). Organism-level efforts to identify UC-associated microbes have revealed the importance of community structure, but less is known about the molecular effectors of disease. We performed 16S rRNA gene sequencing in parallel with label-free data-dependent LC-MS/MS proteomics to characterize the stool microbiomes of healthy (n = 8) and UC (n = 10) patients. Comparisons of taxonomic composition between techniques revealed major differences in community structure partially attributable to the additional detection of host, fungal, viral, and food peptides by metaproteomics. Differential expression analysis of metaproteomic data identified 176 significantly enriched protein groups between healthy and UC patients. Gene ontology analysis revealed several enriched functions with serine-type endopeptidase activity overrepresented in UC patients. Using a biotinylated fluorophosphonate probe and streptavidin-based enrichment, we show that serine endopeptidases are active in patient fecal samples and that additional putative serine hydrolases are detectable by this approach compared with unenriched profiling. Finally, as metaproteomic databases expand, they are expected to asymptotically approach completeness. Using ComPIL and de novo peptide sequencing, we estimate the size of the probable peptide space unidentified (“dark peptidome”) by our large database approach to establish a rough benchmark for database sufficiency. Despite high variability inherent in patient samples, our analysis yielded a catalog of differentially enriched proteins between healthy and UC fecal proteomes. This catalog provides a clinically relevant jumping-off point for further molecular-level studies aimed at identifying the microbial underpinnings of UC.
Identified 176 significantly altered protein groups between healthy and UC patients. Serine-type endopeptidase activity is overrepresented in UC patients. Fluorophosphonate ABPP shows that endopeptidases are active in fecal samples. ABPP enrichment helps identify additional putative serine hydrolases in samples. De novo sequencing used to estimate number of MS2 spectra unidentified by ComPIL.
Collapse
Affiliation(s)
- Peter S Thuy-Boun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Ana Y Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Janice H Xu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Sandip Chatterjee
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Gregory S Stupp
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Andrew I Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Walter J Coyle
- Scripps Clinic Gastroenterology Division, La Jolla, CA 92037
| | - Dennis W Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037.
| |
Collapse
|
19
|
Mujagic Z, Kasapi M, Jonkers DMAE, Garcia-Perez I, Vork L, Weerts ZZR, Serrano-Contreras JI, Zhernakova A, Kurilshikov A, Scotcher J, Holmes E, Wijmenga C, Keszthelyi D, Nicholson JK, Posma JM, Masclee AAM. Integrated fecal microbiome-metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome. Gut Microbes 2022; 14:2063016. [PMID: 35446234 PMCID: PMC9037519 DOI: 10.1080/19490976.2022.2063016] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS), several modalities of biological and clinical data must be combined. We aimed to identify profiles of fecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Fecal metabolites were measured using proton nuclear magnetic resonance (1H-NMR) spectroscopy and gut microbiome using shotgun metagenomic sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HCs) with extensive clinical, biological and phenotype information. Data were analyzed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on fecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal (GI) symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavorable stress response related to GI symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS.
Collapse
Affiliation(s)
- Zlatan Mujagic
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands,Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK,CONTACT Zlatan Mujagic Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Melpomeni Kasapi
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Daisy MAE Jonkers
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Isabel Garcia-Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - Lisa Vork
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Zsa Zsa R.M. Weerts
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jose Ivan Serrano-Contreras
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jamie Scotcher
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Elaine Holmes
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK,The Australian National Phenome Center, Harry Perkins Institute, Murdoch University, Perth, Australia
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniel Keszthelyi
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jeremy K Nicholson
- The Australian National Phenome Center, Harry Perkins Institute, Murdoch University, Perth, Australia
| | - Joram M Posma
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Ad AM Masclee
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Simopoulos CMA, Figeys D, Lavallée-Adam M. Novel Bioinformatics Strategies Driving Dynamic Metaproteomic Studies. Methods Mol Biol 2022; 2456:319-338. [PMID: 35612752 DOI: 10.1007/978-1-0716-2124-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Constant improvements in mass spectrometry technologies and laboratory workflows have enabled the proteomics investigation of biological samples of growing complexity. Microbiomes represent such complex samples for which metaproteomics analyses are becoming increasingly popular. Metaproteomics experimental procedures create large amounts of data from which biologically relevant signal must be efficiently extracted to draw meaningful conclusions. Such a data processing requires appropriate bioinformatics tools specifically developed for, or capable of handling metaproteomics data. In this chapter, we outline current and novel tools that can perform the most commonly used steps in the analysis of cutting-edge metaproteomics data, such as peptide and protein identification and quantification, as well as data normalization, imputation, mining, and visualization. We also provide details about the experimental setups in which these tools should be used.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
21
|
Blakeley-Ruiz JA, Kleiner M. Considerations for Constructing a Protein Sequence Database for Metaproteomics. Comput Struct Biotechnol J 2022; 20:937-952. [PMID: 35242286 PMCID: PMC8861567 DOI: 10.1016/j.csbj.2022.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Mass spectrometry-based metaproteomics has emerged as a prominent technique for interrogating the functions of specific organisms in microbial communities, in addition to total community function. Identifying proteins by mass spectrometry requires matching mass spectra of fragmented peptide ions to a database of protein sequences corresponding to the proteins in the sample. This sequence database determines which protein sequences can be identified from the measurement, and as such the taxonomic and functional information that can be inferred from a metaproteomics measurement. Thus, the construction of the protein sequence database directly impacts the outcome of any metaproteomics study. Several factors, such as source of sequence information and database curation, need to be considered during database construction to maximize accurate protein identifications traceable to the species of origin. In this review, we provide an overview of existing strategies for database construction and the relevant studies that have sought to test and validate these strategies. Based on this review of the literature and our experience we provide a decision tree and best practices for choosing and implementing database construction strategies.
