1
|
Lin KT, Muneer G, Huang PR, Chen CS, Chen YJ. Mass Spectrometry-Based Proteomics for Next-Generation Precision Oncology. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40269546 DOI: 10.1002/mas.21932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Cancer is the leading cause of death worldwide characterized by patient heterogeneity and complex tumor microenvironment. While the genomics-based testing has transformed modern medicine, the challenge of diverse clinical outcomes highlights unmet needs for precision oncology. As functional molecules regulating cellular processes, proteins hold great promise as biomarkers and drug targets. Mass spectrometry (MS)-based clinical proteomics has illuminated the molecular features of cancers and facilitated discovery of biomarkers or therapeutic targets, paving the way for innovative strategies that enhance the precision of personalized treatment. In this article, we introduced the tools and current achievements of MS-based proteomics, choice of discovery and targeted MS from discovery to validation phases, profiling sensitivity from bulk samples to single-cell level and tissue to liquid biopsy specimens, current regulatory landscape of MS-based protein laboratory-developed tests (LDTs). The challenges, success and future perspectives in translating research MS assay into clinical applications are also discussed. With well-designed validation studies to demonstrate clinical benefits and meet the regulatory requirements for both analytical and clinical performance, the future of MS-based assays is promising with numerous opportunities to improve cancer diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Zemaitis KJ, Paša-Tolić L. Challenges in Spatial Metabolomics and Proteomics for Functional Tissue Unit and Single-Cell Resolution. Semin Nephrol 2024; 44:151583. [PMID: 40263091 DOI: 10.1016/j.semnephrol.2025.151583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
In the last decade, advanced developments of mass spectrometry-based assays have made spatial measurements of hundreds of metabolites and thousands of proteins not only possible, but routine. The information obtained from such mass spectrometry imaging experiments traces metabolic events and helps decipher feedback loops across anatomical regions, connecting genetic and metabolic networks that define phenotypes. Herein we overview developments in the field over the past decade, highlighting several case studies demonstrating direct measurement of metabolites, proteins, and proteoforms from thinly sliced tissues at the level of functional tissue units, approaching single-cell levels. Much of this work is feasible due to multidisciplinary team science, and we offer brief perspectives on paths forward and the challenges that persist with adoption and application of these spatial omics techniques at the single-cell level on mammalian kidneys. Data analysis and reanalysis still pose issues that plague spatial omics, but many mass spectrometry imaging platforms are commercially available. With greater harmonization across platforms and rigorous quality control, greater adoption of these platforms will undoubtedly provide major insights in complex diseases.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Analytical Chemistry Staff Scientist, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ljiljana Paša-Tolić
- Chemistry Laboratory Fellow and Lead Scientist for Visual Proteomics, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
3
|
Ahmad P, Hussain A, Siqueira WL. Mass spectrometry-based proteomic approaches for salivary protein biomarkers discovery and dental caries diagnosis: A critical review. MASS SPECTROMETRY REVIEWS 2024; 43:826-856. [PMID: 36444686 DOI: 10.1002/mas.21822] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dental caries is a multifactorial chronic disease resulting from the intricate interplay among acid-generating bacteria, fermentable carbohydrates, and several host factors such as saliva. Saliva comprises several proteins which could be utilized as biomarkers for caries prevention, diagnosis, and prognosis. Mass spectrometry-based salivary proteomics approaches, owing to their sensitivity, provide the opportunity to investigate and unveil crucial cariogenic pathogen activity and host indicators and may demonstrate clinically relevant biomarkers to improve caries diagnosis and management. The present review outlines the published literature of human clinical proteomics investigations on caries and extensively elucidates frequently reported salivary proteins as biomarkers. This review also discusses important aspects while designing an experimental proteomics workflow. The protein-protein interactions and the clinical relevance of salivary proteins as biomarkers for caries, together with uninvestigated domains of the discipline are also discussed critically.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ahmed Hussain
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Niu B, Zhao M, Gao X, Xu J, Yu L. TMT-based quantitative proteomics analysis of neuroprotective effects of Forsythoside A on the MPTP-induced Parkinson's disease mouse model. Exp Neurol 2024; 373:114642. [PMID: 38056584 DOI: 10.1016/j.expneurol.2023.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characteristized by the presence of dyskinesia and the progressive loss of dopaminergic neurons. Although certain drugs can mitigate the symptoms of PD, they are unable to delay the disease progression, and their prolonged use may result in complications. Therefore, there exists an urgent necessity to identify potential agents that can effectively delay PD progression with fewer side effects. Recent research has unveiled that several traditional Chinese medicines (TCM) exhibit neuroprotective properties in various models pertinent to PD. Forsythoside A (FSA), the primary bioactive compound derived from TCM Lianqiao, has undergone extensive research in animal models of Alzheimer's disease and cerebral ischemia. However, the investigation into the impact of FSA on PD is limited in existing research. In this study, we aimed to evaluate the neuroprotective effects of FSA on MPTP-induced PD mouse model. FSA demonstrated significant improvements in the behavioral and neuropathological changes triggered by MPTP in mice. Furthermore, it exerted a suppressive effect on the activations of astrocyte and microglia. Meanwhile, Tandem mass tag (TMT)-based quantitative proteomics of striatal tissue and bioinformatics analysis were performed to elucidate the underlying mechanisms of FSA on PD mouse model. Proteomics demonstrated a total of 68 differentially expressed proteins (DEPs) were identified between HFSA and MPTP groups including 26 upregulated and 42 downregulated. Systematic bioinformatics analysis of the 68 DEPs illustrated that they were predominantly related to estrogen signaling pathway and calcium signaling pathway. The related DEPs (PLCβ4, Grm2, HPAC and Cox4i1) expression levels were verified by Western blot. FSA effectively restored the altered expression of the four DEPs induced by MPTP. Summarily, FSA exerted remarkable neuroprotective effects in MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of FSA as a potential treatment for PD.
Collapse
Affiliation(s)
- Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Minhong Zhao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Xiu'an Gao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou 510515, China.
| | - Linzhong Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Michaud SA, Pětrošová H, Sinclair NJ, Kinnear AL, Jackson AM, McGuire JC, Hardie DB, Bhowmick P, Ganguly M, Flenniken AM, Nutter LMJ, McKerlie C, Smith D, Mohammed Y, Schibli D, Sickmann A, Borchers CH. Multiple reaction monitoring assays for large-scale quantitation of proteins from 20 mouse organs and tissues. Commun Biol 2024; 7:6. [PMID: 38168632 PMCID: PMC10762018 DOI: 10.1038/s42003-023-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl. Sex- and strain-specific differences in protein abundances are identified and described, and the measured values are freely accessible via our MouseQuaPro database: http://mousequapro.proteincentre.com . Together, this large library of quantitative MRM-MS assays established in mice and the measured baseline protein abundances represent an important resource for research involving mouse models.
Collapse
Affiliation(s)
- Sarah A Michaud
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Nicholas J Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Andrea L Kinnear
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Angela M Jackson
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Jamie C McGuire
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Pallab Bhowmick
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Derek Smith
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Schibli
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|
7
|
Sharman K, Patterson NH, Weiss A, Neumann EK, Guiberson ER, Ryan DJ, Gutierrez DB, Spraggins JM, Van de Plas R, Skaar EP, Caprioli RM. Rapid Multivariate Analysis Approach to Explore Differential Spatial Protein Profiles in Tissue. J Proteome Res 2023; 22:1394-1405. [PMID: 35849531 PMCID: PMC9845430 DOI: 10.1021/acs.jproteome.2c00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Spatially targeted proteomics analyzes the proteome of specific cell types and functional regions within tissue. While spatial context is often essential to understanding biological processes, interpreting sub-region-specific protein profiles can pose a challenge due to the high-dimensional nature of the data. Here, we develop a multivariate approach for rapid exploration of differential protein profiles acquired from distinct tissue regions and apply it to analyze a published spatially targeted proteomics data set collected from Staphylococcus aureus-infected murine kidney, 4 and 10 days postinfection. The data analysis process rapidly filters high-dimensional proteomic data to reveal relevant differentiating species among hundreds to thousands of measured molecules. We employ principal component analysis (PCA) for dimensionality reduction of protein profiles measured by microliquid extraction surface analysis mass spectrometry. Subsequently, k-means clustering of the PCA-processed data groups samples by chemical similarity. Cluster center interpretation revealed a subset of proteins that differentiate between spatial regions of infection over two time points. These proteins appear involved in tricarboxylic acid metabolomic pathways, calcium-dependent processes, and cytoskeletal organization. Gene ontology analysis further uncovered relationships to tissue damage/repair and calcium-related defense mechanisms. Applying our analysis in infectious disease highlighted differential proteomic changes across abscess regions over time, reflecting the dynamic nature of host-pathogen interactions.
