1
|
Saadh MJ, Ahmed HH, Sanghvi G, Bin Awang Isa MZ, Singh P, Kaur K, Kumar MR, Husseen B. Recent advances in the delivery of microRNAs via exosomes derived from MSCs, and their role in regulation of ferroptosis. Pathol Res Pract 2025; 270:155984. [PMID: 40315562 DOI: 10.1016/j.prp.2025.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
Mesenchymal stem cell (MSC) therapy, with its unique properties, has garnered interest in cancer treatment. Exosomes (EXOs)-derived from MSC retain the paracrine components of MSCs and demonstrate increased stability, minimal immunogenicity, and low risk of unintended tumorigenesis. Enhanced endocytosis methods make them versatile delivery vehicles for therapeutic cargo. MSC-EXOs can either promote or inhibit carcinogenesis, mediated by paracrine factors and various RNA molecules, particularly microRNAs (miRNAs). The prospect of using MSC-EXOs as a delivery tool for antitumor miRNAs in solid tumor therapy is promising. Exosomes' intrinsic tumor-targeting abilities and low immunogenicity make them ideal for delivering miRNAs, which have shown potential as cancer therapeutics. miRNAs within MSC-EXOs molecules can stimulate tumor growth or induce non-apoptotic cell death pathways, such as ferroptosis, depending on context. Ferroptosis is a kind of controlled cell death that is associated with the pathophysiology of several illnesses and includes iron metabolism. There is growing evidence that miRNAs carried by exosomes derived from MSCs may control ferroptosis in tumor cells by altering key genes related to antioxidant defense, lipid peroxidation, and iron metabolism. Understanding their complex mechanisms in the tumor microenvironment and optimizing their cargo are critical steps toward harnessing their full therapeutic potential. This review provides a comprehensive overview of MSC-EXOs and their role in cancer treatment. We also discuss the potential of MSC-EXOs as delivery vehicles for miRNAs to enhance therapeutic efficacy, as well as the role of exosomal miRNAs in the induction of ferroptosis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | | | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University, Jaipur, Rajasthan 303121, India
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Samanta A, Yoo MJ, Koh J, Lufkin SC, Lufkin T, Kraus P. Proteomic profiling of small extracellular vesicles from bovine nucleus pulposus cells. PLoS One 2025; 20:e0324179. [PMID: 40440285 PMCID: PMC12121814 DOI: 10.1371/journal.pone.0324179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
Small extracellular vesicles (small EV) are a conserved means of communication across the domains of life and lately gained more interest in mammalian non-cancerous work as non-cellular, biological therapeutic with encouraging results in recent studies of chronic degenerative diseases. The nucleus pulposus (NP) is the avascular and aneural center of an intervertebral disc (IVD), home to unique niche conditions and affected in IVD degeneration. We investigated autologous and mesenchymal stem cell (MSC) small EVs for their potential to contribute to cell and tissue homeostasis in the NP niche via mass spectrometric proteome and functional enrichment analysis using adult and fetal donors. We compared these findings to published small EV databases and MSC small EV data. We propose several mechanisms associated with NP small EVs: Membrane receptor trafficking to modify signal responses promoting niche homeostasis; Redox and energy homeostasis via metabolic enzymes delivery; Cell homeostasis via proteasome delivery and immunomodulation beyond an association with a serum protein corona. The proteome signature of small EVs generated by NP parent cells is similar to previously published small EV data, yet with a focus on supplementing anaerobic metabolism and redox balance while contributing to the maintenance of an aneural and avascular microniche.
Collapse
Affiliation(s)
- Ankita Samanta
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Sina Charlotte Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| |
Collapse
|
3
|
Wang M, Wang W, Chopp M, Zhang ZG, Zhang Y. Therapeutic and diagnostic potential of extracellular vesicle (EV)-mediated intercellular transfer of mitochondria and mitochondrial components. J Cereb Blood Flow Metab 2025:271678X251338971. [PMID: 40367392 PMCID: PMC12078269 DOI: 10.1177/0271678x251338971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
Extracellular vesicles (EVs) facilitate the transfer of biological materials between cells throughout the body. Mitochondria, membrane-bound organelles present in the cytoplasm of nearly all eukaryotic cells, are vital for energy production and cellular homeostasis. Recent studies highlight the critical role of the transport of diverse mitochondrial content, such as mitochondrial DNA (mt-DNA), mitochondrial RNA (mt-RNA), mitochondrial proteins (mt-Prots), and intact mitochondria by small EVs (<200 nm) and large EVs (>200 nm) to recipient cells, where these cargos contribute to cellular and mitochondrial homeostasis. The interplay between EVs and mitochondrial components has significant implications for health, metabolic regulation, and potential as biomarkers. Despite advancements, the mechanisms governing EV-mitochondria crosstalk and the regulatory effect of mitochondrial EVs remain poorly understood. This review explores the roles of EVs and their mitochondrial cargos in health and disease, examines potential mechanisms underlying their interactions, and emphasizes the therapeutic potential of EVs for neurological and systemic conditions associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mingjin Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Weida Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | | | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
4
|
Milczek-Haduch D, Żmigrodzka M, Witkowska-Piłaszewicz O. Extracellular Vesicles in Sport Horses: Potential Biomarkers and Modulators of Exercise Adaptation and Therapeutics. Int J Mol Sci 2025; 26:4359. [PMID: 40362597 PMCID: PMC12073050 DOI: 10.3390/ijms26094359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Significant systemic metabolic benefits result from even a single exercise session by activating multiple metabolic and signaling pathways within the organism. Among these mechanisms, extracellular vesicles (EVs) play a critical role by delivering their molecular cargo to neighboring or distant cells, thereby influencing cellular metabolism and function. As research progresses, EVs represent an exciting frontier in exercise science and fitness adaptation processes. There is increasing interest in understanding the physiology of EVs as signaling particles and their use as minimally invasive diagnostic and prognostic biomarkers in the early detection of oxidative stress-related abnormalities. They also show potential to be used in monitoring exercise progress, injury prevention, or recovery, and may provide insights for personalized training programs. This review examines the current understanding of the role of physical activity in generating exercise-responsive EVs. It highlights the potential applications of EVs in exercise science and personalized fitness optimization, not only for human athletes but also for exercising animals such as horses. On the other hand, it also presents potential difficulties that researchers currently working on this topic may encounter due to technical limitations.
Collapse
Affiliation(s)
- Dominika Milczek-Haduch
- Department of Large Animals Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Magdalena Żmigrodzka
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland;
| | - Olga Witkowska-Piłaszewicz
- Department of Large Animals Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| |
Collapse
|
5
|
Ali MA, Khalifa AA, Elblehi SS, Elsokkary NH, El-Mas MM. Effects of remote ischemic preconditioning and/or erythropoietin on lung injury induced by skeletal ischemia reperfusion: role of the NLRP3 inflammasome. Inflamm Res 2025; 74:67. [PMID: 40272513 DOI: 10.1007/s00011-025-02033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Remote ischemic preconditioning (RIPC) diminishes multi-organ failure induced by skeletal muscle ischemia and reperfusion (S-I/R). The current study investigated whether skeletal RIPC protection against S-I/R-induced acute lung injury (ALI) could be facilitated following simultaneous exposure to the glycoprotein hormone erythropoietin (EPO) in rats and whether this interaction is modulated by the NLRP3 inflammasome. METHODS S-I/R challenge was performed by 3-h ischemia followed by 3-h reperfusion of the right hindlimb, whereas RIPC involved three 20-min brief consecutive I/R cycles of the contralateral hindlimb. RESULTS The lung injurious response to S-I/R was verified by: (i) decreases in minute respiratory volume (MRV), forced expiratory volume 1 (FEV1) and functional vital capacity (FVC), (ii) increases in respiratory rate (RR), (iii) falls in lung surfactant protein-D (SP-D) and rises in of lung plasminogen activator inhibitor-1 (PAI-1) and intercellular adhesion molecule-1 (ICAM-1), and (iv) disruption of alveolar architecture. These lung defects were partially amended by RIPC or EPO (500 or 5000 IU/kg). Further, the prior exposure to RIPC plus EPO-500 was more effective than separate interventions in rectifying ALI damages. Molecularly, the dual RIPC/EPO-500 regimen was also more effective in reversing the S-I/R-associated increments in pulmonary expressions of NLRP3 and related inflammatory (TLR4, MyD88, TRAF, NF-κB, TNF-α, IL-1β, and IL-18), apoptotic (ASC, procaspse-1, caspase-1), and microRNA signals (increases in miR-21 and decreases miR-495). CONCLUSION These findings suggest a pivotal role for the suppression of NLRP3 inflammasome and interconnected cellular offenses in the augmented therapeutic potential of the RIPC/EPO-500 regimen against S-I/R-induced ALI.
Collapse
Affiliation(s)
- Mennatallah A Ali
- PharmD Program, Department of Pharmacology and Toxicology, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | - Asmaa A Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nahed H Elsokkary
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriyah Block 4, Hawally, Kuwait.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
6
|
Cascabulho CM, Horita SIM, Beghini DG, Menna-Barreto RFS, Monsores ACHMG, Bertho AL, Henriques-Pons A. Plasma Microvesicles May Contribute to Muscle Damage in the mdx Mouse Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2025; 26:3499. [PMID: 40331939 PMCID: PMC12026684 DOI: 10.3390/ijms26083499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) are cell-derived lipid-bound vesicles divided into apoptotic bodies, microvesicles (MVs), and exosomes based on their biogenesis, release pathway, size, content, and functions. EVs are intercellular mediators that significantly affect muscle diseases such as Duchenne muscular dystrophy (DMD). DMD is a fatal X-linked disorder caused by mutations in the dystrophin gene, leading to muscle degeneration. Mdx mice are the most commonly used model to study the disease, and in this study, we phenotypically characterized plasma MVs from mdx mice by flow cytometry. Furthermore, we assessed the ability of plasma MVs to modulate muscle inflammation, damage, and/or regeneration by intramuscular injection of MVs from mdx mice into mdx or DBA/2 mice as a control. In both mouse lineages, platelets and erythrocytes were the primary sources of MVs, and CD3+ CD4+ MVs were observed only in mdx mice. We also observed that plasma MVs from mdx mice induced muscle damage in mdx mice but not in DBA/2 mice, while plasma MVs from DBA/2 mice did not induce muscle damage in either mouse lineage. These results indicate that plasma MVs from mdx are potentially pathogenic. However, this condition also depends on the muscular tissue status, which must be responsive due to active inflammatory or regenerative responses.