Collapse
Affiliation(s)
- J. Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Corresponding authors at: Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Corresponding authors at: Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
22
|
Mordant A, Kleiner M. Evaluation of Sample Preservation and Storage Methods for Metaproteomics Analysis of Intestinal Microbiomes. Microbiol Spectr 2021; 9:e0187721. [PMID: 34908431 PMCID: PMC8672883 DOI: 10.1128/spectrum.01877-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 12/20/2022] Open
Abstract
A critical step in studies of the intestinal microbiome using meta-omics approaches is the preservation of samples before analysis. Preservation is essential for approaches that measure gene expression, such as metaproteomics, which is used to identify and quantify proteins in microbiomes. Intestinal microbiome samples are typically stored by flash-freezing and storage at -80°C, but some experimental setups do not allow for immediate freezing of samples. In this study, we evaluated methods to preserve fecal microbiome samples for metaproteomics analyses when flash-freezing is not possible. We collected fecal samples from C57BL/6 mice and stored them for 1 and 4 weeks using the following methods: flash-freezing in liquid nitrogen, immersion in RNAlater, immersion in 95% ethanol, immersion in a RNAlater-like buffer, and combinations of these methods. After storage, we extracted protein and prepared peptides for liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis to identify and quantify peptides and proteins. All samples produced highly similar metaproteomes, except for ethanol-preserved samples that were distinct from all other samples in terms of protein identifications and protein abundance profiles. Flash-freezing and RNAlater (or RNAlater-like treatments) produced metaproteomes that differed only slightly, with less than 0.7% of identified proteins differing in abundance. In contrast, ethanol preservation resulted in an average of 9.5% of the identified proteins differing in abundance between ethanol and the other treatments. Our results suggest that preservation at room temperature in RNAlater or an RNAlater-like solution performs as well as freezing for the preservation of intestinal microbiome samples before metaproteomics analyses. IMPORTANCE Metaproteomics is a powerful tool to study the intestinal microbiome. By identifying and quantifying a large number of microbial, dietary, and host proteins in microbiome samples, metaproteomics provides direct evidence of the activities and functions of microbial community members. A critical step for metaproteomics workflows is preserving samples before analysis because protein profiles are susceptible to fast changes in response to changes in environmental conditions (air exposure, temperature changes, etc.). This study evaluated the effects of different preservation treatments on the metaproteomes of intestinal microbiome samples. In contrast to prior work on preservation of fecal samples for metaproteomics analyses, we ensured that all steps of sample preservation were identical so that all differences could be attributed to the preservation method.
Collapse
Affiliation(s)
- Angie Mordant
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
23
|
Pettersen VK, Antunes LCM, Dufour A, Arrieta MC. Inferring early-life host and microbiome functions by mass spectrometry-based metaproteomics and metabolomics. Comput Struct Biotechnol J 2021; 20:274-286. [PMID: 35024099 PMCID: PMC8718658 DOI: 10.1016/j.csbj.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Humans have a long-standing coexistence with microorganisms. In particular, the microbial community that populates the human gastrointestinal tract has emerged as a critical player in governing human health and disease. DNA and RNA sequencing techniques that map taxonomical composition and genomic potential of the gut community have become invaluable for microbiome research. However, deriving a biochemical understanding of how activities of the gut microbiome shape host development and physiology requires an expanded experimental design that goes beyond these approaches. In this review, we explore advances in high-throughput techniques based on liquid chromatography-mass spectrometry. These omics methods for the identification of proteins and metabolites have enabled direct characterisation of gut microbiome functions and the crosstalk with the host. We discuss current metaproteomics and metabolomics workflows for producing functional profiles, the existing methodological challenges and limitations, and recent studies utilising these techniques with a special focus on early life gut microbiome.
Collapse
Affiliation(s)
- Veronika Kuchařová Pettersen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Pediatric Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for New Antibacterial Strategies, UiT The Arctic University of Norway, Tromsø, Norway
| | - Luis Caetano Martha Antunes
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations, Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Antoine Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
| | - Marie-Claire Arrieta
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into Health-Promoting Effects of Plant MicroRNAs: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14372-14386. [PMID: 34813309 DOI: 10.1021/acs.jafc.1c04737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant-derived microRNAs (miRNAs) play a significant role in human health and are "dark nutrients", as opposed to traditional plant nutrients, as well as important components of food diversification. Studies have revealed that multiple plant-derived miRNA pathways affect human health. First, plant miRNAs regulate plant growth and development and accumulation of metabolites, which alters the food quality and thus indirectly interferes with the health of the host. Moreover, when absorbed in vivo, some miRNAs may target the host cell mRNAs to affect protein expression. In addition, plant miRNAs target and reshape the human gut microbiota (GM), which interferes with the physiology and metabolism of the host. Therefore, miRNAs play a significant role in the cross-kingdom communication of plants, GM, and the host and in maintaining a balance of the three. Future contributions of plant miRNAs can bring new perspectives and opportunities to better understand food nutrition and health care research, which will facilitate the right exploitation of plant resources.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
25
|
Evaluation of RNA later as a Field-Compatible Preservation Method for Metaproteomic Analyses of Bacterium-Animal Symbioses. Microbiol Spectr 2021; 9:e0142921. [PMID: 34704828 PMCID: PMC8549751 DOI: 10.1128/spectrum.01429-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Field studies are central to environmental microbiology and microbial ecology, because they enable studies of natural microbial communities. Metaproteomics, the study of protein abundances in microbial communities, allows investigators to study these communities "in situ," which requires protein preservation directly in the field because protein abundance patterns can change rapidly after sampling. Ideally, a protein preservative for field deployment works rapidly and preserves the whole proteome, is stable in long-term storage, is nonhazardous and easy to transport, and is available at low cost. Although these requirements might be met by several protein preservatives, an assessment of their suitability under field conditions when targeted for metaproteomic analyses is currently lacking. Here, we compared the protein preservation performance of flash freezing and the preservation solution RNAlater using the marine gutless oligochaete Olavius algarvensis and its symbiotic microbes as a test case. In addition, we evaluated long-term RNAlater storage after 1 day, 1 week, and 4 weeks at room temperature (22°C to 23°C). We evaluated protein preservation using one-dimensional liquid chromatography-tandem mass spectrometry. We found that RNAlater and flash freezing preserved proteins equally well in terms of total numbers of identified proteins and relative abundances of individual proteins, and none of the test time points was altered, compared to time zero. Moreover, we did not find biases against specific taxonomic groups or proteins with particular biochemical properties. Based on our metaproteomic data and the logistical requirements for field deployment, we recommend RNAlater for protein preservation of field-collected samples targeted for metaproteomic analyses. IMPORTANCE Metaproteomics, the large-scale identification and quantification of proteins from microbial communities, provide direct insights into the phenotypes of microorganisms on the molecular level. To ensure the integrity of the metaproteomic data, samples need to be preserved immediately after sampling to avoid changes in protein abundance patterns. In laboratory setups, samples for proteomic analyses are most commonly preserved by flash freezing; however, liquid nitrogen or dry ice is often unavailable at remote field locations, due to their hazardous nature and transport restrictions. Our study shows that RNAlater can serve as a low-hazard, easy-to-transport alternative to flash freezing for field preservation of samples for metaproteomic analyses. We show that RNAlater preserves the metaproteome equally well, compared to flash freezing, and protein abundance patterns remain stable during long-term storage for at least 4 weeks at room temperature.