Collapse
Affiliation(s)
- Kavya Sharman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - Elizabeth K Neumann
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Emma R Guiberson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J Ryan
- Pfizer Inc., Chesterfield, Missouri 63017, United States
| | - Danielle B Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
8
|
Nazli S, Zimmerman KD, Riojas AM, Cox LA, Olivier M. An Isobaric Labeling Approach to Enhance Detection and Quantification of Tissue-Derived Plasma Proteins as Potential Early Disease Biomarkers. Biomolecules 2023; 13:215. [PMID: 36830584 PMCID: PMC9952993 DOI: 10.3390/biom13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The proteomic analysis of plasma holds great promise to advance precision medicine and identify biomarkers of disease. However, it is likely that many potential biomarkers circulating in plasma originate from other tissues and are only present in low abundances in the plasma. Accurate detection and quantification of low abundance proteins by standard mass spectrometry approaches remain challenging. In addition, it is difficult to link low abundance plasma proteins back to their specific tissues or organs of origin with confidence. To address these challenges, we developed a mass spectrometry approach based on the use of tandem mass tags (TMT) and a tissue reference sample. By applying this approach to nonhuman primate plasma samples, we were able to identify and quantify 820 proteins by using a kidney tissue homogenate as reference. On average, 643 ± 16 proteins were identified per plasma sample. About 58% of proteins identified in replicate experiments were identified both times. A ratio of 50 μg kidney protein to 10 μg plasma protein, and the use of the TMT label with the highest molecular weight (131) for the kidney reference yielded the largest number of proteins in the analysis, and identified low abundance proteins in plasma that are prominently found in the kidney. Overall, this methodology promises efficient quantification of plasma proteins potentially released from specific tissues, thereby increasing the number of putative disease biomarkers for future study.
Collapse
Affiliation(s)
- Sumaiya Nazli
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Angelica M. Riojas
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
Zhang X, Sun H, Wang Z, Zhou S, Fu Y, Anthony HA, Peng J. In-Depth Blood Proteome Profiling by Extensive Fractionation and Multiplexed Quantitative Mass Spectrometry. Methods Mol Biol 2023; 2628:109-125. [PMID: 36781782 DOI: 10.1007/978-1-0716-2978-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Blood in the circulatory system carries information of physiological and pathological status of the human body, so blood proteins are often used as biomarkers for diagnosis, prognosis, and therapy. Human blood proteome can be explored by the latest technologies in mass spectrometry (MS), creating an opportunity of discovering new disease biomarkers. The extreme dynamic range of protein concentrations in blood, however, poses a challenge to detect proteins of low abundance, namely, tissue leakage proteins. Here, we describe a strategy to directly analyze undepleted blood samples by extensive liquid chromatography (LC) fractionation and 18-plex tandem-mass-tag (TMT) mass spectrometry. The proteins in blood specimens (e.g., plasma or serum) are isolated by acetone precipitation and digested into peptides. The resulting peptides are TMT-labeled, separated by basic pH reverse-phase (RP) LC into at least 40 fractions, and analyzed by acidic pH RPLC and high-resolution MS/MS, leading to the quantification of ~3000 unique proteins. Further increase of basic pH RPLC fractions and adjustment of the fraction concatenation strategy can enhance the proteomic coverage (up to ~5000 proteins). Finally, the combination of multiple batches of TMT experiments allows the profiling of hundreds of blood samples. This TMT-MS-based method provides a powerful platform for deep proteome profiling of human blood samples.
Collapse
Affiliation(s)
- Xue Zhang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huan Sun
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingxue Fu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - High A Anthony
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
10
|
Solovyeva EM, Bubis JA, Tarasova IA, Lobas AA, Ivanov MV, Nazarov AA, Shutkov IA, Gorshkov MV. On the Feasibility of Using an Ultra-Fast DirectMS1 Method of Proteome-Wide Analysis for Searching Drug Targets in Chemical Proteomics. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1342-1353. [PMID: 36509723 DOI: 10.1134/s000629792211013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein quantitation in tissue cells or physiological fluids based on liquid chromatography/mass spectrometry is one of the key sources of information on the mechanisms of cell functioning during chemotherapeutic treatment. Information on significant changes in protein expression upon treatment can be obtained by chemical proteomics and requires analysis of the cellular proteomes, as well as development of experimental and bioinformatic methods for identification of the drug targets. Low throughput of whole proteome analysis based on liquid chromatography and tandem mass spectrometry is one of the main factors limiting the scale of these studies. The method of direct mass spectrometric identification of proteins, DirectMS1, is one of the approaches developed in recent years allowing ultrafast proteome-wide analyses employing minute-scale gradients for separation of proteolytic mixtures. Aim of this work was evaluation of both possibilities and limitations of the method for identification of drug targets at the level of whole proteome and for revealing cellular processes activated by the treatment. Particularly, the available literature data on chemical proteomics obtained earlier for a large set of onco-pharmaceuticals using multiplex quantitative proteome profiling were analyzed. The results obtained were further compared with the proteome-wide data acquired by the DirectMS1 method using ultrashort separation gradients to evaluate efficiency of the method in identifying known drug targets. Using ovarian cancer cell line A2780 as an example, a whole-proteome comparison of two cell lysis techniques was performed, including the freeze-thaw lysis commonly employed in chemical proteomics and the one based on ultrasonication for cell disruption, which is the widely accepted as a standard in proteomic studies. Also, the proteome-wide profiling was performed using ultrafast DirectMS1 method for A2780 cell line treated with lonidamine, followed by gene ontology analyses to evaluate capabilities of the method in revealing regulation of proteins in the cellular processes associated with drug treatment.
Collapse
Affiliation(s)
- Elizaveta M Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Julia A Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Anna A Lobas
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey A Nazarov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ilya A Shutkov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
11
|
Baros-Steyl SS, Al Heialy S, Semreen AH, Semreen MH, Blackburn JM, Soares NC. A review of mass spectrometry-based analyses to understand COVID-19 convalescent plasma mechanisms of action. Proteomics 2022; 22:e2200118. [PMID: 35809024 PMCID: PMC9349457 DOI: 10.1002/pmic.202200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/08/2023]
Abstract
The spread of coronavirus disease 2019 (COVID‐19) viral pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has become a worldwide pandemic claiming several thousands of lives worldwide. During this pandemic, several studies reported the use of COVID‐19 convalescent plasma (CCP) from recovered patients to treat severely or critically ill patients. Although this historical and empirical treatment holds immense potential as a first line of response against eventual future unforeseen viral epidemics, there are several concerns regarding the efficacy and safety of this approach. This critical review aims to pinpoint the possible role of mass spectrometry‐based analysis in the identification of unique molecular component proteins, peptides, and metabolites of CCP that explains the therapeutic mechanism of action against COVID‐19. Additionally, the text critically reviews the potential application of mass spectrometry approaches in the search for novel plasma biomarkers that may enable a rapid and accurate assessment of the safety and efficacy of CCP. Considering the relative low‐cost value involved in the CCP therapy, this proposed line of research represents a tangible scientific challenge that will be translated into clinical practice and help save several thousand lives around the world, specifically in low‐ and middle‐income countries.
Collapse
Affiliation(s)
- Seanantha S Baros-Steyl
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Meakin-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ahlam H Semreen
- College of Pharmacy-Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- College of Pharmacy-Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- College of Pharmacy-Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
12
|
Recent Developments in Clinical Plasma Proteomics—Applied to Cardiovascular Research. Biomedicines 2022; 10:biomedicines10010162. [PMID: 35052841 PMCID: PMC8773619 DOI: 10.3390/biomedicines10010162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The human plasma proteome mirrors the physiological state of the cardiovascular system, a fact that has been used to analyze plasma biomarkers in routine analysis for the diagnosis and monitoring of cardiovascular diseases for decades. These biomarkers address, however, only a very limited subset of cardiovascular diseases, such as acute myocardial infarct or acute deep vein thrombosis, and clinical plasma biomarkers for the diagnosis and stratification cardiovascular diseases that are growing in incidence, such as heart failure and abdominal aortic aneurysm, do not exist and are urgently needed. The discovery of novel biomarkers in plasma has been hindered by the complexity of the human plasma proteome that again transforms into an extreme analytical complexity when it comes to the discovery of novel plasma biomarkers. This complexity is, however, addressed by recent achievements in technologies for analyzing the human plasma proteome, thereby facilitating the possibility for novel biomarker discoveries. The aims of this article is to provide an overview of the recent achievements in technologies for proteomic analysis of the human plasma proteome and their applications in cardiovascular medicine.
Collapse
|
13
|
Orsburn BC. Evaluation of the Sensitivity of Proteomics Methods Using the Absolute Copy Number of Proteins in a Single Cell as a Metric. Proteomes 2021; 9:34. [PMID: 34287363 PMCID: PMC8293326 DOI: 10.3390/proteomes9030034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/24/2023] Open
Abstract
Proteomic technology has improved at a staggering pace in recent years, with even practitioners challenged to keep up with new methods and hardware. The most common metric used for method performance is the number of peptides and proteins identified. While this metric may be helpful for proteomics researchers shopping for new hardware, this is often not the most biologically relevant metric. Biologists often utilize proteomics in the search for protein regulators that are of a lower relative copy number in the cell. In this review, I re-evaluate untargeted proteomics data using a simple graphical representation of the absolute copy number of proteins present in a single cancer cell as a metric. By comparing single-shot proteomics data to the coverage of the most in-depth proteomic analysis of that cell line acquired to date, we can obtain a rapid metric of method performance. Using a simple copy number metric allows visualization of how proteomics has developed in both sensitivity and overall dynamic range when using both relatively long and short acquisition times. To enable reanalysis beyond what is presented here, two available web applications have been developed for single- and multi-experiment comparisons with reference protein copy number data for multiple cell lines and organisms.