Collapse
Affiliation(s)
- Cynthia Machado Cascabulho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| | - Samuel Iwao Maia Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
- Laboratório de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
| | - Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| | | | - Ana Carolina Heber Max Guimarães Monsores
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| | - Alvaro Luiz Bertho
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| |
Collapse
|
7
|
Ghasroldasht MM, Park HS, Ali FL, Beckman A, Mohammadi M, Hafner N, Al-Hendy A. Adapted Exosomes for Addressing Chemotherapy-induced Premature Ovarian Insufficiency. Stem Cell Rev Rep 2025; 21:779-796. [PMID: 39921838 DOI: 10.1007/s12015-024-10820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 02/10/2025]
Abstract
BACKGROUND Premature ovarian insufficiency (POI) presents a multifaceted challenge with limited treatment options. This study explored the therapeutic potential of exosome-based interventions for chemotherapy-induced POI. METHODS Adapted exosomes were engineered from umbilical cord mesenchymal stem cells (UC-MSCs) under a specific co-culture system and used for treating in vitro and in vivo models of chemotherapy-induced premature ovarian insufficiency. RESULTS In vitro models revealed the significant impact of adapted exosomes, which promoted granulosa cell proliferation, decrease apoptosis, and enhanced ovarian functional markers. The findings in an in vivo chemotherapy-induced POI mouse model indicated the restoration of ovarian morphology, follicle numbers, and fertility in both the naïve and adapted exosome-treated groups. Notably, the adapted exosome group demonstrated a heightened pregnancy rate, increased numbers of primary follicles, and a significant reduction in ovarian apoptosis. MiRNA profiling revealed distinctive cargo in the adapted exosomes, among which miR-20b-5p played a pivotal role in regulating apoptosis and inflammation; this finding is especially important given that apoptosis is one of the primary complications of chemotherapy-induced POI. Furthermore, cells treated with adapted exosomes demonstrated significant overexpression of miR-20b-5p, resulting in decreased PTEN expression and the activation of the PI3K-AKT pathway-a crucial mechanism in mitigating chemotherapy-induced POI. CONCLUSIONS This study introduces an exosome-based therapeutic approach, emphasizing the importance of exosome cargo composition in treating disorders. Further investigation into the identified miRNA profile in adapted exosomes is necessary to clarify the underlying mechanisms, potentially leading to the development of a new treatment for clinical premature ovarian insufficiency.
Collapse
Affiliation(s)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Analea Beckman
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Mahya Mohammadi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Nina Hafner
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Medical Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Poorkazem H, Saber M, Moradmand A, Yakhkeshi S, Seydi H, Hajizadeh-Saffar E, Shekari F, Hassani SN. Comparative effects of various extracellular vesicle subpopulations derived from clonal mesenchymal stromal cells on cultured fibroblasts in wound healing-related process. Int J Biochem Cell Biol 2025; 180:106737. [PMID: 39828140 DOI: 10.1016/j.biocel.2025.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Non-healing wounds pose significant challenges and require effective therapeutic interventions. Extracellular vesicles (EVs) have emerged as promising cell-free therapeutic agents in tissue regeneration. However, the functional differences between different subpopulations of EVs in wound healing remain understudied. This study aimed to evaluate the effects of two distinct subpopulations of clonal mesenchymal stromal cells (cMSC)-derived EVs (cMSC-EVs), namely 20 K and 110K-cMSC-EVs, primarily on in vitro wound healing process, providing fast and cost-effective alternatives to animal models. METHODS In vitro assays were conducted to compare the effects of 20 K and 110K-cMSC-EVs, isolated through high-speed centrifugation and differential ultracentrifugation, respectively. For evaluation the main mechanisms of wound healing, including cell proliferation, cell migration, angiogenesis, and contraction. Human dermal fibroblasts (HDF) were considered as the main cells for analysis of these procedures. Moreover, gene expression analysis was performed to assess the impact of these EV subpopulations on the related process of wound healing on HDF. RESULTS The results demonstrated that both 20 K and 110K-cMSC-EVs exhibited beneficial effects on cell proliferation, cell migration, angiogenesis, and gel contraction. RT-qPCR revealed that both EV types downregulated interleukin 6 (IL6), induced proliferation by upregulating proliferating cell nuclear antigen (PCNA), and regulated remodeling by upregulating matrix metallopeptidase 1 (MMP1) and downregulating collagen type 1 (COL1). DISCUSSION This study highlights the effects of both 20 K and 110K-cMSC-EVs on the potency of HDFs in wound healing-related process. As the notable finding, 20K-cMSC-EVs offer a more feasible and cost-effective subpopulation for isolation and follow the GMP standard, recommended to utilize this fraction for therapeutic application.
Collapse
Affiliation(s)
- Hedie Poorkazem
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Rima M, Dakramanji M, El Hayek E, El Khoury T, Fajloun Z, Rima M. Unveiling the wonders of bacteria-derived extracellular vesicles: From fundamental functions to beneficial applications. Heliyon 2025; 11:e42509. [PMID: 40028522 PMCID: PMC11869109 DOI: 10.1016/j.heliyon.2025.e42509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Extracellular vesicles (EVs), are critical mediators of intercellular communication and exhibit significant potential across various biomedical domains. These nano-sized, membrane-encapsulated entities have captured substantial interest due to their diverse roles in pathogenesis and promising therapeutic applications. EVs manage numerous physiological processes by transferring bioactive molecules, including proteins, lipids, and nucleic acids, between cells. This review delves into the factors influencing the properties of EVs, such as temperature and stress conditions, which collectively influence their size, composition, and functional attributes. We also describe the emerging roles of EVs, emphasizing their involvement in microbial interactions, immune modulation, antimicrobial resistance spread and their potential as innovative diagnostic and therapeutic instruments. Despite their promising applications, the advancement of EV-based therapies faces several challenges, which will also be discussed. By elucidating these critical elements, we aim to provide a comprehensive overview of the transformative potential of EVs in revolutionizing diagnostics and therapeutics in medicine.
Collapse
Affiliation(s)
- Mariam Rima
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| | - Mariam Dakramanji
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Elie El Hayek
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Tia El Khoury
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, 1352, Tripoli, Lebanon
| | - Mohamad Rima
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| |
Collapse
|
10
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Tissot FS, Estrach S, Seguin L, Cailleteau L, Levy A, Aberdam D, Féral CC. Functional transfer of integrin co-receptor CD98hc by small extracellular vesicles improves wound healing in vivo. Matrix Biol 2025; 135:99-105. [PMID: 39674554 DOI: 10.1016/j.matbio.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Extracellular vesicles (EVs) mediate intercellular communication. EVs are composed of a lipid bilayer and contain cytosolic proteins and RNAs. Studies highlight EVs striking functions in cell-cell crosstalk. Here, we found that small EVs can transfer functional signaling molecules through their lipid bilayer and participate in skin homeostasis. We identified a transmembrane protein CD98hc (a.k.a. SLC3A2), an integrin co-receptor (Itgb1 and Itgb3), implicated in epidermis homeostasis via its capacity in regulating extracellular matrix, as an important mediator of EV-based intercellular communication in vivo. We first demonstrated that healthy dermal fibroblasts produced and secreted EVs bearing characteristic of exosome-like small EVs (sEVs). We show that CD98hc, Itgb1 co-receptor, is present at the surface of sEVs, transferred and stabilized at the plasma membrane. The transferred complex is functional on recipient cells both in vitro and in vivo. Indeed, treatment with sEVs from WT, but not KO cells rescued migratory defects observed either in CD98hc KO dermal fibroblasts or in keratinocytes in vitro. Furthermore, injection of sEVs at the margins of wound in impaired wound healing mouse models (epidermal CD98hc KO mice exhibiting healing defect and elderly mice) improved wound closure in vivo. CD98hc complex transferred from sEVs remained stabilized at least 7 days after injection. Thus, our findings reveal that in vivo treatment with sEVs containing integrin co-receptor CD98hc could improve multiple skin afflictions.