Collapse
|
26
|
D'haeseleer P, Collette NM, Lao V, Segelke BW, Branda SS, Franco M. Shotgun Immunoproteomic Approach for the Discovery of Linear B-Cell Epitopes in Biothreat Agents Francisella tularensis and Burkholderia pseudomallei. Front Immunol 2021; 12:716676. [PMID: 34659206 PMCID: PMC8513525 DOI: 10.3389/fimmu.2021.716676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Peptide-based subunit vaccines are coming to the forefront of current vaccine approaches, with safety and cost-effective production among their top advantages. Peptide vaccine formulations consist of multiple synthetic linear epitopes that together trigger desired immune responses that can result in robust immune memory. The advantages of linear compared to conformational epitopes are their simple structure, ease of synthesis, and ability to stimulate immune responses by means that do not require complex 3D conformation. Prediction of linear epitopes through use of computational tools is fast and cost-effective, but typically of low accuracy, necessitating extensive experimentation to verify results. On the other hand, identification of linear epitopes through experimental screening has been an inefficient process that requires thorough characterization of previously identified full-length protein antigens, or laborious techniques involving genetic manipulation of organisms. In this study, we apply a newly developed generalizable screening method that enables efficient identification of B-cell epitopes in the proteomes of pathogenic bacteria. As a test case, we used this method to identify epitopes in the proteome of Francisella tularensis (Ft), a Select Agent with a well-characterized immunoproteome. Our screen identified many peptides that map to known antigens, including verified and predicted outer membrane proteins and extracellular proteins, validating the utility of this approach. We then used the method to identify seroreactive peptides in the less characterized immunoproteome of Select Agent Burkholderia pseudomallei (Bp). This screen revealed known Bp antigens as well as proteins that have not been previously identified as antigens. Although B-cell epitope prediction tools Bepipred 2.0 and iBCE-EL classified many of our seroreactive peptides as epitopes, they did not score them significantly higher than the non-reactive tryptic peptides in our study, nor did they assign higher scores to seroreactive peptides from known Ft or Bp antigens, highlighting the need for experimental data instead of relying on computational epitope predictions alone. The present workflow is easily adaptable to detecting peptide targets relevant to the immune systems of other mammalian species, including humans (depending upon the availability of convalescent sera from patients), and could aid in accelerating the discovery of B-cell epitopes and development of vaccines to counter emerging biological threats.
Collapse
Affiliation(s)
- Patrik D'haeseleer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicole M Collette
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Victoria Lao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Brent W Segelke
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Steven S Branda
- Molecular and Microbiology Department, Sandia National Laboratories, Livermore, CA, United States
| | - Magdalena Franco
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
27
|
Mintoff D, Borg I, Pace NP. The Clinical Relevance of the Microbiome in Hidradenitis Suppurativa: A Systematic Review. Vaccines (Basel) 2021; 9:1076. [PMID: 34696185 PMCID: PMC8537933 DOI: 10.3390/vaccines9101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Hidradenitis suppurativa is a chronic disease of the pilosebaceous unit. The name of the condition is a testament to the presumed relationship between the disease and the microbiome. The pathophysiology of hidradenitis suppurativa is, however, complex and believed to be the product of a multifactorial interplay between the interfollicular epithelium, pilosebaceous unit, microbiome, as well as genetic and environmental factors. In this review we assimilate the existing literature regarding the role played by the human microbiome in HS in various contexts of the disease, including the pathophysiologic, therapeutic, and potentially, diagnostic as well prognostic. In conclusion, the role played by the microbiome in HS is extensive and relevant and can have bench-to-bedside applications.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Department of Dermatology, Mater Dei Hospital, Triq Id-Donaturi tad-Demm, MSD 2090 Msida, Malta
| | - Isabella Borg
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Medical Genetics Unit, Department of Pathology, Mater Dei Hospital, MSD 2090 Msida, Malta
| | - Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
28
|
McIlvin MR, Saito MA. Online Nanoflow Two-Dimension Comprehensive Active Modulation Reversed Phase-Reversed Phase Liquid Chromatography High-Resolution Mass Spectrometry for Metaproteomics of Environmental and Microbiome Samples. J Proteome Res 2021; 20:4589-4597. [PMID: 34384028 DOI: 10.1021/acs.jproteome.1c00588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metaproteomics is a powerful analytical approach that can assess the functional capabilities deployed by microbial communities in both environmental and biomedical microbiome settings. Yet, the mass spectra resulting from these mixed biological communities are challenging to obtain due to the high number of low intensity peak features. The use of multiple dimensions of chromatographic separation prior to mass spectrometry analyses has been applied to proteomics previously but can require increased sampling handling and instrument time. Here, we demonstrate an automated online comprehensive active modulation two-dimensional liquid chromatography method for metaproteome sample analysis. A high pH PLRP-S column was used in the first dimension followed by low pH separation in the second dimension using dual modulating C18 traps and a C18 column. This method increased the number of unique peptides found in ocean metaproteome samples by more than 50% when compared to a one-dimension separation while using the same amount of sample and instrument time.
Collapse
Affiliation(s)
- Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02563, United States
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02563, United States
| |
Collapse
|
29
|
Li W, Sun Y, Dai L, Chen H, Yi B, Niu J, Wang L, Zhang F, Luo J, Wang K, Guo R, Li L, Zou Q, Ma ZS, Miao Y. Ecological and network analyses identify four microbial species with potential significance for the diagnosis/treatment of ulcerative colitis (UC). BMC Microbiol 2021; 21:138. [PMID: 33947329 PMCID: PMC8097971 DOI: 10.1186/s12866-021-02201-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is one of the primary types of inflammatory bowel disease (IBD), the occurrence of which has been increasing worldwide. Although IBD is an intensively studied human microbiome-associated disease, research on Chinese populations remains relatively limited, particularly on the mucosal microbiome. The present study aimed to analyze the changes in the mucosal microbiome associated with UC from the perspectives of medical ecology and complex network analysis. RESULTS In total, 56 mucosal microbiome samples were collected from 28 Chinese UC patients and their healthy family partners, followed by amplicon sequencing. Based on sequencing data, we analyzed species diversity, shared species, and inter-species interactions at the whole community, main phyla, and core/periphery species levels. We identified four opportunistic "pathogens" (i.e., Clostridium tertium, Odoribacter splanchnicus, Ruminococcus gnavus, and Flavonifractor plautii) with potential significance for the diagnosis and treatment of UC, which were inhibited in healthy individuals, but unrestricted in the UC patients. In addition, we also discovered in this study: (i) The positive-to-negative links (P/N) ratio, which measures the balance of species interactions or inhibition effects in microbiome networks, was significantly higher in UC patients, indicating loss of inhibition against potentially opportunistic "pathogens" associated with dysbiosis. (ii) Previous studies have reported conflicting evidence regarding species diversity and composition between UC patients and healthy controls. Here, significant differences were found at the major phylum and core/periphery scales, but not at the whole community level. Thus, we argue that the paradoxical results found in existing studies are due to the scale effect. CONCLUSIONS Our results reveal changes in the ecology and network structure of the gut mucosal microbiome that might be associated with UC, and these changes might provide potential therapeutic mechanisms of UC. The four opportunistic pathogens that were identified in the present study deserve further investigation in future studies.