Collapse
Affiliation(s)
- Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Spreen H, Behrens M, Mulac D, Humpf HU, Langer K. Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles. Eur J Pharm Biopharm 2021; 163:212-222. [PMID: 33862242 DOI: 10.1016/j.ejpb.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Poly(DL-lactic-co-glycolic acid) and poly(DL-lactic acid) are widely used for the preparation of nanoparticles due to favorable characteristics for medical use like biodegradability and controllable degradation behavior. The contact with different media like human plasma or serum leads to the formation of a protein corona that determines the NP's in vivo processing. In this study, the impact of surface end group identity, matrix polymer hydrophobicity, molecular weight, and incubation medium on the protein corona composition was evaluated. Corona proteins were quantified using Bradford assay, separated by SDS-PAGE, and identified via LC-MS/MS. The acquired data revealed that surface end group identity had the most profound effect on corona composition in both quantitative and qualitative terms. Regarding matrix polymer hydrophobicity, adsorption profiles on NP systems with similar physicochemical characteristics resembled each other. The molecular weight of the matrix polymers proved to impact quantity, but not quality of corona bound proteins. The corona of plasma incubated NP showed adsorption of incubation medium-specific proteins but resembled those of serum incubated NP in terms of protein function, average mass and isoelectric point. Overall, the NP physicochemical properties proved to be easily adjustable determining factors of protein corona formation in physiological environments.
Collapse
Affiliation(s)
- Hendrik Spreen
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr, 48149 Muenster, Germany.
| |
Collapse
|
15
|
Ivanov MV, Bubis JA, Gorshkov V, Abdrakhimov DA, Kjeldsen F, Gorshkov MV. Boosting MS1-only Proteomics with Machine Learning Allows 2000 Protein Identifications in Single-Shot Human Proteome Analysis Using 5 min HPLC Gradient. J Proteome Res 2021; 20:1864-1873. [PMID: 33720732 DOI: 10.1021/acs.jproteome.0c00863] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proteome-wide analyses rely on tandem mass spectrometry and the extensive separation of proteolytic mixtures. This imposes considerable instrumental time consumption, which is one of the main obstacles in the broader acceptance of proteomics in biomedical and clinical research. Recently, we presented a fast proteomic method termed DirectMS1 based on ultrashort LC gradients as well as MS1-only mass spectra acquisition and data processing. The method allows significant reduction of the proteome-wide analysis time to a few minutes at the depth of quantitative proteome coverage of 1000 proteins at 1% false discovery rate (FDR). In this work, to further increase the capabilities of the DirectMS1 method, we explored the opportunities presented by the recent progress in the machine-learning area and applied the LightGBM decision tree boosting algorithm to the scoring of peptide feature matches when processing MS1 spectra. Furthermore, we integrated the peptide feature identification algorithm of DirectMS1 with the recently introduced peptide retention time prediction utility, DeepLC. Additional approaches to improve the performance of the DirectMS1 method are discussed and demonstrated, such as using FAIMS for gas-phase ion separation. As a result of all improvements to DirectMS1, we succeeded in identifying more than 2000 proteins at 1% FDR from the HeLa cell line in a 5 min gradient LC-FAIMS/MS1 analysis. The data sets generated and analyzed during the current study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD023977.
Collapse
Affiliation(s)
- Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
| | - Julia A Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Daniil A Abdrakhimov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia.,Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
| |
Collapse
|
16
|
Kumar A, Nayakanti DS, Mangalaparthi KK, Gopinath V, Reddy NVN, Govindan K, Voolapalli G, Kumar P, Kumar LD. Quantitative proteome profiling stratifies fibroepithelial lesions of the breast. Oncotarget 2021; 12:507-518. [PMID: 33747363 PMCID: PMC7939526 DOI: 10.18632/oncotarget.27889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Breast fibroepithelial lesions (FELs) include heterogeneous pathological tumors, involving indolent fibroadenoma (FAD) to potentially aggressive phyllodes tumors (PTs). The current grading system remains unreliable in differentiating these tumors due to histological heterogeneity and lack of appropriate markers to monitor the sudden and unpredictable malignant transformation of PTs. Thus, there exists an imminent need for a marker-based diagnostic approach to augment the conventional histological platform that could lead to accurate diagnosis and distinction of FELs. The high- throughput quantitative proteomic analysis suggested that FAD and PTs form distinct clusters away from borderline and malignant though there exist marked differences between them. Interestingly, over-expression of extracellular matrices (ECM) related proteins and epithelial-mesenchymal transition (EMT) markers in borderline PTs led us to hypothesize a model of deposition and degradation leading to ECM remodeling and EMT acquisition triggering its malignant transformation. We also identified three candidate biomarkers such as MUCL1, HTRA1, and VEGDF uniquely expressed in FAD, borderline, and malignant PTs, respectively, which were further validated using immunohistochemistry. The present work shed light on a brief mechanistic framework of PTs aggressive nature and present potential biomarkers to differentiate overlapping FELs that would be of practical utility in augmenting existing diagnosis and disease management for this rare tumor.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.,Authors share equal first authorship
| | - David S Nayakanti
- Institute of Bioinformatics, Discoverer Building International Tech Park, Whitefield, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Authors share equal first authorship
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, Discoverer Building International Tech Park, Whitefield, Bangalore, 560066, India.,Authors share equal second authorship
| | - Veena Gopinath
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.,Authors share equal second authorship
| | | | - Krishna Govindan
- Department of Pathology, Government Medical College, Thiruvananthapuram, Kerala, 695011, India
| | - Geeta Voolapalli
- Department of Surgery and Pathology, Gandhi Hospital, Secunderabad, 500025, India
| | - Prashant Kumar
- Institute of Bioinformatics, Discoverer Building International Tech Park, Whitefield, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| |
Collapse
|
17
|
Neves LX, Granato DC, Busso-Lopes AF, Carnielli CM, Patroni FMDS, De Rossi T, Oliveira AK, Ribeiro ACP, Brandão TB, Rodrigues AN, Lacerda PA, Uno M, Cervigne NK, Santos-Silva AR, Kowalski LP, Lopes MA, Paes Leme AF. Peptidomics-Driven Strategy Reveals Peptides and Predicted Proteases Associated With Oral Cancer Prognosis. Mol Cell Proteomics 2020; 20:100004. [PMID: 33578082 PMCID: PMC7950089 DOI: 10.1074/mcp.ra120.002227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Protease activity has been associated with pathological processes that can lead to cancer development and progression. However, understanding the pathological unbalance in proteolysis is challenging because changes can occur simultaneously at protease, their inhibitor, and substrate levels. Here, we present a pipeline that combines peptidomics, proteomics, and peptidase predictions for studying proteolytic events in the saliva of 79 patients and their association with oral squamous cell carcinoma (OSCC) prognosis. Our findings revealed differences in the saliva peptidome of patients with (pN+) or without (pN0) lymph-node metastasis and delivered a panel of ten endogenous peptides correlated with poor prognostic factors plus five molecules able to classify pN0 and pN+ patients (area under the receiver operating characteristic curve > 0.85). In addition, endopeptidases and exopeptidases putatively implicated in the processing of differential peptides were investigated using cancer tissue gene expression data from public repositories, reinforcing their association with poorer survival rates and prognosis in oral cancer. The dynamics of the OSCC-related proteolysis were further explored via the proteomic profiling of saliva. This revealed that peptidase/endopeptidase inhibitors exhibited reduced levels in the saliva of pN+ patients, as confirmed by selected reaction monitoring-mass spectrometry, while minor changes were detected in the level of saliva proteases. Taken together, our results indicated that proteolytic activity is accentuated in the saliva of patients with OSCC and lymph-node metastasis and, at least in part, is modulated by reduced levels of salivary peptidase inhibitors. Therefore, this integrated pipeline provided better comprehension and discovery of molecular features with implications in the oral cancer metastasis prognosis.
Collapse
Affiliation(s)
- Leandro Xavier Neves
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Daniela C Granato
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Ariane Fidelis Busso-Lopes
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Carolina M Carnielli
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Fábio M de Sá Patroni
- Molecular Biology and Genetic Engineering Center, University of Campinas, Campinas, Brazil
| | - Tatiane De Rossi
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Ana Karina Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | | | | | - André Nimtz Rodrigues
- Department of Head and Neck Surgery, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Pammela Araujo Lacerda
- Department of Internal Medicine, Molecular Biology and Cell Culture Laboratory, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology, São Paulo Cancer Institute, São Paulo, Brazil
| | - Nilva K Cervigne
- Department of Internal Medicine, Molecular Biology and Cell Culture Laboratory, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Head and Neck Surgery, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcio Ajudarte Lopes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Adriana F Paes Leme
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil.
| |
Collapse
|
18
|
Tonry C, Finn S, Armstrong J, Pennington SR. Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clin Proteomics 2020; 17:41. [PMID: 33292167 PMCID: PMC7678104 DOI: 10.1186/s12014-020-09305-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Following the introduction of routine Prostate Specific Antigen (PSA) screening in the early 1990's, Prostate Cancer (PCa) is often detected at an early stage. There are also a growing number of treatment options available and so the associated mortality rate is generally low. However, PCa is an extremely complex and heterogenous disease and many patients suffer disease recurrence following initial therapy. Disease recurrence commonly results in metastasis and metastatic PCa has an average survival rate of just 3-5 years. A significant problem in the clinical management of PCa is being able to differentiate between patients who will respond to standard therapies and those who may benefit from more aggressive intervention at an earlier stage. It is also acknowledged that for many men the disease is not life threatenting. Hence, there is a growing desire to identify patients who can be spared the significant side effects associated with PCa treatment until such time (if ever) their disease progresses to the point where treatment is required. To these important clinical needs, current biomarkers and clinical methods for patient stratification and personlised treatment are insufficient. This review provides a comprehensive overview of the complexities of PCa pathology and disease management. In this context it is possible to review current biomarkers and proteomic technologies that will support development of biomarker-driven decision tools to meet current important clinical needs. With such an in-depth understanding of disease pathology, the development of novel clinical biomarkers can proceed in an efficient and effective manner, such that they have a better chance of improving patient outcomes.
