1
|
Wise DR, Pachynski RK, Denmeade SR, Aggarwal RR, Deng J, Febles VA, Balar AV, Economides MP, Loomis C, Selvaraj S, Haas M, Kagey MH, Newman W, Baum J, Troxel AB, Griglun S, Leis D, Yang N, Aranchiy V, Machado S, Waalkes E, Gargano G, Soamchand N, Puranik A, Chattopadhyay P, Fedal E, Deng FM, Ren Q, Chiriboga L, Melamed J, Sirard CA, Wong KK. A Phase 1/2 multicenter trial of DKN-01 as monotherapy or in combination with docetaxel for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Prostate Cancer Prostatic Dis 2025; 28:363-369. [PMID: 38341461 DOI: 10.1038/s41391-024-00798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Dickkopf-related protein 1 (DKK1) is a Wingless-related integrate site (Wnt) signaling modulator that is upregulated in prostate cancers (PCa) with low androgen receptor expression. DKN-01, an IgG4 that neutralizes DKK1, delays PCa growth in pre-clinical DKK1-expressing models. These data provided the rationale for a clinical trial testing DKN-01 in patients with metastatic castration-resistant PCa (mCRPC). METHODS This was an investigator-initiated parallel-arm phase 1/2 clinical trial testing DKN-01 alone (monotherapy) or in combination with docetaxel 75 mg/m2 (combination) for men with mCRPC who progressed on ≥1 AR signaling inhibitors. DKK1 status was determined by RNA in-situ expression. The primary endpoint of the phase 1 dose escalation cohorts was the determination of the recommended phase 2 dose (RP2D). The primary endpoint of the phase 2 expansion cohorts was objective response rate by iRECIST criteria in patients treated with the combination. RESULTS 18 pts were enrolled into the study-10 patients in the monotherapy cohorts and 8 patients in the combination cohorts. No DLTs were observed and DKN-01 600 mg was determined as the RP2D. A best overall response of stable disease occurred in two out of seven (29%) evaluable patients in the monotherapy cohort. In the combination cohort, five out of seven (71%) evaluable patients had a partial response (PR). A median rPFS of 5.7 months was observed in the combination cohort. In the combination cohort, the median tumoral DKK1 expression H-score was 0.75 and the rPFS observed was similar between patients with DKK1 H-score ≥1 versus H-score = 0. CONCLUSION DKN-01 600 mg was well tolerated. DKK1 blockade has modest anti-tumor activity as a monotherapy for mCRPC. Anti-tumor activity was observed in the combination cohorts, but the response duration was limited. DKK1 expression in the majority of mCRPC is low and did not clearly correlate with anti-tumor activity of DKN-01 plus docetaxel.
Collapse
Affiliation(s)
- David R Wise
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| | - Russell K Pachynski
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Rahul R Aggarwal
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jiehui Deng
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Victor Adorno Febles
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- New York Harbor Veterans Healthcare System, New York, NY, USA
| | - Arjun V Balar
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Minas P Economides
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Cynthia Loomis
- Department of Pathology and DART Experimental Pathology Research Laboratory, NYU Langone Health, New York, NY, USA
| | - Shanmugapriya Selvaraj
- Department of Pathology and DART Experimental Pathology Research Laboratory, NYU Langone Health, New York, NY, USA
| | | | | | | | - Jason Baum
- Leap Therapeutics, Inc, Cambridge, MA, USA
| | - Andrea B Troxel
- Division of Biostatistics, Department of Population Health at NYU Grossman School of Medicine, New York, NY, USA
| | - Sarah Griglun
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dayna Leis
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nina Yang
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Viktoriya Aranchiy
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Sabrina Machado
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Erika Waalkes
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Gabrielle Gargano
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nadia Soamchand
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Amrutesh Puranik
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Pratip Chattopadhyay
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Ezeddin Fedal
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Qinghu Ren
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | - Kwok-Kin Wong
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
2
|
Wang L, Peterson SM, Yang M, Lujan Hernandez AG, Yuan TZ, Han Z, Prabhu V, Chan KY, Hu CF, Villalta M, Htoy T, VanDyke P, Holliday C, Franco H, Wadhwa H, Giang H, Stafford R, Axelrod F, Sato A. A multi-faceted discovery strategy identifies functional antibodies binding to cysteine-rich domain 1 of hDKK1 for cancer immunotherapy via Wnt non-canonical pathway. Oncogene 2025:10.1038/s41388-025-03445-6. [PMID: 40394415 DOI: 10.1038/s41388-025-03445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/01/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Wnt signaling is important in embryonic development and tumorigenesis. These biological effects can be exerted by the activation of the β-catenin-dependent canonical pathway or the β-catenin-independent non-canonical pathway. DKK1 is a potent inhibitor of Wnt signaling by competing with Wnt binding to LRP5/6 co-receptors. DKK1 is tumorigenic in multiple cancer types and immunosuppressive in NK cells. Emerging evidence indicates that DKK1 is involved in T cell differentiation and induces cancer evasion of immune surveillance by accumulating MDSCs. Consequently, DKK1 has become a promising target for cancer immunotherapy, and the mechanisms by which DKK1 affects cancer and immune cells have received considerable attention. Using Twist's precision DNA writing technologies, we created phage display libraries with a diversity greater than 1 × 1010 individual members, and machine learning models were utilized for optimal discovery. We found that anti-DKK1 antibodies blocked the binding of DKK1 to LRP co-receptors. Binding of antibodies to different cysteine-rich domains (CRDs) of hDKK1 leads to different activation effects. In vitro functional assays showed that the interaction of Wnt with LRP5/6 co-receptors was restored in the presence of anti-DKK1 antibodies binding to DKK1 C-terminal CRD2, resulting in the upregulation of Wnt canonical TCF/LEF signaling and reactivation of osteoblast differentiation. Moreover, anti-DKK1 antibodies binding to DKK1 N-terminal CRD1 induced Wnt non-canonical JNK phosphorylation, immune cell activation, and tumor cell cytotoxicity. In vivo studies indicated that these anti-DKK1 antibody leads targeting DKK1 CDR1 are potent in inhibition of tumor growth and may have promising efficacy as cancer immunotherapy due to activation of the Wnt non-canonical pathway.
Collapse
Affiliation(s)
- Linya Wang
- Twist Bioscience, South San Francisco, CA, USA.
| | | | - Marisa Yang
- Twist Bioscience, South San Francisco, CA, USA
| | | | - Tom Z Yuan
- Twist Bioscience, South San Francisco, CA, USA
| | - Zhen Han
- Twist Bioscience, South San Francisco, CA, USA
| | | | - Kara Y Chan
- Twist Bioscience, South San Francisco, CA, USA
| | | | | | - Tammy Htoy
- Twist Bioscience, South San Francisco, CA, USA
| | | | | | | | | | - Hoa Giang
- Twist Bioscience, South San Francisco, CA, USA
| | | | | | - Aaron Sato
- Twist Bioscience, South San Francisco, CA, USA
| |
Collapse
|
3
|
Galsky MD, Autio KA, Cabanski CR, Wentzel K, Graff JN, Friedlander TW, Howes TR, Shotts KM, Densmore J, Spasic M, Da Silva DM, Chen RO, Lata J, Skolnik J, Keler T, Yellin MJ, LaVallee TM, Fairchild J, Boffo S, O’Donnell-Tormey J, Dugan U, Bhardwaj N, Subudhi SK, Fong L. Clinical and Translational Results from PORTER, a Multicohort Phase I Platform Trial of Combination Immunotherapy in Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2025; 31:1463-1475. [PMID: 39964352 PMCID: PMC11995007 DOI: 10.1158/1078-0432.ccr-24-3693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 02/14/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE Current immune checkpoint therapies offer limited benefits for metastatic castration-resistant prostate cancer. Novel combinations may enhance immunotherapy efficacy. PATIENTS AND METHODS We conducted an open-label, noncomparative platform trial (NCT03835533) in metastatic castration-resistant prostate cancer to assess nivolumab-based combinations. The cohorts were as follows: (A) bempegaldesleukin 0.006 mg/kg and nivolumab 360 mg i.v. every 3 weeks; (B) stereotactic body radiotherapy 30 to 50 Gy, CDX-301 75 μg/kg s.c. for 5 days, poly-ICLC 1 mg intramuscularly weekly twice for 3 weeks, and nivolumab 480 mg every 4 weeks; and (C) CDX-301 75 μg/kg for 10 days, INO-5151 3 mg intramuscularly on lead-in day 8, day 1 of cycles 1 to 3, and then every 12 weeks, and nivolumab 480 mg every 4 weeks. The primary endpoint was safety; secondary endpoints included composite response rate (radiographic, PSA, or circulating tumor cell responses), 6-month disease control rate, progression-free survival, and overall survival. Serial blood and tissue samples were analyzed for pharmacodynamics and association with disease control. RESULTS A total of 43 patients were enrolled (n = 14, 15, and 14 in cohorts A, B, and C, respectively). Grade 3 to 4 treatment-related adverse events occurred in 10 (71%), 2 (13%), and 2 (14%) patients, respectively, with one grade 5 treatment-related adverse event in cohort A. Composite response rates were 7% (1/14), 33% (5/15), and 7% (1/14). Across cohorts, 6-month disease control was associated with preexisting memory/regulatory T cells, TNFα, and other inflammatory pathways. CONCLUSIONS Cohort B, which combined radiotherapy with CDX-301, poly-ICLC, and nivolumab, demonstrated encouraging clinical activity. Preexisting rather than treatment-induced immune activation was associated with clinical benefit across cohorts, highlighting the importance of baseline immune fitness.
Collapse
Affiliation(s)
- Matthew D. Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Karen A. Autio
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | - Julie N. Graff
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Terence W. Friedlander
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Timothy R. Howes
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Kristin M. Shotts
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Julie Densmore
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Marko Spasic
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Diane M. Da Silva
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | | | - Jennifer Lata
- Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania
| | | | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, New Jersey
| | | | | | - Justin Fairchild
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | | | | | - Ute Dugan
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Nina Bhardwaj
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Sumit K. Subudhi
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
- Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, Washington
| |
Collapse
|
4
|
Mo J, Su C, Li P, Yang Z, Tao R, Liu Q, Yuan C, Xu L, Ge Q, Ning D, Liang H, Zhu H, Luo Y, Chen X, Chen J, Zhang B. CKAP4 in hepatocellular carcinoma: competitive RETREG1/FAM134B binding, reticulophagy regulation, and cancer progression. Autophagy 2025; 21:840-859. [PMID: 39689859 PMCID: PMC11925109 DOI: 10.1080/15548627.2024.2435236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
RETREG1/FAM134B is known for its role as a reticulophagy receptor. Our previous study established that RETREG1 is upregulated in hepatocellular carcinoma (HCC) and contributes to disease progression by activating the AKT signaling pathway. However, the specific mechanisms underlying the elevated expression of RETREG1 in HCC remain unclear. This study unveils the interaction of RETREG1 with CKAP4 and TRIM21. We demonstrated that TRIM21 ubiquitinates RETREG1 at K247 and K252, facilitating its proteasomal degradation. Conversely, CKAP4 shields RETREG1 from degradation by competitively binding to it, revealing a novel post-translational modification mechanism for RETREG1. By modulating RETREG1 expression, CKAP4, and TRIM21 intricately regulate reticulophagy. Additionally, we observed that stress-induced TRIM21 upregulation mitigates the function of RETREG1 to restore ER stress equilibrium. The oncogenic potential of CKAP4 in HCC was demonstrated using various animal models. Clinical sample analyses suggested that CKAP4 is a potential biomarker for HCC prognosis and diagnosis.Abbreviation: AKT: thymoma viral proto-oncogene; aa: amino acid; bp: base pair; CHX: cycloheximide; co-IP: co-Immunoprecipitation; CQ: chloroquine; CKAP4: cytoskeleton-associated protein 4; DKK1: dickkopf WNT signaling pathway inhibitor 1; DUBs: deubiquitinating enzymes; EBSS: Earle's balanced salt solution; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HCC: hepatocellular carcinoma; HFD: high-fat diet; HiTV: hyperdynamic tail vein injection; IF: immunofluorescence; IHC: immunohistochemistry; IP-MS: immunoprecipitation-mass spectrometry; LIR: LC3-interacting region; mAbs: monoclonal antibodies; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mCherry: monomeric cherry; oe: overexpression; PDX: patient-derived tumor xenograft; reticulophagy: endoplasmic reticulum selective autophagy; RETREG1: reticulophagy regulator 1; RHD: reticulon-homology domain; Tg: thapsigargin; Tm: tunicamycin; TRIM21: tripartite motif-containing 21; UB: ubiquitin; WT: wild-type.