Collapse
Affiliation(s)
| | | | | | | | - Ayelet Levy
- INSERM U976, Hôpital St-Louis, Paris, France
| | | | - Chloé C Féral
- INSERM U1081, CNRS UMR7284, UCA, IRCAN, Nice, France.
| |
Collapse
|
12
|
Mehrotra S, Kaur N, Kaur S, Matharoo K, Pandey RK. From antibodies to nanobodies: The next frontier in cancer theranostics for solid tumors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:287-329. [PMID: 39978969 DOI: 10.1016/bs.apcsb.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The field of cancer therapeutics has witnessed significant advancements over the past decades, particularly with the emergence of immunotherapy. This chapter traces the transformative journey from traditional antibody-based therapies to the innovative use of nanobodies in the treatment and diagnosis of solid tumors. Nanobodies are the smallest fragments of antibodies derived from camelid immunoglobulins and have redefined the possibilities in cancer theranostics due to their unique structural and functional properties. We provide an overview of the biochemical characteristics of nanobodies that make them particularly suitable for theranostic applications, such as their small size, high stability, enhanced infiltration into the complex tumor microenvironment (TME) and ability to bind with high affinity to epitopes that are inaccessible to conventional antibodies. Further, their ease of modification and functionalization has enabled the development of nanobody-based drug conjugates/toxins and radiolabeled compounds for precise imaging and targeted radiotherapy. We elucidate how nanobodies are being served as valuable tools for prognostic assessment, enabling clinicians to predict disease aggressiveness, monitor treatment response, and stratify patients for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Navdeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
13
|
Feng Y, Yang Y, Guo P, Zhang L, Yang Y, Zhao Z, Cui C, Yang Q, Liu Y, Yang L, Peng R, Tan W. DNA Self-Assembly Generated by Aptamer-Triggered Rolling Circle Amplification Cascades for Profiling Colorectal Cancer-Derived Small Extracellular Vesicles. ACS NANO 2025; 19:2294-2305. [PMID: 39772529 DOI: 10.1021/acsnano.4c12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The analysis of small extracellular vesicles (sEVs) has shown clinical significance in early cancer diagnostics and considerable potential in prognostic assessment and therapeutic monitoring, offering possibilities for precise clinical intervention. Despite recent diagnostic progress based on blood-derived sEVs, the inability to specifically profile multiple parameters of sEVs proteins has hampered advancement in clinical applications. Herein, we report an approach to profile colorectal cancer (CRC)-derived sEVs by using multiaptamer-triggered rolling circle amplification (RCA) cascades. In practice, in the presence of target sEVs, the complementary strands are released from the duplexes of the structure-switching aptamer. Then, the RCA cascade occurs but only when the specific DNA strand pair is presented. As a result, the noncanonical DNA assemblies are generated whose size reaches micrometers that can be directly analyzed by conventional flow cytometry, thereby facilitating facile clinical diagnostics. In this study, the developed diagnostic method is verified on cell-derived sEVs, followed by achieving modeling based on clinical samples. The final diagnostic results from the clinical cohort indicate promising diagnostic efficacy for CRC-derived sEVs with 92% sensitivity, 86.7% specificity, and 90% overall accuracy, highlighting the substantial potential of sEVs as biomarkers for CRC diagnosis and significantly advancing the development of clinical tools for early disease diagnosis.
Collapse
Affiliation(s)
- Yawei Feng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yunshan Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Pei Guo
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Lizhuan Zhang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yunben Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Zeyin Zhao
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Qiuxia Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yong Liu
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Liu Yang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Ruizi Peng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
14
|
Daum S, Decristoforo L, Mousa M, Salcher S, Plattner C, Hosseinkhani B, Trajanoski Z, Wolf D, Carmeliet P, Pircher A. Unveiling the immunomodulatory dance: endothelial cells' function and their role in non-small cell lung cancer. Mol Cancer 2025; 24:21. [PMID: 39819502 PMCID: PMC11737145 DOI: 10.1186/s12943-024-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
The dynamic interactions between tumor endothelial cells (TECs) and the immune microenvironment play a critical role in the progression of non-small cell lung cancer (NSCLC). In general, endothelial cells exhibit diverse immunomodulatory properties, influencing immune cell recruitment, antigen presentation, and regulation of immune checkpoint expression. Understanding the multifaceted roles of TECs as well as assigning specific functional hallmarks to various TEC phenotypes offer new avenues for targeted development of therapeutic interventions, particularly in the context of advanced immunotherapy and anti-angiogenic treatments. This review provides insights into the complex interplay between TECs and the immune system in NSCLC including discussion of potential optimized therapeutic opportunities.
Collapse
Affiliation(s)
- Sophia Daum
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Lilith Decristoforo
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stefan Salcher
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Christina Plattner
- Institute of Bioinformatics, Biocenter Medical University Innsbruck, Innsbruck, Austria
| | - Baharak Hosseinkhani
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), VIB Center for Cancer Biology, KU Leuven, VIB, Leuven, Belgium
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Biocenter Medical University Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Peter Carmeliet
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), VIB Center for Cancer Biology, KU Leuven, VIB, Leuven, Belgium
| | - Andreas Pircher
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
15
|
Emami A, Arabpour Z, Izadi E. Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement. Mol Biol Rep 2025; 52:113. [PMID: 39798011 DOI: 10.1007/s11033-024-10209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results. Stem cell therapy emerges as a promising avenue, but challenges like immune rejection and low cell survival rates hinder its widespread clinical implementation. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have garnered attention for their regenerative capabilities, which surpass those of MSCs themselves. EVs offer advantages such as reduced immunogenicity, enhanced stability, and simplified storage, positioning them as a promising tool in stem cell-based therapies. This review explores the potential of EV-based therapy in bone tissue regeneration, delving into their biological characteristics, communication mechanisms, and preclinical applications across various physiological and pathological conditions. The mechanisms underlying EV-mediated bone regeneration, including angiogenesis, osteoblast proliferation, mineralization, and immunomodulation, are elucidated. Preclinical studies demonstrate the efficacy of EVs in promoting bone repair and neovascularization, even in pathological conditions like osteoporosis. EVs hold promise as a potential alternative for regenerating bone tissue, particularly in the context of critical-sized bone defects, offering new avenues for effective bone defect repair and management.
Collapse
Affiliation(s)
- Asrin Emami
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Science and University of Illinois, Chicago, IL, 60612, USA
| | - Elaheh Izadi
- Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Kırbaş OK, Sağraç D, Çiftçi ÖC, Özdemir G, Öztürkoğlu D, Bozkurt BT, Derman ÜC, Taşkan E, Taşlı PN, Özdemir BS, Şahin F. Unveiling the potential: Extracellular vesicles from plant cell suspension cultures as a promising source. Biofactors 2025; 51:e2090. [PMID: 38989918 PMCID: PMC11680973 DOI: 10.1002/biof.2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Extracellular vesicles are secreted by all eukaryotic cells and they have an important role in intercellular signaling. Plant extracellular vesicles (PEVs) are a novel area of research that has gained attention due to their potential implications in biomolecule transport and therapeutic applications. PEVs are lipid bilayer-enclosed structures that contain a diverse cargo of biomolecules such as proteins and lipids. Moreover, it is known that PEVs have a noticeable therapeutic potential for various conditions such as inflammation and oxidative stress. However, there are critical problems such as removing the endosomes and plant-derived biomolecules that decrease the standardization and therapeutic efficacy of PEVs. In our study, the aim was to characterize plant cell suspension-derived extracellular vesicles (PCSEVs) obtained from two different plant cell suspension cultures: Stevia rebaudiana and Vaccaria hispanica. These vesicles were isolated using ultrafiltration and characterized with nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM). The molecular composition of PCSEVs was profiled and the cellular uptake assay was performed. Our results demonstrated that PCSEVs have a spherical shape, less than 200 nm. In the fatty acid analysis, the primary components in PCSEVs were palmitic acid, linoleic acid, and cis-vaccenic acid. The protein content of Stevia rebaudiana-derived EVs (SDEVs) was largely associated with proteins involved in extracellular structures and functions. Conversely, Vaccaria hispanica-derived EVs (HDEVs) displayed a higher presence of cytosolic proteins. These findings contribute to the understanding of PCSEVs and open up potential avenues in extracellular vesicle research, pointing to promising prospects for future innovations in various fields.
Collapse
Affiliation(s)
- Oğuz Kaan Kırbaş
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Derya Sağraç
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Özgün Cem Çiftçi
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Gökçeçiçek Özdemir
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Dilek Öztürkoğlu
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Batuhan Turhan Bozkurt
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Ümit Cem Derman
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Ezgi Taşkan
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Pakize Neslihan Taşlı
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Bahar Soğutmaz Özdemir
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Fikrettin Şahin
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| |
Collapse
|
17
|
Zhang M, Wei J, He C, Sui L, Jiao C, Zhu X, Pan X. Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases. Cell Mol Biol Lett 2024; 29:153. [PMID: 39695918 DOI: 10.1186/s11658-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are versatile and complex organelles that can continuously communicate and interact with the cellular milieu. Deregulated communication between mitochondria and host cells/organelles has significant consequences and is an underlying factor of many pathophysiological conditions, including the process of aging. During aging, mitochondria lose function, and mitocellular communication pathways break down; mitochondrial dysfunction interacts with mitochondrial dyscommunication, forming a vicious circle. Therefore, strategies to protect mitochondrial function and promote effective communication of mitochondria can increase healthy lifespan and longevity, which might be a new treatment paradigm for age-related disorders. In this review, we comprehensively discuss the signal transduction mechanisms of inter- and intracellular mitochondrial communication, as well as the interactions between mitochondrial communication and the hallmarks of aging. This review emphasizes the indispensable position of inter- and intracellular mitochondrial communication in the aging process of organisms, which is crucial as the cellular signaling hubs. In addition, we also specifically focus on the status of mitochondria-targeted interventions to provide potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
18
|