Collapse
Affiliation(s)
- Claire Tonry
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | | | | |
Collapse
|
19
|
Montemurro N, Orfanioti A, Manasfi R, Thomaidis NS, Pérez S. Comparison of high resolution mrm and sequential window acquisition of all theoretical fragment-ion acquisition modes for the quantitation of 48 wastewater-borne pollutants in lettuce. J Chromatogr A 2020; 1631:461566. [PMID: 33002708 DOI: 10.1016/j.chroma.2020.461566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
Screening of a large number of chemicals of emerging concern is highly desirable for the control of crops irrigated with reclaimed water since it is considered an alternative water source of great value. This study describes a high resolution mass spectrometry approach for developing methods for quantification in lettuce leaves of 48 different wastewater-borne pollutants (including analgesics and anti-inflammatories, anti-hypertensives, antifungal agents, lipid regulators, psychiatric drugs and stimulants, β-blockers, antibiotics, antimycotics, and sweeteners) frequently found in water resources. In this respect, a simple and fast QuEChERS-based method for the determination of contaminants in lettuce has been developed. During extraction, the use of formic acid was adopted to further improve the results of some problematic compounds (e.g., fenofibrate, furosemide, metronidazole, oxcarbazepine, sulfanilamide). High resolution multiple reaction monitoring (MRMHR) and SWATH acquisition were compared in term of accuracy, repeatability, sensitivity, linearity and matrix effect. Both methods provided similar recoveries between 80 and 120% in lettuce leaves, although sulfanilamide, ciprofloxacin, and sulfamethazine presenting values of 26.8, 27.8, and 28.4% in MRMHR and 25, 33.9, and 35% in SWATH, respectively. The effectiveness of a two-step cleanup on analyte recovery was also assessed and matrix effects were also taken into consideration during the method validation. The developed method allows the simultaneous quantitative analysis of 48 compounds (drug residues and metabolites) in lettuce leaves irrigated with treated wastewater for human consumption. Application of the present method to lettuce crops growth in controlled conditions showed the presence of 14 out 48 studied compounds with similar concentrations in both acquisition modes ranging from 3.3 and 1.3 ng g - 1 for climbazole (for MRMHR and SWATH, respectively) to 33.2 and 17.7 ng g - 1 for sulfamethazine. Drug residues such as carbamazepine (6.0 and 8.5 ng g - 1), and its metabolite carbamazepine epoxide (18.1 and 16.5 ng g - 1), frequently found in wastewater effluents, were also detected.
Collapse
Affiliation(s)
- Nicola Montemurro
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain).
| | - Anastasia Orfanioti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Rayana Manasfi
- UMR HydroSciences 5569, HSM, Montpellier University, 15 Avenue Ch. Flahault, 34093 Montpellier cedex 5, France
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Sandra Pérez
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain)
| |
Collapse
|
20
|
Ivanov MV, Bubis JA, Gorshkov V, Tarasova IA, Levitsky LI, Lobas AA, Solovyeva EM, Pridatchenko ML, Kjeldsen F, Gorshkov MV. DirectMS1: MS/MS-Free Identification of 1000 Proteins of Cellular Proteomes in 5 Minutes. Anal Chem 2020; 92:4326-4333. [DOI: 10.1021/acs.analchem.9b05095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mark V. Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Julia A. Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Irina A. Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lev I. Levitsky
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna A. Lobas
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta M. Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina L. Pridatchenko
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Mikhail V. Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| |
Collapse
|
21
|
Hu Y, Ferdosi S, Kapuruge EP, Diaz de Leon JA, Stücker I, Radoï L, Guénel P, Borges CR. Diagnostic and Prognostic Performance of Blood Plasma Glycan Features in the Women Epidemiology Lung Cancer (WELCA) Study. J Proteome Res 2019; 18:3985-3998. [PMID: 31566983 DOI: 10.1021/acs.jproteome.9b00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung cancer is the leading cause of cancer death in women living in the United States, which accounts for approximately the same percentage of cancer deaths in women as breast, ovary, and uterine cancers combined. Targeted blood plasma glycomics represents a promising source of noninvasive diagnostic and prognostic biomarkers for lung cancer. Here, 208 samples from lung cancer patients and 207 age-matched controls enrolled in the Women Epidemiology Lung Cancer (WELCA) study were analyzed by a bottom-up glycan "node" analysis approach. Glycan features, quantified as single analytical signals, including 2-linked mannose, α2-6 sialylation, β1-4 branching, β1-6 branching, 4-linked GlcNAc, and antennary fucosylation, exhibited abilities to distinguish cases from controls (ROC AUCs: 0.68-0.92) and predict survival in patients (hazard ratios: 1.99-2.75) at all stages. Notable alterations of glycan features were observed in stages I-II. Diagnostic and prognostic glycan features were mostly independent of smoking status, age, gender, and histological subtypes of lung cancer.
Collapse
Affiliation(s)
- Yueming Hu
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Shadi Ferdosi
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Erandi P Kapuruge
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Jesús Aguilar Diaz de Leon
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Isabelle Stücker
- CESP (Center for Research in Epidemiology and Population Health), Cancer and Environment Team, INSERM UMS1018 , University Paris-Sud, University Paris-Saclay , 94800 Villejuif, France
| | - Loredana Radoï
- CESP (Center for Research in Epidemiology and Population Health), Cancer and Environment Team, INSERM UMS1018 , University Paris-Sud, University Paris-Saclay , 94800 Villejuif, France
- Faculty of Dental Surgery , University Paris Descartes , 75006 Paris , France
| | - Pascal Guénel
- CESP (Center for Research in Epidemiology and Population Health), Cancer and Environment Team, INSERM UMS1018 , University Paris-Sud, University Paris-Saclay , 94800 Villejuif, France
| | - Chad R Borges
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
22
|
Bharucha T, Gangadharan B, Kumar A, de Lamballerie X, Newton PN, Winterberg M, Dubot-Pérès A, Zitzmann N. Mass spectrometry-based proteomic techniques to identify cerebrospinal fluid biomarkers for diagnosing suspected central nervous system infections. A systematic review. J Infect 2019; 79:407-418. [PMID: 31404562 PMCID: PMC6838782 DOI: 10.1016/j.jinf.2019.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Central nervous system (CNS) infections account for considerable death and disability every year. An urgent research priority is scaling up diagnostic capacity, and introduction of point-of-care tests. We set out to assess current evidence for the application of mass spectrometry (MS) peptide sequencing in identification of diagnostic biomarkers for CNS infections. METHODS We performed a systematic review (PROSPEROCRD42018104257) using PRISMA guidelines on use of MS to identify cerebrospinal fluid (CSF) biomarkers for diagnosing CNS infections. We searched PubMed, Embase, Web of Science, and Cochrane for articles published from 1 January 2000 to 1 February 2019, and contacted experts. Inclusion criteria involved primary research except case reports, on the diagnosis of infectious diseases except HIV, applying MS to human CSF samples, and English language. RESULTS 4,620 papers were identified, of which 11 were included, largely confined to pre-clinical biomarker discovery, and eight (73%) published in the last five years. 6 studies performed further work termed verification or validation. In 2 of these studies, it was possible to extract data on sensitivity and specificity of the biomarkers detected by ELISA, ranging from 89-94% and 58-92% respectively. CONCLUSIONS The findings demonstrate feasibility and potential of the methods in a variety of infectious diseases, but emphasise the need for strong interdisciplinary collaborations to ensure appropriate study design and biomarker validation.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic.
| | - Bevin Gangadharan
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Abhinav Kumar
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Markus Winterberg
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F, 60th Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Nicole Zitzmann
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| |
Collapse
|
23
|
Noor Z, Ranganathan S. Bioinformatics approaches for improving seminal plasma proteome analysis. Theriogenology 2019; 137:43-49. [PMID: 31186128 DOI: 10.1016/j.theriogenology.2019.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Reproduction efficiency of male animals is one of the key factors influencing the sustainability of livestock. Mass spectrometry (MS) based proteomics has become an important tool for studying seminal plasma proteomes. In this review, we summarize bioinformatics analysis strategies for current proteomics approaches, for identifying novel biomarkers of reproductive robustness.