Collapse
Affiliation(s)
- Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Pengcheng Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhenhua Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ran Tao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qianyun Ge
- Department of Pediatric Surgery, The Children’s Hospital of Fudan University, Shanghai, P.R. China
| | - Deng Ning
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Haidan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yan Luo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
5
|
Qi H, Gao H, Li M, Sun T, Gu X, Wei L, Zhi M, Li Z, Fu D, Liu Y, Wei Z, Dou Y, Feng Q. Parvimonas micra promotes oral squamous cell carcinoma metastasis through TmpC-CKAP4 axis. Nat Commun 2025; 16:2305. [PMID: 40055343 PMCID: PMC11889085 DOI: 10.1038/s41467-025-57530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/25/2025] [Indexed: 03/12/2025] Open
Abstract
Parvimonas micra (P. micra), an opportunistic oral pathogen associated with multiple cancers, has limited research on its role in oral squamous cell carcinoma (OSCC). This study shows that P. micra is enriched in OSCC tissues and positively correlated with tumor metastasis and stages. P. micra infection promotes OSCC metastasis by inducing hypoxia/HIF-1α, glycolysis, and autophagy. Mechanistically, P. micra surface protein TmpC binds to CKAP4, a receptor overexpressed in OSCC, facilitating bacterial attachment and invasion. This interaction activates HIF-1α and autophagy via CKAP4-RanBP2 and CKAP4-NBR1 pathways, driving metastasis. Targeting CKAP4 with masitinib or antibodies impairs P. micra attachment and abolishes P. micra-promoted OSCC metastasis in vitro and in vivo. Together, our findings identify P. micra as a pathogen that promotes OSCC metastasis and highlight that TmpC-CKAP4 interaction could be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Houbao Qi
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Haiting Gao
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Meihui Li
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Xiufeng Gu
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Li Wei
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Mengfan Zhi
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Zixuan Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, 210093, China
| | - Dachuan Fu
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yiran Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ziyi Wei
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yu Dou
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
| |
Collapse
|
6
|
Nishida N, Otsu M, Mizutani Y, Ishitsuka A, Mizukami Y, Inoue S. The glycoprotein GPNMB protects against oxidative stress through enhanced PI3K/AKT signaling in epidermal keratinocytes. J Biol Chem 2025; 301:108299. [PMID: 39947468 PMCID: PMC11930081 DOI: 10.1016/j.jbc.2025.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Vitiligo, an autoimmune disease caused by environmental and genetic factors, is characterized by the specific loss of epidermal melanocytes (MCs). IFN-γ, predominantly derived from MC-targeting CD8+ T cells, plays a key role in vitiligo pathogenesis. Previously, we found that glycoprotein nonmetastatic melanoma protein B (GPNMB) is specifically lost in the basal epidermal layer of vitiligo lesions and downregulated by IFN-γ in normal human epidermal keratinocytes (KCs) (NHEKs). This study aimed to determine the role of KC GPNMB in normal and vitiligo epidermis and demonstrated that GPNMB plays a protective role against H2O2-induced oxidative stress due to its extracellular domain. In contrast, the NRF2/KEEP1 system was not involved in the anti-oxidative response in NHEKs but was active in MCs. GPNMB knockdown reduced the phosphorylation levels of AKTT308 and AKTS473 after H2O2 treatment, accompanied by reduced Dickkopf-1 (DKK1) mRNA and protein production and decreased FOXM1 mRNA expression. These results suggested that GPNMB protects KCs from H2O2-induced cell death through enhanced PI3K/AKT signaling, and WNT/β-catenin/FOXM1 and DKK1/CKAP4/AKT pathways. Furthermore, a significant increase in thioredoxin-interacting protein (TXNIP) following GPNMB knockdown was observed, indicating the enhanced phosphorylation of JNK and p38 and suppression of WNT/β-catenin signaling. These results suggest that the decreased expression of epidermal GPNMB in vitiligo lesions triggers increased sensitivity to H2O2-induced oxidative stress and decreased WNT/β-catenin signaling, consistent with the pathological features of the vitiligo epidermis. These findings may enhance our understanding of vitiligo pathogenesis, provide insights into the reduced risk of epidermal cancers, and highlight novel targets for treatment.
Collapse
Affiliation(s)
- Natsuki Nishida
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Mariko Otsu
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Asako Ishitsuka
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoichi Mizukami
- Center for Gene Research, Yamaguchi University, Yamaguchi, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
7
|
Shi T, Wei J. Targeting DKK1 to Remodel the Tumor Microenvironment and Enhance Immune Checkpoint Blockade Therapy. J Clin Oncol 2025; 43:350-353. [PMID: 39467221 DOI: 10.1200/jco-24-01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Affiliation(s)
- Tao Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Kido T, Kong H, Lau YFC. The X-Linked Tumor Suppressor TSPX Regulates Genes Involved in the EGFR Signaling Pathway and Cell Viability to Suppress Lung Adenocarcinoma. Genes (Basel) 2025; 16:75. [PMID: 39858622 PMCID: PMC11764513 DOI: 10.3390/genes16010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Background: TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes. Methods: RNA-seq transcriptome and pathway enrichment analyses were conducted on the TSPX-overexpressing NSCLC cell lines, A549 and SK-MES-1, originating from lung adenocarcinoma and squamous cell carcinoma subtypes, respectively. In addition, comparative analyses were performed using the data from clinical NSCLC specimens (515 lung adenocarcinomas and 502 lung squamous cell carcinomas) in the Cancer Genome Atlas (TCGA) database. Results: TCGA data analysis revealed significant downregulation of TSPX in NSCLC tumors compared to adjacent non-cancerous tissues (Wilcoxon matched pairs signed rank test p < 0.0001). Notably, the TSPX expression levels were inversely correlated with the cancer stage, and higher TSPX levels were associated with better clinical outcomes and improved survival in lung adenocarcinoma, a subtype of NSCLC (median survival extended by 510 days; log-rank test, p = 0.0025). RNA-seq analysis of the TSPX-overexpressing NSCLC cell lines revealed that TSPX regulates various genes involved in the cancer-related signaling pathways and cell viability, consistent with the suppression of cell proliferation in cell culture assays. Notably, various potential downstream targets of TSPX that correlated with patient survival (log-rank test, p = 0.016 to 4.3 × 10-10) were identified, including EGFR pathway-related genes AREG, EREG, FOSL1, and MYC, which were downregulated. Conclusions: Our results suggest that TSPX plays a critical role in suppressing NSCLC progression by downregulating pro-oncogenic genes, particularly those in the EGFR signaling pathway, and upregulating the tumor suppressors, especially in lung adenocarcinoma. These findings suggest that TSPX is a potential biomarker and therapeutic target for NSCLC management.
Collapse
Affiliation(s)
| | | | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA; (T.K.); (H.K.)
| |
Collapse
|
9
|
Chen X, Zeng Q, Yin L, Yan B, Wu C, Feng J, Wu Y, He J, Ding W, Zhong J, Shen Y, Zu X. Enhancing immunotherapy efficacy in colorectal cancer: targeting the FGR-AKT-SP1-DKK1 axis with DCC-2036 (Rebastinib). Cell Death Dis 2025; 16:8. [PMID: 39788945 PMCID: PMC11718245 DOI: 10.1038/s41419-024-07263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
This research demonstrates that DCC-2036 (Rebastinib), a potent third-generation tyrosine kinase inhibitor (TKI), effectively suppresses tumor growth in colorectal cancer (CRC) models with functional immune systems. The findings underscore the capacity of DCC-2036 to enhance both the activation and cytotoxic functionality of CD8+ T cells, which are crucial for facilitating anti-tumor immune responses. Through comprehensive multi-omics investigations, significant shifts in both gene and protein expression profiles were detected, notably a marked decrease in DKK1 levels. This reduction in DKK1 was linked to diminished CD8+ T cell effectiveness, correlating with decreased FGR expression. Moreover, our findings identify FGR as a pivotal modulator that influences DKK1 expression via the PI3K-AKT-SP1 signaling cascade. Correlative analysis of clinical specimens supports the experimental data, showing that increased levels of FGR and DKK1 in CRC tissues are associated with inferior clinical outcomes and reduced efficacy of immunotherapeutic interventions. Consequently, targeting the FGR-AKT-SP1-DKK1 pathway with DCC-2036 could potentiate immunotherapy by enhancing CD8+ T cell functionality and their tumor infiltration. This strategy may contribute significantly to the refinement of therapeutic approaches for CRC, potentially improving patient prognoses.
Collapse
Affiliation(s)
- Xiguang Chen
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Gastrointestinal Surgery Department, Hengyang, Hunan, 421001, PR China
| | - Qiting Zeng
- The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Hengyang, Hunan, 421001, PR China
| | - Liyang Yin
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Bingru Yan
- Central Hospital of Hengyang City, Oncology Department, Hengyang, Hunan, 421001, PR China
| | - Chen Wu
- The First Affiliated Hospital, Department of Ultrasound Imaging, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jianbo Feng
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ying Wu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jun He
- The Nanhua Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenjun Ding
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jing Zhong
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, University of South China, Hengyang, Hunan, 421001, China
| | - Yingying Shen
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, University of South China, Hengyang, Hunan, 421001, China.
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
10
|
Despotidis M, Lyros O, Driva TS, Sarantis P, Kapetanakis EI, Mylonakis A, Mamilos A, Sakellariou S, Schizas D. DKK1 and Its Receptors in Esophageal Adenocarcinoma: A Promising Molecular Target. Diagnostics (Basel) 2025; 15:85. [PMID: 39795613 PMCID: PMC11720708 DOI: 10.3390/diagnostics15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Esophageal adenocarcinoma (EAC) is an aggressive gastrointestinal (GI) malignancy with increasing incidence. Despite the recent progress in targeted therapies and surgical approaches, the survival rates of esophageal adenocarcinoma patients remain poor. The Dickkopf (DKK) proteins are secretory proteins known mainly as antagonists of the Wnt/β-catenin signaling pathway, which is considered an oncogene. However, it has been shown that in several GI cancers, including esophageal cancer, DKK1 may act as an oncogene itself through Wnt-independent signaling pathways. LRP5\6 and Kremen1/2 (Krm1/2) are transmembrane receptors to which the DKK proteins are mainly known to bind. CKAP4 (cytoskeleton-associated protein 4) is a novel receptor of DKK1, and the DKK1-CKAP4 pathway seems to be crucial in the role of DKK1 as an oncogene. The aim of this review is to feature the essential role of DKK1 and its receptors in carcinogenesis with a focus on EAC in an era of urgent need for specific biomarkers along with improved targeted therapies.
Collapse
Affiliation(s)
- Markos Despotidis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.M.); (D.S.)
| | - Orestis Lyros
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Tatiana S. Driva
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.S.D.); (S.S.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Emmanouil I. Kapetanakis
- Department of Thoracic Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Adam Mylonakis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.M.); (D.S.)
| | - Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Bavaria, Germany;
- Department of Pathology, German Oncology Center, Limassol 4108, Cyprus
| | - Stratigoula Sakellariou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.S.D.); (S.S.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.M.); (D.S.)
| |
Collapse
|
11
|
Wang J, Wang Y, Zhu J, Wang L, Huang Y, Zhang H, Wang X, Li X. Promoter hypermethylation-induced downregulation of ITGA7 promotes colorectal cancer proliferation and migration by activating the PI3K/AKT/NF-κB pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119785. [PMID: 38885843 DOI: 10.1016/j.bbamcr.2024.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
We previously reported that integrin alpha 7 (ITGA7) was downregulated in colorectal cancer (CRC) tissues and CRC cell lines and that the lower expression of ITGA7 in CRC tissues was correlated with distant metastasis, suggesting that ITGA7 may function as a suppressor in CRC. The present research was conducted to further investigate the role and mechanisms of ITGA7 in CRC progression. First, bisulfite modification and genomic sequencing (BSP) results showed that the methylation rate of ITGA7 promoter was higher in 10 CRC tissues than in the matched normal tissues. Additionally, 5-Aza-CdR treatment increased ITGA7 expression in CRC cells. Gain-of-function assays revealed the inhibitory role of ITGA7 in CRC cell proliferation and migration. Mechanistically, RNA sequencing, RT-qPCR, and cytoplasm and nuclear separation and rescue assays indicated that knockdown of ITGA7 activated the transcription of MMP9, SETD7, and ADAM15 by enhancing the nuclear translocation of NF-κB. Moreover, CoIP and Western blot suggested a mechanistic model in which ITGA7 binds to CKAP4 to block the interaction of CKAP4 and PI3K p85α and thereby suppress the PI3K/AKT/NF-κB pathway. Accordingly, the current study suggests that ITGA7 functions as a suppressor in CRC progression and that its expression is controlled by promoter methylation.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Histology and Embryology, Wannan Medical College, Wuhu, China
| | - Yu Wang
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Jijun Zhu
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Lili Wang
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Yanlin Huang
- School of Medical Imaging, Wannan Medical College, Wuhu, China
| | - Huiru Zhang
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China.
| | - Xiaomin Li
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China; Laboratory of Clinical and Experimental Pathology, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Sada R, Yamamoto H, Matsumoto S, Harada A, Kikuchi A. Newly developed humanized anti-CKAP4 antibody suppresses pancreatic cancer growth by inhibiting DKK1-CKAP4 signaling. Cancer Sci 2024; 115:3358-3369. [PMID: 39118263 PMCID: PMC11447883 DOI: 10.1111/cas.16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is a cell surface receptor for Dickkopf 1 (DKK1), a secreted protein. The DKK1-CKAP4 pathway is activated in various malignant tumors, including pancreatic, lung, esophageal, and liver cancers, to promote tumor growth. Thus, CKAP4 has been expected to represent a novel molecular target of cancer therapy. Recombinant mouse anti-CKAP4 antibodies were generated based on an original mouse antibody (3F11-2B10) and inhibited DKK1-CKAP4 signaling and xenograft tumor formation induced by pancreatic cancer cells, which was comparable with 3F11-2B10. From the 3F11-2B10 nucleotide sequence, humanized anti-CKAP4 antibody (Hv1Lt1) was subsequently developed. The binding affinity of Hv1Lt1 for CKAP4 was superior to that of 3F11-2B10. Hv1Lt1 inhibited DKK1 binding to CKAP4, AKT activity, and sphere formation of pancreatic cancer cells, which was comparable with 3F11-2B10. Hv1Lt1 also suppressed xenograft tumor formation induced by human pancreatic cancer cells and tumor growth in murine cancer models, in which murine pancreatic cancer organoids were orthotopically transplanted into the pancreas. In resected tumor samples from mice treated with Hv1Lt1, anti-tumor immune reactions were modulated and cytotoxic T cells were highly infiltrated in the tumor microenvironment. Additionally, combination of Hv1Lt1 and other chemotherapy drugs exhibited stronger effects compared with monotherapy. These results suggest that Hv1Lt1 represents a promising anti-cancer therapy.