Collapse
Affiliation(s)
- Wendy Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Lin Dai
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Hongju Chen
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China.,College of Mathematics, Honghe University, Mengzi, Yunnan Province, China
| | - Bin Yi
- College of Mathematics, Honghe University, Mengzi, Yunnan Province, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Lan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Kunhua Wang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Rui Guo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China
| | - Lianwei Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan, China.
| |
Collapse
|
30
|
Mohr AE, Gumpricht E, Sears DD, Sweazea KL. Recent advances and health implications of dietary fasting regimens on the gut microbiome. Am J Physiol Gastrointest Liver Physiol 2021; 320:G847-G863. [PMID: 33729005 DOI: 10.1152/ajpgi.00475.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calorie restriction is a primary dietary intervention demonstrated over many decades in cellular and animal models to modulate aging pathways, positively affect age-associated diseases and, in clinical studies, to promote beneficial health outcomes. Because long-term compliance with daily calorie restriction has proven problematic in humans several intermittent fasting regimens, including alternate day fasting and time-restricted feeding, have evolved revealing similar clinical benefits as calorie restriction. Despite significant research on the cellular and physiological mechanisms contributing to, and responsible for, these observed benefits, relatively little research has investigated the impact of these various fasting protocols on the gut microbiome (GM). Reduced external nutrient supply to the gut may beneficially alter the composition and function of a "fed" gut microflora. Indeed, the prevalent, obesogenic Western diet can promote deleterious changes in the GM, signaling intermediates involved in lipid and glucose metabolism, and immune responses in the gastrointestinal tract. This review describes recent preclinical and clinical effects of varying fasting regimens on GM composition and associated physiology. Although the number of preclinical and clinical interventions are limited, significant data thus far suggest fasting interventions impact GM composition and physiology. However, there are considerable heterogeneities of study design, methodological considerations, and practical implications. Ongoing research on the health impact of fasting regimens on GM modulation is warranted.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona.,Isagenix International LLC, Gilbert, Arizona
| | | | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona.,School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
31
|
Nichols RG, Davenport ER. The relationship between the gut microbiome and host gene expression: a review. Hum Genet 2021; 140:747-760. [PMID: 33221945 PMCID: PMC7680557 DOI: 10.1007/s00439-020-02237-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Despite the growing knowledge surrounding host-microbiome interactions, we are just beginning to understand how the gut microbiome influences-and is influenced by-host gene expression. Here, we review recent literature that intersects these two fields, summarizing themes across studies. Work in model organisms, human biopsies, and cell culture demonstrate that the gut microbiome is an important regulator of several host pathways relevant for disease, including immune development and energy metabolism, and vice versa. The gut microbiome remodels host chromatin, causes differential splicing, alters the epigenetic landscape, and directly interrupts host signaling cascades. Emerging techniques like single-cell RNA sequencing and organoid generation have the potential to refine our understanding of the relationship between the gut microbiome and host gene expression in the future. By intersecting microbiome and host gene expression, we gain a window into the physiological processes important for fostering the extensive cross-kingdom interactions and ultimately our health.
Collapse
Affiliation(s)
- Robert G. Nichols
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Emily R. Davenport
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
32
|
Wesener DA, Beller ZW, Peters SL, Rajabi A, Dimartino G, Giannone RJ, Hettich RL, Gordon JI. Microbiota functional activity biosensors for characterizing nutrient metabolism in vivo. eLife 2021; 10:e64478. [PMID: 33684031 PMCID: PMC7939548 DOI: 10.7554/elife.64478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Methods for measuring gut microbiota biochemical activities in vivo are needed to characterize its functional states in health and disease. To illustrate one approach, an arabinan-containing polysaccharide was isolated from pea fiber, its structure defined, and forward genetic and proteomic analyses used to compare its effects, versus unfractionated pea fiber and sugar beet arabinan, on a human gut bacterial strain consortium in gnotobiotic mice. We produced 'Microbiota Functional Activity Biosensors' (MFABs) consisting of glycans covalently linked to the surface of fluorescent paramagnetic microscopic glass beads. Three MFABs, each containing a unique glycan/fluorophore combination, were simultaneously orally gavaged into gnotobiotic mice, recovered from their intestines, and analyzed to directly quantify bacterial metabolism of structurally distinct arabinans in different human diet contexts. Colocalizing pea-fiber arabinan and another polysaccharide (glucomannan) on the bead surface enhanced in vivo degradation of glucomannan. MFABs represent a potentially versatile platform for developing new prebiotics and more nutritious foods.