Collapse
Affiliation(s)
- Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
24
|
Gallo Cantafio ME, Grillone K, Caracciolo D, Scionti F, Arbitrio M, Barbieri V, Pensabene L, Guzzi PH, Di Martino MT. From Single Level Analysis to Multi-Omics Integrative Approaches: A Powerful Strategy towards the Precision Oncology. High Throughput 2018; 7:ht7040033. [PMID: 30373182 PMCID: PMC6306876 DOI: 10.3390/ht7040033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Integration of multi-omics data from different molecular levels with clinical data, as well as epidemiologic risk factors, represents an accurate and promising methodology to understand the complexity of biological systems of human diseases, including cancer. By the extensive use of novel technologic platforms, a large number of multidimensional data can be derived from analysis of health and disease systems. Comprehensive analysis of multi-omics data in an integrated framework, which includes cumulative effects in the context of biological pathways, is therefore eagerly awaited. This strategy could allow the identification of pathway-addiction of cancer cells that may be amenable to therapeutic intervention. However, translation into clinical settings requires an optimized integration of omics data with clinical vision to fully exploit precision cancer medicine. We will discuss the available technical approach and more recent developments in the specific field.
Collapse
Affiliation(s)
- Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | | | - Vito Barbieri
- Medical Oncology Unit, Mater Domini Hospital, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Licia Pensabene
- Department of Medical and Surgical Sciences Pediatric Unit, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Pietro Hiram Guzzi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| |
Collapse
|
25
|
Gomez JD, Ridgeway ME, Park MA, Fritz KS. Utilizing Ion Mobility to Identify Isobaric Post-Translational Modifications: Resolving Acrolein and Propionyl Lysine Adducts by TIMS Mass Spectrometry. INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR ION MOBILITY SPECTROMETRY 2018; 21:65-69. [PMID: 30369833 PMCID: PMC6200409 DOI: 10.1007/s12127-018-0237-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023]
Abstract
Protein post-translational modifications provide critical proteomic details towards elucidating mechanisms of altered protein function due to toxic exposure, altered metabolism, or disease pathogenesis. Lysine propionylation is a recently described modification that occurs due to metabolic alterations in propionyl-CoA metabolism and sirtuin depropionylase activity. Acrolein is a toxic aldehyde generated through exogenous and endogenous pathways, such as industrial exposure, cigarette smoke inhalation, and non-enzymatic lipid peroxidation. Importantly, lysine modifications arising from propionylation and acroleination can be isobaric - indistinguishable by mass spectrometry - and inseparable via reverse-phase chromatography. Here, we present the novel application of trapped ion mobility spectrometry (TIMS) to resolve such competing isobaric lysine modifications. Specifically, the PTM products of a small synthetic peptide were analyzed using a prototype TIMS - time-of-flight mass spectrometer (TIMS-TOF). In that the mobilities of these propionylated and acroleinated peptides differ by only 1%, a high-resolution mobility analysis is required to resolve the two. We were able to achieve more than sufficient resolution in the TIMS analyzer (~170), readily separating these isobars.
Collapse
Affiliation(s)
- Jose D. Gomez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | | | | | - Kristofer S. Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| |
Collapse
|
26
|
Huang Z, Du CX, Pan XD. The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients. PLoS One 2018; 13:e0200702. [PMID: 30074997 PMCID: PMC6075744 DOI: 10.1371/journal.pone.0200702] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Tear is an accessible fluid for exploring biomarkers of dry eye disease. This study describes a fast proteomic method by LC-Q-orbitrap-MS analysis with in-strip digestion and investigates the tear proteome of dry eye patients. Schirmer’s strips were used for collection of tear fluid from patients. These strips were cut into pieces and directly digested with trypsin before mass spectrometry analysis. The data showed that more than 50 proteins were found in tear fluid from dry eye patients. Gene Ontology (GO) annotation showed that most of proteins were transfer/carrier proteins, hydrolyses, enzyme modulators and signaling molecules. Targeted proteomics strategy revealed that 18 proteins were differentially expressed in dry eye patients. Furthermore, it was showed that the common post-translational modification in tear proteins is deamidation of Asn.
Collapse
Affiliation(s)
- Zhu Huang
- Department of Ophthalmology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Ophthalmology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chi-Xin Du
- Department of Ophthalmology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Ophthalmology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- * E-mail:
| | - Xiao-Dong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
27
|
Ferdosi S, Ho TH, Castle EP, Stanton ML, Borges CR. Behavior of blood plasma glycan features in bladder cancer. PLoS One 2018; 13:e0201208. [PMID: 30040854 PMCID: PMC6057681 DOI: 10.1371/journal.pone.0201208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023] Open
Abstract
Despite systemic therapy and cystectomy, bladder cancer is characterized by a high recurrence rate. Serum glycomics represents a promising source of prognostic markers for monitoring patients. Our approach, which we refer to as "glycan node analysis", constitutes the first example of molecularly "bottom-up" glycomics. It is based on a global glycan methylation analysis procedure that is applied to whole blood plasma/serum. The approach detects and quantifies partially methylated alditol acetates arising from unique glycan features such as α2-6 sialylation, β1-4 branching, and core fucosylation that have been pooled together from across all intact glycans within a sample into a single GC-MS chromatographic peak. We applied this method to 122 plasma samples from former and current bladder cancer patients (n = 72 former cancer patients with currently no evidence of disease (NED); n = 38 non-muscle invasive bladder cancer (NMIBC) patients; and n = 12 muscle invasive bladder cancer (MIBC) patients) along with plasma from 30 certifiably healthy living kidney donors. Markers for α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation were able to separate current and former (NED) cases from certifiably healthy controls (ROC curve c-statistics ~ 0.80); but NED, NMIBC, and MIBC were not distinguished from one another. Based on the unexpectedly high levels of these glycan nodes in the NED patients, we hypothesized that recurrence of this disease could be predicted by some of the elevated glycan features. Indeed, α2-6 sialylation and β1-6 branching were able to predict recurrence from the NED state using a Cox proportional hazards regression model adjusted for age, gender, and time from cancer. The levels of these two glycan features were correlated to C-reactive protein concentration, an inflammation marker and known prognostic indicator for bladder cancer, further strengthening the link between inflammation and abnormal plasma protein glycosylation.
Collapse
Affiliation(s)
- Shadi Ferdosi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, United States of America
| | - Thai H. Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States of America
| | - Erik P. Castle
- Department of Urology, Mayo Clinic, Phoenix, AZ, United States of America
| | - Melissa L. Stanton
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States of America
| | - Chad R. Borges
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
28
|
Abstract
Plasma biomarker discovery necessitates a method for deep proteomic profiling, as well as for highly accurate quantification of the proteins in the sample. Furthermore, to obtain strong candidates for potential biomarkers, the method should be high throughput to enable a large scale analysis. Here we describe in detail PROMIS-Quan (PROteomics of MIcroparticles using Super-SILAC Quantification), a method for a simple and robust fractionation of the plasma samples by extraction of plasma microparticles, followed by SILAC-based relative and absolute quantification.
Collapse
Affiliation(s)
- Michal Harel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
29
|
Ferdosi S, Rehder DS, Maranian P, Castle EP, Ho TH, Pass HI, Cramer DW, Anderson KS, Fu L, Cole DEC, Le T, Wu X, Borges CR. Stage Dependence, Cell-Origin Independence, and Prognostic Capacity of Serum Glycan Fucosylation, β1-4 Branching, β1-6 Branching, and α2-6 Sialylation in Cancer. J Proteome Res 2018; 17:543-558. [PMID: 29129073 PMCID: PMC5978412 DOI: 10.1021/acs.jproteome.7b00672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans represent a promising but only marginally accessed source of cancer markers. We previously reported the development of a molecularly bottom-up approach to plasma and serum (P/S) glycomics based on glycan linkage analysis that captures features such as α2-6 sialylation, β1-6 branching, and core fucosylation as single analytical signals. Based on the behavior of P/S glycans established to date, we hypothesized that the alteration of P/S glycans observed in cancer would be independent of the tissue in which the tumor originated yet exhibit stage dependence that varied little between cancers classified on the basis of tumor origin. Herein, the diagnostic utility of this bottom-up approach as applied to lung cancer patients (n = 127 stage I; n = 20 stage II; n = 81 stage III; and n = 90 stage IV) as well as prostate (n = 40 stage II), serous ovarian (n = 59 stage III), and pancreatic cancer patients (n = 15 rapid autopsy) compared to certifiably healthy individuals (n = 30), nominally healthy individuals (n = 166), and risk-matched controls (n = 300) is reported. Diagnostic performance in lung cancer was stage-dependent, with markers for terminal (total) fucosylation, α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation most able to differentiate cases from controls. These markers behaved in a similar stage-dependent manner in other types of cancer as well. Notable differences between certifiably healthy individuals and case-matched controls were observed. These markers were not significantly elevated in liver fibrosis. Using a Cox proportional hazards regression model, the marker for α2-6 sialylation was found to predict both progression and survival in lung cancer patients after adjusting for age, gender, smoking status, and stage. The potential mechanistic role of aberrant P/S glycans in cancer progression is discussed.
