1
|
Liu Y, Ai H. Circular RNAs in gynecological cancer: From molecular mechanisms to clinical applications (Review). Oncol Lett 2025; 29:291. [PMID: 40271005 PMCID: PMC12015383 DOI: 10.3892/ol.2025.15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/14/2025] [Indexed: 04/25/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as promising biomarkers and therapeutic targets in gynecological cancer. The present review explored developments in circRNA research in ovarian, endometrial and cervical cancer. circRNA biogenesis, functions and roles in cancer pathogenesis have been discussed, focusing on their potential as diagnostic and prognostic markers. Furthermore, circRNAs mechanisms of action, including miRNA sponging, protein scaffolding and peptide encoding were examined, highlighting specific circRNAs implicated in each cancer type and their clinical significance. The unique properties of circRNAs, such as stability and tissue-specific expression, make them ideal candidates for biomarker development. By synthesizing the currently available literature and identifying future research directions, the present review underscored circRNAs potential to improve gynecological cancer management through novel diagnostic tools, prognostic markers and targeted therapies.
Collapse
Affiliation(s)
- Ying Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Hao Ai
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
2
|
Manjili DA, Babaei FN, Younesirad T, Ghadir S, Askari H, Daraei A. Dysregulated circular RNA and long non-coding RNA-Mediated regulatory competing endogenous RNA networks (ceRNETs) in ovarian and cervical cancers: A non-coding RNA-Mediated mechanism of chemotherapeutic resistance with new emerging clinical capacities. Arch Biochem Biophys 2025; 768:110389. [PMID: 40090441 DOI: 10.1016/j.abb.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Cervical cancer (CC) and ovarian cancer (OC) are among the most common gynecological cancers with significant mortality in women, and their incidence is increasing. In addition to the prominent role of the malignant aspect of these cancers in cancer-related women deaths, chemotherapy drug resistance is a major factor that contributes to their mortality and presents a clinical obstacle. Although the exact mechanisms behind the chemoresistance in these cancers has not been revealed, accumulating evidence points to the dysregulation of non-coding RNAs (ncRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as key contributors. These ncRNAs perform the roles of regulators of signaling pathways linked to tumor formation and chemoresistance. Strong data from various recent studies have uncovered that the main mechanism of these ncRNAs in the induction of chemoresistance of CC and OC is done through a dysregulated miRNA sponge activity as competing endogenous RNA (ceRNA) in the competing endogenous RNA networks (ceRNETs), where a miRNA regulating a messenger RNA (mRNA) is trapped, thereby removing its inhibitory effect on the desired mRNA. Understanding these mechanisms is essential to enhancing treatment outcomes and managing the problem of drug resistance. This review provides a comprehensive overview of lncRNA- and circRNA-mediated ceRNETs as the core process of chemoresistance against the commonly used chemotherapeutics, including cisplatin, paclitaxel, oxaliplatin, carboplatin, and docetaxel in CC and OC. Furthermore, we highlight the clinical potential of these ncRNAs serving as diagnostic indicators of chemotherapy responses and therapeutic targets.
Collapse
Affiliation(s)
- Danial Amiri Manjili
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Naghdi Babaei
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tayebeh Younesirad
- Department of Medical Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sara Ghadir
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Askari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Chen S, Wen JT, Zhang S, Wang JL, Yuan J, Bao HJ, Chen X, Zhao Y. SNORD9 promotes ovarian cancer tumorigenesis via METTL3/IGF2BP2-mediated NFYA m6A modification and is a potential target for antisense oligonucleotide therapy. Life Sci 2025; 368:123527. [PMID: 40044032 DOI: 10.1016/j.lfs.2025.123527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/17/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
C/D box small nucleolar noncoding RNAs (snoRNAs) are known to bind and induce 2'-O-ribose methylation of RNAs, participate in cancer tumorigenesis and development. However, their involvement in regulating m6A modification remains unreported. Analysis of the TCGA database revealed that SNORD9 was an unfavorable prognostic factor for ovarian cancer. Besides, SNORD9 was elevated in ovarian cancer. The overexpression of SNORD9 induced ovarian cancer cell proliferation and migration in vitro and induce tumorigenicity in vivo, increased the m6A modification level by binding to m6A-methyltransferase METTL3 to affect NFYA m6A modification; besides, m6A-reader IGF2BP2 was 2'-O-methylated by SNORD9, thereby affect NFYA mRNA stability, upregulate NFYA and its downstream proteins CCND1, CDK4 and VEGFA, promote ovarian cancer tumorigenesis. ASO-mediated silencing of SNORD9 suppressed tumorigenicity both in vitro and in vivo, and effectively inhibited the growth of patient-derived organoids of ovarian cancer (OC-PDO). In conclusions, we demonstrated for the first time that SNORD9 induces NFYA m6A methylation by binding to m6A methylase METTL3; modifying IGF2BP2 mRNA by 2'-O-methylation and improve NFYA mRNA stability, thus promote the tumorigenesis of ovarian cancer. Targeting ASO to SNORD9 may have efficacy in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Jing-Tao Wen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Song Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jie-Lin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
4
|
Wang Y, Cai D, Kong J, Zhu N, Guan J, Yang Z, Jia S, Huang J, Zheng W, Zheng X. CircGTF2H2C Regulates NLRP3 Dephosphorylation via Modulating PTPN11 Expression in Spinal Cord Injury. Mol Neurobiol 2025:10.1007/s12035-025-04877-7. [PMID: 40237951 DOI: 10.1007/s12035-025-04877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Pathological changes following spinal cord injury (SCI) are characterized by a gradual enlargement of the lesion area, often leading to cavity formation, accompanied by reactive astrocytic hyperplasia and chronic inflammation. Chronic inflammation tends to stimulate astrocyte activation and spinal cavity cavitation. Post-SCI inflammation primarily results from the activation of M1/M2 microglia, with M1 microglia inducing the death of reactive astrocytes in rats, thereby promoting inflammation. Additionally, the NLRP3 inflammasome is critically involved in the post-SCI inflammatory response, as its activation leads to the release of pro-inflammatory cytokines, further contributing to secondary injury and functional impairment. This study aimed to investigate the molecular mechanisms through which circular RNAs (circRNAs), influence the inflammatory response following spinal cord injury, particularly focusing on its role in modulating NLRP3 activation. Animal and cell models were established, and the success of the models and the secretion of factors were evaluated using the BBB locomotor rating scale, RT-qPCR, and WB. The circular structure of circGTF2H2C was verified through AGE, RNase R treatment, and actinomycin D treatment. Additionally, we investigated the interactions between circGTF2H2C and PTPN11, including the analysis of NLRP3 phosphorylation status through WB and Co-IP. Lastly, potential miRNA interactions with circGTF2H2C and PTPN11 were explored through RNA pull-down assays and luciferase reporter assays to confirm binding relationships. This study confirmed that circGTF2H2C was up-regulated in SCI tissues. Experimental results demonstrated that circGTF2H2C regulated the expression of pro-inflammatory factors IL-1β and IL-18. Further investigation revealed that circGTF2H2C played a pro-inflammatory role by regulating the phosphorylation level of NLRP3, while PTPN11 was also found to contribute to SCI induction. In addition, circGTF2H2C also affected SCI by competitively binding miR-1323 to up-regulate PTPN11. In summary, circGTF2H2C regulates NLRP3 dephosphorylation via PTPN11 in spinal cord injury, highlighting its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Yong Wang
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Danyang Cai
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China
| | - Jinsong Kong
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Ning Zhu
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
- Department of Pain Treatment, Taizhou Municipal Hospital, Taizhou, China
| | - Junhui Guan
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Zeyu Yang
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Shunjie Jia
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Jiehe Huang
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China.
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
5
|
Ma S, Su S, Zhang X, Wang X, Yi H. CircRNA encoded-peptide: Potential stock in the transcriptomics market. Life Sci 2025; 372:123643. [PMID: 40246192 DOI: 10.1016/j.lfs.2025.123643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
The emergence of circRNA-encoded peptides has sparked significant debate in recent years as a novel mode of action for circRNAs. A mounting body of evidence suggests that these peptides play vital roles in cancer development and immune responses. This review initially elucidates the presence of circRNA-encoded peptides and delineates their specific functions across various biological processes and pathological conditions. It goes on to furnish illustrative instances to underscore the pivotal involvement of circRNA-encoded peptides in both innate and adaptive immune responses. The study sheds new light on the biological roles of circRNAs, their potential tumor-promoting and tumor-suppressing functions of circRNA-encoded peptides in specific tumor environment, and their significance in immunological contexts. Meanwhile, the limitations of existing studies on circRNA-encoded peptides are discussed in depth. In particular, circRNA-encoded peptides are critically analyzed as biomarkers and therapeutic targets. Intriguingly, the review concludes with a more organized discussion of future research on circRNA-encoded peptides.
Collapse
Affiliation(s)
- Siyuan Ma
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China
| | - Sensen Su
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China; Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiuna Zhang
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China
| | - Xiangxiu Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Gongli Hospital of Pudong New Area, Shanghai 200135, China
| | - Huanfa Yi
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Persano F, Parodi A, Pallaeva T, Kolesova E, Zamyatnin AA, Pokrovsky VS, De Matteis V, Leporatti S, Cascione M. Atomic Force Microscopy: A Versatile Tool in Cancer Research. Cancers (Basel) 2025; 17:858. [PMID: 40075706 PMCID: PMC11899184 DOI: 10.3390/cancers17050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The implementation of novel analytic methodologies in cancer and biomedical research has enabled the quantification of parameters that were previously disregarded only a few decades ago. A notable example of this paradigm shift is the widespread integration of atomic force microscopy (AFM) into biomedical laboratories, significantly advancing our understanding of cancer cell biology and treatment response. AFM allows for the meticulous monitoring of different parameters at the molecular and nanoscale levels, encompassing critical aspects such as cell morphology, roughness, adhesion, stiffness, and elasticity. These parameters can be systematically investigated in correlation with specific cell treatment, providing important insights into morpho-mechanical properties during normal and treated conditions. The resolution of this system holds the potential for its systematic adoption in clinics; its application could produce useful diagnostic information regarding the aggressiveness of cancer and the efficacy of treatment. This review endeavors to analyze the current literature, underscoring the pivotal role of AFM in biomedical research, especially in cancer cases, while also contemplating its prospective application in a clinical context.