Tsai HF, Shen AQ. Impact of dcEF on microRNA profiles in glioblastoma and exosomes using a novel microfluidic bioreactor. BIOMICROFLUIDICS 2024; 18:064106. [PMID: 39742343 PMCID: PMC11686958 DOI: 10.1063/5.0228901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Glioblastoma multiforme, the most common type of highly aggressive primary brain tumor, is influenced by complex molecular signaling pathways, where microRNAs (miRNAs) play a critical regulatory role. Originating from glial cells, glioblastoma cells are affected by the physiological direct current electric field (dcEF) in the central nervous system. While dcEF has been shown to affect glioblastoma migration (electrotaxis), the specific impact on glioblastoma intercellular communication and miRNA expression in glioblastoma cells and their exosomes remains unclear. This study aims to fill this gap by investigating the differential expression of microRNAs in glioblastoma cells and exosomes under dcEF stimulation. We have developed a novel, reversibly sealed dcEF stimulation bioreactor that ensures uniform dcEF stimulation across a large cell culture area, specifically targeting glioblastoma cells and primary human astrocytes. Using microarray analysis, we examined differential miRNA profiles in both cellular and exosomal RNAs. Our study identified shared molecular targets and pathways affected by dcEF stimulation. Our findings reveal significant changes in miRNA expression due to dcEF stimulation, with specific miRNAs, such as hsa-miR-4440 being up-regulated and hsa-miR-3201 and hsa-mir-548g being down-regulated. Future research will focus on elucidating the molecular mechanisms of these miRNAs and their potential as diagnostic biomarkers. The developed platform offers high-quality dcEF stimulation and rapid sample recovery, with potential applications in tissue engineering and multi-omics molecular analysis.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan and Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
19
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Mitochondrial Dysfunction in Cardiac Disease: The Fort Fell. Biomolecules 2024; 14:1534. [PMID: 39766241 PMCID: PMC11673776 DOI: 10.3390/biom14121534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Myocardial cells and the extracellular matrix achieve their functions through the availability of energy. In fact, the mechanical and electrical properties of the heart are heavily dependent on the balance between energy production and consumption. The energy produced is utilized in various forms, including kinetic, dynamic, and thermal energy. Although total energy remains nearly constant, the contribution of each form changes over time. Thermal energy increases, while dynamic and kinetic energy decrease, ultimately becoming insufficient to adequately support cardiac function. As a result, toxic byproducts, unfolded or misfolded proteins, free radicals, and other harmful substances accumulate within the myocardium. This leads to the failure of crucial processes such as myocardial contraction-relaxation coupling, ion exchange, cell growth, and regulation of apoptosis and necrosis. Consequently, both the micro- and macro-architecture of the heart are altered. Energy production and consumption depend on the heart's metabolic resources and the functional state of the cardiac structure, including cardiomyocytes, non-cardiomyocyte cells, and their metabolic and energetic behavior. Mitochondria, which are intracellular organelles that produce more than 95% of ATP, play a critical role in fulfilling all these requirements. Therefore, it is essential to gain a deeper understanding of their anatomy, function, and homeostatic properties.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Dimitrios Farmakis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| |
Collapse
|
20
|
Kim H, Shin HY, Park M, Ahn K, Kim SJ, An SH. Exosome-Like Vesicles from Lithospermum erythrorhizon Callus Enhanced Wound Healing by Reducing LPS-Induced Inflammation. J Microbiol Biotechnol 2024; 35:e2410022. [PMID: 39848679 PMCID: PMC11813354 DOI: 10.4014/jmb.2410.10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/25/2025]
Abstract
Lithospermum erythrorhizon (LE), a medicinal plant from the Boraginaceae family, is traditionally used in East Asia for its therapeutic effects on skin conditions, including infections, inflammation, and wounds. Recently, the role of extracellular vesicles (EVs) as mediators of intercellular communication that regulate inflammation and promote tissue regeneration has garnered increasing attention in the field of regenerative medicine. This study investigates exosome-like vesicles derived from LE callus (LELVs) and their potential in enhancing wound healing. In vitro studies using normal human dermal fibroblasts (NHDFs) demonstrated that LELVs significantly improved cell viability, proliferation, and wound closure, while also enhancing collagen type I synthesis, indicating anti-inflammatory and regenerative properties. For in vivo analysis, LELVs were applied to lipopolysaccharide (LPS)-induced wounds in mice, where wound healing progression was monitored over 14 days. LELV-treated wounds exhibited accelerated re-epithelialization, reduced inflammation, and improved tissue remodeling, with histological analysis revealing enhanced collagen deposition and reduced inflammatory cell infiltration. These results highlight the ability of LELVs to modulate the inflammatory response and promote wound healing. With their natural origin, low immunogenicity, and ease of production, LELVs represent a promising alternative to synthetic treatments for inflammation-associated skin injuries and hold significant potential for clinical applications in wound care.
Collapse
Affiliation(s)
- Hyeonoh Kim
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Hyun-young Shin
- Research Institute, Sphebio Co., Ltd., Seoul 04796, Republic of Korea
| | - Mira Park
- Research Institute, Sphebio Co., Ltd., Seoul 04796, Republic of Korea
| | - Keunsun Ahn
- Research Institute, Sphebio Co., Ltd., Seoul 04796, Republic of Korea
| | - Seung-Jin Kim
- Research Institute, Sphebio Co., Ltd., Seoul 04796, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| |
Collapse
|
21
|
Lajevardi MS, Ashrafpour M, Mubarak SMH, Rafieyan B, Kiani A, Noori E, Roayaei Ardakani M, Montazeri M, Kouhi Esfahani N, Asadimanesh N, Khalili S, Payandeh Z. Dual roles of extracellular vesicles in acute lymphoblastic leukemia: implications for disease progression and theranostic strategies. Med Oncol 2024; 42:11. [PMID: 39572459 PMCID: PMC11582151 DOI: 10.1007/s12032-024-02547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
Acute Lymphoblastic Leukemia (ALL) is a heterogeneous blood cancer characterized by the uncontrolled growth of immature lymphoid cells due to dysregulated signaling pathways. It is the most common pediatric cancer, with high cure rates in children, but significantly lower survival rates in adults. Current theranostic strategies, including chemotherapy, immunotherapy, and nanomedicine, aim to improve detection and treatment precision but are limited by side effects, drug resistance, high costs, and stability issues. Notably, extracellular vesicles (EVs) offer a promising alternative, addressing these limitations through their natural biocompatibility and targeted delivery capabilities. EVs play a dual role in ALL: they contribute to leukemia progression by promoting tumor growth, immune suppression, and drug resistance via the transfer of oncogenic molecules, while also serving as valuable non-invasive biomarkers due to their specific miRNA and protein content. Their ability to deliver therapeutic agents directly to leukemic cells, combined with their stability and low immunogenicity, makes EVs a compelling tool for improving ALL treatments. Indeed, by targeting the molecular pathways influenced by EVs or leveraging them for drug delivery, innovative therapeutic strategies can be developed to enhance treatment outcomes and reduce side effects. Thus, EVs represent a promising frontier for advancing theranostic strategies in ALL, offering new opportunities to improve diagnosis and treatment while overcoming the limitations of traditional therapies. This review will explore the dual roles of EVs in ALL, addressing their contributions to disease progression and their potential as therapeutic agents and biomarkers for early diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Mahya Sadat Lajevardi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Shaden M H Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Kufa, Iraq
| | - Behnoosh Rafieyan
- School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Maryam Montazeri
- Razi Clinical Researches Development, Mazandaran University of Medical Science, Sari, Iran
| | - Niloofar Kouhi Esfahani
- Faculty of Medicine, People's Friendship University of Russia (Rudn University), Moscow, Russia
| | - Naghmeh Asadimanesh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, 1678815811, Iran.
| | - Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden.
| |
Collapse
|
22
|
Burke BI, Ismaeel A, Long DE, Depa LA, Coburn PT, Goh J, Saliu TP, Walton BJ, Vechetti IJ, Peck BD, Valentino TR, Mobley CB, Memetimin H, Wang D, Finlin BS, Kern PA, Peterson CA, McCarthy JJ, Wen Y. Extracellular vesicle transfer of miR-1 to adipose tissue modifies lipolytic pathways following resistance exercise. JCI Insight 2024; 9:e182589. [PMID: 39316445 PMCID: PMC11601556 DOI: 10.1172/jci.insight.182589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as important mediators of intertissue signaling and exercise adaptations. In this human study, we provide evidence that muscle-specific microRNA-1 (miR-1) was transferred to adipose tissue via EVs following an acute bout of resistance exercise. Using a multimodel machine learning automation tool, we discovered muscle primary miR-1 transcript and CD63+ EV count in circulation as top explanatory features for changes in adipose miR-1 levels in response to resistance exercise. RNA-Seq and in-silico prediction of miR-1 target genes identified caveolin 2 (CAV2) and tripartite motif containing 6 (TRIM6) as miR-1 target genes downregulated in the adipose tissue of a subset of participants with the highest increases in miR-1 levels following resistance exercise. Overexpression of miR-1 in differentiated human adipocyte-derived stem cells downregulated these miR-1 targets and enhanced catecholamine-induced lipolysis. These data identify a potential EV-mediated mechanism by which skeletal muscle communicates with adipose tissue and modulates lipolysis via miR-1.
Collapse
Affiliation(s)
- Benjamin I. Burke
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | | | - Lauren A. Depa
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Peyton T. Coburn
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Jensen Goh
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Tolulope P. Saliu
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Bonnie J. Walton
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Ivan J. Vechetti
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Bailey D. Peck
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Taylor R. Valentino
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - C. Brooks Mobley
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Hasiyet Memetimin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | - Dandan Wang
- Center for Muscle Biology, College of Health Sciences
- Department of Biostatistics, College of Public Health, and
| | - Brian S. Finlin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | - Philip A. Kern
- Center for Muscle Biology, College of Health Sciences
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | | | - John J. McCarthy
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Yuan Wen
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
23
|
Palumbos SD, Popolow J, Goldsmith J, Holzbaur EL. Autophagic stress activates distinct compensatory secretory pathways in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.621551. [PMID: 39574677 PMCID: PMC11580983 DOI: 10.1101/2024.11.07.621551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Autophagic dysfunction is a hallmark of neurodegenerative disease, leaving neurons vulnerable to the accumulation of damaged organelles and proteins. However, the late onset of diseases suggests that compensatory quality control mechanisms may be engaged to delay the deleterious effects induced by compromised autophagy. Neurons expressing common familial Parkinson's disease (PD)-associated mutations in LRRK2 kinase exhibit defective autophagy. Here, we demonstrate that both primary murine neurons and human iPSC-derived neurons harboring pathogenic LRRK2 upregulate the secretion of extracellular vesicles. We used unbiased proteomics to characterize the secretome of LRRK2G2019S neurons and found that autophagic cargos including mitochondrial proteins were enriched. Based on these observations, we hypothesized that autophagosomes are rerouted toward secretion when cell-autonomous degradation is compromised, likely to mediate clearance of undegraded cellular waste. Immunoblotting confirmed the release of autophagic cargos and immunocytochemistry demonstrated that secretory autophagy was upregulated in LRRK2G2019S neurons. We also found that LRRK2G2019S neurons upregulate the release of exosomes containing miRNAs. Live-cell imaging confirmed that this upregulation of exosomal release was dependent on hyperactive LRRK2 activity, while pharmacological experiments indicate that this release staves off apoptosis. Finally, we show that markers of both vesicle populations are upregulated in plasma from mice expressing pathogenic LRRK2. In sum, we find that neurons expressing pathogenic LRRK2 upregulate the compensatory release of secreted autophagosomes and exosomes, to mediate waste disposal and transcellular communication, respectively. We propose that this increased secretion contributes to the maintenance of cellular homeostasis, delaying neurodegenerative disease progression over the short term while potentially contributing to increased neuroinflammation over the longer term.