Collapse
Affiliation(s)
- Shadi Ferdosi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Douglas S. Rehder
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Paul Maranian
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Erik P. Castle
- Department of Urology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Thai H. Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Harvey I. Pass
- Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York 10016, United States
| | - Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, United States
| | - Karen S. Anderson
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Lei Fu
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David E. C. Cole
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Le
- University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xifeng Wu
- University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chad R. Borges
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
30
|
Dutta SM, Hadley MM, Peterman S, Jewell JS, Duncan VD, Britten RA. Quantitative Proteomic Analysis of the Hippocampus of Rats with GCR-Induced Spatial Memory Impairment. Radiat Res 2017; 189:136-145. [PMID: 29206597 DOI: 10.1667/rr14822.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
NASA is planning future missions to Mars, which will result in astronauts being exposed to ∼13 cGy/year of galactic cosmic radiation (GCR). Previous ground-based experiments have demonstrated that low (15 cGy) doses of 1 GeV/n 56Fe ions impair hippocampus-dependent spatial memory in rats. However, some irradiated rats maintain a spatial memory performance comparable to that seen in the sham-irradiated rats, suggesting that some of these animals are able to ameliorate the deleterious effects of the GCR, while others are not. This rat model provides a unique opportunity to increase our understanding of how GCR affects neurophysiology, what adaptive responses can be invoked to prevent the emergence of GCR-induced spatial memory impairment, as well as the pathways that are altered when spatial memory impairment occurs. A label-free, unbiased proteomic profiling approach involving quantitative protein/peptide profiling followed by Cytoscape analysis has established the composition of the hippocampal proteome in male Wistar rats after exposure to 15 cGy of 1 GeV/n 56Fe, and identified proteins whose expression is altered with respect to: 1. radiation exposure and 2. impaired spatial memory performance. We identified 30 proteins that were classified as "GCR exposure marker" (GEM) proteins (expressed solely or at higher levels in the irradiated rats but not related to spatial memory performance), most notably CD98, Cadps and GMFB. Conversely, there were 252 proteins that were detected only in the sham-irradiated samples, i.e., they were not detected in either of the irradiated cohorts; of these 10% have well-documented roles in neurotransmission. The second aspect of our data mining was to identify proteins whose expression was associated with either impaired or functional spatial memory. While there are multiple changes in the hippocampal proteome in the irradiated rats that have impaired spatial memory performance, with 203 proteins being detected (or upregulated) only in these rats, it would appear that spatial memory impairment may also arise from an inability of these rats to express "good spatial memory" (GSM) proteins, many of which play an important role in neuronal homeostasis and function, axonogenesis, presynaptic membrane organization and G-protein coupled receptor (GCPR) signaling. It may be possible to use this knowledge to develop two alternative countermeasure strategies, one that preserves critical pathways prophylactically and one that invokes restorative pathways after GCR exposure.
Collapse
Affiliation(s)
- Sucharita M Dutta
- a Leroy T. Canoles Jr. Cancer Research Center and.,b Departments of Microbiology and Molecular Cell Biology and
| | - Melissa M Hadley
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Scott Peterman
- d BRIMS, Thermo Fisher Scientific, Cambridge, Massachusetts 02139
| | - Jessica S Jewell
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Vania D Duncan
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Richard A Britten
- a Leroy T. Canoles Jr. Cancer Research Center and.,b Departments of Microbiology and Molecular Cell Biology and.,c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| |
Collapse
|
31
|
A novel quantification-driven proteomic strategy identifies an endogenous peptide of pleiotrophin as a new biomarker of Alzheimer's disease. Sci Rep 2017; 7:13333. [PMID: 29042634 PMCID: PMC5645330 DOI: 10.1038/s41598-017-13831-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 10/02/2017] [Indexed: 01/19/2023] Open
Abstract
We present a new, quantification-driven proteomic approach to identifying biomarkers. In contrast to the identification-driven approach, limited in scope to peptides that are identified by database searching in the first step, all MS data are considered to select biomarker candidates. The endopeptidome of cerebrospinal fluid from 40 Alzheimer’s disease (AD) patients, 40 subjects with mild cognitive impairment, and 40 controls with subjective cognitive decline was analyzed using multiplex isobaric labeling. Spectral clustering was used to match MS/MS spectra. The top biomarker candidate cluster (215% higher in AD compared to controls, area under ROC curve = 0.96) was identified as a fragment of pleiotrophin located near the protein’s C-terminus. Analysis of another cohort (n = 60 over four clinical groups) verified that the biomarker was increased in AD patients while no change in controls, Parkinson’s disease or progressive supranuclear palsy was observed. The identification of the novel biomarker pleiotrophin 151–166 demonstrates that our quantification-driven proteomic approach is a promising method for biomarker discovery, which may be universally applicable in clinical proteomics.
Collapse
|
32
|
LeBlanc A, Michaud SA, Percy AJ, Hardie DB, Yang J, Sinclair NJ, Proudfoot JI, Pistawka A, Smith DS, Borchers CH. Multiplexed MRM-Based Protein Quantitation Using Two Different Stable Isotope-Labeled Peptide Isotopologues for Calibration. J Proteome Res 2017; 16:2527-2536. [PMID: 28516774 DOI: 10.1021/acs.jproteome.7b00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
When quantifying endogenous plasma proteins for fundamental and biomedical research - as well as for clinical applications - precise, reproducible, and robust assays are required. Targeted detection of peptides in a bottom-up strategy is the most common and precise mass spectrometry-based quantitation approach when combined with the use of stable isotope-labeled peptides. However, when measuring protein in plasma, the unknown endogenous levels prevent the implementation of the best calibration strategies, since no blank matrix is available. Consequently, several alternative calibration strategies are employed by different laboratories. In this study, these methods were compared to a new approach using two different stable isotope-labeled standard (SIS) peptide isotopologues for each endogenous peptide to be quantified, enabling an external calibration curve as well as the quality control samples to be prepared in pooled human plasma without interference from endogenous peptides. This strategy improves the analytical performance of the assay and enables the accuracy of the assay to be monitored, which can also facilitate method development and validation.
Collapse
Affiliation(s)
- André LeBlanc
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, McGill University , Montreal, Quebec H3A 0G4, Canada
| | - Sarah A Michaud
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada
| | - Andrew J Percy
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada
| | - Darryl B Hardie
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada
| | - Juncong Yang
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada
| | - Nicholas J Sinclair
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada
| | - Jillaine I Proudfoot
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada
| | - Adam Pistawka
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada
| | - Derek S Smith
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria - Genome BC Proteomics Centre , Victoria, BC V8Z 7X8, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, McGill University , Montreal, Quebec H3A 0G4, Canada.,Department of Biochemistry and Microbiology, University of Victoria , Victoria, BC V8P 5C2, Canada.,Leibniz Institut für Analytische Wissenschaften - ISAS - e.V. , Dortmund 44139, Germany.,Gerald Bronfman Department of Oncology, Jewish General Hospital , Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
33
|
Antigenicity of Bovine Pericardium Determined by a Novel Immunoproteomic Approach. Sci Rep 2017; 7:2446. [PMID: 28550302 PMCID: PMC5446425 DOI: 10.1038/s41598-017-02719-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Despite bovine pericardium (BP) being the primary biomaterial used in heart valve bioprostheses, recipient graft-specific immune responses remain a significant cause of graft failure. Consequently, tissue antigenicity remains the principal barrier for expanding use of such biomaterials in clinical practice. We hypothesize that our understanding of BP antigenicity can be improved by application of a combined affinity chromatography shotgun immunoproteomic approach to identify antigens that have previously been overlooked. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) analysis of affinity chromatography purified antigens resulted in identification of 133 antigens. Most importantly, antigens were identified from all subcellular locations, including 18 integral membrane protein antigens. Critically, isoforms of several protein families were found to be antigenic suggesting the possibility that shared epitope domains may exist. Furthermore, proteins associated with immune, coagulation, and inflammatory pathways were over-represented, suggesting that these biological processes play a key role in antigenicity. This study brings to light important determinants of antigenicity in a clinically relevant xenogeneic biomaterial (i.e. BP) and further validates a rapid, high-throughput method for immunoproteomic antigen identification.