Collapse
Affiliation(s)
- Francesca Persano
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
| | - Tatiana Pallaeva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
- Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Ekaterina Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
| | - Andrey A. Zamyatnin
- Department of Biological Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vadim S. Pokrovsky
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
- N.N. Blokhin Medical Research Center of Oncology, 115478 Moscow, Russia
- Patrice Lumumba People’s Friendship University, 117198 Moscow, Russia
| | - Valeria De Matteis
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Mariafrancesca Cascione
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
7
|
Wang D, Zuo S, Ge J, Qu H, Wu J, Yi N, Shi L, Wang Y, Mo Y, Fan C, He Y, Chen P, Zhou M, Xiang B, Xiong W, Guo W, Zeng Z, Guo C. circTP63-N suppresses the proliferation and metastasis of nasopharyngeal carcinoma via engaging with HSP90AB1 to modulate the YAP1/Hippo signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2025; 68:689-705. [PMID: 39754006 DOI: 10.1007/s11427-023-2737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/02/2024] [Indexed: 02/27/2025]
Abstract
Circular RNAs (circRNAs) play pivotal roles in the development and progression of various diseases, including malignant tumors. However, the biological functions and the underlying mechanisms of many circRNAs remain elusive. In this study, we identified a novel circRNA, circTP63-N, generated through the splicing of exons 2-4 of the TP63 gene in nasopharyngeal carcinoma (NPC). circTP63-N was found to be downregulated in clinical samples of NPC. Both in vitro and in vivo experiments unequivocally demonstrated that circTP63-N inhibits the proliferation and metastasis of NPC cells. Further investigations revealed that circTP63-N interacted with the HSP90AB1 protein, leading to the recruitment of LATS/YAP1 proteins. This, in turn, induced phosphorylation and ubiquitination-dependent degradation of YAP1, resulting in reduced nuclear translocation of YAP1 and inhibition of the transcriptional activation of downstream oncogenic genes, including INHBA, MMP3, and CCNE2. Our findings highlight the identification of circTP63-N, a novel circRNA encoded by an important tumor-relevant gene TP63 and elucidate its molecular mechanism as a tumor suppressor in NPC. These insights offer novel potential molecular markers and therapeutic targets for the clinical diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Furong Laboratory, Changsha, 410078, China
| | - Sicheng Zuo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Furong Laboratory, Changsha, 410078, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Jie Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Na Yi
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Yumin Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Furong Laboratory, Changsha, 410078, China
| | - Wenjia Guo
- Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830011, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China.
- Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830011, China.
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China.
- Furong Laboratory, Changsha, 410078, China.
| |
Collapse
|
8
|
Liu W, Niu J, Huo Y, Zhang L, Han L, Zhang N, Yang M. Role of circular RNAs in cancer therapy resistance. Mol Cancer 2025; 24:55. [PMID: 39994791 PMCID: PMC11854110 DOI: 10.1186/s12943-025-02254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decade, circular RNAs (circRNAs) have gained recognition as a novel class of genetic molecules, many of which are implicated in cancer pathogenesis via different mechanisms, including drug resistance, immune escape, and radio-resistance. ExosomalcircRNAs, in particular, facilitatecommunication between tumour cells and micro-environmental cells, including immune cells, fibroblasts, and other components. Notably, micro-environmental cells can reportedly influence tumour progression and treatment resistance by releasing exosomalcircRNAs. circRNAs often exhibit tissue- and cancer-specific expression patterns, and growing evidence highlights their potential clinical relevance and utility. These molecules show strong promise as potential biomarkers and therapeutic targets for cancer diagnosis and treatment. Therefore, this review aimed to briefly discuss the latest findings on the roles and resistance mechanisms of key circRNAs in the treatment of various malignancies, including lung, breast, liver, colorectal, and gastric cancers, as well as haematological malignancies and neuroblastoma.This review will contribute to the identification of new circRNA biomarkers for the early diagnosis as well as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong Province, China.
| |
Collapse
|
9
|
Mei B, Zeng Z, Xia Q, Liu M, Zhang Y. The role of the circ_DOCK1-miR-1297-HOXA9 regulatory network in the development of oral squamous cell carcinoma. Pathol Res Pract 2024; 266:155752. [PMID: 39721095 DOI: 10.1016/j.prp.2024.155752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/24/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a public health concern. The current study aimed to explore the role of circRNA Dedicator of Cytokinesis 1 (circ_DOCK1) and associated action mode in OSCC. METHODS The expression of circ_DOCK1 and microRNA-1297 (miR-1297) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). EdU assay, colony formation assay, transwell assay and glycolysis stress test were applied for functional analyses. The expression level of Homeobox A9 (HOXA9) was detected by western blot. The interaction between miR-1297 and circ_DOCK1 or HOXA9 was verified by dual-luciferase reporter assay. Xenograft model was established to determine the role of circ_DOCK1 in vivo. RESULTS Circ_DOCK1 was highly expressed in OSCC tumor tissues and cell lines. Circ_DOCK1 knockdown suppressed colony formation, migration, invasion and glycolysis of OSCC cells. MiR-1297 was targeted by circ_DOCK1, and its inhibition reversed the anticancer effects of circ_DOCK1 knockdown. HOXA9 was a target of miR-1297, and its overexpression recovered miR-1297 reintroduction-evoked inhibition of colony formation, migration, invasion and glycolysis in OSCC cells. Furthermore, circ_DOCK1 knockdown repressed tumor growth in vivo. CONCLUSION Circ_DOCK1 exerted its carcinogenic role in OSCC partially via the circ_DOCK1-miR-1297-HOXA9 regulatory network, which will broaden our insights to understand the pathogenesis of OSCC and provide promising biomarkers for the diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Bingxin Mei
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, Ganzhou, China
| | - Zhimei Zeng
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, Ganzhou, China
| | - Qinmin Xia
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, Ganzhou, China
| | - Ming Liu
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, Ganzhou, China
| | - Ying Zhang
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
10
|
Zhang M, He M, Bai L, Du F, Xie Y, Li B, Zhang Y. CircMALAT1 promotes the proliferation and metastasis of intrahepatic cholangiocarcinoma via the miR-512-5p/VCAM1 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 57:223-236. [PMID: 39463204 PMCID: PMC11877140 DOI: 10.3724/abbs.2024185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/06/2024] [Indexed: 10/29/2024] Open
Abstract
Circular RNAs play a pivotal role in the progression of various cancers. In our previous study, we observed high expression of the circRNA MALAT1 (cMALAT1) in intrahepatic cholangiocarcinoma (ICC) cells co-incubated with activated hepatic stellate cells. This study is designed to explore the roles of cMALAT1 and the underlying mechanisms in ICC. We find that cMALAT1 significantly facilitates the progression of ICC both in vitro and in vivo. The binding between cMALAT1 and miR-512-5p is subsequently confirmed through RNA pull-down experiments. As anticipated, the application of miR-512-5p mimics noticeably reverses the cMALAT1 overexpression-induced malignant phenotypes of ICC cells. Furthermore, VCAM1 is identified as a downstream gene of the cMALAT1/miR-512-5p axis. Importantly, silencing of VCAM1 not only effectively suppresses the malignant phenotypes of ICC cells but also significantly impairs the functions of cMALAT1. Our study reveals that cMALAT1 promotes the progression of ICC by competitively binding to VCAM1 mRNA with miR-512-5p, leading to the upregulation of VCAM1 expression and the activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Meixia Zhang
- Department of Gastroenterologythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Mingyan He
- Department of Gastroenterologythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Liangliang Bai
- Department of Gastroenterologythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Fan Du
- Department of Gastroenterologythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Yingping Xie
- Department of Gastroenterologythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Bimin Li
- Department of Gastroenterologythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Yuming Zhang
- Department of SurgeryPeople’s Hospital of Nanchang Economic and Technological Development ZoneNanchang330013China
| |
Collapse
|
11
|
Kim H, Kim D, Moon S, Lee JB. Efficient circular RNA synthesis through Gap-DNA splint-mediated ligation. NANOSCALE 2024; 16:15529-15532. [PMID: 39102212 DOI: 10.1039/d4nr01770f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The COVID-19 pandemic heightened interest in circular RNA (C-RNA) for RNA therapeutics, offering advantages over linear mRNAs. Circular mRNA facilitates uncapped molecule development, and C-RNAs ensure stability in RNA interference therapeutics. The synthesis method, RNA ligation, is employed in C-RNA-based therapeutics. Stable DNA-RNA hybrid constructs enable efficient RNA ligase-based circularization.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
12
|
Jiang X, Peng M, Liu Q, Peng Q, Oyang L, Li S, Xu X, Shen M, Wang J, Li H, Wu N, Tan S, Lin J, Xia L, Tang Y, Luo X, Liao Q, Zhou Y. Circular RNA hsa_circ_0000467 promotes colorectal cancer progression by promoting eIF4A3-mediated c-Myc translation. Mol Cancer 2024; 23:151. [PMID: 39085875 PMCID: PMC11290134 DOI: 10.1186/s12943-024-02052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common malignant tumor worldwide, and its incidence rate increases annually. Early diagnosis and treatment are crucial for improving the prognosis of patients with colorectal cancer. Circular RNAs are noncoding RNAs with a closed-loop structure that play a significant role in tumor development. However, the role of circular RNAs in CRC is poorly understood. METHODS The circular RNA hsa_circ_0000467 was screened in CRC circRNA microarrays using a bioinformatics analysis, and the expression of hsa_circ_0000467 in CRC tissues was determined by in situ hybridization. The associations between the expression level of hsa_circ_0000467 and the clinical characteristics of CRC patients were evaluated. Then, the role of hsa_circ_0000467 in CRC growth and metastasis was assessed by CCK8 assay, EdU assay, plate colony formation assay, wound healing assay, and Transwell assay in vitro and in a mouse model of CRC in vivo. Proteomic analysis and western blotting were performed to investigate the effect of hsa_circ_0000467 on c-Myc signaling. Polysome profiling, RT‒qPCR and dual-luciferase reporter assays were performed to determine the effect of hsa_circ_0000467 on c-Myc translation. RNA pull-down, RNA immunoprecipitation (RIP) and immunofluorescence staining were performed to assess the effect of hsa_circ_0000467 on eIF4A3 distribution. RESULTS In this study, we found that the circular RNA hsa_circ_0000467 is highly expressed in colorectal cancer and is significantly correlated with poor prognosis in CRC patients. In vitro and in vivo experiments revealed that hsa_circ_0000467 promotes the growth and metastasis of colorectal cancer cells. Mechanistically, hsa_circ_0000467 binds eIF4A3 to suppress its nuclear translocation. In addition, it can also act as a scaffold molecule that binds eIF4A3 and c-Myc mRNA to form complexes in the cytoplasm, thereby promoting the translation of c-Myc. In turn, c-Myc upregulates its downstream targets, including the cell cycle-related factors cyclin D2 and CDK4 and the tight junction-related factor ZEB1, and downregulates E-cadherin, which ultimately promotes the growth and metastasis of CRC. CONCLUSIONS Our findings revealed that hsa_circRNA_0000467 plays a role in the progression of CRC by promoting eIF4A3-mediated c-Myc translation. This study provides a theoretical basis and molecular target for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- University of South China, Hengyang, Hunan, 421001, China
| | - Mengzhou Shen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jiewen Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Haofan Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- University of South China, Hengyang, Hunan, 421001, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China.