Collapse
Affiliation(s)
- Ryota Sada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Health Care Sciences, Jikei University of Health Care Sciences, Osaka, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Akikazu Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
13
|
Boshart A, Petrovic S, Abovsky M, Pastrello C, Farkona S, Manion K, Neupane S, Allen M, Jurisica I, Konvalinka A. Molecular landscape of kidney allograft tissues data integration portal (NephroDIP): a curated database to improve integration of high-throughput kidney transplant datasets. Front Immunol 2024; 15:1469500. [PMID: 39399491 PMCID: PMC11466753 DOI: 10.3389/fimmu.2024.1469500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Kidney transplantation is the optimal treatment for end-stage kidney disease; however, premature allograft loss remains a serious issue. While many high-throughput omics studies have analyzed patient allograft biospecimens, integration of these datasets is challenging, which represents a considerable barrier to advancing our understanding of the mechanisms of allograft loss. Methods To facilitate integration, we have created a curated database containing all open-access high-throughput datasets from human kidney transplant studies, termed NephroDIP (Nephrology Data Integration Portal). PubMed was searched for high-throughput transcriptomic, proteomic, single nucleotide variant, metabolomic, and epigenomic studies in kidney transplantation, which yielded 9,964 studies. Results From these, 134 studies with available data detailing 260 comparisons and 83,262 molecules were included in NephroDIP v1.0. To illustrate the capabilities of NephroDIP, we have used the database to identify common gene, protein, and microRNA networks that are disrupted in patients with chronic antibody-mediated rejection, the most important cause of late allograft loss. We have also explored the role of an immunomodulatory protein galectin-1 (LGALS1), along with its interactors and transcriptional regulators, in kidney allograft injury. We highlight the pathways enriched among LGALS1 interactors and transcriptional regulators in kidney fibrosis and during immunosuppression. Discussion NephroDIP is an open access data portal that facilitates data visualization and will help provide new insights into existing kidney transplant data through integration of distinct studies and modules (https://ophid.utoronto.ca/NephroDIP).
Collapse
Affiliation(s)
- Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stefan Petrovic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Mark Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Kieran Manion
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Slaghaniya Neupane
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Maya Allen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
14
|
Hsieh CC, Li TW, Li CC, Chen SH, Wei YL, Chiang NJ, Shen CH. DKK1 as a chemoresistant protein modulates oxaliplatin responses in colorectal cancer. Oncogenesis 2024; 13:34. [PMID: 39333078 PMCID: PMC11436992 DOI: 10.1038/s41389-024-00537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Oxaliplatin is effective against colorectal cancer (CRC), but resistance hampers treatment. We found upregulated Dickkopf-1 (DKK1, a secreted protein) in oxaliplatin-resistant (OR) CRC cell lines and DKK1 levels increased by more than 2-fold in approximately 50% of oxaliplatin-resistant CRC tumors. DKK1 activates AKT via cytoskeleton-associated protein 4 (CKAP4, a DKK1 receptor), modulating oxaliplatin responses in vitro and in vivo. The leucine zipper (LZ) domain of CKAP4 and cysteine-rich domain 1 (CRD1) of secreted DKK1 are crucial for their interaction and AKT signaling. By utilizing the LZ protein, we disrupted DKK1 signaling, enhancing oxaliplatin sensitivity in OR CRC cells and xenograft tumors. This suggests that DKK1 as a chemoresistant factor in CRC via AKT activation. Targeting DKK1 with the LZ protein offers a promising therapeutic strategy for oxaliplatin-resistant CRC with high DKK1 levels. This study sheds light on oxaliplatin resistance mechanisms and proposes an innovative intervention for managing this challenge.
Collapse
Affiliation(s)
- Chi-Che Hsieh
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Ting-Wei Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 704, Taiwan
| | - Chun-Chun Li
- Department of Life Sciences, National Cheng Kung University, Tainan, 704, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - You-Lin Wei
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Nai-Jung Chiang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
- Doctoral Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
15
|
Kong J, Liu Y, Wang J, Qian M, Sun W, Xing L. A Novel Porphyromonas gingivalis Infection-Related Inflammatory Response-Related Genes Signature Predicts the Prognosis of Esophageal Squamous Cell Carcinoma. Clin Med Insights Oncol 2024; 18:11795549241275666. [PMID: 39281690 PMCID: PMC11401022 DOI: 10.1177/11795549241275666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/18/2024] [Indexed: 09/18/2024] Open
Abstract
Background Our previous research showed that Porphyromonas gingivalis (P. gingivalis) infection can activate the inflammatory signaling pathway and promotes the malignancy development of esophageal squamous cell carcinoma (ESCC). However, the prognostic significance of inflammatory response-related genes (IRRGs) in P. gingivalis-infected ESCC requires further elucidation. Hence, our study constructed a prognostic signature based on P. gingivalis and IRRGs to forecast the survival of patients with ESCC, which may provide insight into new treatment options for ESCC patients. Methods Differentially expressed genes (DEGs) were identified in P.gingivalis-infected and P.gingivalis-uninfected ESCC cell by RNA sequencing. A risk model was constructed and validated using the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database by using univariate Cox regression analysis, LASSO, and the multivariate Cox regression analysis. Kaplan-Meier analysis was carried out to compare the overall survival (OS) between high-risk and low-risk groups. Single-sample gene set enrichment analysis was used to analyze the immune cell infiltration. The Genomics of Drug Sensitivity in Cancer database was used to predict drug sensitivity. Results There were 365 DEGs between the P.gingivalis-infected and P.gingivalis-uninfected groups. Four genes including DKK1, ESRRB, EREG, and RELN were identified to construct the prognostic risk model (P = .012, C-index = 0.73). In both the training and validation sets, patients had a considerably shorter OS in the high-risk group than those in the low-risk group (P < .05). A nomogram was established using the risk score, gender, and N stage which could effectively forecast the prognosis of patients (P = .016, C-index = 0.66). The high-risk group displayed lower immune infiltrating cells, such as activated dendritic cells, type 2 T helper cells, and neutrophils (P < .05). A total of 41 drugs, including dactinomycin, luminespib, and sepantronium bromide, had a significant difference in IC50 between the 2 subgroups. Conclusion We demonstrated the potential of a novel signature constructed from 4 P. gingivalis-related IRRGs for prognostic prediction in ESCC patients.
Collapse
Affiliation(s)
- Jinyu Kong
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yiwen Liu
- Cancer Hospital, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Wang
- Center of Image Diagnoses, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Mengfan Qian
- Cancer Hospital, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Wei Sun
- Cancer Hospital, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ling Xing
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
16
|
Li CM, Kang J, Baek J, Kim Y, Park H, Jung YK. Cytosolic FKBPL and ER-resident CKAP4 co-regulates ER-phagy and protein secretion. Nat Commun 2024; 15:7886. [PMID: 39251576 PMCID: PMC11383940 DOI: 10.1038/s41467-024-52188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Endoplasmic reticulum quality control is crucial for maintaining cellular homeostasis and adapting to stress conditions. Although several ER-phagy receptors have been identified, the collaboration between cytosolic and ER-resident factors in ER fragmentation and ER-phagy regulation remains unclear. Here, we perform a phenotype-based gain-of-function screen and identify a cytosolic protein, FKBPL, functioning as an ER-phagy regulator. Overexpression of FKBPL triggers ER fragmentation and ER-phagy. FKBPL has multiple protein binding domains, can self-associate and might act as a scaffold connecting CKAP4 and LC3/GABARAPs. CKAP4 serves as a bridge between FKBPL and ER-phagy cargo. ER-phagy-inducing conditions increase FKBPL-CKAP4 interaction followed by FKBPL oligomerization at the ER, leading to ER-phagy. In addition, FKBPL-CKAP4 deficiency leads to Golgi disassembly and lysosome impairment, and an increase in ER-derived secretory vesicles and enhances cytosolic protein secretion via microvesicle shedding. Taken together, FKBPL with the aid of CKAP4 induces ER fragmentation and ER-phagy, and FKBPL-CKAP4 deficiency facilitates protein secretion.
Collapse
Affiliation(s)
- Cathena Meiling Li
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jaemin Kang
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jongyeon Baek
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Heemin Park
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Gwanak-gu, Seoul, Korea.
| |
Collapse
|
17
|
Shao L, Yu H, Wang M, Chen L, Ji B, Wu T, Teng X, Su M, Han X, Shi W, Hu X, Wang Z, He H, Han G, Zhang Y, Wu Q. DKK1-SE recruits AP1 to activate the target gene DKK1 thereby promoting pancreatic cancer progression. Cell Death Dis 2024; 15:566. [PMID: 39107271 PMCID: PMC11303742 DOI: 10.1038/s41419-024-06915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Super-enhancers are a class of DNA cis-regulatory elements that can regulate cell identity, cell fate, stem cell pluripotency, and even tumorigenesis. Increasing evidence shows that epigenetic modifications play an important role in the pathogenesis of various types of cancer. However, the current research is far from enough to reveal the complex mechanism behind it. This study found a super-enhancer enriched with abnormally active histone modifications in pancreatic ductal adenocarcinoma (PDAC), called DKK1-super-enhancer (DKK1-SE). The major active component of DKK1-SE is component enhancer e1. Mechanistically, AP1 induces chromatin remodeling in component enhancer e1 and activates the transcriptional activity of DKK1. Moreover, DKK1 was closely related to the malignant clinical features of PDAC. Deletion or knockdown of DKK1-SE significantly inhibited the proliferation, colony formation, motility, migration, and invasion of PDAC cells in vitro, and these phenomena were partly mitigated upon rescuing DKK1 expression. In vivo, DKK1-SE deficiency not only inhibited tumor proliferation but also reduced the complexity of the tumor microenvironment. This study identifies that DKK1-SE drives DKK1 expression by recruiting AP1 transcription factors, exerting oncogenic effects in PDAC, and enhancing the complexity of the tumor microenvironment.
Collapse
Affiliation(s)
- Lan Shao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Mengyun Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu Chen
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boshu Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Mu Su
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xiao Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Weikai Shi
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Guiping Han
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
18
|
Li S, Chen J, Zhou B. The clinical significance of endoplasmic reticulum stress related genes in non-small cell lung cancer and analysis of single nucleotide polymorphism for CAV1. Front Mol Biosci 2024; 11:1414164. [PMID: 39165641 PMCID: PMC11334084 DOI: 10.3389/fmolb.2024.1414164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, protein homeostasis imbalance caused by endoplasmic reticulum stress has become a major hallmark of cancer. Studies have shown that endoplasmic reticulum stress is closely related to the occurrence, development, and drug resistance of non-small cell lung cancer, however, the role of various endoplasmic reticulum stress-related genes in non-small cell lung cancer is still unclear. In this study, we established an endoplasmic reticulum stress scores based on the Cancer Genome Atlas for non-small cell lung cancer to reflect patient features and predict prognosis. Survival analysis showed significant differences in overall survival among non-small cell lung cancer patients with different endoplasmic reticulum stress scores. In addition, endoplasmic reticulum stress scores was significantly correlated with the clinical features of non-small cell lung cancer patients, and can be served as an independent prognostic indicator. A nomogram based on endoplasmic reticulum stress scores indicated a certain clinical net benefit, while ssGSEA analysis demonstrated that there was a certain immunosuppressive microenvironment in high endoplasmic reticulum stress scores. Gene Set Enrichment Analysis showed that scores was associated with cancer pathways and metabolism. Finally, weighted gene co-expression network analysis displayed that CAV1 was closely related to the occurrence of non-small cell lung cancer. Therefore, in order to further analyze the role of this gene, Chinese non-smoking females were selected as the research subjects to investigate the relationship between CAV1 rs3779514 and susceptibility and prognosis of non-small cell lung cancer. The results showed that the mutation of rs3779514 significantly reduced the risk of non-small cell lung cancer in Chinese non-smoking females, but no prognostic effect was found. In summary, we proposed an endoplasmic reticulum stress scores, which was an independent prognostic factor and indicated immune characteristics in the microenvironment of non-small cell lung cancer. We also validated the relationship between single nucleotide polymorphism locus of core genes and susceptibility to non-small cell lung cancer.