Collapse
Affiliation(s)
- Sierra D. Palumbos
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jacob Popolow
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliet Goldsmith
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Erika L.F. Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
24
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
25
|
Sattarov R, Havers M, Orbjörn C, Stomrud E, Janelidze S, Laurell T, Mattsson-Carlgren N. Phosphorylated tau in cerebrospinal fluid-derived extracellular vesicles in Alzheimer's disease: a pilot study. Sci Rep 2024; 14:25419. [PMID: 39455624 PMCID: PMC11511998 DOI: 10.1038/s41598-024-75406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by brain aggregation of β-amyloid (Aβ) peptides and phosphorylated tau (P-tau) proteins. Extracellular vesicles (EVs) can be isolated and studied for potential roles in disease. While several studies have tested plasma-derived EVs in AD, few have analyzed EVs from cerebrospinal fluid (CSF), which are potentially more closely related to brain changes. This study included 20 AD patients and 20 cognitively unimpaired (CU) participants. Using a novel EV isolation method based on acoustic trapping, we isolated and purified EVs from minimal CSF volumes. EVs were lysed and analyzed by immunoassays for P-tau217 and P-tau181. Isolation was confirmed through transmission electron microscopy and the presence of EV-specific markers (CD9, CD63, CD81, ATP1A3). Nanoparticle tracking analysis revealed a high variance in EV distribution. AD patients exhibited increased P-tau181 and decreased P-tau217 in EVs, leading to a higher EV P-tau181/P-tau217 ratio compared to CU. No significant differences in EV counts or sizes were observed between AD and CU groups. This study is the first to use acoustic trapping to isolate EVs from CSF and demonstrates differential P-tau content in AD-derived EVs, warranting further research to understand the relationship between these EV changes and brain pathology.
Collapse
Affiliation(s)
- Roman Sattarov
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| | - Megan Havers
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Camilla Orbjörn
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
26
|
Wu Q, Kan J, Fu C, Liu X, Cui Z, Wang S, Le Y, Li Z, Liu Q, Zhang Y, Du J. Insights into the unique roles of extracellular vesicles for gut health modulation: Mechanisms, challenges, and perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100301. [PMID: 39525958 PMCID: PMC11550031 DOI: 10.1016/j.crmicr.2024.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs), which play significant regulatory roles in maintaining homeostasis and influencing immune responses, significantly impact gut microbiota composition and function, affecting overall gut health. Despite considerable progress, there are still knowledge gaps regarding the mechanisms by which EVs, including plant-derived EVs (PDEVs), animal-derived EVs (ADEVs), and microbiota-derived EVs (MDEVs), modulate gut health. This review delves into the roles and mechanisms of EVs from diverse sources in regulating gut health, focusing on their contributions to maintaining epithelial barrier integrity, facilitating tissue healing, eliciting immune responses, controlling pathogens, and shaping microbiota. We emphasize open challenges and future perspectives for harnessing EVs in the modulation of gut health to gain a deeper understanding of their roles and impact. Importantly, a comprehensive research framework is presented to steer future investigations into the roles and implications of EVs on gut health, facilitating a more profound comprehension of this emerging field.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai 200031, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai 200031, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Xin Liu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Zhengying Cui
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Sixu Wang
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Yi Le
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Zhanming Li
- Department of Food Quality and Safety, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qin Liu
- Centre for Chinese Medicine Drug Development Limited, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200031, China
| |
Collapse
|
27
|
Troyer Z, Gololobova O, Koppula A, Liao Z, Horns F, Elowitz MB, Tosar JP, Batish M, Witwer KW. Simultaneous Protein and RNA Analysis in Single Extracellular Vesicles, Including Viruses. ACS NANO 2024; 18:26568-26584. [PMID: 39306763 PMCID: PMC11447916 DOI: 10.1021/acsnano.4c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/02/2024]
Abstract
The individual detection of human immunodeficiency virus (HIV) virions and resolution from extracellular vesicles (EVs) during analysis is a difficult challenge. Infectious enveloped virions and nonviral EVs are released simultaneously by HIV-infected host cells, in addition to hybrid viral EVs containing combinations of HIV and host components but lacking replicative ability. Complicating the issue, EVs and enveloped virions are both delimited by a lipid bilayer and share similar size and density. The feature that distinguishes infectious virions from host and hybrid EVs is the HIV genomic RNA (gRNA), which allows the virus to replicate. Single-particle analysis techniques, which provide snapshots of single biological nanoparticles, could resolve infectious virions from EVs. However, current single-particle analysis techniques focus mainly on protein detection, which fail to resolve hybrid EVs from infectious virions. A method to simultaneously detect viral protein and internal gRNA in the same particle would allow resolution of infectious HIV from EVs and noninfectious virions. Here, we introduce SPIRFISH, a high-throughput method for single-particle protein and RNA analysis, combining single particle interferometric reflectance imaging sensor with single-molecule fluorescence in situ hybridization. Using SPIRFISH, we detect HIV-1 envelope protein gp120 and genomic RNA within single infectious virions, allowing resolution against EV background and noninfectious virions. We further show that SPIRFISH can be used to detect specific RNAs within EVs. This may have major utility for EV therapeutics, which are increasingly focused on EV-mediated RNA delivery. SPIRFISH should enable single particle analysis of a broad class of RNA-containing nanoparticles.
Collapse
Affiliation(s)
- Zach Troyer
- Department
of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Olesia Gololobova
- Department
of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- EV
Core Facility “EXCEL”, Institute for Basic Biomedical
Sciences, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| | - Aakash Koppula
- Department
of Medical and Molecular Sciences, and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Zhaohao Liao
- Department
of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Felix Horns
- Howard
Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael B. Elowitz
- Howard
Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Juan Pablo Tosar
- Functional
Genomics Laboratory, Institut Pasteur de
Montevideo, Montevideo 11400, Uruguay
- School
of
Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Mona Batish
- Department
of Medical and Molecular Sciences, and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Kenneth W. Witwer
- Department
of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- EV
Core Facility “EXCEL”, Institute for Basic Biomedical
Sciences, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
- The
Richman Family Precision Medicine Center of Excellence in Alzheimer’s
Disease, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
28
|
Tati V, Muthukumar V S, Shukla S. Mesenchymal vs. epithelial extracellular vesicles in corneal epithelial repair, apoptosis, and immunomodulation: An in vitro study. Exp Eye Res 2024; 247:110027. [PMID: 39127238 DOI: 10.1016/j.exer.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Corneal injuries often lead to epithelial damage, apoptosis, and inflammation which impact visual function. Effective epithelial healing is critical for optimal vision and functioning of the cornea. Mesenchymal stem/stromal cells (MSCs)-derived extracellular vesicles (EVs) present promising avenues for cell-free therapy, however, evaluation of their specific roles in corneal epithelial injury requires further investigations with due consideration to the endogenous human corneal epithelial cell-derived EVs (HCEC-EVs). This study aims to isolate and characterize the EVs from a commonly available human corneal epithelial cell line (HCE-2 [50. B1], ATCC) and evaluate their corneal epithelial repair, anti-apoptotic, and immunomodulatory potential in comparison with human bone marrow mesenchymal stem cell-derived EVs (BM-MSC-EVs) in vitro. Both the BM-MSC- and HCEC-EVs exhibited similar morphology with a diameter <150 nm. However, the yield of EVs from HCECs was higher than that of BM-MSCs. Nanoparticle tracking analysis revealed an average EV size of ∼120 nm, while western blotting confirmed the presence of CD63, CD81, and TSG101, whereas Calnexin could not be detected in the BM-MSC- and HCEC-EVs. The corneal epithelial repair was monitored through in vitro wound healing assay, whereas apoptosis was studied through flow cytometry-based Propidium iodide staining in H2O2-treated cells. IL-1β-stimulated HCECs were treated with BM-MSC- and HCEC-EVs for 24 h and expression of pro- (IL-6 and TNF-α) and anti-inflammatory (IL-10 and TGF-β) cytokines was evaluated through ELISA. Our results, limited to in vitro investigations, suggest that compared with HCEC-EVs, BM-MSC-EVs showed: i) accelerated corneal epithelial healing, ii) enhanced anti-apoptotic potential, and iii) improved anti-inflammatory properties, in cultured HCECs.