- Hunan Engineering Research Center of Tumor organoids Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
13
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
14
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
15
|
Choi SW, Nam JW. Optimal design of synthetic circular RNAs. Exp Mol Med 2024; 56:1281-1292. [PMID: 38871815 PMCID: PMC11263348 DOI: 10.1038/s12276-024-01251-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs are an unusual class of single-stranded RNAs whose ends are covalently linked via back-splicing. Due to their versatility, the need to express circular RNAs in vivo and in vitro has increased. Efforts have been made to efficiently and precisely synthesize circular RNAs. However, a review on the optimization of the processes of circular RNA design, synthesis, and delivery is lacking. Our review highlights the multifaceted aspects considered when producing optimal circular RNAs and summarizes the available options for each step of exogenous circular RNA design and synthesis, including circularization strategies. Additionally, this review describes several potential applications of circular RNAs.
Collapse
Affiliation(s)
- Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Bio-BigData Center, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
16
|
Shao Y, Yang Z, Miao W, Yu X, Pu Y. Circ_0005015 upregulates BACH1 to promote aggressive behaviors in glioblastoma by sponging microRNA-382-5p. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4139-4151. [PMID: 38032493 DOI: 10.1007/s00210-023-02868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
To investigate the potential role and molecular mechanism of circ_0005015 in GBM progression. Circ_0005015, microRNA-382-5p (miR-382-5p), and BTB domain and CNC homolog 1 (BACH1) levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was determined by MTT, colony formation, and EdU assays. Cell apoptosis was analyzed using flow cytometry. Cell migration and invasion were assessed using wound healing and transwell assays. Glucose accumulation and lactate levels were examined by the corresponding kit. RNA pull-down and dual-luciferase reporter assays were performed to confirm the interaction between miR-382-5p and circ_0005015 or BACH1. Protein levels of MMP9, PCNA, and BACH1 were examined using western blot assay. Role of circ_0005015 on tumor growth in vivo was analyzed using a xenograft tumor model. Circ_0005015 content was up-regulated in GBM patients and cells, its knockdown restrained GBM cell proliferation, migration, invasion, glycolysis, and triggered apoptosis. Mechanistically, we found that circ_0005015 could directly interact with miR-382-5p and serve as a miRNA sponge to regulate BACH1 expression. In addition, circ_0005015 knockdown might repress tumor growth in vivo. Circ_0005015 boosted GBM progression via binding to miR-382-5p to up-regulate BACH1, which may offer new effective targets for GBM treatment.
Collapse
Affiliation(s)
- Yun Shao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhengxiang Yang
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Weifeng Miao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Xiangrong Yu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Yi Pu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
17
|
Lu C, Wu J, Li X, Huang W, Fang Y, Huang Y. Hsa_circ_0003356 suppresses gastric cancer progression via miR-556-5p/FKBP5 axis. Toxicol In Vitro 2024; 97:105787. [PMID: 38401744 DOI: 10.1016/j.tiv.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND CircRNAs are implicated in the tumorigenesis of various human cancers. This study aims to explore how circ_0003356 contributes to the development of gastric cancer (GC). METHODS Circ_0003356 expression was analyzed in GSE184882 dataset and validated in our cohort of GC patients and human GC cell lines. The correlations between circ_0003356 levels and prognostic parameters were analyzed. The contribution of circ_0003356 in GC cell malignant behaviors such as cell survival, apoptosis and invasion were investigated by circ_0003356 overexpression in GC cell lines. The downstream targets of circ_0003356 were predicted and verified in vitro and in vivo. The in vivo function of circ_0003356 was studied as well in a xenograft mouse model. RESULTS Circ_0003356 expressed at a low level in human GC tissues and cells, which was closely associated with poor outcome of GC patients. Circ_0003356 overexpression induced GC cell apoptosis while depressed the growing, migration and invasive abilities through miR-556-5p/FKBP5 axis. In vivo model showed retarded tumor growth when circ_0003356-overexpressed cells were inoculated. CONCLUSION Circ_0003356 is identified as a potential biomarker of the prognosis of human gastric cancer, and circ_0003356/miR-556-5p/FKBP5 axis could be a promising target in gastric cancer treatment.
Collapse
Affiliation(s)
- Chuanhui Lu
- Department of Colorectal Cancer Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine. The School of Clinical Medicine,Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jing Wu
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China
| | - Xiaoguang Li
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China
| | - Wei Huang
- Department of General Surgery, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Yongmu Fang
- Department of General Surgery, The Third Hospital of Xiamen(The Third Hospital of Xiamen Affiliated with Fujian University of Traditional Chinese Medicine), Xiamen, Fujian 361000, China.
| | - Ying Huang
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China.
| |
Collapse
|
18
|
Huang R, Xing W, Wang X. Dihydroartemisinin inhibits restenosis after balloon angioplasty via circHSPA4/miR-19a-5p axis. Mol Cell Biochem 2024; 479:951-961. [PMID: 37256444 DOI: 10.1007/s11010-023-04778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Dihydroartemisinin (DHA) inhibits restenosis following balloon angioplasty. However, data on the mechanisms of DHA activity in restenosis remains scant. Here, we investigated the role of circRNAs in mediating the inhibitory activity of DHA in neointimal formation. We used total RNA sequencing data to profile the expression of mRNA, circRNA and small RNA in sham, vascular balloon injury (VBI) and DHA-treated groups. CCK8 and EdU assays were employed to analyze cell proliferation, while qRT-PCR and Western blot were used to analyze the RNA or protein expression. In addition, we used RNA immunoprecipitation and luciferase reporter assay to assess the binding of circHSPA4 with miR-19a-5p. RNA sequencing demonstrated that circHSPA4 was upregulated in VBI. Treatment with DHA effectively suppressed the upregulation of the circHSPA4. In addition, analysis of platelet-derived growth family factor bb (PDGFbb)-induced HA-VSMCs showed upregulation of circHSPA4, which was associated with cell proliferation and differentiation. CircHSPA4 was shown to induce dedifferentiation and proliferation of smooth muscle cells. PDGFBB-induced overexpression of CircHSPA4 in HA-VSMCs led to suppression of miR-19a-5p, a phenomenon that was reversed by DHA, in concentration-dependent fashion. In addition, miR-19a-5p reduced the dedifferentiation and proliferation of the smooth muscle cells. Our data demonstrated that CircHSPA4 regulates proliferation and differentiation of smooth muscle cells. DHA and miR-19a-5p modulates CircHSPA4 and can be used as coated drugs on balloon catheter to improve the success rate of vascular remodeling.
Collapse
Affiliation(s)
- Renping Huang
- Department of General Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, 150001, Harbin, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, Heilongjiang, 150001, Harbin, China
| | - Xiaoyuan Wang
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Heilongjiang, 150001, Harbin, China.
| |
Collapse
|
19
|
Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ, Gheibihayat SM. The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract 2024; 255:155203. [PMID: 38368664 DOI: 10.1016/j.prp.2024.155203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Cell death encompasses various mechanisms, including necrosis and apoptosis. Ferroptosis, a unique form of regulated cell death, emerged as a non-apoptotic process reliant on iron and reactive oxygen species (ROS). Distinguishing itself from other forms of cell death, ferroptosis exhibits distinct morphological, biochemical, and genetic features. Circular RNAs (circRNAs), a novel class of RNA molecules, play crucial regulatory roles in ferroptosis-mediated pathways and cellular processes. With their circular structure and stability, circRNAs function as microRNA sponges and participate in protein regulation, offering diverse mechanisms for cellular control. Accumulating evidence indicates that circRNAs are key players in diseases associated with ferroptosis, presenting opportunities for diagnostic and therapeutic applications. This study explores the regulatory roles of circRNAs in ferroptosis and their potential in diseases such as cancer, neurological disorders, and cardiovascular diseases. By investigating the relationship between circRNAs and ferroptosis, this research provides new insights into the diagnosis, treatment, and prognosis of ferroptosis-related diseases. Furthermore, the therapeutic implications of targeting circRNAs in cancer treatment and the modulation of ferroptosis pathways demonstrate the potential of circRNAs as diagnostic markers and therapeutic targets. Overall, understanding the involvement of circRNAs in regulating ferroptosis opens up new avenues for advancements in disease management.