Collapse
Affiliation(s)
| | | | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Nakako Y, Hasegawa K, Fujii S, Kami Y, Sakamoto T, Sakamoto M, Moriyama M, Kurppa KJ, Heikinheimo K, Yoshiura K, Kawano S, Kiyoshima T. Wnt/β-catenin-YAP axis in the pathogenesis of primary intraosseous carcinoma NOS, deriving from odontogenic keratocyst. Pathol Res Pract 2024; 260:155420. [PMID: 38908335 DOI: 10.1016/j.prp.2024.155420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Odontogenic tumors (OGTs), which originate from cells of odontogenic apparatus and their remnants, are rare entities. Primary intraosseous carcinoma NOS (PIOC), is one of the OGTs, but it is even rarer and has a worse prognosis. The precise characteristics of PIOC, especially in immunohistochemical features and its pathogenesis, remain unclear. We characterized a case of PIOC arising from the left mandible, in which histopathological findings showed a transition from the odontogenic keratocyst to the carcinoma. Remarkably, the tumor lesion of this PIOC prominently exhibits malignant attributes, including invasive growth of carcinoma cell infiltration into the bone tissue, an elevated Ki-67 index, and lower signal for CK13 and higher signal for CK17 compared with the non-tumor region, histopathologically and immunohistopathologically. Further immunohistochemical analyses demonstrated increased expression of ADP-ribosylation factor (ARF)-like 4c (ARL4C) (accompanying expression of β-catenin in the nucleus) and yes-associated protein (YAP) in the tumor lesion. On the other hand, YAP was expressed and the expression of ARL4C was hardly detected in the non-tumor region. In addition, quantitative RT-PCR analysis using RNAs and dot blot analysis using genomic DNA showed the activation of Wnt/β-catenin signaling and epigenetic alterations, such as an increase of 5mC levels and a decrease of 5hmC levels, in the tumor lesion. A DNA microarray and a gene set enrichment analysis demonstrated that various types of intracellular signaling would be activated and several kinds of cellular functions would be altered in the pathogenesis of PIOC. Experiments with the GSK-3 inhibitor revealed that β-catenin pathway increased not only mRNA levels of ankyrin repeat domain1 (ANKRD1) but also protein levels of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) in oral squamous cell carcinoma cell lines. These results suggested that further activation of YAP signaling by Wnt/β-catenin signaling may be associated with the pathogenesis of PIOC deriving from odontogenic keratocyst in which YAP signaling is activated.
Collapse
Affiliation(s)
- Yusuke Nakako
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Institute of Biomedicine and MediCity Research Laboratories, University of Turku, and Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.
| | - Yukiko Kami
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Taiki Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mizuki Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kari J Kurppa
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, and Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku and Turku University Hospital, 20520, Finland
| | - Kazunori Yoshiura
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
20
|
Abumustafa W, Castven D, Becker D, Salih SS, Manzoor S, Zamer BA, Talaat I, Hamad M, Marquardt JU, Muhammad JS. Inhibition of PRMT5-mediated regulation of DKK1 sensitizes colorectal cancer cells to chemotherapy. Cell Signal 2024; 119:111166. [PMID: 38588876 DOI: 10.1016/j.cellsig.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Dickkopf family proteins (DKKs) are strong Wnt signaling antagonists that play a significant role in colorectal cancer (CRC) development and progression. Recent work has shown that DKKs, mainly DKK1, are associated with the induction of chemoresistance in CRC and that DKK1 expression in cancer cells correlates with that of protein arginine N-methyltransferase 5 (PRMT5). This points to the presence of a regulatory loop between DKK1 and PRMT5. Herein, we addressed the question of whether PRMT5 contributes to DKK1 expression in CRC and hence CRC chemoresistance. Both in silico and in vitro approaches were used to explore the relationship between PRMT5 and different DKK members. Our data demonstrated that DKK1 expression is significantly upregulated in CRC clinical samples, KRAS-mutated CRC in particular and that the levels of DKK1 positively correlate with PRMT5 activation. Chromatin immunoprecipitation (ChIP) data indicated a possible epigenetic role of PRMT5 in regulating DKK1, possibly through the symmetric dimethylation of H3R8. Knockdown of DKK1 or treatment with the PRMT5 inhibitor CMP5 in combination with doxorubicin yielded a synergistic anti-tumor effect in KRAS mutant, but not KRAS wild-type, CRC cells. These findings suggest that PRMT5 regulates DKK1 expression in CRC and that inhibition of PRMT5 modulates DKK1 expression in such a way that reduces CRC cell growth.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Darko Castven
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Diana Becker
- University Medical Centre of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Shahenaz Shaban Salih
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman Talaat
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jens Uwe Marquardt
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
21
|
Dişçi E, Peksöz R, Laloğlu E, Yıldırgan Mİ, Albayrak Y, Şirin MA, Ağırman E, Atamanalp SS. The Role of Serum Dickkopf1 and CKAP4 Levels in Diagnosing Colorectal Cancer and Measuring the Disease Severity: A Prospective Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:933. [PMID: 38929550 PMCID: PMC11205388 DOI: 10.3390/medicina60060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Background and Objective: Colorectal cancer (CRC) is among the most common types of cancer. Although the disease is treatable in its early stages, five-year survival falls below 20% in the later stages. CEA and CA19-9 are tumor markers used in the diagnosis and follow-up of the disease in clinical practice; however, their diagnostic effectiveness is insufficient. Therefore, the identification of biomarkers that can be easily studied from serum and can diagnose CRC and determine its severity is highly important. In this context, dickkopf1 (DKK1) and cytoskeleton-associated protein 4 (CKAP4) are both promising biomarkers. Materials and Methods: Serum DKK1 and CKAP4 levels were measured in 55 patients with CRC and 40 healthy controls. The patients with CRC were divided into groups based on pathological stages and histological differentiation. The serum levels of both proteins in patients with CRC were measured preoperatively and 10 and 30 days postoperatively. Results: Serum DKK1 and CKAP4 were significantly higher in the CRC group than in the healthy controls (p < 0.05). Serum levels of both proteins rose in line with the disease stage and grade but decreased following surgical resection. A positive correlation was observed between tumor diameter and protein blood levels. The diagnostic efficacy of DKK1 and CKAP4 in CRC (approximately 95%) was higher than that of markers such as CEA and CA19-9. Conclusions: The DKK1 and CKAP4 serum values of patients with CRC are promising biomarkers. They can potentially be used in CRC management, namely, in the diagnosis and treatment of tumor response access and in tumor aggressiveness prediction.
Collapse
Affiliation(s)
- Esra Dişçi
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Rıfat Peksöz
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Esra Laloğlu
- Department Medical Biochemistry, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Mehmet İlhan Yıldırgan
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Yavuz Albayrak
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Mehmet Akif Şirin
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Enes Ağırman
- Department of General Surgery, Erzurum City Hospital, Erzurum 25240, Turkey
| | - Sabri Selçuk Atamanalp
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| |
Collapse
|
22
|
Mehlhaff E, Miller D, Ebben JD, Dobrzhanskyi O, Uboha NV. Targeted Agents in Esophagogastric Cancer Beyond Human Epidermal Growth Factor Receptor-2. Hematol Oncol Clin North Am 2024; 38:659-675. [PMID: 38485551 DOI: 10.1016/j.hoc.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Gastroesophageal cancers are highly diverse tumors in terms of their anatomic and molecular characteristics, making drug development challenging. Recent advancements in understanding the molecular profiles of these cancers have led to the identification of several new biomarkers. Ongoing clinical trials are investigating new targeted agents with promising results. CLDN18.2 has emerged as a biomarker with established activity of associated targeted therapies. Other targeted agents, such as bemarituzumab and DKN-01, are under active investigation. As new agents are incorporated into the treatment continuum, the questions of biomarker overlap, tumor heterogeneity, and toxicity management will need to be addressed.
Collapse
Affiliation(s)
- Eric Mehlhaff
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Devon Miller
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Johnathan D Ebben
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Oleksii Dobrzhanskyi
- Upper Gastrointestinal Tumors Department, National Cancer Institute, Kyiv, Ukraine
| | - Nataliya V Uboha
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA; University of Wisconsin, Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
23
|
Abe M, Hasegawa T, Hongo H, Yamamoto T, Shi Y, Cui J, Liu X, Yao Q, Ishizu H, Maruoka H, Yoshino H, Haraguchi-Kitakamae M, Shimizu T, Amizuka N. Immunohistochemical and Morphometric Assessment on the Biological Function and Vascular Endothelial Cells in the Initial Process of Cortical Porosity in Mice With PTH Administration. J Histochem Cytochem 2024; 72:309-327. [PMID: 38725403 PMCID: PMC11107436 DOI: 10.1369/00221554241247883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
To clarify the cellular mechanism of cortical porosity induced by intermittent parathyroid hormone (PTH) administration, we examined the femoral cortical bone of mice that received 40 µg/kg/day (four times a day) human PTH (hPTH) (1-34). The PTH-driven cortical porosity initiated from the metaphyseal region and chronologically expanded toward the diaphysis. Alkaline phosphatase (ALP)-positive osteoblasts in the control mice covered the cortical surface, and endomucin-positive blood vessels were distant from these osteoblasts. In PTH-administered mice, endomucin-reactive blood vessels with TRAP-positive penetrated the ALP-positive osteoblast layer, invading the cortical bone. Statistically, the distance between endomucin-positive blood vessels and the cortical bone surface abated after PTH administration. Transmission electron microscopic observation demonstrated that vascular endothelial cells often pass through the flattened osteoblast layer and accompanied osteoclasts in the deep region of the cortical bone. The cell layers covering mature osteoblasts thickened with PTH administration and exhibited ALP, α-smooth muscle actin (αSMA), vascular cell adhesion molecule-1 (VCAM1), and receptor activator of NF-κB ligand (RANKL). Within these cell layers, osteoclasts were found near endomucin-reactive blood vessels. In PTH-administered femora, osteocytes secreted Dkk1, a Wnt inhibitor that affects angiogenesis, and blood vessels exhibited plasmalemma vesicle-associated protein, an angiogenic molecule. In summary, endomucin-positive blood vessels, when accompanied by osteoclasts in the ALP/αSMA/VCAM1/RANKL-reactive osteoblastic cell layers, invade the cortical bone, potentially due to the action of osteocyte-derived molecules such as DKK1.
Collapse
Affiliation(s)
- Miki Abe
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Tomoka Hasegawa
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Hiromi Hongo
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Tomomaya Yamamoto
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
- Hokkaido University, Sapporo, Japan, and Department of Dentistry, Japan Ground Self-Defense Force Camp Shinmachi, Takasaki, Japan
| | - Yan Shi
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Jiaxin Cui
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Xuanyu Liu
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Qi Yao
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Hotaka Ishizu
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine and Orthopedics, Graduate School of Medicine, Faculty of Medicine
| | - Haruhi Maruoka
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Hirona Yoshino
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Mai Haraguchi-Kitakamae
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | | | - Norio Amizuka
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| |
Collapse
|
24
|
Deng M, Qiu Z, Liu C, Zhong L, Fan X, Han Y, Wang R, Li P, Huang R, Zhao Q. Genome-wide association analysis revealed new QTL and candidate genes affecting the teat number in Dutch Large White pigs. Anim Genet 2024; 55:206-216. [PMID: 38191772 DOI: 10.1111/age.13397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
Teat number (TNUM) is an important reproductive trait of sows, which affects the weaning survival rate of piglets. In this study, 1166 Dutch Large White pigs with TNUM phenotype were used as the research object. These pigs were genotyped by 50K SNP chip and the chip data were further imputed to the resequencing level. The estimated heritabilities of left teat number (LTN), right teat number (RTN) and total teat number (TTN) were 0.21, 0.19 and 0.3, respectively. Based on chip data, significant SNPs for RTN on SSC2, SSC5, SSC9 and SSC13 were identified using genome-wide association analysis (GWAS). Significant SNPs for TTN were identified on SSC2, SSC5 and SSC7. Based on imputed data, the GWAS identified a significant SNP (rs329158522) for LTN on SSC17, two significant SNPs (rs342855242 and rs80813115) for RTN on SSC2 and SSC9, and two significant SNPs (rs327003548 and rs326943811) for TTN on SSC5 and SSC6. Among them, four novel QTL were discovered. The Bayesian fine-mapping method was used to fine map the QTL identified in the GWAS of the imputed data, and the confidence intervals of QTL affecting LTN (SSC17: 45.22-46.20 Mb), RTN (SSC9: 122.18-122.80 Mb) and TTN (SSC5: 14.01-15.91 Mb, SSC6: 120.06-121.25 Mb) were detected. A total of 52 candidate genes were obtained. Furthermore, we identified five candidate genes, WNT10B, AQP5, FMNL3, NUAK1 and CKAP4, for the first time, which involved in breast development and other related functions by gene annotation. Overall, this study provides new molecular markers for the breeding of teat number in pigs.