Collapse
Affiliation(s)
- Darryl A Wesener
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt. LouisUnited States
- Center for Gut Microbiome and Nutrition Research, Washington University School of MedicineSt. LouisUnited States
| | - Zachary W Beller
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt. LouisUnited States
- Center for Gut Microbiome and Nutrition Research, Washington University School of MedicineSt. LouisUnited States
| | - Samantha L Peters
- Chemical Sciences Division, Oak Ridge National LaboratoryOak RidgeUnited States
| | - Amir Rajabi
- Mondelez InternationalDeerfieldUnited States
| | | | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National LaboratoryOak RidgeUnited States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National LaboratoryOak RidgeUnited States
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt. LouisUnited States
- Center for Gut Microbiome and Nutrition Research, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
33
|
Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut 2021; 70:595-605. [PMID: 33051190 DOI: 10.1136/gutjnl-2020-321747] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The human gut microbiome is a complex ecosystem, densely colonised by thousands of microbial species. It varies among individuals and depends on host genotype and environmental factors, such as diet and antibiotics. In this review, we focus on stability and resilience as essential ecological characteristics of the gut microbiome and its relevance for human health. Microbial diversity, metabolic flexibility, functional redundancy, microbe-microbe and host-microbe interactions seem to be critical for maintaining resilience. The equilibrium of the gut ecosystem can be disrupted by perturbations, such as antibiotic therapy, causing significant decreases in functional richness and microbial diversity as well as impacting metabolic health. As a consequence, unbalanced states or even unhealthy stable states can develop, potentially leading to or supporting diseases. Accordingly, strategies have been developed to manipulate the gut microbiome in order to prevent or revert unhealthy states caused by perturbations, including faecal microbiota transplantation, supplementation with probiotics or non-digestible carbohydrates, and more extensive dietary modifications. Nevertheless, an increasing number of studies has evidenced interindividual variability in extent and direction of response to diet and perturbations, which has been attributed to the unique characteristics of each individual's microbiome. From a clinical, translational perspective, the ability to improve resilience of the gut microbial ecosystem prior to perturbations, or to restore its equilibrium afterwards, would offer significant benefits. To be effective, this therapeutic approach will likely need a personalised or subgroup-based understanding of individual genetics, diet, gut microbiome and other environmental factors that might be involved.
Collapse
Affiliation(s)
- Marina Fassarella
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
34
|
Yan Z, He F, Xiao F, He H, Li D, Cong L, Lin L, Zhu H, Wu Y, Yan R, Li X, Shan H. A semi-tryptic peptide centric metaproteomic mining approach and its potential utility in capturing signatures of gut microbial proteolysis. MICROBIOME 2021; 9:12. [PMID: 33436102 PMCID: PMC7805185 DOI: 10.1186/s40168-020-00967-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Proteolysis regulation allows gut microbes to respond rapidly to dynamic intestinal environments by fast degradation of misfolded proteins and activation of regulatory proteins. However, alterations of gut microbial proteolytic signatures under complex disease status such as inflammatory bowel disease (IBD, including Crohn's disease (CD) and ulcerative colitis (UC)), have not been investigated. Metaproteomics holds the potential to investigate gut microbial proteolysis because semi-tryptic peptides mainly derive from endogenous proteolysis. RESULTS We have developed a semi-tryptic peptide centric metaproteomic mining approach to obtain a snapshot of human gut microbial proteolysis signatures. This approach employed a comprehensive meta-database, two-step multiengine database search, and datasets with high-resolution fragmentation spectra to increase the confidence of semi-tryptic peptide identification. The approach was validated by discovering altered proteolysis signatures of Escherichia coli heat shock response. Utilizing two published large-scale metaproteomics datasets containing 623 metaproteomes from 447 fecal and 176 mucosal luminal interface (MLI) samples from IBD patients and healthy individuals, we obtain potential signatures of altered gut microbial proteolysis at taxonomic, functional, and cleavage site motif levels. The functional alterations mainly involved microbial carbohydrate transport and metabolism, oxidative stress, cell motility, protein synthesis, and maturation. Altered microbial proteolysis signatures of CD and UC mainly occurred in terminal ileum and descending colon, respectively. Microbial proteolysis patterns exhibited low correlations with β-diversity and moderate correlations with microbial protease and chaperones levels, respectively. Human protease inhibitors and immunoglobulins were mainly negatively associated with microbial proteolysis patterns, probably because of the inhibitory effects of these host factors on gut microbial proteolysis events. CONCLUSIONS This semi-tryptic peptide centric mining strategy offers a label-free approach to discover signatures of in vivo gut microbial proteolysis events if experimental conditions are well controlled. It can also capture in vitro proteolysis signatures to facilitate the evaluation and optimization of experimental conditions. Our findings highlight the complex and diverse proteolytic events of gut microbiome, providing a unique layer of information beyond taxonomic and proteomic abundance. Video abstract.
Collapse
Affiliation(s)
- Zhixiang Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
| | - Feixiang He
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Fei Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Huanhuan He
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Li Cong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Lu Lin
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Huijin Zhu
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yanyan Wu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
35
|
Shanahan F, Ghosh TS, O'Toole PW. The Healthy Microbiome-What Is the Definition of a Healthy Gut Microbiome? Gastroenterology 2021; 160:483-494. [PMID: 33253682 DOI: 10.1053/j.gastro.2020.09.057] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Use of microbiome-based biomarkers in diagnosis, prognosis, risk profiling, and precision therapy requires definition of a healthy microbiome in different populations. To determine features of the intestinal microbiota associated with health, however, we need improved microbiome profiling technologies, with strain-level resolution. We must also learn more about how the microbiome varies among apparently healthy people, how it changes with age, and the effects of diet, medications, ethnicity, geography, and lifestyle. Furthermore, many intestinal microbes, including viruses, phage, fungi, and archaea, have not been characterized, and little is known about their contributions to health and disease.Whether a healthy microbiome can be defined is an important and seemingly simple question, but with a complex answer in continual need of refinement.
Collapse
Affiliation(s)
- Fergus Shanahan
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland; APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
| | - Tarini S Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland; School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland; School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
36
|
Kingkaw A, Nakphaichit M, Suratannon N, Nitisinprasert S, Wongoutong C, Chatchatee P, Krobthong S, Charoenlappanit S, Roytrakul S, Vongsangnak W. Analysis of the infant gut microbiome reveals metabolic functional roles associated with healthy infants and infants with atopic dermatitis using metaproteomics. PeerJ 2020; 8:e9988. [PMID: 33033661 PMCID: PMC7521340 DOI: 10.7717/peerj.9988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
The infant gut microbiome consists of a complex and diverse microbial community. Comprehensive taxonomic and metabolic functional knowledge about microbial communities supports medical and biological applications, such as fecal diagnostics. Among the omics approaches available for the investigation of microbial communities, metaproteomics-based analysis is a very powerful approach; under this method, the activity of microbial communities is explored by investigating protein expression within a sample. Through use of metaproteomics, this study aimed to investigate the microbial community composition of the infant gut to identify different key proteins playing metabolic functional roles in the microbiome of healthy infants and infants with atopic dermatitis in a Thai population-based birth cohort. Here, 18 fecal samples were analyzed by liquid chromatography-tandem mass spectrometry to conduct taxonomic, functional, and pathway-based protein annotation. Accordingly, 49,973 annotated proteins out of 68,232 total proteins were investigated in gut microbiome samples and compared between the healthy and atopic dermatitis groups. Through differentially expressed proteins (DEPs) analysis, 130 significant DEPs were identified between the healthy and atopic dermatitis groups. Among these DEPs, eight significant proteins were uniquely expressed in the atopic dermatitis group. For instance, triosephosphate isomerase (TPI) in Bifidobacteriaceae in the genus Alloscardovia and demethylmenaquinone methyltransferase (DMM) in Bacteroides were shown to potentially play metabolic functional roles related to disease. PPI network analysis revealed seven reporter proteins showing metabolic alterations between the healthy and disease groups associated with the biosynthesis of ubiquinone and other quinones as well as the energy supply. This study serves as a scaffold for microbial community-wide metabolic functional studies of the infant gut microbiome in relation to allergic disease.