Collapse
Affiliation(s)
- Javad Arabpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
20
|
Zhou W, Li X, Li X, Liu Y, Song W, Yang Q. The role of circular RNA in preeclampsia: From pathophysiological mechanism to clinical application. Life Sci 2024; 338:122407. [PMID: 38184270 DOI: 10.1016/j.lfs.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Preeclampsia (PE) is a common pregnancy-induced hypertension disorder that poses a significant threat to the health of pregnant women and fetuses, and has become a leading cause of maternal, fetal, and neonatal mortality. Currently, the therapy strategy for PE is mainly prevention management and symptomatic treatment, and only delivery can completely terminate PE. Therefore, a deeper understanding of the pathogenesis of PE is needed to make treatment and prevention more effective and targeted. With the deepening of molecular etiology research, circular RNAs (circRNAs) have been found to be widely involved in various processes of PE pathogenesis. As a kind of RNA with a special "head to tail" loop structure, the characteristics of circRNAs enable them to play diverse roles in the pathophysiology of PE, and can also serve as ideal biomarkers for early prediction and monitoring progression of PE. In this review, we summarized the latest research on PE-related circRNAs, trying to elucidate the unique or shared roles of circRNAs in various pathophysiological mechanisms of PE, aiming to provide a whole picture of current research on PE-related circRNAs, and extend a new perspective for the precise screening and targeted therapy of PE.
Collapse
Affiliation(s)
- Wenjing Zhou
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China; Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuying Li
- Medical Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xin Li
- Medical College, Jilin Engineering Vocational College, Siping, Jilin, China.
| | - Yaojia Liu
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wenling Song
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
21
|
Du W, Quan X, Wang C, Song Q, Mou J, Pei D. Regulation of tumor metastasis and CD8 + T cells infiltration by circRNF216/miR-576-5p/ZC3H12C axis in colorectal cancer. Cell Mol Biol Lett 2024; 29:19. [PMID: 38267865 PMCID: PMC10809481 DOI: 10.1186/s11658-024-00539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment (TIME) is an important regulator of tumor progression, growth and metastasis. In addition, tumor metastasis is one of the principal obstacles to the treatment of colorectal cancer (CRC). Circular RNAs (circRNAs) have been recognized as important regulators in the development of malignancies. However, their specific roles and mechanisms in both CRC metastasis and TIME have not been thoroughly investigated. METHODS High-throughput next-generation sequencing technology and real-time fluorescence quantitative PCR technology were performed to identify differential circRNAs in CRC. Functional assays including transwell assay, wound healing assay, and metastasis models were conducted to assess the effect of circRNF216 on CRC metastasis. In addition, luciferase reporter, western blot, RNA immunoprecipitation (RIP), and fluorescent in situ hybridization (FISH) were performed to explore the underlying mechanism of circRNF216. The level of immune infiltration was assessed by bioinformatics analysis and flow cytometry in CRC model. Furthermore, rescue and mutation experiments were used for verification. RESULTS circRNF216 was identified as a putative tumor suppressor that is downregulated in CRC tissues and cells. Overexpression of circRNF216 inhibits metastasis in vitro and vivo. Mechanistically, circRNF216 acts as a competitive endogenous RNA (ceRNA) for miR-576-5p, alleviating miR-576-5p repression on its target ZC3H12C, which in turn downregulated N-cadherin. Additionally, circRNF216 could enhance the infiltration level of CD8+ T cells by upregulating ZC3H12C, ultimately inhibiting the development of CRC, which suggests that circRNF216 is a potential biomarker for the treatment of CRC. CONCLUSIONS Here, we provide novel mechanistic insight revealing how circRNF216 functioned in CRC metastasis and TIME via the circRNF216/miR-576-5p/ZC3H12C pathway. Therefore, circRNF216 holds promise as a potential therapeutic target and novel diagnostic marker for CRC.
Collapse
Affiliation(s)
- Wenqi Du
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xin Quan
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Chaoqun Wang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Qiuya Song
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jie Mou
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
22
|
Zhou Z, Zhang R, Li X, Zhang W, Zhan Y, Lang Z, Tao Q, Yu J, Yu S, Yu Z, Zheng J. Circular RNA cVIM promotes hepatic stellate cell activation in liver fibrosis via miR-122-5p/miR-9-5p-mediated TGF-β signaling cascade. Commun Biol 2024; 7:113. [PMID: 38243118 PMCID: PMC10798957 DOI: 10.1038/s42003-024-05797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Hepatic stellate cell (HSC) activation is considered as a central driver of liver fibrosis and effective suppression of HSC activation contributes to the treatment of liver fibrosis. Circular RNAs (circRNAs) have been reported to be important in tumor progression. However, the contributions of circRNAs in liver fibrosis remain largely unclear. The liver fibrosis-specific circRNA was explored by a circRNA microarray and cVIM (a circRNA derived from exons 4 to 8 of the vimentin gene mmu_circ_32994) was selected as the research object. Further studies revealed that cVIM, mainly expressed in the cytoplasm, may act as a sponge for miR-122-5p and miR-9-5p to enhance expression of type I TGF-β receptor (TGFBR1) and TGFBR2 and promotes activation of the TGF-β/Smad pathway, thereby accelerating the progression of liver fibrosis. Our results demonstrate a vital role for cVIM in promoting liver fibrosis progression and provide a fresh perspective on circRNAs in liver fibrosis.
Collapse
Affiliation(s)
- Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xinmiao Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhi Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jinglu Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Suhui Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
23
|
Li H, Lin R, Zhang Y, Zhu Y, Huang S, Lan J, Lu N, Xie C, He S, Zhang W. N6-methyladenosine-modified circPLPP4 sustains cisplatin resistance in ovarian cancer cells via PIK3R1 upregulation. Mol Cancer 2024; 23:5. [PMID: 38184597 PMCID: PMC10770956 DOI: 10.1186/s12943-023-01917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Cisplatin (CDDP) is the first-line chemotherapeutic strategy to treat patients with ovarian cancer (OC). The development of CDDP resistance remains an unsurmountable obstacle in OC treatment and frequently induces tumor recurrence. Circular RNAs (circRNAs) are noncoding RNAs with important functions in cancer progression. Whether circRNAs function in CDDP resistance of OC is unclear. METHODS Platinum-resistant circRNAs were screened via circRNA deep sequencing and examined using in situ hybridization (ISH) in OC. The role of circPLPP4 in CDDP resistance was assessed by clone formation and Annexin V assays in vitro, and by OC patient-derived xenografts and intraperitoneal tumor models in vivo. The mechanism underlying circPLPP4-mediated activation of miR-136/PIK3R1 signaling was examined by luciferase reporter assay, RNA pull-down, RIP, MeRIP and ISH. RESULTS circPLPP4 was remarkably upregulated in platinum resistant OC. circPLPP4 overexpression significantly enhanced, whereas circPLPP4 silencing reduced, OC cell chemoresistance. Mechanistically, circPLPP4 acts as a microRNA sponge to sequester miR-136, thus competitively upregulating PIK3R1 expression and conferring CDDP resistance. The increased circPLPP4 level in CDDP-resistant cells was caused by increased RNA stability, mediated by increased N6-methyladenosine (m6A) modification of circPLPP4. In vivo delivery of an antisense oligonucleotide targeting circPLPP4 significantly enhanced CDDP efficacy in a tumor model. CONCLUSIONS Our study reveals a plausible mechanism by which the m6A -induced circPLPP4/ miR-136/ PIK3R1 axis mediated CDDP resistance in OC, suggesting that circPLPP4 may serve as a promising therapeutic target against CDDP resistant OC. A circPLPP4-targeted drug in combination with CDDP might represent a rational regimen in OC.
Collapse
Affiliation(s)
- Han Li
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Run Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yanna Zhang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China
| | - Yanni Zhu
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shuting Huang
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Lan
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nian Lu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China
| | - Chuanmiao Xie
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China.
| | - Shanyang He
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Weijing Zhang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China.