Collapse
Affiliation(s)
- Michao Deng
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Zijian Qiu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Chenxi Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Lijing Zhong
- Jiangsu Lihua Animal Husbandry Co., Ltd, Changzhou, China
| | - Xinfeng Fan
- Jiangsu Lihua Animal Husbandry Co., Ltd, Changzhou, China
| | - Yuquan Han
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Ran Wang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Pinghua Li
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Ruihua Huang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Qingbo Zhao
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Hudy D, Gaździcka J, Świętek A, Gołąbek K, Rydel M, Czyżewski D, Strzelczyk JK. The assessment of Dickkopf-1 and Dickkopf-2 protein concentration in different subtypes of non-small cell lung cancer subtypes. Contemp Oncol (Pozn) 2024; 28:9-14. [PMID: 38800531 PMCID: PMC11117157 DOI: 10.5114/wo.2024.136981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/02/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Lung cancer is one of the most prevalent cancers worldwide. Dickkopf-1 (DKK-1) and -2 (DKK-2) are important proteins for the regulated Wnt signalling pathway. Alternations in the Wnt pathway are associated with tumour progression. The aim of the study was to analyse the concentration of DKK-1 and DKK-2 in tumour and matched non-tumour (NT) samples of 65 patients with non-small cell lung cancer (NSCLC), including 3 subtypes: adenocarcinoma (AC), squamous cell carcinoma (SCC), and large cell carcinoma (LCC). Material and methods The protein concentration was measured by enzyme-linked immunosorbent assay (ELISA) in homogenates. Results The difference between the level of DKK-1 in tumour and NT specimens was not significant for the whole NSCLC group and SCC and LCC subtype, while in AC samples they were significantly higher (p = 0.028). The highest concentration of DKK-1 was found in the advanced NSCLC samples, with the T4 parameter as well as stage III. Significantly decreased DKK-2 concentrations were detected in all NSCLC subtypes (p < 0.05). Moreover, the DKK-2 level was higher in non-smokers than in smokers. The results indicate that concentrations of DKKs were different in relation to subtypes as well as clinical and socio-demographic parameters. The concentration of DKKs could be associated with the progression of NSCLC. Conclusions We suggest that DKK-1 could play an oncogenic role in AC, while DKK-2 could be a tumour suppressor in all NSCLC subtypes. Dickkopf-1 and DKK-2 proteins could have differential roles in the Wnt signalling pathway, which is important in many cellular processes, such as proliferation and apoptosis.
Collapse
Affiliation(s)
- Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Agata Świętek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Mateusz Rydel
- Department of Thoracic Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Damian Czyżewski
- Department of Thoracic Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
26
|
Chen F, Che Z, Liu Y, Luo P, Xiao L, Song Y, Wang C, Dong Z, Li M, Tipoe GL, Yang M, Lv Y, Zhang H, Wang F, Xiao J. Invigorating human MSCs for transplantation therapy via Nrf2/DKK1 co-stimulation in an acute-on-chronic liver failure mouse model. Gastroenterol Rep (Oxf) 2024; 12:goae016. [PMID: 38529014 PMCID: PMC10963075 DOI: 10.1093/gastro/goae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/27/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Since boosting stem cell resilience in stressful environments is critical for the therapeutic efficacy of stem cell-based transplantations in liver disease, this study aimed to establish the efficacy of a transient plasmid-based preconditioning strategy for boosting the capability of mesenchymal stromal cells (MSCs) for anti-inflammation/antioxidant defenses and paracrine actions in recipient hepatocytes. METHODS Human adipose mesenchymal stem cells (hADMSCs) were subjected to transfer, either with or without the nuclear factor erythroid 2-related factor 2 (Nrf2)/Dickkopf1 (DKK1) genes, followed by exposure to TNF-α/H2O2. Mouse models were subjected to acute chronic liver failure (ACLF) and subsequently injected with either transfected or untransfected MSCs. These hADMSCs and ACLF mouse models were used to investigate the interaction between Nrf2/DKK1 and the hepatocyte receptor cytoskeleton-associated protein 4 (CKAP4). RESULTS Activation of Nrf2 and DKK1 enhanced the anti-stress capacity of MSCs in vitro. In a murine model of ACLF, transient co-overexpression of Nrf2 and DKK1 via plasmid transfection improved MSC resilience against inflammatory and oxidative assaults, boosted MSC transplantation efficacy, and promoted recipient liver regeneration due to a shift from the activation of the anti-regenerative IFN-γ/STAT1 pathway to the pro-regenerative IL-6/STAT3 pathway in the liver. Importantly, the therapeutic benefits of MSC transplantation were nullified when the receptor CKAP4, which interacts with DKK1, was specifically removed from recipient hepatocytes. However, the removal of the another receptor low-density lipoprotein receptor-related protein 6 (LRP6) had no impact on the effectiveness of MSC transplantation. Moreover, in long-term observations, no tumorigenicity was detected in mice following transplantation of transiently preconditioned MSCs. CONCLUSIONS Co-stimulation with Nrf2/DKK1 safely improved the efficacy of human MSC-based therapies in murine models of ACLF through CKAP4-dependent paracrine mechanisms.
Collapse
Affiliation(s)
- Feng Chen
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Pingping Luo
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Lu Xiao
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Yali Song
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Cunchuan Wang
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Zhiyong Dong
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Mianhuan Li
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - George L Tipoe
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Min Yang
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Yi Lv
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P. R. China
| | - Hong Zhang
- Department of Surgery, The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, P. R. China
| | - Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
- Department of Surgery, The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, P. R. China
| |
Collapse
|
27
|
Guo D, Zeng M, Yu M, Shang J, Lin J, Liu L, Yang K, Cao Z. SSR1 and CKAP4 as potential biomarkers for intervertebral disc degeneration based on integrated bioinformatics analysis. JOR Spine 2024; 7:e1309. [PMID: 38222802 PMCID: PMC10782074 DOI: 10.1002/jsp2.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a significant cause of low back pain and poses a significant public health concern. Genetic factors play a crucial role in IDD, highlighting the need for a better understanding of the underlying mechanisms. Aim The aim of this study was to identify potential IDD-related biomarkers using a comprehensive bioinformatics approach and validate them in vitro. Materials and Methods In this study, we employed several analytical approaches to identify the key genes involved in IDD. We utilized weighted gene coexpression network analysis (WGCNA), MCODE, LASSO algorithms, and ROC curves to identify the key genes. Additionally, immune infiltrating analysis and a single-cell sequencing dataset were utilized to further explore the characteristics of the key genes. Finally, we conducted in vitro experiments on human disc tissues to validate the significance of these key genes in IDD. Results we obtained gene expression profiles from the GEO database (GSE23130 and GSE15227) and identified 1015 DEGs associated with IDD. Using WGCNA, we identified the blue module as significantly related to IDD. Among the DEGs, we identified 47 hub genes that overlapped with the genes in the blue module, based on criteria of |logFC| ≥ 2.0 and p.adj <0.05. Further analysis using both MCODE and LASSO algorithms enabled us to identify five key genes, of which CKAP4 and SSR1 were validated by GSE70362, demonstrating significant diagnostic value for IDD. Additionally, immune infiltrating analysis revealed that monocytes were significantly correlated with the two key genes. We also analyzed a single-cell sequencing dataset, GSE199866, which showed that both CKAP4 and SSR1 were highly expressed in fibrocartilage chondrocytes. Finally, we validated our findings in vitro by performing real time polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) on 30 human disc samples. Our results showed that CKAP4 and SSR1 were upregulated in degenerated disc samples. Taken together, our findings suggest that CKAP4 and SSR1 have the potential to serve as disease biomarkers for IDD.
Collapse
Affiliation(s)
- Danqing Guo
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
- Guangzhou University of Chinese Medicine the First Affiliated HospitalGuangzhou中国
| | - Min Zeng
- Pathology DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Miao Yu
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Jingjing Shang
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Jinxing Lin
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Lichu Liu
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Kuangyang Yang
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Zhenglin Cao
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| |
Collapse
|
28
|
Wei Y, Long S, Zhao M, Zhao J, Zhang Y, He W, Xiang L, Tan J, Ye M, Tan W, Yang Y, Yuan Q. Regulation of Cellular Signaling with an Aptamer Inhibitor to Impede Cancer Metastasis. J Am Chem Soc 2024; 146:319-329. [PMID: 38129955 DOI: 10.1021/jacs.3c09091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Tumor invasion and metastasis are the main causes of tumor progression and are the leading causes of death among cancer patients. In the present study, we propose a strategy to regulate cellular signaling with a tumor metastasis-relevant cytoskeleton-associated protein 4 (CKAP4) specific aptamer for the achievement of tumor metastasis inhibition. The designed aptamer could specifically bind to CKAP4 in the cell membranes and cytoplasm to block the internalization and recycling of α5β1 integrin, resulting in the disruption of the fibronectin-dependent cell adhesion and the weakening of the cell traction force. Moreover, the aptamer is able to impede the interaction between CKAP4 and Dickkopf1 (DKK1) to further block the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which subsequently reduces AKT phosphorylation and inhibits the reorganization of the actin cytoskeleton in cell migration. The synergetic function of the designed aptamer in inhibiting cancer cell adhesion and blocking the PI3K signaling pathway enables efficient tumor cell metastasis suppression. The aptamer with specific targeting ability in regulating cellular signaling paves the way for cancer treatment and further provides a guiding ideology for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yurong Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Shiyi Long
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Min Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jingfang Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Limin Xiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
29
|
Mahjoubin-Tehran M, Sukhorukov VN, Jmaialahmadi T, Sahebkar A. Genomic Insights Into Statin Therapy: Differential Expression Analysis of Key Genes. Curr Probl Cardiol 2024; 49:102103. [PMID: 37741602 DOI: 10.1016/j.cpcardiol.2023.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
In this study, we utilized microarray profiles, specifically GSE71220 and GSE11393 obtained from the GEO database, which provide gene expression data from blood samples. Through a comparison of differentially expressed genes in both datasets, we successfully identified 11 key genes that exhibited differential expression in groups A and B, respectively. To gain insights into their functional roles, we performed gene ontology (GO) enrichment analysis using the "BiNGO" plugin in Cytoscape. This analysis revealed that these genes are primarily associated with primary metabolic processes. Notably, 8 genes, namely EIF2S3, GZMK, PIK3R1, RORA, SART3, TGM2, WTAP, and ABCG1, were found to be involved in these processes. To further explore the interactions and relationships among these key genes, we conducted protein-protein interaction analysis using the STRING database and co-expression network analysis using the GeneMANIA plugin in Cytoscape. The PPI analysis highlighted RORA, NR1D2, PIK3R1, CKAP4, and GZMK as central players within the network. To validate our findings, we examined the expression profiles of the key genes using the GSE86216 dataset, which comprises blood samples from individuals using statins. The results from this validation set largely corroborated our previous findings, with the exception of 3 genes: LAMP3, NR1D2, and PIK3R1, which exhibited different expression patterns. In conclusion, our study utilized microarray datasets to identify key genes that are influenced by statin treatments. The differential expression and functional analysis of these genes provide valuable insights into the mechanisms underlying the effects of statins.
Collapse
Affiliation(s)
| | | | - Tannaz Jmaialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Mourtada J, Thibaudeau C, Wasylyk B, Jung AC. The Multifaceted Role of Human Dickkopf-3 (DKK-3) in Development, Immune Modulation and Cancer. Cells 2023; 13:75. [PMID: 38201279 PMCID: PMC10778571 DOI: 10.3390/cells13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The human Dickkopf (DKK) family includes four main secreted proteins, DKK-1, DKK-2, DKK-3, and DKK-4, as well as the DKK-3 related protein soggy (Sgy-1 or DKKL1). These glycoproteins play crucial roles in various biological processes, and especially modulation of the Wnt signaling pathway. DKK-3 is distinct, with its multifaceted roles in development, stem cell differentiation and tissue homeostasis. Intriguingly, DKK-3 appears to have immunomodulatory functions and a complex role in cancer, acting as either a tumor suppressor or an oncogene, depending on the context. DKK-3 is a promising diagnostic and therapeutic target that can be modulated by epigenetic reactivation, gene therapy and DKK-3-blocking agents. However, further research is needed to optimize DKK-3-based therapies. In this review, we comprehensively describe the known functions of DKK-3 and highlight the importance of context in understanding and exploiting its roles in health and disease.