Collapse
Affiliation(s)
- Amornthep Kingkaw
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Narissara Suratannon
- Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Chantha Wongoutong
- Department of Statistics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pantipa Chatchatee
- Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Sucheewin Krobthong
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
37
|
Yan J, Wu X, Chen J, Chen Y, Zhang H. Harnessing the strategy of metagenomics for exploring the intestinal microecology of sable (Martes zibellina), the national first-level protected animal. AMB Express 2020; 10:169. [PMID: 32945998 PMCID: PMC7501400 DOI: 10.1186/s13568-020-01103-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023] Open
Abstract
Sable (Martes zibellina), a member of family Mustelidae, order Carnivora, is primarily distributed in the cold northern zone of Eurasia. The purpose of this study was to explore the intestinal flora of the sable by metagenomic library-based techniques. Libraries were sequenced on an Illumina HiSeq 4000 instrument. The effective sequencing data of each sample was above 6000 M, and the ratio of clean reads to raw reads was over 98%. The total ORF length was approximately 603,031, equivalent to 347.36 Mbp. We investigated gene functions with the KEGG database and identified 7140 KEGG ortholog (KO) groups comprising 129,788 genes across all of the samples. We selected a subset of genes with the highest abundances to construct cluster heat maps. From the results of the KEGG metabolic pathway annotations, we acquired information on gene functions, as represented by the categories of metabolism, environmental information processing, genetic information processing, cellular processes and organismal systems. We then investigated gene function with the CAZy database and identified functional carbohydrate hydrolases corresponding to genes in the intestinal microorganisms of sable. This finding is consistent with the fact that the sable is adapted to cold environments and requires a large amount of energy to maintain its metabolic activity. We also investigated gene functions with the eggNOG database; the main functions of genes included gene duplication, recombination and repair, transport and metabolism of amino acids, and transport and metabolism of carbohydrates. In this study, we attempted to identify the complex structure of the microbial population of sable based on metagenomic sequencing methods, which use whole metagenomic data, and to map the obtained sequences to known genes or pathways in existing databases, such as CAZy, KEGG, and eggNOG. We then explored the genetic composition and functional diversity of the microbial community based on the mapped functional categories.
Collapse
|
38
|
Arteta AA, Sánchez-Jiménez M, Dávila DF, Palacios OG, Cardona-Castro N. Biliary Tract Carcinogenesis Model Based on Bile Metaproteomics. Front Oncol 2020; 10:1032. [PMID: 32793466 PMCID: PMC7394022 DOI: 10.3389/fonc.2020.01032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose: To analyze human and bacteria proteomic profiles in bile, exposed to a tumor vs. non-tumor microenvironment, in order to identify differences between these conditions, which may contribute to a better understanding of pancreatic carcinogenesis. Patients and Methods: Using liquid chromatography and mass spectrometry, human and bacterial proteomic profiles of a total of 20 bile samples (7 from gallstone (GS) patients, and 13 from pancreatic head ductal adenocarcinoma (PDAC) patients) that were collected during surgery and taken directly from the gallbladder, were compared. g:Profiler and KEGG (Kyoto Encyclopedia of Genes and Genomes) Mapper Reconstruct Pathway were used as the main comparative platform focusing on over-represented biological pathways among human proteins and interaction pathways among bacterial proteins. Results: Three bacterial infection pathways were over-represented in the human PDAC group of proteins. IL-8 is the only human protein that coincides in the three pathways and this protein is only present in the PDAC group. Quantitative and qualitative differences in bacterial proteins suggest a dysbiotic microenvironment in the PDAC group, supported by significant participation of antibiotic biosynthesis enzymes. Prokaryotes interaction signaling pathways highlight the presence of zeatin in the GS group and surfactin in the PDAC group, the former in the metabolism of terpenoids and polyketides, and the latter in both metabolisms of terpenoids, polyketides and quorum sensing. Based on our findings, we propose a bacterial-induced carcinogenesis model for the biliary tract. Conclusion: To the best of our knowledge this is the first study with the aim of comparing human and bacterial bile proteins in a tumor vs. non-tumor microenvironment. We proposed a new carcinogenesis model for the biliary tract based on bile metaproteomic findings. Our results suggest that bacteria may be key players in biliary tract carcinogenesis, in a long-lasting dysbiotic and epithelially harmful microenvironment, in which specific bacterial species' biofilm formation is of utmost importance. Our finding should be further explored in future using in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Ariel A Arteta
- School of Graduate Studies, CES University, Medellín, Colombia.,Basic Science Research Group, School of Medicine, CES University, Medellín, Colombia.,Associated Professor Department of Pathology, University of Antioquia, Medellín, Colombia
| | | | - Diego F Dávila
- Department of Hepatobiliary and Pancreatic Surgery, CES Clinic, Medellín, Colombia
| | - Oscar G Palacios
- Department of Hepatobiliary and Pancreatic Surgery, CES Clinic, Medellín, Colombia
| | - Nora Cardona-Castro
- School of Graduate Studies, CES University, Medellín, Colombia.,Basic Science Research Group, School of Medicine, CES University, Medellín, Colombia.,Colombian Institute of Tropical Medicine (ICMT), Sabaneta, Colombia
| |
Collapse
|
39
|
A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota. Sci Rep 2020; 10:12411. [PMID: 32709972 PMCID: PMC7381632 DOI: 10.1038/s41598-020-69241-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023] Open
Abstract
Gut microbiota participates in diverse metabolic and homeostatic functions related to health and well-being. Its composition varies between individuals, and depends on factors related to host and microbial communities, which need to adapt to utilize various nutrients present in gut environment. We profiled fecal microbiota in 63 healthy adult individuals using metaproteomics, and focused on microbial CAZy (carbohydrate-active) enzymes involved in glycan foraging. We identified two distinct CAZy profiles, one with many Bacteroides-derived CAZy in more than one-third of subjects (n = 25), and it associated with high abundance of Bacteroides in most subjects. In a smaller subset of donors (n = 8) with dietary parameters similar to others, microbiota showed intense expression of Prevotella-derived CAZy including exo-beta-(1,4)-xylanase, xylan-1,4-beta-xylosidase, alpha-l-arabinofuranosidase and several other CAZy belonging to glycosyl hydrolase families involved in digestion of complex plant-derived polysaccharides. This associated invariably with high abundance of Prevotella in gut microbiota, while in subjects with lower abundance of Prevotella, microbiota showed no Prevotella-derived CAZy. Identification of Bacteroides- and Prevotella-derived CAZy in microbiota proteome and their association with differences in microbiota composition are in evidence of individual variation in metabolic specialization of gut microbes affecting their colonizing competence.