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
24
|
Najafi S, Asemani Y, Majidpoor J, Mahmoudi R, Aghaei-Zarch SM, Mortezaee K. Tumor-educated platelets. Clin Chim Acta 2024; 552:117690. [PMID: 38056548 DOI: 10.1016/j.cca.2023.117690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Beyond traditional roles in homeostasis and coagulation, growing evidence suggests that platelets also reflect malignant transformation in cancer. Platelets are present in the tumor microenvironment where they interact with cancer cells. This interaction results in direct and indirect "education" as evident by platelet alterations in adhesion molecules, glycoproteins, nucleic acids, proteins and various receptors. Subsequently, these tumor-educated platelets (TEPs) circulate throughout the body and play pivotal roles in promotion of tumor growth and dissemination. Accordingly, platelet status can be considered a unique blood-based biomarker that can potentially predict prognosis and therapeutic success. Recently, liquid biopsies including TEPs have received much attention as safe, minimally invasive and sensitive alternatives for patient management. Herein, we provide an overview of TEPs and explore their benefits and limitations in cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
25
|
Chen L, Zhou Y, Cheng H, Lu W, Cai M, Jiang K. Circ-SATB2 (hsa_circ_0008928) and miR-150-5p are regulators of TRIM66 in the regulation of NSCLC cell growth and metastasis of NSCLC cells via the ceRNA pathway. J Biochem Mol Toxicol 2024; 38:e23615. [PMID: 38084627 DOI: 10.1002/jbt.23615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Circular RNA (circRNA) was an important modulator and potential molecular target of nonsmall cell lung cancer (NSCLC). CircSATB2 was reported to be upregulated in NSCLC. However, the role and mechanism of circSATB2 in NSCLC progression remain to be illustrated. The RNA and protein expression was detected by quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry assay. Cell counting kit-8, cell colony formation, and 5-ethynyl-2'-deoxyuridine assays were applied to assess cell growth. The migrated and invaded cells were examined by transwell assay. Flow cytometry was performed to measure apoptotic cells. The interaction among circSATB2, microRNA-150-5p (miR-150-5p), and tripartite motif-containing protein 66 (TRIM66) was identified by dual-luciferase reporter assay and RNA immunoprecipitation assay. An in vivo experiment was conducted to investigate the effect of circSATB2 on tumor growth. CircSATB2 expression was highly expressed in NSCLC tissues and cell lines. CircSATB2 and TRIM66 silencing both suppressed NSCLC cell growth, migration, and invasion whereas promoted NSCLC cell apoptosis. CircSATB2 acted as a molecular sponge for miR-150-5p, and miR-150-5p interacted with the 3' untranslated region (3'UTR) of TRIM66. Moreover, circSATB2 knockdown-induced effects were partly reversed by TRIM66 overexpression in NSCLC cells. Besides, cirSATB2 expression was negatively correlated with miR-150-5p level and positively correlated with TRIM66 level in NSCLC tumor tissues. CircSATB2 knockdown blocked xenograft tumor growth in vivo. In summary, this study verified that circSATB2 stimulated NSCLC cell malignant behaviors by miR-150-5p/TRIM66 pathway, providing a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Liangji Chen
- Medical Clinical Laboratory, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Yuting Zhou
- Medical Clinical Laboratory, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Hongbing Cheng
- Thoracic Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Wenjing Lu
- Department of Oncology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Mengyang Cai
- Medical Clinical Laboratory, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Kaifeng Jiang
- Clinical Laboratory, The Central Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| |
Collapse
|
26
|
Ren A, Gong F, Liu G, Fan W. NR1H4-mediated circRHOBTB3 modulates the proliferation, metastasis, and Warburg effects of cervical cancer through interacting with IGF2BP3. Mol Cell Biochem 2023; 478:2671-2681. [PMID: 36939994 DOI: 10.1007/s11010-023-04692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Globally, cervical cancer (CC) ranks as the fourth most common cancer and the most lethal malignancy among females of reproductive age. The incidence of CC is increasing in low-income countries, with unsatisfactory outcomes and long-term survival for CC patients. Circular RNAs (CircRNAs) are promising therapeutics that target multiple cancers. In this study, we investigated the tumorigenic role of circRHOBTB3 in CC, showing that circRHOBTB3 is highly expressed in CC cells and circRHOBTB3 knockdown also repressed CC proliferation, migration, invasion, and the Warburg effects. CircRHOBTB3 interacted with the RNA-binding protein, IGF2BP3, to stabilize its expression in CC cells and is putatively transcriptionally regulated by NR1H4. In conclusion, this novel NR1H4/circRHOBTB3/IGF2BP3 axis may provide new insights into CC pathogenesis.
Collapse
Affiliation(s)
- Ailing Ren
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, China
| | - Fan Gong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, China
| | - Guokun Liu
- Outpatient Department, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wenli Fan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Yang J, Tan C, Wang Y, Zong T, Xie T, Yang Q, Wu M, Liu Y, Mu T, Wang X, Yao Y. The circRNA MKLN1 regulates autophagy in the development of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166839. [PMID: 37549719 DOI: 10.1016/j.bbadis.2023.166839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Diabetic retinopathy (DR) is a common complication in patients with diabetes and has become an important cause of blindness in working-age people. However, the mechanisms involved have not been fully elucidated. Circular RNAs (circRNAs) can play an important role in DR, and they can accurately regulate the expression of target genes through a new regulatory model: the competing endogenous RNA (ceRNA) model. We isolated total RNA from extracellular vesicles in the serum of healthy individuals (Con) and individuals with diabetes mellitus without DR (DM), nonproliferative DR (NPDR), or proliferative DR (PDR) and subjected them to deep sequencing. We found aberrantly high expression of circMKLN1. In a streptozotocin (STZ)-induced mice model of diabetes, the inhibition of circMKLN1 with AAV2 transduction markedly ameliorated retinal acellular vessels and vascular leakage, which was reversed by intravitreal injection of rapamycin, a potent autophagy inducer. In addition, circMKLN1 adsorbs miR-26a-5p as a molecular sponge and mediates high glucose (HG)/methylglyoxal (MG)-induced autophagy in hRMECs. CircMKLN1-silencing treatment reduces HG/MG-related reactive autophagy and inflammation. In addition, miR-26a-5p targeting by circMKLN1 plays an important role in the regulation of Rab11a expression. Thus, either new biomarkers or new therapeutic targets may be identified with the translation of these findings.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Meili Wu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Yanqiu Liu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tong Mu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China.
| |
Collapse
|
28
|
Zhang X, Liu J, Wu H, Chen Y, Zhang X, Xu B. CircEpha5 regulates the synthesis and secretion of androgen in mouse preantral follicles by targeting miR-758-5p. J OBSTET GYNAECOL 2023; 43:2237574. [PMID: 37555585 DOI: 10.1080/01443615.2023.2237574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023]
Abstract
Circular RNAs are involved in the pathogenesis of various diseases, although its expression pattern and role in polycystic ovary syndrome (PCOS), characterised by hyperandrogenism, are not very clear. This article assessed the circRNAs expression profile in the ovaries of PCOS mice by circRNAs high-throughput sequencing and explored the role of circEpha5 in hyperandrogenism. The results showed that the overexpression of circEpha5 in mouse preantral follicles could increase the expression of Cyp17a1, an androgen synthesis-related gene, which resulted in a higher serum level of testosterone. Dual-luciferase reporter gene studies identified miR-758-5p as a direct target of circEpha5. Consequently, miR-758-5p expression was downregulated upon circEpha5 overexpression. Ectopically expressed miR-758-5p reversed the stimulation effects of circEpha5 on steroidogenesis-related gene expression and testosterone release. Therefore, circEpha5 could sponge miR-758-5p to regulate the expression of Cyp17a1, thereby promoting the synthesis and secretion of androgen in the preantral follicles. This work is contributed to the understanding of the pathogenesis of hyperandrogenemia and lays the foundation for the development of therapeutic targets of PCOS hyperandrogenism.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaxuan Liu
- Department of Obstetrics and Gynecology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wu
- Department of Obstetrics and Gynecology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuesen Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Boqun Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Tang S, Cai L, Wang Z, Pan D, Wang Q, Shen Y, Zhou Y, Chen Q. Emerging roles of circular RNAs in the invasion and metastasis of head and neck cancer: Possible functions and mechanisms. CANCER INNOVATION 2023; 2:463-487. [PMID: 38125767 PMCID: PMC10730008 DOI: 10.1002/cai2.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2023]
Abstract
Head and neck cancer (HNC) is the seventh most prevalent malignancy worldwide in 2020. Cancer metastasis is the main cause of poor prognosis in HNC patients. Recently, circular RNAs (circRNAs), initially thought to have no biological function, are attracting increasing attention, and their crucial roles in mediating HNC metastasis are being extensively investigated. Existing studies have shown that circRNAs primarily function through miRNA sponges, transcriptional regulation, interacting with RNA-binding proteins (RBPs) and as translation templates. Among these functions, the function of miRNA sponge is the most prominent. In this review, we summarized the reported circRNAs involved in HNC metastasis, aiming to elucidate the regulatory relationship between circRNAs and HNC metastasis. Furthermore, we summarized the latest advances in the epidemiological information of HNC metastasis and the tumor metastasis theories, the biogenesis, characterization and functional mechanisms of circRNAs, and their potential clinical applications. Although the research on circRNAs is still in its infancy, circRNAs are expected to serve as prognostic markers and effective therapeutic targets to inhibit HNC metastasis and significantly improve the prognosis of HNC patients.
Collapse
Affiliation(s)
- Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Luyao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Qing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
- State Institute of Drug/Medical Device Clinical TrialWest China Hospital of StomatologyChengduChina
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
30
|
Shariatmadar Taleghani A, Zohrab Beigi Y, Zare-Mirakabad F, Masoudi-Nejad A. Exploring ceRNA networks for key biomarkers in breast cancer subtypes and immune regulation. Sci Rep 2023; 13:20795. [PMID: 38012271 PMCID: PMC10682442 DOI: 10.1038/s41598-023-47816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
Breast cancer is a major global health concern, and recent researches have highlighted the critical roles of non-coding RNAs in both cancer and the immune system. The competing endogenous RNA hypothesis suggests that various types of RNA, including coding and non-coding RNAs, compete for microRNA targets, acting as molecular sponges. This study introduces the Pre_CLM_BCS pipeline to investigate the potential of long non-coding RNAs and circular RNAs as biomarkers in breast cancer subtypes. The pipeline identifies specific modules within each subtype that contain at least one long non-coding RNA or circular RNA exhibiting significantly distinct expression patterns when compared to other subtypes. The results reveal potential biomarker genes for each subtype, such as circ_001845, circ_001124, circ_003925, circ_000736, and circ_003996 for the basal-like subtype, circ_00306 and circ_00128 for the luminal B subtype, circ_000709 and NPHS1 for the normal-like subtype, CAMKV and circ_001855 for the luminal A subtype, and circ_00128 and circ_00173 for the HER2+ subtype. Additionally, certain long non-coding RNAs and circular RNAs, including RGS5-AS1, C6orf223, HHLA3-AS1, circ_000349, circ_003996, circ_003925, circ_002665, circ_001855, and DLEU1, are identified as potential regulators of T cell mechanisms, underscoring their importance in understanding breast cancer progression in various subtypes. This pipeline provides valuable insights into cancer and immune-related processes in breast cancer subtypes.
Collapse
Affiliation(s)
- Alireza Shariatmadar Taleghani
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yasaman Zohrab Beigi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Department of Mathematics and Computer Science, Amirkabir University of Technology (Polytechnic Tehran), Tehran, Iran.