Collapse
|
34
|
Roperto S, Varano M, Russo V, Lucà R, Cagiola M, Gaspari M, Ceccarelli DM, Cuda G, Roperto F. Proteomic analysis of protein purified derivative of Mycobacterium bovis. J Transl Med 2017; 15:68. [PMID: 28372590 PMCID: PMC5376687 DOI: 10.1186/s12967-017-1172-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/23/2017] [Indexed: 11/29/2022] Open
Abstract
Background Tuberculin skin test based on in vivo intradermal inoculation of purified protein derivative from Mycobacterium bovis (bPPD) is the diagnostic test for the control and surveillance of bovine tuberculosis (bTB). Methods Proteomic analysis was performed on different bPPD preparations from M. bovis, strain AN5. Proteins were precipitated from bPPD solutions by TCA precipitation. The proteome of bPPD preparations was investigated by bottom-up proteomics, which consisted in protein digestion and nano-LC–MS/MS analysis. Mass spectrometry analysis was performed on a Q-exactive hybrid quadrupole-Orbitrap mass spectrometer coupled online to an Easy nano-LC1000 system. Results Three hundred and fifty-six proteins were identified and quantified by at least 2 peptides (99% confidence per peptide). One hundred and ninety-eight proteins, which had not been previously described, were detected; furthermore, the proteomic profile shared 80 proteins with previous proteomes from bPPDs from the United Kingdom and Brazil and 139 protein components from bPPD from Korea. Locus name of M. bovis (Mb) with orthologs from M. tuberculosis H37Rv, comparative gene and protein length, molecular mass, functional categories, gene name and function of each protein were reported. Ninety-two T cell mycobacterial antigens responsible for delayed-type hypersensitivity were detected, fifty-two of which were not previously reported in any bPPD proteome. Data are available via ProteomeXchange with identifier PXD005920. Conclusions This study represents the highest proteome coverage of bPPD preparations to date. Since proteins perform cellular functions essential to health and/or disease, obtaining knowledge of their presence and variance is of great importance in understanding disease states and for advancing translational studies. Therefore, to better understand Mycobacterium tuberculosis complex biology during infection, survival, and persistence, the reproducible evaluation of the proteins that catalyze and control these processes is critically important. More active and more specific tuberculins would be desirable. Indeed, many antigens contained within bPPD are currently responsible for the cross-reactivity resulting in false-positive results as they are shared between non-tuberculous and tuberculous mycobacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1172-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy.
| | - Mariaconcetta Varano
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro "Magna Græcia" Campus "S. Venuta", Catanzaro, Italy
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Roberta Lucà
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Monica Cagiola
- Istituto Zooprofilattico dell'Umbria e delle Marche, Perugia, Italy
| | - Marco Gaspari
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro "Magna Græcia" Campus "S. Venuta", Catanzaro, Italy
| | - Dora Maria Ceccarelli
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Giovanni Cuda
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro "Magna Græcia" Campus "S. Venuta", Catanzaro, Italy
| | - Franco Roperto
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
35
|
Britten RA, Jewell JS, Davis LK, Miller VD, Hadley MM, Semmes OJ, Lonart G, Dutta SM. Changes in the Hippocampal Proteome Associated with Spatial Memory Impairment after Exposure to Low (20 cGy) Doses of 1 GeV/n 56Fe Radiation. Radiat Res 2017; 187:287-297. [PMID: 28156212 DOI: 10.1667/rr14067.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n 56Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n 56Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor spatial memory performance, neurodegeneration, neuronal loss or neuronal susceptibility to apoptosis, or neuronal synaptic or structural plasticity. Therefore, in addition to the baseline oxidative stress and altered adenosine metabolism observed in all irradiated rats, the 20/impaired rats expressed proteins that led to poor spatial memory performance, enhanced neuronal loss and apoptosis, changes in synaptic plasticity and dendritic remodeling. A total of 46 proteins, which were differentially upregulated in the sham-irradiated and 20/functional rat cohorts, can thus be considered as markers of good spatial memory, while another 95 proteins are associated with the maintenance of good spatial memory in the 20/functional rats. The loss or downregulation of these "good spatial memory" proteins would most likely exacerbate the situation in the 20/impaired rats, having a major impact on their neurocognitive status, given that many of those proteins play an important role in neuronal homeostasis and function. Our large-scale comprehensive proteomic analysis has provided some insight into the processes that are altered after exposure, and the collective data suggests that there are multiple problems with the functionality of the neurons and astrocytes in the irradiated hippocampi, which appear to be further exacerbated in the rats that have impaired spatial memory performance or partially compensated for in the rats with good spatial memory.
Collapse
Affiliation(s)
- Richard A Britten
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica S Jewell
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Leslie K Davis
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Vania D Miller
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Melissa M Hadley
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - O John Semmes
- b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507.,d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - György Lonart
- d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Sucharita M Dutta
- c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
36
|
Abstract
Proteomics characterization of biofluids, such as urine and plasma, has been explored for the discovery of predictive, prognostic, and mechanistic biomarkers of diseases and tissue injury. Here we describe comprehensive characterization of protein cargos from cell-derived secreted vesicles (extracellular vesicles or exosome) for biomarker discovery using the mass spectrometry-based technology.
Collapse
Affiliation(s)
- Antonius Koller
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, NY, 10032, USA
| | - Purvi Patel
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jenny Kim Kim
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, NY, 10032, USA
| | - Emily I Chen
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Pharmacology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
37
|
Bowden M. The Cancer Secretome. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:95-120. [DOI: 10.1007/978-3-319-45397-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Percy AJ, Hardie DB, Jardim A, Yang J, Elliott MH, Zhang S, Mohammed Y, Borchers CH. Multiplexed panel of precisely quantified salivary proteins for biomarker assessment. Proteomics 2016; 17. [PMID: 27538354 DOI: 10.1002/pmic.201600230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/21/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
Abstract
An increasingly popular "absolute" quantitative technique involves the SRM or MRM approach with stable isotope-labeled standards (SIS). Using this approach, many proteins in human plasma/serum have been quantified for biomarker assessment and disease stratification. Due to the complexity of plasma and the invasive nature of its collection, alternative biosamples are currently being explored. Here, we present the broadest panel of multiplexed MRM assays with SIS peptides for saliva proteins developed to date. The validated panel consists of 158 candidate human saliva protein biomarkers, inferred from 244 interference-free peptides. The resulting concentrations were reproducibly quantified over a 6 order-of-magnitude concentration range (from 218 μg/mL to 88 pg/mL; average CVs of 12% over analytical triplicates). All concentrations were determined from reverse standard curves, which were generated using a constant concentration of endogenous material with varying concentrations of spiked-in SIS peptides. The large-scale screening of the soluble and membrane-associated proteins contained within the 158-plex assay could present new opportunities for biomarker assessment and clinical diagnostics.
Collapse
Affiliation(s)
- Andrew J Percy
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, Canada
| | - Armando Jardim
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Juncong Yang
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, Canada
| | - Monica H Elliott
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, Canada
| | - Suping Zhang
- MRM Proteomics, Vancouver Island Technology Park, Victoria, BC, Canada
| | - Yassene Mohammed
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, Canada.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
39
|
Kang C, Lee Y, Lee JE. Recent advances in mass spectrometry-based proteomics of gastric cancer. World J Gastroenterol 2016; 22:8283-8293. [PMID: 27729735 PMCID: PMC5055859 DOI: 10.3748/wjg.v22.i37.8283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-and-coming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.
Collapse
|
40
|
Burnum-Johnson KE, Nie S, Casey CP, Monroe ME, Orton DJ, Ibrahim YM, Gritsenko MA, Clauss TRW, Shukla AK, Moore RJ, Purvine SO, Shi T, Qian W, Liu T, Baker ES, Smith RD. Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry. Mol Cell Proteomics 2016; 15:3694-3705. [PMID: 27670688 DOI: 10.1074/mcp.m116.061143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Indexed: 12/16/2022] Open
Abstract
Current proteomic approaches include both broad discovery measurements and quantitative targeted analyses. In many cases, discovery measurements are initially used to identify potentially important proteins (e.g. candidate biomarkers) and then targeted studies are employed to quantify a limited number of selected proteins. Both approaches, however, suffer from limitations. Discovery measurements aim to sample the whole proteome but have lower sensitivity, accuracy, and quantitation precision than targeted approaches, whereas targeted measurements are significantly more sensitive but only sample a limited portion of the proteome. Herein, we describe a new approach that performs both discovery and targeted monitoring (DTM) in a single analysis by combining liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled target peptides are spiked into tryptic digests and both the labeled and unlabeled peptides are detected using LC-IMS-MS instrumentation. Compared with the broad LC-MS discovery measurements, DTM yields greater peptide/protein coverage and detects lower abundance species. DTM also achieved detection limits similar to selected reaction monitoring (SRM) indicating its potential for combined high quality discovery and targeted analyses, which is a significant step toward the convergence of discovery and targeted approaches.
Collapse
Affiliation(s)
- Kristin E Burnum-Johnson
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Song Nie
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Cameron P Casey
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Matthew E Monroe
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Daniel J Orton
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Yehia M Ibrahim
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Marina A Gritsenko
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Therese R W Clauss
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Anil K Shukla
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Ronald J Moore
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Samuel O Purvine
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Tujin Shi
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Weijun Qian
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Tao Liu
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Erin S Baker
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Richard D Smith
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
41
|
Affiliation(s)
- Eva C. Keilhauer
- Department of Proteomics
and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz
18, 82152 Martinsried, Germany
| | - Philipp E. Geyer
- Department of Proteomics
and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz
18, 82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics
and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz
18, 82152 Martinsried, Germany
| |
Collapse
|
42
|
Tonry CL, Leacy E, Raso C, Finn SP, Armstrong J, Pennington SR. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer. Diagnostics (Basel) 2016; 6:E27. [PMID: 27438858 PMCID: PMC5039561 DOI: 10.3390/diagnostics6030027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
Prostate Cancer (PCa) is the second most commonly diagnosed cancer in men worldwide. Although increased expression of prostate-specific antigen (PSA) is an effective indicator for the recurrence of PCa, its intended use as a screening marker for PCa is of considerable controversy. Recent research efforts in the field of PCa biomarkers have focused on the identification of tissue and fluid-based biomarkers that would be better able to stratify those individuals diagnosed with PCa who (i) might best receive no treatment (active surveillance of the disease); (ii) would benefit from existing treatments; or (iii) those who are likely to succumb to disease recurrence and/or have aggressive disease. The growing demand for better prostate cancer biomarkers has coincided with the development of improved discovery and evaluation technologies for multiplexed measurement of proteins in bio-fluids and tissues. This review aims to (i) provide an overview of these technologies as well as describe some of the candidate PCa protein biomarkers that have been discovered using them; (ii) address some of the general limitations in the clinical evaluation and validation of protein biomarkers; and (iii) make recommendations for strategies that could be adopted to improve the successful development of protein biomarkers to deliver improvements in personalized PCa patient decision making.