Collapse
Affiliation(s)
- Vasudeva Tati
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, 500034, India; Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, India
| | - Sai Muthukumar V
- Electron Microscopy Laboratory, Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Sri Sathya Sai District, Andhra Pradesh, India
| | - Sachin Shukla
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, 500034, India; Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, India.
| |
Collapse
|
29
|
Vidal-Correoso D, Mateo SV, Muñoz-Morales AM, Lucas-Ruiz F, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, Sánchez-Redondo S, Santos V, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Peinado H, Baroja-Mazo A. Cell-specific Extracellular Vesicles and Their miRNA Cargo Released Into the Organ Preservation Solution During Cold Ischemia Storage as Biomarkers for Liver Transplant Outcomes. Transplantation 2024; 108:e301-e312. [PMID: 38578699 DOI: 10.1097/tp.0000000000005008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Liver transplantation (LT) is crucial for end-stage liver disease patients, but organ shortages persist. Donation after circulatory death (DCD) aims to broaden the donor pool but presents challenges. Complications like acute rejection, hepatic artery thrombosis, and biliary issues still impact posttransplant prognosis. Biomarkers, including extracellular vesicles (EVs) and microRNAs (miRNAs), show promise in understanding and monitoring posttransplant events. This study explores the role of EVs and their miRNA cargo in LT, including their potential as diagnostic tools. METHODS EVs from intrahepatic end-ischemic organ preservation solution (eiOPS) in 79 donated livers were detected using different techniques (nanosight tracking analysis, transmission electron microscopy, and flow cytometry). EV-derived miRNAs were identified by quantitative real time-polymerase chain reaction. Bioinformatics analysis was performed using the R platform. RESULTS Different-sized and origin-specific EVs were found in eiOPS, with significantly higher concentrations in DCD compared with donation after brain death organs. Additionally, several EV-associated miRNAs, including let-7d-5p , miR-28-5p , miR-200a-3p , miR-200b-3p , miR-200c-3p , and miR-429 , were overexpressed in DCD-derived eiOPS. These miRNAs also exhibited differential expression patterns in liver tissue biopsies. Pathway analysis revealed enrichment in signaling pathways involved in extracellular matrix organization and various cellular processes. Moreover, specific EVs and miRNAs correlated with clinical outcomes, including survival and early allograft dysfunction. A predictive model combining biomarkers and clinical variables showed promise in acute rejection detection after LT. CONCLUSIONS These findings provide new insights into the use of EVs and miRNAs as biomarkers and their possible influence on posttransplantation outcomes, potentially contributing to improved diagnostic approaches and personalized treatment strategies in LT.
Collapse
Affiliation(s)
- Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Ana M Muñoz-Morales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Fernando Lucas-Ruiz
- Experimental Ophthalmology Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sara Sánchez-Redondo
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José Antonio Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
30
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung G, Najarzadegan F, Wong DT, Ton‐That H, Wang C, Kapila YL. Biological biomarkers of oral cancer. Periodontol 2000 2024; 96:250-280. [PMID: 38073011 PMCID: PMC11163022 DOI: 10.1111/prd.12542] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 06/12/2024]
Abstract
The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.
Collapse
Affiliation(s)
- Allan Radaic
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Pachiyappan Kamarajan
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Alex Cho
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Sandy Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Guo‐Chin Hung
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | | | - David T. Wong
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Hung Ton‐That
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Cun‐Yu Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Yvonne L. Kapila
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| |
Collapse
|
31
|
Zhang X, Miao J, Song Y, Zhang J, Miao M. Review on effects and mechanisms of plant-derived natural products against breast cancer bone metastasis. Heliyon 2024; 10:e37894. [PMID: 39318810 PMCID: PMC11420494 DOI: 10.1016/j.heliyon.2024.e37894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bone metastasis is the prevalent form of metastasis in breast cancer, resulting in severe pain, pathological fractures, nerve compression, hypercalcemia, and other complications that significantly impair patients' quality of life. The infiltration and colonization of breast cancer (BC) cells in bone tissue disrupt the delicate balance between osteoblasts and osteoclasts within the bone microenvironment, initiating a vicious cycle of bone metastasis. Once bone metastasis occurs, conventional medical therapy with bone-modifying agents is commonly used to alleviate bone-related complications and improve patients' quality of life. However, the utilization of bone-modifying agents may cause severe drug-related adverse effects. Plant-derived natural products such as terpenoids, alkaloids, coumarins, and phenols have anti-tumor, anti-inflammatory, and anti-angiogenic pharmacological properties with minimal side effects. Certain natural products that exhibit both anti-breast cancer and anti-bone metastasis effects are potential therapeutic agents for breast cancer bone metastasis (BCBM). This article reviewed the effects of plant-derived natural products against BCBM and their mechanisms to provide a reference for the research and development of drugs related to BCBM.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiawen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
32
|
Park DJ, Choi W, Sayeed S, Dorschner RA, Rainaldi J, Ho K, Kezios J, Nolan JP, Mali P, Costantini T, Eliceiri BP. Defining the activity of pro-reparative extracellular vesicles in wound healing based on miRNA payloads and cell type-specific lineage mapping. Mol Ther 2024; 32:3059-3079. [PMID: 38379282 PMCID: PMC11403212 DOI: 10.1016/j.ymthe.2024.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Wooil Choi
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Sakeef Sayeed
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert A Dorschner
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kayla Ho
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Jenny Kezios
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Todd Costantini
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA; Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Cabiati M, Federico G, Del Ry S. Importance of Studying Non-Coding RNA in Children and Adolescents with Type 1 Diabetes. Biomedicines 2024; 12:1988. [PMID: 39335501 PMCID: PMC11429055 DOI: 10.3390/biomedicines12091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Type 1 diabetes (T1D) mellitus is a chronic illness in children and teens, with rising global incidence rates. It stems from an autoimmune attack on pancreatic β cells, leading to insufficient insulin production. Genetic susceptibility and environmental triggers initiate this process. Early detection is possible by identifying multiple autoantibodies, which aids in predicting future T1D development. A new staging system highlights T1D's onset with islet autoimmunity rather than symptoms. Family members of T1D patients face a significantly increased risk of T1D. Italy recently passed a law mandating national T1D screening for pediatric populations. Measurements of β cell function continue to be essential in assessing efficacy, and different models have been proposed, but more appropriate biomarkers are mandatory for both progression studies before the onset of diabetes and during therapeutic monitoring. Biomarkers like microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) play key roles in T1D pathogenesis by regulating gene expression. Understanding their roles offers insights into T1D mechanisms and potential therapeutic targets. In this review, we summarized recent progress in the roles of some non-coding RNAs (ncRNAs) in the pathogenesis of T1D, with particular attention to miRNAs, lncRNAs, and circRNAs.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Giovanni Federico
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
34
|
Yang R, Qu X, Zhi S, Wang J, Fu J, Tan C, Chen H, Wang X. Exosomes Derived from Meningitic Escherichia coli-Infected Brain Microvascular Endothelial Cells Facilitate Astrocyte Activation. Mol Neurobiol 2024; 61:7195-7210. [PMID: 38372957 DOI: 10.1007/s12035-024-04044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Numerous studies have shown that exosomes play a regulatory role in a variety of biological processes as well as in disease development and progression. However, exosome-mediated intercellular communication between brain microvascular endothelial cells (BMECs) and astrocytes during meningitic Escherichia coli (E. coli)-induced neuroinflammation remains largely unknown. Here, by using in vivo and in vitro models, we demonstrate that exosomes derived from meningitic E. coli-infected BMECs can activate the inflammatory response of astrocytes. A label-free quantitation approach coupled with LC-MS/MS was used to compare the exosome proteomic profiles of human BMECs (hBMECs) in response to meningitic E. coli infection. A total of 57 proteins exhibited significant differences in BMEC-derived exosomes during the infection. Among these proteins, growth differentiation factor 15 (GDF15) was significantly increased in BMEC-derived exosomes during the infection, which triggered the Erk1/2 signaling pathway and promoted the activation of astrocytes. The identification and characterization of exosome protein profiles in BMECs during meningitic E. coli infection will contribute to the understanding of the underlying pathogenic mechanisms from the perspective of intercellular communication between BMECs and astrocytes, and provide new insights for future prevention and treatment of E. coli meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shuli Zhi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jundan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiyang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Keqian Biology Co., Ltd., Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
35
|
Fanelli M, Petrone V, Chirico R, Radu CM, Minutolo A, Matteucci C. Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:417-437. [PMID: 39697632 PMCID: PMC11648478 DOI: 10.20517/evcna.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 12/20/2024]
Abstract
Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Claudia Maria Radu
- Department of Medicine - DIMED, Thrombotic and Hemorrhagic Diseases Unit, University of Padua, Padua 35128 Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| |
Collapse
|
36
|
Cui L, Perini G, Palmieri V, De Spirito M, Papi M. Plant-Derived Extracellular Vesicles as a Novel Frontier in Cancer Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1331. [PMID: 39195369 DOI: 10.3390/nano14161331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Recent advancements in nanomedicine and biotechnology have unveiled the remarkable potential of plant-derived extracellular vesicles (PDEVs) as a novel and promising approach for cancer treatment. These naturally occurring nanoscale particles exhibit exceptional biocompatibility, targeted delivery capabilities, and the capacity to load therapeutic agents, positioning them at the forefront of innovative cancer therapy strategies. PDEVs are distinguished by their unique properties that facilitate tumor targeting and penetration, thereby enhancing the efficacy of drug delivery systems. Their intrinsic biological composition allows for the evasion of the immune response, enabling the efficient transport of loaded therapeutic molecules directly to tumor sites. Moreover, PDEVs possess inherent anti-cancer properties, including the ability to induce cell cycle arrest and promote apoptotic pathways within tumor cells. These vesicles have also demonstrated antimetastatic effects, inhibiting the spread and growth of cancer cells. The multifunctional nature of PDEVs allows for the simultaneous delivery of multiple therapeutic agents, further enhancing their therapeutic potential. Engineering and modification techniques, such as encapsulation, and the loading of therapeutic agents via electroporation, sonication, and incubation, have enabled the customization of PDEVs to improve their targeting efficiency and therapeutic load capacity. This includes surface modifications to increase affinity for specific tumor markers and the encapsulation of various types of therapeutic agents, such as small molecule drugs, nucleic acids, and proteins. Their plant-derived origin offers an abundant and renewable source to produce therapeutic vesicles, reducing costs and facilitating scalability for clinical applications. This review provides an in-depth analysis of the latest research on PDEVs as emerging anti-cancer agents in cancer therapy.
Collapse
Affiliation(s)
- Lishan Cui
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
37
|
Sigdel S, Udoh G, Albalawy R, Wang J. Perivascular Adipose Tissue and Perivascular Adipose Tissue-Derived Extracellular Vesicles: New Insights in Vascular Disease. Cells 2024; 13:1309. [PMID: 39195199 PMCID: PMC11353161 DOI: 10.3390/cells13161309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a special deposit of fat tissue surrounding the vasculature. Previous studies suggest that PVAT modulates the vasculature function in physiological conditions and is implicated in the pathogenesis of vascular diseases. Understanding how PVAT influences vasculature function and vascular disease progression is important. Extracellular vesicles (EVs) are novel mediators of intercellular communication. EVs encapsulate molecular cargo such as proteins, lipids, and nucleic acids. EVs can influence cellular functions by transferring the carried bioactive molecules. Emerging evidence indicates that PVAT-derived EVs play an important role in vascular functions under health and disease conditions. This review will focus on the roles of PVAT and PVAT-EVs in obesity, diabetic, and metabolic syndrome-related vascular diseases, offering novel insights into therapeutic targets for vascular diseases.