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
31
|
Zhao D, Dong Y, Duan M, He D, Xie Q, Peng W, Cui W, Jiang J, Cheng Y, Zhang H, Tang F, Zhang C, Gao Y, Duan C. Circadian gene ARNTL initiates circGUCY1A2 transcription to suppress non-small cell lung cancer progression via miR-200c-3p/PTEN signaling. J Exp Clin Cancer Res 2023; 42:229. [PMID: 37667322 PMCID: PMC10478228 DOI: 10.1186/s13046-023-02791-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND As a subclass of endogenous stable noncoding RNAs, circular RNAs are beginning to be appreciated for their potential as tumor therapeutics. However, the functions and mechanisms by which circRNAs exert protective functions in non-small cell lung cancer (NSCLC) remain largely elusive. METHODS The prognostic role of circGUCY1A2 was explored in lung adenocarcinoma specimens. The overexpressed and knockdown plasmids were used to evaluate the effect of circGUCY1A2 on NSCLC cell proliferation and apoptosis efficacy. Luciferase reporter system is used to prove that circGUCY1A2 could bind to miRNA. Chip-PCR was used to prove that circGUCY1A2 could be initiated by transcription factors ARNTL. Subcutaneous tumorigenicity grafts models were established to validate findings in vivo. RESULTS The expression of circGUCY1A2 were significantly reduced (P < 0.001) and negatively correlated with tumor size (P < 0.05) in non-small cell lung cancer (NSCLC). CircGUCY1A2 upregulation promoted apoptosis and inhibits cell proliferation and growth of subcutaneous tumorigenicity grafts in nude mice (P < 0.01). In addition, intra-tumor injection of pLCDH-circGUCY1A2 inhibited tumor growth in patient-derived NSCLC xenograft models (PDX). Mechanism studies showed that circGUCY1A2 could act as a sponge to competitively bind miR-200c-3p, promote PTEN expression, and thereby inhibit PI3K/AKT pathway. In addition, we found that the circadian gene ARNTL, which was reduced in NSCLC and prolonged the overall survival of patients, could bind to the promoter of circGUCY1A2, thereby increasing its expression. CONCLUSIONS This study is an original demonstration that ARNTL can inhibit the development of lung adenocarcinoma through the circGUCY1A2/miR-200c-3p/PTEN axis, and this finding provides potential targets and therapeutic approaches for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Yeping Dong
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, 310011, China
| | - Minghao Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Dan He
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Qun Xie
- Department of Ultrasonic Imaging, Affiliated Hospital of Hunan Traditional Chinese Medicine Research Institute, Changsha, 410006, Hunan, China
| | - Wei Peng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410006, Hunan, China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Heng Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China.
| |
Collapse
|
32
|
Silva JMC, Teixeira EB, Mourão RMDS, Ferraz RS, Moreira FC, de Assumpção PP, Calcagno DQ. The landscape of lncRNAs in gastric cancer: from molecular mechanisms to potential clinical applications. Front Pharmacol 2023; 14:1237723. [PMID: 37670949 PMCID: PMC10476871 DOI: 10.3389/fphar.2023.1237723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Gastric cancer (GC) is a highly prevalent and deadly malignant neoplasm worldwide. Currently, long non-coding RNAs (lncRNAs) have recently been identified as crucial regulators implicated in GC development and progression. Dysregulated expression of lncRNAs is commonly associated with enhanced tumor migration, invasiveness, and therapy resistance, highlighting their potential as promising targets for clinical applications. This review offers a comprehensive historical overview of lncRNAs in GC, describes the molecular mechanisms, and discusses the prospects and challenges of establishing lncRNAs as precision biomarkers.
Collapse
Affiliation(s)
| | | | | | - Rafaella Sousa Ferraz
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem, Pará, Brazil
| | | | | | | |
Collapse
|
33
|
Cui J, Zhang L, Zhang Z, Luo X, Liu Y, Li C, Huang W, Zou L, Yu X, Xiao F. A precise and efficient circular RNA synthesis system based on a ribozyme derived from Tetrahymena thermophila. Nucleic Acids Res 2023; 51:e78. [PMID: 37378451 PMCID: PMC10415121 DOI: 10.1093/nar/gkad554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Classic strategies for circular RNA (circRNA) preparation always introduce large numbers of linear transcripts or extra nucleotides to the circularized product. In this study, we aimed to develop an efficient system for circRNA preparation based on a self-splicing ribozyme derived from an optimized Tetrahymena thermophila group Ⅰ intron. The target RNA sequence was inserted downstream of the ribozyme and a complementary antisense region was added upstream of the ribozyme to assist cyclization. Then, we compared the circularization efficiency of ribozyme or flanking intronic complementary sequence (ICS)-mediated methods through the DNMT1, CDR1as, FOXO3, and HIPK3 genes and found that the efficiency of our system was remarkably higher than that of flanking ICS-mediated method. Consequently, the circularized products mediated by ribozyme are not introduced with additional nucleotides. Meanwhile, the overexpressed circFOXO3 maintained its biological functions in regulating cell proliferation, migration, and apoptosis. Finally, a ribozyme-based circular mRNA expression system was demonstrated with a split green fluorescent protein (GFP) using an optimized Coxsackievirus B3 (CVB3) internal ribosome entry site (IRES) sequence, and this system achieved successful translation of circularized mRNA. Therefore, this novel, convenient, and rapid engineering RNA circularization system can be applied for the functional study and large-scale preparation of circular RNA in the future.
Collapse
Affiliation(s)
- Jingyi Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
- Graduate School of Peking Union Medical College, Beijing 100730, PR China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Lanxin Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Zaifeng Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
- Graduate School of Peking Union Medical College, Beijing 100730, PR China
| | - Xuanmei Luo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Ye Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Chang Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Wei Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
- Graduate School of Peking Union Medical College, Beijing 100730, PR China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| |
Collapse
|
34
|
Fiscon G, Funari A, Paci P. Circular RNA mediated gene regulation in human breast cancer: A bioinformatics analysis. PLoS One 2023; 18:e0289051. [PMID: 37494404 PMCID: PMC10370684 DOI: 10.1371/journal.pone.0289051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Circular RNAs (circRNAs) are a new acknowledged class of RNAs that has been shown to play a major role in several biological functions both in physiological and pathological conditions, operating as critical part of regulatory processes, like competing endogenous RNA (ceRNA) networks. The ceRNA hypothesis is a recently discovered molecular mechanism that adds a new key layer of post-transcriptional regulation, whereby various types of RNAs can reciprocally influence each other's expression competing for binding the same pool of microRNAs, even affecting disease development. In this study, we build a network of circRNA-miRNA-mRNA interactions in human breast cancer, called CERNOMA, that is a bipartite graph with one class of nodes corresponding to differentially expressed miRNAs (DEMs) and the other one corresponding to differentially expressed circRNAs (DEC) and mRNAs (DEGs). A link between a DEC (or DEG) and DEM is placed if it is predicted to be a target of the DEM and shows an opposite expression level trend with respect to the DEM. Within the CERNOMA, we highlighted an interesting deregulated circRNA-miRNA-mRNA triplet, including the up-regulated hsa_circRNA_102908 (BRCA1 associated RING domain 1), the down-regulated miR-410-3p, and the up-regulated ESM1, whose overexpression has been already shown to promote tumor dissemination and metastasis in breast cancer.
Collapse
Affiliation(s)
- Giulia Fiscon
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Roma, Italy
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Alessio Funari
- Department of Translational and Precision Medicine, Sapienza University of Rome, Roma, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Roma, Italy
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| |
Collapse
|
35
|
Wu P, Hou X, Peng M, Deng X, Yan Q, Fan C, Mo Y, Wang Y, Li Z, Wang F, Guo C, Zhou M, Liao Q, Wang H, Zeng Z, Jiang W, Li G, Xiong W, Xiang B. Circular RNA circRILPL1 promotes nasopharyngeal carcinoma malignant progression by activating the Hippo-YAP signaling pathway. Cell Death Differ 2023; 30:1679-1694. [PMID: 37173390 PMCID: PMC10307875 DOI: 10.1038/s41418-023-01171-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Circular RNAs (circRNAs) play an important regulatory role in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), which have not been thoroughly elucidated. In this study, we revealed for the first time that circRILPL1 was upregulated in NPC, weakened adhesion and decreased stiffness of NPC cells, and promoted NPC proliferation and metastasis in vitro and in vivo. Mechanistically, circRILPL1 inhibited the LATS1-YAP kinase cascade by binding to and activating ROCK1, resulting in decrease of YAP phosphorylation. Binding and cooperating with transport receptor IPO7, circRILPL1 promoted the translocation of YAP from the cytoplasm to the nucleus, where YAP enhanced the transcription of cytoskeleton remodeling genes CAPN2 and PXN. By which, circRILPL1 contributed to the pathogenesis of NPC. Our results demonstrated that circRILPL1 promoted the proliferation and metastasis of NPC through activating the Hippo-YAP signaling pathway by binding to both ROCK1 and IPO7. Highly expressed circRILPL1 in NPC may serve as an important biomarker for tumor diagnosis and may also be a potential therapeutic target.