Collapse
Affiliation(s)
- Jana Mourtada
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| | - Chloé Thibaudeau
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Graffenstaden, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, 67404 Illkirch Graffenstaden, France
- Centre Nationale de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Graffenstaden, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| |
Collapse
|
31
|
Ma S, Wang Y, Li W, Qiu S, Zhang X, Niu R, Zhao F, Zheng Y. Integrated analysis identities Rho GTPases related molecular map in patients with gastric carcinoma. Sci Rep 2023; 13:21443. [PMID: 38052924 PMCID: PMC10698149 DOI: 10.1038/s41598-023-48294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023] Open
Abstract
The intricate involvement of Rho GTPases in a multitude of human malignancies and their diverse array of biological functions has garnered substantial attention within the scientific community. However, their expression pattern and potential role in gastric cancer (GC) remain unclear. In this study, we successfully identified two distinct subtypes associated with Rho GTPase-related gene (RGG) through consensus clustering analysis, which exhibited significant disparities in overall survival and the tumor microenvironment. Subsequently, an extensively validated risk model termed RGGscore was meticulously constructed to prognosticate the outcomes of GC patients. This model was further assessed and validated using an external cohort. Notably, the high RGGscore group was indicative of a poorer prognosis. Univariate and multivariate Cox regression analyses unveiled the RGGscore as an autonomous prognostic indicator for GC patients. Subsequent external validation, utilizing two cohorts of patients who underwent immunotherapy, demonstrated a significant correlation between a low RGGscore and improved response to immunotherapy. Additionally, the expression levels of three genes associated with RGGscore were examined using qRT-PCR. Taken together, a pioneering RGGscore model has been successfully established, showcasing its potential efficacy in offering valuable therapeutic guidance for GC.
Collapse
Affiliation(s)
- Shaowei Ma
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ying Wang
- Department of Cardiology, Xingtai Third Hospital, Xingtai, 054000, China
| | - Weibo Li
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shaofan Qiu
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiangyu Zhang
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ren Niu
- Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yu Zheng
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
32
|
Yuan S, Hoggard NK, Kantake N, Hildreth BE, Rosol TJ. Effects of Dickkopf-1 (DKK-1) on Prostate Cancer Growth and Bone Metastasis. Cells 2023; 12:2695. [PMID: 38067123 PMCID: PMC10705757 DOI: 10.3390/cells12232695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoblastic bone metastases are commonly detected in patients with advanced prostate cancer (PCa) and are associated with an increased mortality rate. Dickkopf-1 (DKK-1) antagonizes canonical WNT/β-catenin signaling and plays a complex role in bone metastases. We explored the function of cancer cell-specific DKK-1 in PCa growth, metastasis, and cancer-bone interactions using the osteoblastic canine PCa cell line, Probasco. Probasco or Probasco + DKK-1 (cells transduced with human DKK-1) were injected into the tibia or left cardiac ventricle of athymic nude mice. Bone metastases were detected by bioluminescent imaging in vivo and evaluated by micro-computed tomography and histopathology. Cancer cell proliferation, migration, gene/protein expression, and their impact on primary murine osteoblasts and osteoclasts, were evaluated in vitro. DKK-1 increased cancer growth and stimulated cell migration independent of canonical WNT signaling. Enhanced cancer progression by DKK-1 was associated with increased cell proliferation, up-regulation of NF-kB/p65 signaling, inhibition of caspase-dependent apoptosis by down-regulation of non-canonical WNT/JNK signaling, and increased expression of epithelial-to-mesenchymal transition genes. In addition, DKK-1 attenuated the osteoblastic activity of Probasco cells, and bone metastases had decreased cancer-induced intramedullary woven bone formation. Decreased bone formation might be due to the inhibition of osteoblast differentiation and stimulation of osteoclast activity through a decrease in the OPG/RANKL ratio in the bone microenvironment. The present study indicated that the cancer-promoting role of DKK-1 in PCa bone metastases was associated with increased growth of bone metastases, reduced bone induction, and altered signaling through the canonical WNT-independent pathway. DKK-1 could be a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Shiyu Yuan
- Department of Biological Sciences, The Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, OH 45701, USA;
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| | - Nathan K. Hoggard
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| | - Noriko Kantake
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| | - Blake E. Hildreth
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Thomas J. Rosol
- Department of Biological Sciences, The Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, OH 45701, USA;
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| |
Collapse
|
33
|
Katase N, Kudo K, Ogawa K, Sakamoto Y, Nishimatsu SI, Yamauchi A, Fujita S. DKK3/CKAP4 axis is associated with advanced stage and poorer prognosis in oral cancer. Oral Dis 2023; 29:3193-3204. [PMID: 35708905 DOI: 10.1111/odi.14277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE We previously reported that dickkopf WNT signaling inhibitor 3 (DKK3) would modulate malignant potential of oral squamous cell carcinoma (OSCC) via activating Akt. Recently, cytoskeleton associated protein 4 (CKAP4) functions as receptor of DKK3, which activates Akt in esophageal squamous cell carcinoma, but its expression and function in OSCC were unclear. METHODS We studied DKK3 and CKAP4 protein expression in OSCC tissue and investigated the correlation between protein expression and clinical data. We also investigated whether antibodies (Ab) for DKK3 or CKAP4 could suppress malignant potential of the cancer cells. RESULTS DKK3/CKAP4 protein expression was observed in majority of OSCC cases and was associated with significantly higher T-stage and TNM stage. Multivariate analysis revealed that DKK3 and CKAP4 were independent prognostic biomarkers for overall survival (OS) and disease-free survival (DFS), respectively. Survival analyses revealed that DKK3-positive cases and CKAP4-positive cases showed significantly shorter OS and DFS, respectively, and that DKK3/CKAP4 double-negative cases showed significantly favorable prognosis. Both anti-DKK3Ab and anti-CKAP4Ab could suppress cancer cell proliferation, migration, and invasion. CONCLUSION DKK3/CKAP4 axis is thought to be important in OSCC, and it would be a promising therapeutic target.
Collapse
Affiliation(s)
- Naoki Katase
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kodai Kudo
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Dental School, Nagasaki, Japan
| | - Kazuhiro Ogawa
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Dental School, Nagasaki, Japan
| | - Yae Sakamoto
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Dental School, Nagasaki, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Shuichi Fujita
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
34
|
Truong TTK, Fujii S, Nagano R, Hasegawa K, Kokura M, Chiba Y, Yoshizaki K, Fukumoto S, Kiyoshima T. Arl4c is involved in tooth germ development through osteoblastic/ameloblastic differentiation. Biochem Biophys Res Commun 2023; 679:167-174. [PMID: 37703759 DOI: 10.1016/j.bbrc.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Murine tooth germ development proceeds in continuous sequential steps with reciprocal interactions between the odontogenic epithelium and the adjacent mesenchyme, and several growth factor signaling pathways and their activation are required for tooth germ development. The expression of ADP-ribosylation factor (Arf)-like 4c (Arl4c) has been shown to induce cell proliferation, and is thereby involved in epithelial morphogenesis and tumorigenesis. In contrast, the other functions of Arl4c (in addition to cellular growth) are largely unknown. Although we recently demonstrated the involvement of the upregulated expression of Arl4c in the proliferation of ameloblastomas, which have the same origin as odontogenic epithelium, its effect on tooth germ development remains unclear. In the present study, single-cell RNA sequencing (scRNA-seq) analysis revealed that the expression of Arl4c, among 17 members of the Arf-family, was specifically detected in odontogenic epithelial cells, such as those of the stratum intermedium, stellate reticulum and outer enamel epithelium, of postnatal day 1 (P1) mouse molars. scRNA-seq analysis also demonstrated the higher expression of Arl4c in non-ameloblast and inner enamel epithelium, which include immature cells, of P7 mouse incisors. In the mouse tooth germ rudiment culture, treatment with SecinH3 (an inhibitor of the ARNO/Arf6 pathway) reduced the size, width and cusp height of the tooth germ and the thickness of the eosinophilic layer, which would involve the synthesis of dentin and enamel matrix organization. In addition, loss-of-function experiments using siRNAs and shRNA revealed that the expression of Arl4c was involved in cell proliferation and osteoblastic cytodifferentiation in odontogenic epithelial cells. Finally, RNA-seq analysis with a gene set enrichment analysis (GSEA) and Gene Ontology (GO) analysis showed that osteoblastic differentiation-related gene sets and/or GO terms were downregulated in shArl4c-expressing odontogenic epithelial cells. These results suggest that the Arl4c-ARNO/Arf6 pathway axis contributes to tooth germ development through osteoblastic/ameloblastic differentiation.
Collapse
Affiliation(s)
- Thinh Thi Kim Truong
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Ryoko Nagano
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Megumi Kokura
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryomachi, Aoba-ku, Sendai, 980-8575, Japan
| | - Keigo Yoshizaki
- Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryomachi, Aoba-ku, Sendai, 980-8575, Japan; Section of Pediatric Dentistry and Special Need Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
35
|
Mourtada J, Lony C, Nicol A, De Azevedo J, Bour C, Macabre C, Roncarati P, Ledrappier S, Schultz P, Borel C, Burgy M, Wasylyk B, Mellitzer G, Herfs M, Gaiddon C, Jung AC. A novel ΔNp63-dependent immune mechanism improves prognosis of HPV-related head and neck cancer. Front Immunol 2023; 14:1264093. [PMID: 38022675 PMCID: PMC10630910 DOI: 10.3389/fimmu.2023.1264093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Deconvoluting the heterogenous prognosis of Human Papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OSCC) is crucial for enhancing patient care, given its rapidly increasing incidence in western countries and the adverse side effects of OSCC treatments. Methods Transcriptomic data from HPV-positive OSCC samples were analyzed using unsupervised hierarchical clustering, and clinical relevance was evaluated using Kaplan-Meier analysis. HPV-positive OSCC cell line models were used in functional analyses and phenotypic assays to assess cell migration and invasion, response to cisplatin, and phagocytosis by macrophages in vitro. Results We found, by transcriptomic analysis of HPV-positive OSCC samples, a ΔNp63 dependent molecular signature that is associated with patient prognosis. ΔNp63 was found to act as a tumor suppressor in HPV-positive OSCC at multiple levels. It inhibits cell migration and invasion, and favors response to chemotherapy. RNA-Seq analysis uncovered an unexpected regulation of genes, such as DKK3, which are involved in immune response-signalling pathways. In agreement with these observations, we found that ΔNp63 expression levels correlate with an enhanced anti-tumor immune environment in OSCC, and ΔNp63 promotes cancer cell phagocytosis by macrophages through a DKK3/NF-κB-dependent pathway. Conclusion Our findings are the first comprehensive identification of molecular mechanisms involved in the heterogeneous prognosis of HPV-positive OSCC, paving the way for much-needed biomarkers and targeted treatment.
Collapse
Affiliation(s)
- Jana Mourtada
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christelle Lony
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Anaïs Nicol
- Laboratoire de Radiobiologie, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Justine De Azevedo
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Cyril Bour
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christine Macabre
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Sonia Ledrappier
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Philippe Schultz
- Hôpitaux Universitaires de Strasbourg, Department of Otorhinolaryngology and Head and Neck Surgery, Strasbourg, France
| | - Christian Borel
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Mickaël Burgy
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Bohdan Wasylyk
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1258, Illkirch-Graffenstaden, France
- Centre Nationale de la Recherche Scientifique (CNRS) UMR 7104, Illkirch-Graffenstaden, France
- Université de Strasbourg, Strasbourg, France
| | - Georg Mellitzer
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Michaël Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| |
Collapse
|
36
|
Li J, Zhang Y, Ye F, Qian P, Qin Z, Li D, Ye L, Feng L. DKK1 Promotes Epithelial-Mesenchymal Transition and Cisplatin Resistance in Gastric Cancer via Activation of the PI3K/AKT Pathway. Cancers (Basel) 2023; 15:4756. [PMID: 37835450 PMCID: PMC10571993 DOI: 10.3390/cancers15194756] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Chemotherapy is a classical method of cancer treatment. Cisplatin-based chemotherapy is a traditional and essential therapeutic approach in gastric cancer treatment. However, the development of drug resistance during treatment is a major obstacle that limits their further application, and molecular changes have occurred in the development of drug resistance. Here, we found that Dickkopf-related protein 1 (DKK1) is highly expressed in gastric cancer and related to poor prognosis in gastric cancer patients through public database mining. Next, we also identified that DKK1 is highly expressed in CDDP-resistant gastric cancer cell lines, supporting the notion that DKK1 is a necessary regulator of CDDP resistance. In terms of mechanistic research, our data reveal that DKK1 was able to activate the PI3K/AKT pathway and affect epithelial-to-mesenchymal transition, further contributing to CDDP resistance. Genetic knockdown and pharmacological inhibition of DKK1 recovered CDDP sensitivity both in vitro and in vivo. Therefore, our study highlights the potential of targeted inhibition of DKK1 to reverse CDDP resistance and alleviate metastatic properties in gastric cancer.