Collapse
|
40
|
Combining proteogenomics and metaproteomics for deep taxonomic and functional characterization of microbiomes from a non-sequenced host. NPJ Biofilms Microbiomes 2020; 6:23. [PMID: 32504001 PMCID: PMC7275042 DOI: 10.1038/s41522-020-0133-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Metaproteomics of gut microbiomes from animal hosts lacking a reference genome is challenging. Here we describe a strategy combining high-resolution metaproteomics and host RNA sequencing (RNA-seq) with generalist database searching to survey the digestive tract of Gammarus fossarum, a small crustacean used as a sentinel species in ecotoxicology. This approach provides a deep insight into the full range of biomasses and metabolic activities of the holobiont components, and differentiates between the intestine and hepatopancreatic caecum.
Collapse
|
41
|
Simopoulos CMA, Ning Z, Zhang X, Li L, Walker K, Lavallée-Adam M, Figeys D. pepFunk: a tool for peptide-centric functional analysis of metaproteomic human gut microbiome studies. Bioinformatics 2020; 36:4171-4179. [DOI: 10.1093/bioinformatics/btaa289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Motivation
Enzymatic digestion of proteins before mass spectrometry analysis is a key process in metaproteomic workflows. Canonical metaproteomic data processing pipelines typically involve matching spectra produced by the mass spectrometer to a theoretical spectra database, followed by matching the identified peptides back to parent-proteins. However, the nature of enzymatic digestion produces peptides that can be found in multiple proteins due to conservation or chance, presenting difficulties with protein and functional assignment.
Results
To combat this challenge, we developed pepFunk, a peptide-centric metaproteomic workflow focused on the analysis of human gut microbiome samples. Our workflow includes a curated peptide database annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG) terms and a gene set variation analysis-inspired pathway enrichment adapted for peptide-level data. Analysis using our peptide-centric workflow is fast and highly correlated to a protein-centric analysis, and can identify more enriched KEGG pathways than analysis using protein-level data. Our workflow is open source and available as a web application or source code to be run locally.
Availability and implementation
pepFunk is available online as a web application at https://shiny.imetalab.ca/pepFunk/ with open-source code available from https://github.com/northomics/pepFunk.
Contact
dfigeys@uottawa.ca
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Krystal Walker
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
42
|
Abstract
Over the past decade, it has become exceedingly clear that the microbiome is a critical factor in human health and disease and thus should be investigated to develop innovative treatment strategies. The field of metagenomics has come a long way in leveraging the advances of next-generation sequencing technologies resulting in the capability to identify and quantify all microorganisms present in human specimens. However, the field of metagenomics is still in its infancy, specifically in regard to the limitations in computational analysis, statistical assessments, standardization, and validation due to vast variability in the cohorts themselves, experimental design, and bioinformatic workflows. This review summarizes the methods, technologies, computational tools, and model systems for characterizing and studying the microbiome. We also discuss important considerations investigators must make when interrogating the involvement of the microbiome in health and disease in order to establish robust results and mechanistic insights before moving into therapeutic design and intervention.
Collapse
|
43
|
Basson AR, Gomez-Nguyen A, Menghini P, Buttó LF, Di Martino L, Aladyshkina N, Osme A, LaSalla A, Fischer D, Ezeji JC, Erkkila HL, Brennan CJ, Lam M, Rodriguez-Palacios A, Cominelli F. Human Gut Microbiome Transplantation in Ileitis Prone Mice: A Tool for the Functional Characterization of the Microbiota in Inflammatory Bowel Disease Patients. Inflamm Bowel Dis 2020; 26:347-359. [PMID: 31750921 PMCID: PMC7012301 DOI: 10.1093/ibd/izz242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a lifelong digestive disease characterized by periods of severe inflammation and remission. To our knowledge, this is the first study showing a variable effect on ileitis severity from human gut microbiota isolated from IBD donors in remission and that of healthy controls in a mouse model of IBD. METHODS We conducted a series of single-donor intensive and nonintensive fecal microbiota transplantation (FMT) experiments using feces from IBD patients in remission and healthy non-IBD controls (N = 9 donors) in a mouse model of Crohn's disease (CD)-like ileitis that develops ileitis in germ-free (GF) conditions (SAMP1/YitFC; N = 96 mice). RESULTS Engraftment studies demonstrated that the microbiome of IBD in remission could have variable effects on the ileum of CD-prone mice (pro-inflammatory, nonmodulatory, or anti-inflammatory), depending on the human donor. Fecal microbiota transplantation achieved a 95% ± 0.03 genus-level engraftment of human gut taxa in mice, as confirmed at the operational taxonomic unit level. In most donors, microbiome colonization abundance patterns remained consistent over 60 days. Microbiome-based metabolic predictions of GF mice with Crohn's or ileitic-mouse donor microbiota indicate that chronic amino/fatty acid (valine, leucine, isoleucine, histidine; linoleic; P < 1e-15) alterations (and not bacterial virulence markers; P > 0.37) precede severe ileitis in mice, supporting their potential use as predictors/biomarkers in human CD. CONCLUSION The gut microbiome of IBD remission patients is not necessarily innocuous. Characterizing the inflammatory potential of each microbiota in IBD patients using mice may help identify the patients' best anti-inflammatory fecal sample for future use as an anti-inflammatory microbial autograft during disease flare-ups.