Collapse
Affiliation(s)
- Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Xiangying Deng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
36
|
Song S, Wang L, Jiang X, Liu X, Li S, Xie S, Lu D. CircHULC accelerates the growth of human liver cancer stem cells by enhancing chromatin reprogramming and chromosomal instability via autophagy. Cell Signal 2023:110772. [PMID: 37321526 DOI: 10.1016/j.cellsig.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Although CircHULC was overexpressed in several cancers, the role of CircHULC in malignancies has yet to be elucidated. METHODS Gene infection, tumorigenesis test in vitro and in vivo and the signaling pathway analysis were performed. RESULTS our results indicate that CircHULC promotes growth of human liver cancer stem cells and the malignant differentiation of hepatocyte-like cells. Mechanistically, CircHULC enhances the methylation modification of PKM2 via CARM1 and the deacetylase Sirt1. Moreover, CircHULC enhances the binding ability of TP53INP2/DOR with LC3 and LC3 with ATG4, ATG3, ATG5, ATG12. Therefore, CircHULC promotes the formation of autophagosomes. In particular, the binding ability of phosphorylated Beclin1 (Ser14) to Vps15, Vps34, ATG14L were significantly increased after CircHULC was overexpressed. Strikingly, CircHULC affects the expression of chromatin reprogramming factors and oncogenes through autophagy. Thereafter, Oct4, Sox2, KLF4, Nanog, and GADD45 were significantly decreased and C-myc was increased after CircHULC was overexpressed. Thus, CircHULC promotes the expression of H-Ras, SGK, P70S6K, 4E-BP1, Jun, and AKT. Interestingly, both CARM1 and Sirt1 determine the cancerous function of CircHULC dependent on autophagy. CONCLUSIONS we shed light on the fact that the targeted attenuation of deregulated functioning of CircHULC could be a viable approach for cancer treatment, and CircHULC may acts as the potential biomarker and therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Shuting Song
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liyan Wang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxue Jiang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xinlei Liu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shujie Li
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sijie Xie
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
37
|
Li X, Yin X, Bao H, Liu C. Targeting a novel circITCH/miR-421/BTG1 axis is effective to suppress the malignant phenotypes in hepatocellular carcinoma (HCC) cells. Cytotechnology 2023; 75:255-267. [PMID: 37187949 PMCID: PMC10167090 DOI: 10.1007/s10616-023-00576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Circular RNA-based competing endogenous RNA (ceRNA) networks contribute to the initiation and development of various types of cancer, including hepatocellular carcinoma (HCC). Although a novel circular RNA itchy E3 ubiquitin protein ligase (circITCH) is identified as a tumor suppressor in HCC, its detailed molecular mechanisms have not been fully delineated. The present study was designed to resolve this issue, and we firstly verified that circITCH suppressed the malignant phenotypes in HCC cells by regulating a novel miR-421/B-cell translocation gene 1 (BTG1) axis. Specifically, through performing the Real-Time qPCR analysis, we noticed that circITCH expression in HCC tumor tissues or cell lines were significantly lower than that in adjacent normal tissues or normal hepatocytes, and the expression levels of circITCH were negatively correlated with tumor size and TNM stage in HCC patients. Next, our functional experiments confirmed that overexpression of circITCH induced cell cycle arrest and apoptosis, and reduced cell viability and colony forming ability in Hep3B and Huh7 cells. Mechanically, bioinformatics analysis, RNA immunoprecipitation and luciferase reporter assay demonstrated that circITCH served as RNA sponges for miR-421 to elevate BTG1 levels in HCC cells. The rescuing experiments verified that upregulation of miR-421 promoted cell viability and colony formation, and reduced apoptosis, which were abrogated by overexpression of circITCH or BTG1. In conclusion, this study identified a novel circITCH/miR-421/BTG1 axis that restrained the development of HCC, and our findings provided novel biomarkers for the treatment of this disease.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Xuedong Yin
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Heyi Bao
- Department of General Surgery, Qiqihar First Hospital, Qiqihar, 161005 China
| | - Chang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| |
Collapse
|
38
|
Li M, Wang Y, Wu P, Zhang S, Gong Z, Liao Q, Guo C, Wang F, Li Y, Zeng Z, Yan Q, Xiong W. Application prospect of circular RNA-based neoantigen vaccine in tumor immunotherapy. Cancer Lett 2023; 563:216190. [PMID: 37062328 DOI: 10.1016/j.canlet.2023.216190] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Neoantigen is a protein produced by mutant gene, which is only expressed in tumor cells. It is an ideal target for therapeutic tumor vaccines. Although synthetic long peptide (SLP)-based neoantigen vaccine, DNA-based neoantigen vaccine, and mRNA-based neoantigen vaccine are all in the development stage, they have some inherent shortcomings. Therefore, researchers turned their attention to a new type of "non-coding RNA (ncRNA)", circular RNA (circRNA), for potential better choice. Because of its unique high stability and protein-coding capacity, circRNA is a promising target in the field of neoantigen vaccine. In this paper, we reviewed the feasibility of circRNA encoding neoantigens, summarized the construction process, explained the mechanism of circRNA vaccine in vitro, and discussed the advantages and disadvantages of circRNA vaccine and possible combination with other immunotherapies.
Collapse
Affiliation(s)
- Mohan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Yian Wang
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Pan Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Shanshan Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Yong Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
39
|
Li Q, Zhao Y, Xu C, Liang Y, Zhao Y, He Q, Li J, Chen K, Qiao H, Liu N, Ma J, Chen L, Li Y. Chemotherapy-Induced Senescence Reprogramming Promotes Nasopharyngeal Carcinoma Metastasis by circRNA-Mediated PKR Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205668. [PMID: 36683218 PMCID: PMC10015868 DOI: 10.1002/advs.202205668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Indexed: 05/13/2023]
Abstract
Senescence is associated with tumor metastasis and chemotherapy resistance, yet the mechanisms remain elusive. Here, it is identified that nasopharyngeal carcinoma (NPC) patients who developed distant metastasis are characterized by senescence phenotypes, in which circWDR37 is a key regulator. CircWDR37 deficiency limits cisplatin or gemcitabine-induced senescent NPC cells from proliferation, migration, and invasion. Mechanistically, circWDR37 binds to and dimerizes double-stranded RNA-activated protein kinase R (PKR) to initiate PKR autophosphorylation and activation. Independent of its kinase activity, phosphorylated PKR induces I-kappaB kinase beta (IKKβ) phosphorylation, binds to and releases RELA from NF-κB inhibitor alpha (IκBα) to trigger nuclear factor kappa B (NF-κB) activation, thereby stimulating cyclin D1 (CCND1) and senescence-associated secretory phenotype component gene transcription in a circWDR37-dependent manner. Low circWDR37 levels correlate with chemotherapy response and favorable survival in NPC patients treated with gemcitabine or cisplatin induction chemotherapy. This study uncovers a new mechanism of circWDR37 activated PKR in senescence-driven metastasis and provides appealing therapeutic targets in NPC.
Collapse
Affiliation(s)
- Qian Li
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yu‐Heng Zhao
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Cheng Xu
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ye‐Lin Liang
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yin Zhao
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Qing‐Mei He
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jun‐Yan Li
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Kai‐Lin Chen
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Han Qiao
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Na Liu
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jun Ma
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Lei Chen
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ying‐Qin Li
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
40
|
Dutta S, Ganguly A, Chatterjee K, Spada S, Mukherjee S. Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. BIOLOGY 2023; 12:biology12020218. [PMID: 36829496 PMCID: PMC9952779 DOI: 10.3390/biology12020218] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a novel therapeutic tool for cancer therapy in the last decade. Unfortunately, a small number of patients benefit from approved immune checkpoint inhibitors (ICIs). Therefore, multiple studies are being conducted to find new ICIs and combination strategies to improve the current ICIs. In this review, we discuss some approved immune checkpoints, such as PD-L1, PD-1, and CTLA-4, and also highlight newer emerging ICIs. For instance, HLA-E, overexpressed by tumor cells, represents an immune-suppressive feature by binding CD94/NKG2A, on NK and T cells. NKG2A blockade recruits CD8+ T cells and activates NK cells to decrease the tumor burden. NKG2D acts as an NK cell activating receptor that can also be a potential ICI. The adenosine A2A and A2B receptors, CD47-SIRPα, TIM-3, LAG-3, TIGIT, and VISTA are targets that also contribute to cancer immunoresistance and have been considered for clinical trials. Their antitumor immunosuppressive functions can be used to develop blocking antibodies. PARPs, mARTs, and B7-H3 are also other potential targets for immunosuppression. Additionally, miRNA, mRNA, and CRISPR-Cas9-mediated immunotherapeutic approaches are being investigated with great interest. Pre-clinical and clinical studies project these targets as potential immunotherapeutic candidates in different cancer types for their robust antitumor modulation.
Collapse
Affiliation(s)
- Shovan Dutta
- The Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India
| | | | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (S.S.); (S.M.)
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.S.); (S.M.)
| |
Collapse
|
41
|
Zhang L, Lu C, Zeng M, Li Y, Wang J. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features. Brief Bioinform 2023; 24:6889442. [PMID: 36511222 DOI: 10.1093/bib/bbac530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are reverse-spliced and covalently closed RNAs. Their interactions with RNA-binding proteins (RBPs) have multiple effects on the progress of many diseases. Some computational methods are proposed to identify RBP binding sites on circRNAs but suffer from insufficient accuracy, robustness and explanation. In this study, we first take the characteristics of both RNA and RBP into consideration. We propose a method for discriminating circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features, called CRMSS. For circRNAs, we use sequence ${k}\hbox{-}{mer}$ embedding and the forming probabilities of local secondary structures as features. For RBPs, we combine sequence and structure frequencies of RNA-binding domain regions to generate features. We capture binding patterns with multi-scale residual blocks. With BiLSTM and attention mechanism, we obtain the contextual information of high-level representation for circRNA-RBP binding. To validate the effectiveness of CRMSS, we compare its predictive performance with other methods on 37 RBPs. Taking the properties of both circRNAs and RBPs into account, CRMSS achieves superior performance over state-of-the-art methods. In the case study, our model provides reliable predictions and correctly identifies experimentally verified circRNA-RBP pairs. The code of CRMSS is freely available at https://github.com/BioinformaticsCSU/CRMSS.