Collapse
Affiliation(s)
- Smara Sigdel
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (G.U.)
| | - Gideon Udoh
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (G.U.)
| | - Rakan Albalawy
- Department of Internal Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Jinju Wang
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (G.U.)
| |
Collapse
|
38
|
Liu J, Nordin JZ, McLachlan AJ, Chrzanowski W. Extracellular vesicles as the next-generation modulators of pharmacokinetics and pharmacodynamics of medications and their potential as adjuvant therapeutics. Clin Transl Med 2024; 14:e70002. [PMID: 39167024 PMCID: PMC11337541 DOI: 10.1002/ctm2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND AND MAIN BODY Pharmacokinetics (PK) and pharmacodynamics (PD) are central concepts to guide the dosage and administration of drug therapies and are essential to consider for both healthcare professionals and researchers in therapeutic planning and drug discovery. PK/PD properties of a drug significantly influence variability in response to treatment, including therapeutic failure or excessive medication-related harm. Furthermore, suboptimal PK properties constitute a significant barrier to further development for some candidate treatments in drug discovery. This article describes how extracellular vesicles (EVs) affect different aspects of PK and PD of medications and their potential to modulate PK and PD properties to address problematic PK/PD profiles of drugs. We reviewed EVs' intrinsic effects on cell behaviours and medication responses. We also described how surface and cargo modifications can enhance EV functionalities and enable them as adjuvants to optimise the PK/PD profile of conventional medications. Furthermore, we demonstrated that various bioengineering strategies can be used to modify the properties of EVs, hence enhancing their potential to modulate PK and PD profile of medications. CONCLUSION This review uncovers the critical role of EVs in PK and PD modulation and motivates further research and the development of assays to unfold EVs' full potential in solving PK and PD-related problems. However, while we have shown that EVs play a vital role in modulating PK and PD properties of medications, we postulated that it is essential to define the context of use when designing and utilising EVs in pharmaceutical and medical applications. HIGHLIGHTS Existing solutions for pharmacokinetics and pharmacodynamics modulation are limited. Extracellular vesicles can optimise pharmacokinetics as a drug delivery vehicle. Biogenesis and administration of extracellular vesicles can signal cell response. The pharmaceutical potential of extracellular vesicles can be enhanced by surface and cargo bioengineering. When using extracellular vesicles as modulators of pharmacokinetics and pharmacodynamics, the 'context of use' must be considered.
Collapse
Affiliation(s)
- Jiaqi Liu
- Sydney Pharmacy SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Joel Z. Nordin
- Division of Biomolecular and Cellular MedicineDivision of Clinical ImmunologyDepartment of Laboratory MedicineKarolinska InstituteHuddingeSweden
| | - Andrew J. McLachlan
- Sydney Pharmacy SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Wojciech Chrzanowski
- Sydney Pharmacy SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Division of Biomolecular and Cellular MedicineDivision of Clinical ImmunologyDepartment of Laboratory MedicineKarolinska InstituteHuddingeSweden
- Division of Biomedical EngineeringDepartment of Materials Science and EngineeringUppsala UniversityUppsalaAustralia
| |
Collapse
|
39
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
40
|
Hadad S, Khalaji A, Sarmadian AJ, Sarmadian PJ, Janagard EM, Baradaran B. Tumor-associated macrophages derived exosomes; from pathogenesis to therapeutic opportunities. Int Immunopharmacol 2024; 136:112406. [PMID: 38850795 DOI: 10.1016/j.intimp.2024.112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tumor-associated macrophages (TAMs) exert profound influences on cancer progression, orchestrating a dynamic interplay within the tumor microenvironment. Recent attention has focused on the role of TAM-derived exosomes, small extracellular vesicles containing bioactive molecules, in mediating this intricate communication. This review comprehensively synthesizes current knowledge, emphasizing the diverse functions of TAM-derived exosomes across various cancer types. The review delves into the impact of TAM-derived exosomes on fundamental cancer hallmarks, elucidating their involvement in promoting cancer cell proliferation, migration, invasion, and apoptosis evasion. By dissecting the molecular cargo encapsulated within these exosomes, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and proteins, the review uncovers key regulatory mechanisms governing these effects. Noteworthy miRNAs, such as miR-155, miR-196a-5p, and miR-221-3p, are highlighted for their pivotal roles in mediating TAM-derived exosomal communication and influencing downstream targets. Moreover, the review explores the impact of TAM-derived exosomes on the immune microenvironment, particularly their ability to modulate immune cell function and foster immune evasion. The discussion encompasses the regulation of programmed cell death ligand 1 (PD-L1) expression and subsequent impairment of CD8 + T cell activity, unraveling the immunosuppressive effects of TAM-derived exosomes. With an eye toward clinical implications, the review underscores the potential of TAM-derived exosomes as diagnostic markers and therapeutic targets. Their involvement in cancer progression, metastasis, and therapy resistance positions TAM-derived exosomes as key players in reshaping treatment strategies. Finally, the review outlines future directions, proposing avenues for targeted therapies aimed at disrupting TAM-derived exosomal functions and redefining the tumor microenvironment.
Collapse
Affiliation(s)
- Sara Hadad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
42
|
Xie Z, Cheng X, Mao J, Zhu Y, Li L, Mei Z. Extracellular vesicles enhance the in vivo antitumor effects of millettia species-derived compounds in chronic myelogenous leukemia therapy. Front Chem 2024; 12:1425318. [PMID: 39081546 PMCID: PMC11286385 DOI: 10.3389/fchem.2024.1425318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 08/02/2024] Open
Abstract
Several Millettia species are being investigated as medicinal ingredients due to their promising anti-cancer and anti-inflammatory properties. However, the application of Millettia species-derived compounds has been severely hindered by their poor aqueous solubility, rapid metabolism, and low bioavailability. Extracellular vesicles (EVs), which as membrane-bound phospholipid vesicle initiatively secreted through a variety of mammalian cells, are increasingly recognized as promising drug delivery vehicles. Therefore, EVs are with great potential to enhance both the stability and efficacy of the Millettia species-derived compounds in treatment. In this study, extracellular vesicles derived from chronic myelogenous leukemia cells are developed for delivering the extracts of Millettia speciosa Champ and Millettia pachyloba Drake-derived Homobutein. Notably, Homobutein-loaded EV (hEV) formed a stable and homogenous nanosized particle with high entrapment efficiency up to 55.7%. Moreover, EVs loaded with Homobutein were significantly more potent than free drugs in inhibiting K562 cell proliferation. The results demonstrated that intravenous injection of EV loaded with Homobutein effectively inhibits tumor growth in tumor-bearing mice compared to free Homobutein. Hence, this strategy can effectively enhance the efficacy of Millettia species-derived drugs in chronic myelogenous leukemia therapy.
Collapse
Affiliation(s)
- Zongzhou Xie
- Department of Oncology, Haikou City People’s Hospital, Haikou, Hainan, China
| | - Xiaozhen Cheng
- Department of Oncology, Haikou City People’s Hospital, Haikou, Hainan, China
| | - JianCang Mao
- NHC (National Health Commission of the People’s Republic of China) Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yingqi Zhu
- NHC (National Health Commission of the People’s Republic of China) Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Le Li
- NHC (National Health Commission of the People’s Republic of China) Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Zhenxin Mei
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
43
|
Jennings H, McMorrow S, Chlebeck P, Heise G, Levitsky M, Verhoven B, Kink JA, Weinstein K, Hong S, Al‐Adra DP. Normothermic liver perfusion derived extracellular vesicles have concentration-dependent immunoregulatory properties. J Extracell Vesicles 2024; 13:e12485. [PMID: 39051751 PMCID: PMC11270586 DOI: 10.1002/jev2.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Extracellular vesicles (EVs) are major contributors to immunological responses following solid organ transplantation. Donor derived EVs are best known for their role in transplant rejection through transferring donor major histocompatibility complex proteins to recipient antigen presenting cells, a phenomenon known as ‛cross-decoration'. In contrast, donor liver-derived EVs are associated with organ tolerance in small animal models. Therefore, the cellular source of EVs and their cargo could influence their downstream immunological effects. To investigate the immunological effects of EVs released by the liver in a physiological and transplant-relevant model, we isolated EVs being produced during normothermic ex vivo liver perfusion (NEVLP), a novel method of liver storage prior to transplantation. We found EVs were produced by the liver during NEVLP, and these EVs contained multiple anti-inflammatory miRNA species. In terms of function, liver-derived EVs were able to cross-decorate allogeneic cells and suppress the immune response in allogeneic mixed lymphocyte reactions in a concentration-dependent fashion. In terms of cytokine response, the addition of 1 × 109 EVs to the mixed lymphocyte reactions significantly decreased the production of the inflammatory cytokines TNF-α, IL-10 and IFN-γ. In conclusion, we determined physiologically produced liver-derived EVs are immunologically regulatory, which has implications for their role and potential modification in solid organ transplantation.