Collapse
Affiliation(s)
- Claire L Tonry
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Emma Leacy
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Cinzia Raso
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Stephen P Finn
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | | | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
43
|
Percy AJ, Byrns S, Pennington SR, Holmes DT, Anderson NL, Agreste TM, Duffy MA. Clinical translation of MS-based, quantitative plasma proteomics: status, challenges, requirements, and potential. Expert Rev Proteomics 2016; 13:673-84. [DOI: 10.1080/14789450.2016.1205950] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Andrew J. Percy
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA
| | - Simon Byrns
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Stephen R. Pennington
- Department of Pathology, School of Medicine, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Daniel T. Holmes
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - N. Leigh Anderson
- Department of Clinical Biomarkers, SISCAPA Assay Technologies, Inc., Washington, DC, USA
| | - Tasha M. Agreste
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA
| | - Maureen A. Duffy
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA
| |
Collapse
|
44
|
Kim M, Hwang D. Network-Based Protein Biomarker Discovery Platforms. Genomics Inform 2016; 14:2-11. [PMID: 27103885 PMCID: PMC4838525 DOI: 10.5808/gi.2016.14.1.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
The advances in mass spectrometry-based proteomics technologies have enabled the generation of global proteome data from tissue or body fluid samples collected from a broad spectrum of human diseases. Comparative proteomic analysis of global proteome data identifies and prioritizes the proteins showing altered abundances, called differentially expressed proteins (DEPs), in disease samples, compared to control samples. Protein biomarker candidates that can serve as indicators of disease states are then selected as key molecules among these proteins. Recently, it has been addressed that cellular pathways can provide better indications of disease states than individual molecules and also network analysis of the DEPs enables effective identification of cellular pathways altered in disease conditions and key molecules representing the altered cellular pathways. Accordingly, a number of network-based approaches to identify disease-related pathways and representative molecules of such pathways have been developed. In this review, we summarize analytical platforms for network-based protein biomarker discovery and key components in the platforms.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Daehee Hwang
- Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
45
|
Thomas S, Hao L, Ricke WA, Li L. Biomarker discovery in mass spectrometry-based urinary proteomics. Proteomics Clin Appl 2016; 10:358-70. [PMID: 26703953 DOI: 10.1002/prca.201500102] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/05/2015] [Accepted: 12/21/2015] [Indexed: 01/03/2023]
Abstract
Urinary proteomics has become one of the most attractive topics in disease biomarker discovery. MS-based proteomic analysis has advanced continuously and emerged as a prominent tool in the field of clinical bioanalysis. However, only few protein biomarkers have made their way to validation and clinical practice. Biomarker discovery is challenged by many clinical and analytical factors including, but not limited to, the complexity of urine and the wide dynamic range of endogenous proteins in the sample. This article highlights promising technologies and strategies in the MS-based biomarker discovery process, including study design, sample preparation, protein quantification, instrumental platforms, and bioinformatics. Different proteomics approaches are discussed, and progresses in maximizing urinary proteome coverage and standardization are emphasized in this review. MS-based urinary proteomics has great potential in the development of noninvasive diagnostic assays in the future, which will require collaborative efforts between analytical scientists, systems biologists, and clinicians.
Collapse
Affiliation(s)
- Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ling Hao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - William A Ricke
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
46
|
Sánchez-Ovejero C, Benito-Lopez F, Díez P, Casulli A, Siles-Lucas M, Fuentes M, Manzano-Román R. Sensing parasites: Proteomic and advanced bio-detection alternatives. J Proteomics 2016; 136:145-56. [PMID: 26773860 DOI: 10.1016/j.jprot.2015.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics" and platforms for parasite detection and control.
Collapse
Affiliation(s)
- Carlos Sánchez-Ovejero
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Fernando Benito-Lopez
- Analytical Chemistry Department, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Adriano Casulli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, - 00161 Rome, Italy
| | - Mar Siles-Lucas
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Raúl Manzano-Román
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain.
| |
Collapse
|
47
|
Gritsenko MA, Xu Z, Liu T, Smith RD. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS. Methods Mol Biol 2016; 1410:237-47. [PMID: 26867748 DOI: 10.1007/978-1-4939-3524-6_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.
Collapse
Affiliation(s)
- Marina A Gritsenko
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Zhe Xu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
48
|
Moskovets E. Ghost peaks observed after atmospheric pressure matrix-assisted laser desorption/ionization experiments may disclose new ionization mechanism of matrix-assisted hypersonic velocity impact ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1501-12. [PMID: 26212165 PMCID: PMC4518465 DOI: 10.1002/rcm.7248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 05/12/2023]
Abstract
RATIONALE Understanding the mechanisms of matrix-assisted laser desorption/ionization (MALDI) promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample had been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laser-less matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser had been turned off and the MALDI sample removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly and doubly charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of the supersonic jet from the inlet capillary accelerating detached particles to kinetic energies suitable for matrix-assisted hypersonic-velocity impact ionization.
Collapse
Affiliation(s)
- Eugene Moskovets
- MassTech Inc., 6992 Columbia Gateway Dr., Columbia MD, USA, Phone: 443-539-0139
| |
Collapse
|
49
|
Maes E, Mertens I, Valkenborg D, Pauwels P, Rolfo C, Baggerman G. Proteomics in cancer research: Are we ready for clinical practice? Crit Rev Oncol Hematol 2015; 96:437-48. [PMID: 26277237 DOI: 10.1016/j.critrevonc.2015.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Although genomics has delivered major advances in cancer prognostics, treatment and diagnostics, it still only provides a static image of the situation. To study more dynamic molecular entities, proteomics has been introduced into the cancer research field more than a decade ago. Currently, however, the impact of clinical proteomics on patient management and clinical decision-making is low and the implementations of scientific results in the clinic appear to be scarce. The search for cancer-related biomarkers with proteomics however, has major potential to improve risk assessment, early detection, diagnosis, prognosis, treatment selection and monitoring. In this review, we provide an overview of the transition of oncoproteomics towards translational oncology. We describe which lessons are learned from currently approved protein biomarkers and previous proteomic studies, what the pitfalls and challenges are in clinical proteomics applications, and how proteomic research can be successfully translated into medical practice.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Inge Mertens
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Dirk Valkenborg
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Edegem, Belgium
| | - Christian Rolfo
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital & Center for Oncological Research (CORE), Antwerp University, Edegem, Belgium.
| | - Geert Baggerman
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
50
|
Holmes WE, Angel TE, Li KW, Hellerstein MK. Dynamic Proteomics: In Vivo Proteome-Wide Measurement of Protein Kinetics Using Metabolic Labeling. Methods Enzymol 2015; 561:219-76. [PMID: 26358907 DOI: 10.1016/bs.mie.2015.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Control of biosynthetic and catabolic rates of polymers, including proteins, stands at the center of phenotype, physiologic adaptation, and disease pathogenesis. Advances in stable isotope-labeling concepts and mass spectrometric instrumentation now allow accurate in vivo measurement of protein synthesis and turnover rates, both for targeted proteins and for unbiased screening across the proteome. We describe here the underlying principles and operational protocols for measuring protein dynamics, focusing on metabolic labeling with (2)H2O (heavy water) combined with tandem mass spectrometric analysis of mass isotopomer abundances in trypsin-generated peptides. The core principles of combinatorial analysis (mass isotopomer distribution analysis or MIDA) are reviewed in detail, including practical advantages, limitations, and technical procedures to ensure optimal kinetic results. Technical factors include heavy water labeling protocols, optimal duration of labeling, clean up and simplification of sample matrices, accurate quantitation of mass isotopomer abundances in peptides, criteria for adequacy of mass spectrometric abundance measurements, and calculation algorithms. Some applications are described, including the noninvasive "virtual biopsy" strategy for measuring molecular flux rates in tissues through measurements in body fluids. In addition, application of heavy water labeling to measure flux lipidomics is noted. In summary, the combination of stable isotope labeling, particularly from (2)H2O, with tandem mass spectrometric analysis of mass isotopomer abundances in peptides, provides a powerful approach for characterizing the dynamics of proteins across the global proteome. Many applications in research and clinical medicine have been achieved and many others can be envisioned.
Collapse
Affiliation(s)
- W E Holmes
- KineMed Inc., Emeryville, California, USA
| | - T E Angel
- KineMed Inc., Emeryville, California, USA
| | - K W Li
- KineMed Inc., Emeryville, California, USA
| | - M K Hellerstein
- KineMed Inc., Emeryville, California, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|