Collapse
Affiliation(s)
- Abigail R Basson
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Adrian Gomez-Nguyen
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Paola Menghini
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Ludovica F Buttó
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Luca Di Martino
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Natalia Aladyshkina
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Abdullah Osme
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alexandria LaSalla
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Derek Fischer
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica C Ezeji
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Hailey L Erkkila
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Connery J Brennan
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Minh Lam
- Division of Gastrointestinal and Liver Disease, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexander Rodriguez-Palacios
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA,Division of Gastrointestinal and Liver Disease, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA,Division of Gastrointestinal and Liver Disease, University Hospitals Cleveland Medical Center, Cleveland, OH, USA,Address correspondence to: Fabio Cominelli, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Division of Gastrointestinal and Liver Disease, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland OH 44106-5066, USA.
| |
Collapse
|
44
|
Chen Y, Wu G, Zhao Y. Gut Microbiota and Alimentary Tract Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:11-22. [PMID: 32323177 DOI: 10.1007/978-981-15-2385-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gastrointestinal (GI) tract is inhabited by a diverse array of microbes, which play crucial roles in health and disease. Dysbiosis of microbiota has been tightly linked to gastrointestinal inflammatory and malignant diseases. Here we highlight the role of Helicobacter pylori alongside gastric microbiota associated with gastric inflammation and cancer. We summarize the taxonomic and functional aspects of intestinal microbiota linked to inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), and colorectal cancer in clinical investigations. We also discuss microbiome-related animal models. Nevertheless, there are tremendous opportunities to reveal the causality of microbiota in health and disease and detailed microbe-host interaction mechanisms by which how dysbiosis is causally linked to inflammatory disease and cancer, in turn, potentializing clinical interventions with a personalized high efficacy.
Collapse
Affiliation(s)
- Ye Chen
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangyan Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongzhong Zhao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
45
|
Peters DL, Wang W, Zhang X, Ning Z, Mayne J, Figeys D. Metaproteomic and Metabolomic Approaches for Characterizing the Gut Microbiome. Proteomics 2019; 19:e1800363. [PMID: 31321880 DOI: 10.1002/pmic.201800363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The gut microbiome has been shown to play a significant role in human healthy and diseased states. The dynamic signaling that occurs between the host and microbiome is critical for the maintenance of host homeostasis. Analyzing the human microbiome with metaproteomics, metabolomics, and integrative multi-omics analyses can provide significant information on markers for healthy and diseased states, allowing for the eventual creation of microbiome-targeted treatments for diseases associated with dysbiosis. Metaproteomics enables functional activity information to be gained from the microbiome samples, while metabolomics provides insight into the overall metabolic states affecting/representing the host-microbiome interactions. Combining these functional -omic platforms together with microbiome composition profiling allows for a holistic overview on the functional and metabolic state of the microbiome and its influence on human health. Here the benefits of metaproteomics, metabolomics, and the integrative multi-omic approaches to investigating the gut microbiome in the context of human health and diseases are reviewed.
Collapse
Affiliation(s)
- Danielle L Peters
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Wenju Wang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Janice Mayne
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada.,Canadian Institute for Advanced Research, 661 University Ave, Toronto, ON, M5G 1M1, Canada.,The University of Ottawa and Shanghai Institute of Materia Medica Joint Research Center on Systems and Personalized Pharmacology, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| |
Collapse
|
46
|
Lehmann T, Schallert K, Vilchez-Vargas R, Benndorf D, Püttker S, Sydor S, Schulz C, Bechmann L, Canbay A, Heidrich B, Reichl U, Link A, Heyer R. Metaproteomics of fecal samples of Crohn's disease and Ulcerative Colitis. J Proteomics 2019; 201:93-103. [PMID: 31009805 DOI: 10.1016/j.jprot.2019.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/19/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic inflammatory bowel diseases (IBD) of the gastrointestinal tract. This study used non-invasive LC-MS/MS to find disease specific microbial and human proteins which might be used later for an easier diagnosis. Therefore, 17 healthy controls, 11 CD patients and 14 UC patients but also 13 Irritable Bowel Disease (IBS) patients, 8 Colon Adenoma (CA) patients, and 8 Gastric Carcinoma (GCA) patients were investigated. The proteins were extracted from the fecal samples with liquid phenol in a ball mill. Subsequently, the proteins were digested tryptically to peptides and analyzed by an Orbitrap LC-MS/MS. For protein identification and interpretation of taxonomic and functional results, the MetaProteomeAnalyzer software was used. Cluster analysis and non-parametric test (analysis of similarities) separated healthy controls from patients with CD and UC as well as from patients with GCA. Among others, CD and UC correlated with an increase of neutrophil extracellular traps and immune globulins G (IgG). In addition, a decrease of human IgA and the transcriptional regulatory protein RprY from Bacillus fragilis was found for CD and UC. A specific marker in feces for CD was an increased amount of the human enzyme sucrose-isomaltase. SIGNIFICANCE: Crohn's Disease and Ulcerative Colitis are chronic inflammatory diseases of the gastrointestinal tract, whose diagnosis required comprehensive medical examinations including colonoscopy. The impact of the microbial communities in the gut on the pathogenesis of these diseases is poorly understood. Therefore, this study investigated the impact of gut microbiome on these diseases by a metaproteome approach, revealing several disease specific marker proteins. Overall, this indicated that fecal metaproteomics has the potential to be useful as non-invasive tool for a better and easier diagnosis of both diseases.
Collapse
Affiliation(s)
- T Lehmann
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany.
| | - K Schallert
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany.
| | - R Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, MagdeburgLeipziger Str. 44, Magdeburg 39120, Germany.
| | - D Benndorf
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg 39106, Germany.
| | - S Püttker
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany.
| | - S Sydor
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, MagdeburgLeipziger Str. 44, Magdeburg 39120, Germany.
| | - C Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, MagdeburgLeipziger Str. 44, Magdeburg 39120, Germany; Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany.
| | - L Bechmann
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, MagdeburgLeipziger Str. 44, Magdeburg 39120, Germany.
| | - A Canbay
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, MagdeburgLeipziger Str. 44, Magdeburg 39120, Germany.
| | - B Heidrich
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany.
| | - U Reichl
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg 39106, Germany.
| | - A Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, MagdeburgLeipziger Str. 44, Magdeburg 39120, Germany.
| | - R Heyer
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany.
| |
Collapse
|
47
|
Combinatory biotechnological intervention for gut microbiota. Appl Microbiol Biotechnol 2019; 103:3615-3625. [DOI: 10.1007/s00253-019-09727-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
|