Collapse
Affiliation(s)
- Lishen Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Chengqian Lu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Min Zeng
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Yaohang Li
- Department of Computer Science at Old Dominion University, USA
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| |
Collapse
|
42
|
Ruan H, Wang PC, Han L. Characterization of circular RNAs with advanced sequencing technologies in human complex diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1759. [PMID: 36164985 DOI: 10.1002/wrna.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 01/31/2023]
Abstract
Circular RNAs (circRNAs) are one category of non-coding RNAs that do not possess 5' caps and 3' free ends. Instead, they are derived in closed circle forms from pre-mRNAs by a non-canonical splicing mechanism named "back-splicing." CircRNAs were discovered four decades ago, initially called "scrambled exons." Compared to linear RNAs, the expression levels of circRNAs are considerably lower, and it is challenging to identify circRNAs specifically. Thus, the biological relevance of circRNAs has been underappreciated until the advancement of next generation sequencing (NGS) technology. The biological insights of circRNAs, such as their tissue-specific expression patterns, biogenesis factors, and functional effects in complex diseases, namely human cancers, have been extensively explored in the last decade. With the invention of the third generation sequencing (TGS) with longer sequencing reads and newly designed strategies to characterize full-length circRNAs, the panorama of circRNAs in human complex diseases could be further unveiled. In this review, we first introduce the history of circular RNA detection. Next, we describe widely adopted NGS-based methods and the recently established TGS-based approaches capable of characterizing circRNAs in full-length. We then summarize data resources and representative circRNA functional studies related to human complex diseases. In the last section, we reviewed computational tools and discuss the potential advantages of utilizing advanced sequencing approaches to a functional interpretation of full-length circRNAs in complex diseases. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Hang Ruan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Peng-Cheng Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
43
|
Galardi A, Colletti M, Palma A, Di Giannatale A. An Update on Circular RNA in Pediatric Cancers. Biomedicines 2022; 11:biomedicines11010036. [PMID: 36672544 PMCID: PMC9856195 DOI: 10.3390/biomedicines11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded closed noncoding RNA molecules which are formed as a result of reverse splicing of mRNAs. Despite their relative abundance, only recently there appeared an increased interest in the understanding of their regulatory importance. Among their most relevant characteristics are high stability, abundance and evolutionary conservation among species. CircRNAs are implicated in several cellular functions, ranging from miRNA and protein sponges to transcriptional modulation and splicing. Additionally, circRNAs' aberrant expression in pathological conditions is bringing to light their possible use as diagnostic and prognostic biomarkers. Their use as indicator molecules of pathological changes is also supported by their peculiar covalent closed cyclic structure which bestows resistance to RNases. Their regulatory role in cancer pathogenesis and metastasis is supported by studies involving human tumors that have investigated different expression profiles of these molecules. As endogenous competitive RNA, circRNAs can regulate tumor proliferation and invasion and they arouse great consideration as potential therapeutic biomarkers and targets for cancer. In this review, we describe the most recent findings on circRNAs in the most common pediatric solid cancers (such as brain tumors, neuroblastomas, and sarcomas) and in more rare ones (such as Wilms tumors, hepatoblastomas, and retinoblastomas).
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Marta Colletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Alessandro Palma
- Translational Cytogenomics Research Unit, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
44
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
45
|
Hsa_circ_0015278 Regulates FLT3-ITD AML Progression via Ferroptosis-Related Genes. Cancers (Basel) 2022; 15:cancers15010071. [PMID: 36612069 PMCID: PMC9817690 DOI: 10.3390/cancers15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
AML with the FLT3-ITD mutation seriously threatens human health. The mechanism by which circRNAs regulate the pathogenesis of FLT3-ITD mutant-type AML through ferroptosis-related genes (FerRGs) remains unclear. Differentially expressed circRNAs and mRNAs were identified from multiple integrated data sources. The target miRNAs and mRNAs of the circRNAs were predicted using various databases. The PPI network, ceRNA regulatory network, GO, and KEGG enrichment analyses were performed. The "survival" and the "pROC" R packages were used for K-M and ROC analysis, respectively. GSEA, immune infiltration analysis, and clinical subgroup analysis were performed. Finally, circRNAs were validated by Sanger sequencing and qRT-PCR. In our study, 77 DECircs-1 and 690 DECircs-2 were identified. Subsequently, 11 co-up-regulated DECircs were obtained by intersecting DECircs-1 and DECircs-2. The target miRNAs of the circRNAs were screened by CircInteractome, circbank, and circAtlas. Utilizing TargetScan, ENCORI, and miRWalk, the target mRNAs of the miRNAs were uncovered. Ultimately, 73 FerRGs were obtained, and the ceRNA regulatory network was constructed. Furthermore, MAPK3 and CD44 were significantly associated with prognosis. qRT-PCR results confirmed that has_circ_0015278 was significantly overexpressed in FLT3-ITD mutant-type AML. In summary, we constructed the hsa_circ_0015278/miRNAs/FerRGs signaling axis, which provides new insight into the pathogenesis and therapeutic targets of AML with FLT3-ITD mutation.
Collapse
|
46
|
Gao S, Zhao T, Meng F, Luo Y, Li Y, Wang Y. Circular RNAs in endometrial carcinoma (Review). Oncol Rep 2022; 48:212. [PMID: 36263622 PMCID: PMC9608256 DOI: 10.3892/or.2022.8427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
As one of the leading causes of death in women in Western developed countries, endometrial carcinoma (EC) is a common gynecological malignant tumor that seriously threatens women's health. In recent years, a trend has emerged of EC being manifested in younger women, and its overall incidence is gradually rising. Circular RNAs (circRNAs) are novel endogenous transcripts that have limited ability to encode proteins due to their covalent closed‑loop structure, which differs from that of other types of RNA. A growing body of evidence has demonstrated that circRNAs fulfill an important role in lung cancer, gastric cancer, breast cancer, EC and other malignant tumor types, and they can affect the occurrence and development of these malignancies through a variety of pathways, further demonstrating the potential of circRNAs as molecular biomarkers for the diagnosis, treatment and prognosis of malignant tumors. The purpose of the present review is to summarize the current understanding of the biogenesis and effects of circRNAs, and to discuss the expression, function and underlying mechanism of circRNAs in EC in order to identify potential novel biomarkers.
Collapse
Affiliation(s)
- Shan Gao
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Tianjun Zhao
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Fangchi Meng
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yan Li
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
47
|
Shi Y, Li J, Tang M, Liu J, Zhong Y, Huang W. CircHADHA-augmented autophagy suppresses tumor growth of colon cancer by regulating autophagy-related gene via miR-361. Front Oncol 2022; 12:937209. [PMID: 36313671 PMCID: PMC9606334 DOI: 10.3389/fonc.2022.937209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Colon cancer undergoes a traditional pathway from colon polyps to colon cancer. It is of great significance to investigate the key molecules involved in carcinogenesis from polyps to malignancies. Circular RNAs (circRNAs) are stably expressed in human body fluids such as plasma. Here, we demonstrated a differential expression pattern of plasma circRNAs in healthy individuals, colon polyp patients and colon cancer patients using circRNA Arraystar microarray. We explored that circRNA HADHA (circHADHA) was upregulated in plasma from polyp patients, whereas it was downregulated in plasma from colon cancer patients. Overexpression of circHADHA promoted autophagy in colon epithelial cells. Moreover, in colon cancer cells, overexpression of circHADHA promoted autophagy, whereas it inhibited cell proliferation and colony formation. CircHADHA increased the expression of ATG13 via miR-361 in both colon epithelial and cancer cells. ATG13 knockdown reduced autophagy even in the presence of circHADHA in colon cancer cells. Furthermore, the growth of circHADHA-overexpressing colon cancer cell-derived xenograft tumors was significantly decreased compared with control tumors in nude mice. In conclusion, circHADHA was differentially expressed in the plasma of healthy individuals, colon polyp patients and colon cancer patients. CircHADHA promoted autophagy by regulating ATG13 via miR-361 in both colon epithelial and cancer cells. CircHADHA suppressed tumor growth by inducing cell autophagy in colon cancer cells. CircHADHA potentially serves as a biomarker for screening of precursor colon cancer and a therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Ying Shi
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Gastroenterology, Hepatology and Infectious Diseases, Internal Medicine I, Tübingen University Hospital, Tübingen, Germany
| | - Jinying Li
- Endoscopy Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ming Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingwen Liu
- Endoscopy Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yalu Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Endoscopy Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Wei Huang,
| |
Collapse
|
48
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
49
|
Mo Y, Wang Y, Wang Y, Deng X, Yan Q, Fan C, Zhang S, Zhang S, Gong Z, Shi L, Liao Q, Guo C, Li Y, Li G, Zeng Z, Jiang W, Xiong W, Xiang B. Circular RNA circPVT1 promotes nasopharyngeal carcinoma metastasis via the β-TrCP/c-Myc/SRSF1 positive feedback loop. Mol Cancer 2022; 21:192. [PMID: 36199071 PMCID: PMC9533486 DOI: 10.1186/s12943-022-01659-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Circular RNAs (circRNAs) act as gene expression regulators and are involved in cancer progression. However, their functions have not been sufficiently investigated in nasopharyngeal carcinoma (NPC). Methods The expression profiles of circRNAs in NPC cells within different metastatic potential were reanalyzed. Quantitative reverse transcription PCR and in situ hybridization were used to detect the expression level of circPVT1 in NPC cells and tissue samples. The association of expression level of circPVT1 with clinical properties of NPC patients was evaluated. Then, the effects of circPVT1 expression on NPC metastasis were investigated by in vitro and in vivo functional experiments. RNA immunoprecipitation, pull-down assay and western blotting were performed to confirm the interaction between circPVT1 and β-TrCP in NPC cells. Co-immunoprecipitation and western blotting were performed to confirm the interaction between β-TrCP and c-Myc in NPC cells. Results We find that circPVT1, a circular RNA, is significantly upregulated in NPC cells and tissue specimens. In vitro and in vivo experiments showed that circPVT1 promotes the invasion and metastasis of NPC cells. Mechanistically, circPVT1 inhibits proteasomal degradation of c-Myc by binding to β-TrCP, an E3 ubiquiting ligase. Stablization of c-Myc by circPVT1 alters the cytoskeleton remodeling and cell adhesion in NPC, which ultimately promotes the invasion and metastasis of NPC cells. Furthermore, c-Myc transcriptionally upregulates the expression of SRSF1, an RNA splicing factor, and recruits SRSF1 to enhance the biosynthesis of circPVT1 through coupling transcription with splicing, which forms a positive feedback for circPVT1 production. Conclusions Our results revealed the important role of circPVT1 in the progression of NPC through the β-TrCP/c-Myc/SRSF1 positive feedback loop, and circPVT1 may serve as a prognostic biomarker or therapeutic target in patients with NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01659-w.
Collapse
Affiliation(s)
- Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Xiangying Deng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
50
|
The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets. Mediators Inflamm 2022; 2022:6125698. [PMID: 36248190 PMCID: PMC9553461 DOI: 10.1155/2022/6125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years. The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses, resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies, and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets and biomarkers.
Collapse
|