Collapse
Affiliation(s)
- Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Yaqiong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Fangzhou Ye
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Peiyu Qian
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Zhe Qin
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Deming Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| | - Li Ye
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai 201199, China; (J.L.); (Y.Z.); (F.Y.); (Z.Q.); (D.L.)
| |
Collapse
|
37
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
38
|
Suchitha GP, Balaya RDA, Raju R, Keshava Prasad TS, Dagamajalu S. A network map of cytoskeleton-associated protein 4 (CKAP4) mediated signaling pathway in cancer. J Cell Commun Signal 2023; 17:1097-1104. [PMID: 36944905 PMCID: PMC10409693 DOI: 10.1007/s12079-023-00739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is a non-glycosylated type II transmembrane protein that serves as a cell surface-activated receptor. It is expressed primarily in the plasma membranes of bladder epithelial cells, type II alveolar pneumocytes, and vascular smooth muscle cells. CKAP4 is involved in various biological activities including cell proliferation, cell migration, keratinocyte differentiation, glycogenesis, fibrosis, thymic development, cardiogenesis, neuronal apoptosis, and cancer. CKAP4 has been described as a pro-tumor molecule that regulates the progression of various cancers, including lung cancer, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, cervical cancer, oral cancer, bladder cancer, cholangiocarcinoma, pancreatic cancer, myeloma, renal cell carcinoma, melanoma, squamous cell carcinoma, colorectal cancer, and osteosarcoma. CKAP4 and its isoform bind to DKK1 or DKK3 (Dickkopf proteins) or antiproliferative factor (APF) and regulates several downstream signaling cascades. The CKAP4 complex plays a crucial role in regulating the signaling pathways including PI3K/AKT and MAPK1/3. Recently, CKAP4 has been recognized as a potential target for cancer therapy. Due to its biomedical importance, we integrated a network map of CKAP4. The available literature on CKAP4 signaling was manually curated according to the NetPath annotation criteria. The consolidated pathway map comprises 41 activation/inhibition events, 21 catalysis events, 35 molecular associations, 134 gene regulation events, 83 types of protein expression, and six protein translocation events. CKAP4 signaling pathway map data is freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5322 ). Generation of CKAP4 signaling pathway map.
Collapse
Affiliation(s)
- G. P. Suchitha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
39
|
Pérez-Villa A, Echeverría-Garcés G, Ramos-Medina MJ, Prathap L, Martínez-López M, Ramírez-Sánchez D, García-Cárdenas JM, Armendáriz-Castillo I, Guerrero S, Paz C, López-Cortés A. Integrated multi-omics analysis reveals the molecular interplay between circadian clocks and cancer pathogenesis. Sci Rep 2023; 13:14198. [PMID: 37648722 PMCID: PMC10469199 DOI: 10.1038/s41598-023-39401-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Circadian rhythms (CRs) are fundamental biological processes that significantly impact human well-being. Disruption of these rhythms can trigger insufficient neurocognitive development, insomnia, mental disorders, cardiovascular diseases, metabolic dysfunctions, and cancer. The field of chronobiology has increased our understanding of how rhythm disturbances contribute to cancer pathogenesis, and how circadian timing influences the efficacy of cancer treatments. As the circadian clock steadily gains recognition as an emerging factor in tumorigenesis, a thorough and comprehensive multi-omics analysis of CR genes/proteins has never been performed. To shed light on this, we performed, for the first time, an integrated data analysis encompassing genomic/transcriptomic alterations across 32 cancer types (n = 10,918 tumors) taken from the PanCancer Atlas, unfavorable prognostic protein analysis, protein-protein interactomics, and shortest distance score pathways to cancer hallmark phenotypes. This data mining strategy allowed us to unravel 31 essential CR-related proteins involved in the signaling crossroad between circadian rhythms and cancer. In the context of drugging the clock, we identified pharmacogenomic clinical annotations and drugs currently in late phase clinical trials that could be considered as potential cancer therapeutic strategies. These findings highlight the diverse roles of CR-related genes/proteins in the realm of cancer research and therapy.
Collapse
Affiliation(s)
- Andy Pérez-Villa
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
| | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mayra Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Isaac Armendáriz-Castillo
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Clara Paz
- Grupo de Investigación Bienestar, Salud y Sociedad, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
40
|
Aghagolzadeh P, Plaisance I, Bernasconi R, Treibel TA, Pulido Quetglas C, Wyss T, Wigger L, Nemir M, Sarre A, Chouvardas P, Johnson R, González A, Pedrazzini T. Assessment of the Cardiac Noncoding Transcriptome by Single-Cell RNA Sequencing Identifies FIXER, a Conserved Profibrogenic Long Noncoding RNA. Circulation 2023; 148:778-797. [PMID: 37427428 DOI: 10.1161/circulationaha.122.062601] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Cardiac fibroblasts have crucial roles in the heart. In particular, fibroblasts differentiate into myofibroblasts in the damaged myocardium, contributing to scar formation and interstitial fibrosis. Fibrosis is associated with heart dysfunction and failure. Myofibroblasts therefore represent attractive therapeutic targets. However, the lack of myofibroblast-specific markers has precluded the development of targeted therapies. In this context, most of the noncoding genome is transcribed into long noncoding RNAs (lncRNAs). A number of lncRNAs have pivotal functions in the cardiovascular system. lncRNAs are globally more cell-specific than protein-coding genes, supporting their importance as key determinants of cell identity. METHODS In this study, we evaluated the value of the lncRNA transcriptome in very deep single-cell RNA sequencing. We profiled the lncRNA transcriptome in cardiac nonmyocyte cells after infarction and probed heterogeneity in the fibroblast and myofibroblast populations. In addition, we searched for subpopulation-specific markers that can constitute novel targets in therapy for heart disease. RESULTS We demonstrated that cardiac cell identity can be defined by the sole expression of lncRNAs in single-cell experiments. In this analysis, we identified lncRNAs enriched in relevant myofibroblast subpopulations. Selecting 1 candidate we named FIXER (fibrogenic LOX-locus enhancer RNA), we showed that its silencing limits fibrosis and improves heart function after infarction. Mechanitically, FIXER interacts with CBX4, an E3 SUMO protein ligase and transcription factor, guiding CBX4 to the promoter of the transcription factor RUNX1 to control its expression and, consequently, the expression of a fibrogenic gene program.. FIXER is conserved in humans, supporting its translational value. CONCLUSIONS Our results demonstrated that lncRNA expression is sufficient to identify the various cell types composing the mammalian heart. Focusing on cardiac fibroblasts and their derivatives, we identified lncRNAs uniquely expressed in myofibroblasts. In particular, the lncRNA FIXER represents a novel therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Parisa Aghagolzadeh
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Isabelle Plaisance
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Riccardo Bernasconi
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Thomas A Treibel
- Institute of Cardiovascular Sciences, University College London, United Kingdom (T.A.T.)
| | - Carlos Pulido Quetglas
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Tania Wyss
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland (T.W.)
- Swiss Institute of Bioinformatics, Lausanne, Switzerland (T.W., L.W.)
| | - Leonore Wigger
- Swiss Institute of Bioinformatics, Lausanne, Switzerland (T.W., L.W.)
| | - Mohamed Nemir
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Switzerland (A.S.)
| | - Panagiotis Chouvardas
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Rory Johnson
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain (A.G.)
- CIBERCV, Madrid, Spain (A.G.)
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| |
Collapse
|
41
|
Amaral TF, Xiao Y, Jeensuk S, Maia TS, Cuellar CJ, Gingerich CA, Scheffler TL, Hansen PJ. Presence of KREMEN receptors for DKK1 in the preimplantation bovine embryo. REPRODUCTION AND FERTILITY 2023; 4:RAF-23-0021. [PMID: 37582174 PMCID: PMC10620448 DOI: 10.1530/raf-23-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023] Open
Abstract
The WNT inhibitory protein DKK1 has been shown to regulate development of the preimplantation embryo to the blastocyst stage. In cattle, DKK1 increases the number of trophectoderm cells that are the precursor of the placenta. DKK1 can affect cells by blocking WNT signaling through its receptors KREMEN1 and KREMEN2. Here it was shown that the mRNA for KREMEN1 and KREMEN2 decline as the embryo advances in development. Nonetheless, immunoreactive KREMEN1 was identified in blastocysts using Western blotting. DKK1 also decreased amount of immunoreactive CTNNB1 in blastocysts, as would be expected if DKK1 was signaling through a KREMEN-mediated pathway. Thus, it is likely that KREMEN1 functions as a receptor for DKK1 in the preimplantation bovine embryo.
Collapse
Affiliation(s)
- Thiago Fernandes Amaral
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- Genus PLC/ABS, Mogi Mirim, SP, Brazil
| | - Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Surawich Jeensuk
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - Tatiane Silva Maia
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Camila J Cuellar
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Chloe A Gingerich
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
Alkhatib DZR, Thi Kim Truong T, Fujii S, Hasegawa K, Nagano R, Tajiri Y, Kiyoshima T. Stepwise activation of p63 and the MEK/ERK pathway induces the expression of ARL4C to promote oral squamous cell carcinoma cell proliferation. Pathol Res Pract 2023; 246:154493. [PMID: 37141698 DOI: 10.1016/j.prp.2023.154493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Carcinogenesis is a multistep process wherein cells accumulate multiple genetic alterations and progress to a more malignant phenotype. It has been proposed that sequential accumulation of gene abnormalities in specific genes drives the transition from non-tumorous epithelia through a preneoplastic lesion/benign tumor to cancer. Histologically, oral squamous cell carcinoma (OSCC) progresses in multiple ordered steps that begin with mucosal epithelial cell hyperplasia, which is followed by dysplasia, carcinoma in situ and invasive carcinoma. It is therefore hypothesized that genetic alteration-mediated multistep carcinogenesis would be involved in the development of OSCC; however, the detailed molecular mechanisms are unknown. We clarified the comprehensive gene expression patterns and carried out an enrichment analysis using DNA microarray data from a pathological specimen of OSCC (including a non-tumor region, carcinoma in situ lesion and invasive carcinoma lesion). The expression of numerous genes and signal activation were altered in the development of OSCC. Among these, the p63 expression was increased and the MEK/ERK-MAPK pathway was activated in carcinoma in situ lesion and in invasive carcinoma lesion. Immunohistochemical analyses revealed that p63 was initially upregulated in carcinoma in situ and ERK was sequentially activated in invasive carcinoma lesions in OSCC specimens. ADP-ribosylation factor (ARF)-like 4c (ARL4C), the expression of which is reportedly induced by p63 and/or the MEK/ERK-MAPK pathway in OSCC cells, has been shown to promote tumorigenesis. Immunohistochemically, in OSCC specimens, ARL4C was more frequently detected in tumor lesions, especially in invasive carcinoma lesions, than in carcinoma in situ lesions. Additionally, ARL4C and phosphorylated ERK were frequently merged in invasive carcinoma lesions. Loss-of-function experiments using inhibitors and siRNAs revealed that p63 and MEK/ERK-MAPK cooperatively induce the expression of ARL4C and cell growth in OSCC cells. These results suggest that the stepwise activation of p63 and MEK/ERK-MAPK contributes to OSCC tumor cell growth through regulation of ARL4C expression.