Collapse
Affiliation(s)
- Heather Jennings
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Stacey McMorrow
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Peter Chlebeck
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Grace Heise
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Mia Levitsky
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Bret Verhoven
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - John A. Kink
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Kristin Weinstein
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - David P. Al‐Adra
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
44
|
Amabebe E, Kumar A, Tatiparthy M, Kammala AK, Taylor BD, Menon R. Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:297-328. [PMID: 39698538 PMCID: PMC11648491 DOI: 10.20517/evcna.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 12/20/2024]
Abstract
Host-bacteria and bacteria-bacteria interactions can be facilitated by extracellular vesicles (EVs) secreted by both human and bacterial cells. Human and bacterial EVs (BEVs) propagate and transfer immunogenic cargos that may elicit immune responses in nearby or distant recipient cells/tissues. Hence, direct colonization of tissues by bacterial cells is not required for immunogenic stimulation. This phenomenon is important in the feto-maternal interface, where optimum tolerance between the mother and fetus is required for a successful pregnancy. Though the intrauterine cavity is widely considered sterile, BEVs from diverse sources have been identified in the placenta and amniotic cavity. These BEVs can be internalized by human cells, which may help them evade host immune surveillance. Though it appears logical, whether bacterial cells internalize human EVs or human EV cargo is yet to be determined. However, the presence of BEVs in placental tissues or amniotic cavity is believed to trigger a low-grade immune response that primes the fetal immune system for ex-utero survival, but is insufficient to disrupt the progression of pregnancy or cause immune intolerance required for adverse pregnancy events. Nevertheless, the exchange of bioactive cargos between human and BEVs, and the mechanical underpinnings and health implications of such interactions, especially during pregnancy, are still understudied. Therefore, while focusing on the feto-maternal interface, we discussed how human cells take up BEVs and whether bacterial cells take up human EVs or their cargo, the exchange of cargos between human and BEVs, host cell (feto-maternal) inflammatory responses to BEV immunogenic stimulation, and associations of these interactions with fetal immune priming and adverse reproductive outcomes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
| | | | | | | | | | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
45
|
Chen Y, Zhao R, Yang L, Guo XE. The roles of extracellular vesicles released by mechanically stimulated osteocytes in regulating osteoblast and osteoclast functions. MECHANOBIOLOGY IN MEDICINE 2024; 2:100065. [PMID: 40207251 PMCID: PMC11981633 DOI: 10.1016/j.mbm.2024.100065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Bone adapts to mechanical loading by changing its shape and mass. Osteocytes, as major mechanosensors, are critical for bone modeling/remodeling in response to mechanical stimuli. Intracellular calcium oscillation is one of the early responses in osteocytes, and this further facilitates bone cell communication through released biochemical signals. Our previous study has found that mechanically induced calcium oscillations in osteocytes enhance the release of extracellular vesicles (EVs), and those released EVs can elevate bone formation activity. However, the mechanism of mechanically stimulated EVs' regulation of bone formation and resorption is still unclear. Here, using in vitro studies, we exposed OCY454 cells, with relatively high sclerostin expression, to steady fluid flow (SFF) and characterized the functions of rapidly released EVs in osteoblast and osteoclast regulation. Our study demonstrates that SFF stimulates intracellular calcium response in OCY454 cells and further induces sclerostin, osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL) inside or outside EVs to regulate osteoblast and osteoclast activities. This load-induced protein and EVs release is load-duration dependent. Moreover, stimulated osteocytes rapidly regulate osteoclast maturation through EVs capsulated RANKL. In contrast, other regulating proteins, OPG, and sclerostin, are mainly released directly into the medium without EV capsulation.
Collapse
Affiliation(s)
- Yumei Chen
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Runze Zhao
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Bioengineering College, Chongqing University, Chongqing City, China
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215028, China
| | - Li Yang
- Bioengineering College, Chongqing University, Chongqing City, China
| | - X. Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Jin N, Rong J, Chen X, Huang L, Ma H. Exploring T-cell exhaustion features in Acute myocardial infarction for a Novel Diagnostic model and new therapeutic targets by bio-informatics and machine learning. BMC Cardiovasc Disord 2024; 24:272. [PMID: 38783198 PMCID: PMC11118734 DOI: 10.1186/s12872-024-03907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND T-cell exhaustion (TEX), a condition characterized by impaired T-cell function, has been implicated in numerous pathological conditions, but its role in acute myocardial Infarction (AMI) remains largely unexplored. This research aims to identify and characterize all TEX-related genes for AMI diagnosis. METHODS By integrating gene expression profiles, differential expression analysis, gene set enrichment analysis, protein-protein interaction networks, and machine learning algorithms, we were able to decipher the molecular mechanisms underlying TEX and its significant association with AMI. In addition, we investigated the diagnostic validity of the leading TEX-related genes and their interactions with immune cell profiles. Different types of candidate small molecule compounds were ultimately matched with TEX-featured genes in the "DrugBank" database to serve as potential therapeutic medications for future TEX-AMI basic research. RESULTS We screened 1725 differentially expressed genes (DEGs) from 80 AMI samples and 71 control samples, identifying 39 differential TEX-related transcripts in total. Functional enrichment analysis identified potential biological functions and signaling pathways associated with the aforementioned genes. We constructed a TEX signature containing five hub genes with favorable prognostic performance using machine learning algorithms. In addition, the prognostic performance of the nomogram of these five hub genes was adequate (AUC between 0.815 and 0.995). Several dysregulated immune cells were also observed. Finally, six small molecule compounds which could be the future therapeutic for TEX in AMI were discovered. CONCLUSION Five TEX diagnostic feature genes, CD48, CD247, FCER1G, TNFAIP3, and FCGRA, were screened in AMI. Combining these genes may aid in the early diagnosis and risk prediction of AMI, as well as the evaluation of immune cell infiltration and the discovery of new therapeutics.
Collapse
Affiliation(s)
- Nake Jin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, 315300, Zhejiang, China
| | - Jiacheng Rong
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, 315300, Zhejiang, China
| | - Xudong Chen
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, 315300, Zhejiang, China
| | - Lei Huang
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, 315300, Zhejiang, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
47
|
Khan NLA, Muhandiram S, Dissanayake K, Godakumara K, Midekessa G, Andronowska A, Heath PR, Kodithuwakku S, Hart AR, Fazeli A. Effect of 3D and 2D cell culture systems on trophoblast extracellular vesicle physico-chemical characteristics and potency. Front Cell Dev Biol 2024; 12:1382552. [PMID: 38835509 PMCID: PMC11148233 DOI: 10.3389/fcell.2024.1382552] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
The growing understanding of the role of extracellular vesicles (EVs) in embryo-maternal communication has sparked considerable interest in their therapeutic potential within assisted reproductive technology, particularly in enhancing implantation success. However, the major obstacle remains the large-scale production of EVs, and there is still a gap in understanding how different culture systems affect the characteristics of the EVs. In the current study, trophoblast analogue human chorionic carcinoma cell line was cultivated in both conventional monolayer culture (2D) and as spheroids in suspension culture (3D) and how the cell growth environment affects the physical, biochemical and cellular signalling properties of EVs produced by them was studied. Interestingly, the 3D system was more active in secreting EVs compared to the 2D system, while no significant differences were observed in terms of morphology, size, and classical EV protein marker expression between EVs derived from the two culture systems. There were substantial differences in the proteomic cargo profile and cellular signalling potency of EVs derived from the two culture systems. Notably, 2D EVs were more potent in inducing a cellular response in endometrial epithelial cells (EECs) compared to 3D EVs. Therefore, it is essential to recognize that the biological activity of EVs depends not only on the cell of origin but also on the cellular microenvironment of the parent cell. In conclusion, caution is warranted when selecting an EV production platform, especially for assessing the functional and therapeutic potential of EVs through in vitro studies.
Collapse
Affiliation(s)
- Norhayati Liaqat Ali Khan
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA (UiTM), Sg. Buloh, Selangor, Malaysia
| | - Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Getnet Midekessa
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Paul R Heath
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Amber Rose Hart
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alireza Fazeli
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
48
|
Martins B, Pires M, Ambrósio AF, Girão H, Fernandes R. Contribution of extracellular vesicles for the pathogenesis of retinal diseases: shedding light on blood-retinal barrier dysfunction. J Biomed Sci 2024; 31:48. [PMID: 38730462 PMCID: PMC11088087 DOI: 10.1186/s12929-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.
Collapse
Affiliation(s)
- Beatriz Martins
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - Maria Pires
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - António Francisco Ambrósio
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal
| | - Henrique Girão
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
| | - Rosa Fernandes
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal.
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal.
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal.
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal.
| |
Collapse
|
49
|
Malle M, Song P, Löffler PMG, Kalisi N, Yan Y, Valero J, Vogel S, Kjems J. Programmable RNA Loading of Extracellular Vesicles with Toehold-Release Purification. J Am Chem Soc 2024; 146:12410-12422. [PMID: 38669207 PMCID: PMC11082903 DOI: 10.1021/jacs.3c13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/28/2024]
Abstract
Synthetic nanoparticles as lipid nanoparticles (LNPs) are widely used as drug delivery vesicles. However, they hold several drawbacks, including low biocompatibility and unfavorable immune responses. Naturally occurring extracellular vesicles (EVs) hold the potential as native, safe, and multifunctional nanovesicle carriers. However, loading of EVs with large biomolecules remains a challenge. Here, we present a controlled loading methodology using DNA-mediated and programmed fusion between EVs and messenger RNA (mRNA)-loaded liposomes. The fusion efficiency is characterized at the single-particle level by real-time microscopy through EV surface immobilization via lipidated biotin-DNA handles. Subsequently, fused EV-liposome particles (EVLs) can be collected by employing a DNA strand-replacement reaction. Transferring the fusion reaction to magnetic beads enables us to scale up the production of EVLs one million times. Finally, we demonstrated encapsulation of mCherry mRNA, transfection, and improved translation using the EVLs compared to liposomes or LNPs in HEK293-H cells. We envision this as an important tool for the EV-mediated delivery of RNA therapeutics.
Collapse
Affiliation(s)
| | - Ping Song
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Philipp M. G. Löffler
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Nazmie Kalisi
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Yan Yan
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Omiics
ApS, 8200 Aarhus N, Denmark
| | - Julián Valero
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus C, Denmark
| | - Stefan Vogel
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Jørgen Kjems
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus C, Denmark
| |
Collapse
|
50
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|