Collapse
Affiliation(s)
- Dania Zuhier Ragheb Alkhatib
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Thinh Thi Kim Truong
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryoko Nagano
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yudai Tajiri
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Dentistry and Oral Surgery, National Hospital Organization, Fukuokahigashi Medical Center, 1-1-1 Chidori, Koga, Fukuoka 811-3195, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
43
|
Kantaputra P, Jatooratthawichot P, Kottege N, Anthonappa RP, Kaewgahya M, Tongsima S, Ngamphiw C, Ketudat Cairns JR, Predes D, He X. DKK1 is a strong candidate for mesiodens and taurodontism. Clin Genet 2023; 103:714-716. [PMID: 36601665 PMCID: PMC10159873 DOI: 10.1111/cge.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
A mutation in DKK1 gene leads to inhibitory DKK1 function, over-activation of WNT/β-catenin signaling, disruptive development of dental epithelium, and subsequent mesiodens formation.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Naomi Kottege
- Department of Pediatric Dentistry, University of Western Australia Dental School, Nedlands, Western Australia, Australia
| | - Robert P Anthonappa
- Department of Pediatric Dentistry, University of Western Australia Dental School, Nedlands, Western Australia, Australia
| | - Massupa Kaewgahya
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency,Thailand Science Park, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency,Thailand Science Park, Pathum Thani, Thailand
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Danilo Predes
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xi He
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Dougherty EJ, Chen LY, Awad KS, Ferreyra GA, Demirkale CY, Keshavarz A, Gairhe S, Johnston KA, Hicks ME, Sandler AB, Curran CS, Krack JM, Ding Y, Suffredini AF, Solomon MA, Elinoff JM, Danner RL. Inflammation and DKK1-induced AKT activation contribute to endothelial dysfunction following NR2F2 loss. Am J Physiol Lung Cell Mol Physiol 2023; 324:L783-L798. [PMID: 37039367 PMCID: PMC10202490 DOI: 10.1152/ajplung.00171.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023] Open
Abstract
NR2F2 is expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, reduced NR2F2 expression is associated with cardiovascular diseases including congenital heart disease and atherosclerosis. Here, NR2F2 silencing in human primary ECs led to inflammation, endothelial-to-mesenchymal transition (EndMT), proliferation, hypermigration, apoptosis-resistance, and increased production of reactive oxygen species. These changes were associated with STAT and AKT activation along with increased production of DKK1. Co-silencing DKK1 and NR2F2 prevented NR2F2-loss-induced STAT and AKT activation and reversed EndMT. Serum DKK1 concentrations were elevated in patients with pulmonary arterial hypertension (PAH) and DKK1 was secreted by ECs in response to in vitro loss of either BMPR2 or CAV1, which are genetic defects associated with the development of PAH. In human primary ECs, NR2F2 suppressed DKK1, whereas its loss conversely induced DKK1 and disrupted endothelial homeostasis, promoting phenotypic abnormalities associated with pathologic vascular remodeling. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating chronic vascular diseases associated with EC dysfunction.NEW & NOTEWORTHY NR2F2 loss in the endothelial lining of blood vessels is associated with cardiovascular disease. Here, NR2F2-silenced human endothelial cells were inflammatory, proliferative, hypermigratory, and apoptosis-resistant with increased oxidant stress and endothelial-to-mesenchymal transition. DKK1 was induced in NR2F2-silenced endothelial cells, while co-silencing NR2F2 and DKK1 prevented NR2F2-loss-associated abnormalities in endothelial signaling and phenotype. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating vascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Edward J Dougherty
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Li-Yuan Chen
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Keytam S Awad
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Gabriela A Ferreyra
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Cumhur Y Demirkale
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Ali Keshavarz
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Salina Gairhe
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Kathryn A Johnston
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Madelyn E Hicks
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Alexis B Sandler
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Colleen S Curran
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Janell M Krack
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Yi Ding
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Anthony F Suffredini
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Michael A Solomon
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Jason M Elinoff
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert L Danner
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
45
|
Cai M, Wu W, Deng S, Yang Q, Wu H, Wang H, Zhang J, Feng Q, Shao J, Zeng Y, Li J. Expression of cytoskeleton-associated protein 4 is associated with poor prognosis and metastasis in nasopharyngeal carcinoma. Exp Biol Med (Maywood) 2023; 248:1085-1094. [PMID: 37208923 PMCID: PMC10581166 DOI: 10.1177/15353702231167940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/18/2022] [Indexed: 05/21/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) acts as a key transmembrane protein that connects the endoplasmic reticulum (ER) to microtubule dynamics. Researchers have not examined the roles of CKAP4 in nasopharyngeal carcinoma (NPC). The study aimed at evaluating the prognostic value and metastasis-regulating effect of CKAP4 in NPC. CKAP4 protein could be observed in 86.36% of 557 NPC specimens but not in normal nasopharyngeal epithelial tissue. According to immunoblot assays, NPC cell lines presented high CKAP4 expression relative to NP69 immortalized nasopharyngeal epithelial cells. Moreover, CKAP4 was highly expressed at the NPC tumor front and in matched liver, lung, and lymph node metastasis samples. Furthermore, high CKAP4 expression reported poor overall survival (OS) and presented a positive relevance to tumor (T) classification, recurrence, and metastasis. According to multivariate analysis, CKAP4 could independently and negatively predict patients' prognosis. Stable knockdown of CKAP4 expression in NPC cells inhibited cell migration, invasion and metastasis in vitro and in vivo. Moreover, CKAP4 promoted epithelial-mesenchymal transition (EMT) in NPC cells. CKAP4 knockdown was followed by the downregulation of the interstitial marker vimentin, and upregulation of the epithelial marker E-cadherin. In NPC tissues, high CKAP4 expression exhibited a positive relevance to vimentin expression and a negative relevance to E-cadherin expression. In conclusion, CKAP4 is an independent predictor of NPC, and CKAP4 might contribute NPC progression and metastasis, which may be involved in EMT with vimentin and E-cadherin.
Collapse
Affiliation(s)
- Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Weijun Wu
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shengling Deng
- Department of Anesthesia, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qiao Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Haibiao Wu
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Haiyun Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jiaxing Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianyong Shao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yixin Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001,China
| |
Collapse
|
46
|
Iguchi K, Sada R, Matsumoto S, Kimura H, Zen Y, Akita M, Gon H, Fukumoto T, Kikuchi A. DKK1-CKAP4 signal axis promotes hepatocellular carcinoma aggressiveness. Cancer Sci 2023; 114:2063-2077. [PMID: 36718957 PMCID: PMC10154837 DOI: 10.1111/cas.15743] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent malignant liver neoplasm. Despite the advances in diagnosis and treatment, the prognosis of HCC patients remains poor. Cytoskeleton-associated membrane protein 4 (CKAP4) is a receptor of the glycosylated secretory protein Dickkopf-1 (DKK1), and the DKK1-CKAP4 axis is activated in pancreatic, lung, and esophageal cancer cells. Expression of DKK1 and CKAP4 has been examined in HCC in independent studies that yielded contradictory results. In this study, the relationship between the DKK1-CKAP4 axis and HCC was comprehensively examined. In 412 HCC cases, patients whose tumors were positive for both DKK1 and CKAP4 had a poor prognosis compared to those who were positive for only one of these markers or negative for both. Deletion of either DKK1 or CKAP4 inhibited HCC cell growth. In contrast to WT DKK1, DKK1 lacking the CKAP4 binding region did not rescue the phenotypes caused by DKK1 depletion, suggesting that binding of DKK1 to CKAP4 is required for HCC cell proliferation. Anti-CKAP4 Ab inhibited HCC growth, and its antitumor effect was clearly enhanced when combined with lenvatinib, a multikinase inhibitor. These results indicate that simultaneous expression of DKK1 and CKAP4 is involved in the aggressiveness of HCC, and that the combination of anti-CKAP4 Ab and other therapeutics including lenvatinib could represent a promising strategy for treating advanced HCC.
Collapse
Grants
- 16H06374 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 18975691 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 18K06956 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 21K07121 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20K16330 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 22K15511 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- Ichiro Kanehara Foundation of the Promotion of Medical Science and Medical Care
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI)
- 18cm0106132h0001 Project for Cancer Research And Therapeutic Evolution (P-CREATE) from the Japan Agency for Medical Research and development, AMED
- 20cm0106152h0002 Project for Cancer Research And Therapeutic Evolution (P-CREATE) from the Japan Agency for Medical Research and development, AMED
- 22am0401003h0004 Science and Technology Platform Program for Advanced Biological Medicine from the Japan Agency for Medical Research and development, AMED
- 22ym0126039h0002 Translational Research Program from the Japan Agency for Medical Research and development, AMED
- Yasuda Memorial Foundation
Collapse
Affiliation(s)
- Kosuke Iguchi
- Department of Molecular Biology and Biochemistry, Graduate School of MedicineOsaka UniversitySuitaJapan
- Department of Surgery, Division of Hepato‐Biliary‐Pancreatic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Ryota Sada
- Department of Molecular Biology and Biochemistry, Graduate School of MedicineOsaka UniversitySuitaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of MedicineOsaka UniversitySuitaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Hirokazu Kimura
- Department of Molecular Biology and Biochemistry, Graduate School of MedicineOsaka UniversitySuitaJapan
- The Sol Goldman Pancreatic Cancer Research Center, Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yoh Zen
- Division of Diagnostic PathologyKobe University Graduate School of MedicineKobeJapan
| | - Masayuki Akita
- Department of Surgery, Division of Hepato‐Biliary‐Pancreatic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Hidetoshi Gon
- Department of Surgery, Division of Hepato‐Biliary‐Pancreatic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato‐Biliary‐Pancreatic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of MedicineOsaka UniversitySuitaJapan
- Center of Infectious Disease Education and Research (CiDER)Osaka UniversitySuitaJapan
| |
Collapse
|
47
|
Arend R, Dholakia J, Castro C, Matulonis U, Hamilton E, Jackson CG, LyBarger K, Goodman HM, Duska LR, Mahdi H, ElNaggar AC, Kagey MH, Liu A, Piper D, Barroilhet LM, Bradley W, Sachdev J, Sirard CA, O'Malley DM, Birrer M. DKK1 is a predictive biomarker for response to DKN-01: Results of a phase 2 basket study in women with recurrent endometrial carcinoma. Gynecol Oncol 2023; 172:82-91. [PMID: 37001446 DOI: 10.1016/j.ygyno.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Dickkopf-1 (DKK1) is a Wnt signaling modulator promoting tumor growth, metastasis, angiogenesis, and immunosuppression by regulating innate immunity. DKK1 is over-expressed in gynecologic cancers and is associated with shortened survival. DKN-01 is a humanized monoclonal antibody with DKK1 neutralizing activity that may provide clinical benefit to patients whose tumors have overexpression of DKK1 or Wnt genetic alterations. METHODS We conducted an open-label, Phase 2 basket study with 2-stage design in patients with endometrial carcinoma (EC) and platinum-resistant/refractory epithelial ovarian cancer. DKN-01 was administered either as monotherapy or in combination with weekly paclitaxel at investigator's discretion. All patients underwent NGS testing prior to enrollment; tumor tissue was also tested for DKK1 expression by RNAscope pre-treatment and after cycle 1 if available. At least 50% of patients were required to have a Wnt signaling alteration either directly or tangentially. This publication reports results from the EC population overall and by DKK1-expression. RESULTS DKN-01 monotherapy and in combination with paclitaxel was more effective in patients with high DKK1-expressing tumors compared to low-expressing tumors. DKN-01 monotherapy demonstrated an objective response rate [ORR] of 25.0% vs. 0%; disease control rate [DCR] of 62.5% vs. 6.7%; median progression-free survival [PFS] was 4.3 vs. 1.8 months, and overall survival [OS] was 11.0 vs. 8.2 months in DKK1-high vs DKK1-low patients. Similarly, DKN-01 in combination with paclitaxel demonstrated greater clinical activity in patients with DKK1-high tumors compared to DKK1-low tumors: DCR was 55% vs. 44%; median PFS was 5.4 vs. 1.8 months; and OS was 19.1 vs. 10.1 months. Wnt activating mutations correlated with higher DKK1 expression. DKN-01 was well tolerated as a monotherapy and in combination with paclitaxel. CONCLUSIONS Collectively, data demonstrates promising clinical activity of a well-tolerated drug, DKN-01, in EC patients with high tumoral DKK1 expression which frequently corresponded to the presence of a Wnt activating mutation. Future development will focus on using DKN-01 in DKK1-high EC patients in combination with immunotherapy.
Collapse
|
48
|
Hsu YC, Chang CC, Hsieh CC, Huang YT, Shih YH, Chang HC, Chang PJ, Lin CL. Dickkopf-1 Acts as a Profibrotic Mediator in Progressive Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24087679. [PMID: 37108841 PMCID: PMC10143456 DOI: 10.3390/ijms24087679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a serious public health problem. Due to a high variability in the speed of CKD progression to end-stage renal disease (ESRD) and the critical involvement of Wnt/β-catenin signaling in CKD, we investigated the role of the Wnt antagonist Dickkopf-1 (DKK1) in CKD progression. Our data revealed that patients with CKD stages 4-5 had higher DKK1 levels in their serum and renal tissues than the control subjects. In an 8-year follow-up, the serum DKK1-high group in the enrolled CKD patients showed a faster progression to ESRD than the serum DKK1-low group. Using a rat model of 5/6 nephrectomy (Nx)-induced CKD, we consistently detected elevated serum levels and renal production of DKK1 in 5/6 Nx rats compared to sham-operated rats. Importantly, the knockdown of the DKK1 levels in the 5/6 Nx rats markedly attenuated the CKD-associated phenotypes. Mechanistically, we demonstrated that the treatment of mouse mesangial cells with recombinant DKK1 protein induced not only the production of multiple fibrogenic proteins, but also the expression of endogenous DKK1. Collectively, our findings suggest that DKK1 acts as a profibrotic mediator in CKD, and elevated levels of serum DKK1 may be an independent predictor of faster disease progression to ESRD in patients with advanced CKD.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yu-Ting Huang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Hsiu-Ching Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Pey-Jium Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
49
|
Nagoya A, Sada R, Kimura H, Yamamoto H, Morishita K, Miyoshi E, Morii E, Shintani Y, Kikuchi A. CKAP4 is a potential exosomal biomarker and therapeutic target for lung cancer. Transl Lung Cancer Res 2023; 12:408-426. [PMID: 37057110 PMCID: PMC10087988 DOI: 10.21037/tlcr-22-571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Globally, lung cancer causes the most cancer death. While molecular therapy progress, including epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), has provided remarkable therapeutic effects, some patients remain resistant to these therapies and therefore new target development is required. Cytoskeleton-associated membrane protein 4 (CKAP4) is a receptor of the secretory protein Dickkopf-1 (DKK1) and the binding of DKK1 to CKAP4 promotes tumor growth via Ak strain transforming (AKT) activation. We investigated if CKAP4 functions as a diagnostic biomarker and molecular therapeutic target for lung cancer. METHODS CKAP4 secretion with exosomes from lung cancer cells and the effect of CKAP4 palmitoylation on its trafficking to the exosomes were examined. Serum CKAP4 levels were measured in mouse xenograft models, and 92 lung cancer patients and age- and sex-matched healthy controls (HCs). The lung cancer tissues were immunohistochemically stained for DKK1 and CKAP4, and their correlation with prognosis and serum CKAP4 levels were investigated. Roles of CKAP4 in the lung cancer cell proliferation were examined, and the effects of the combination of an anti-CKAP4 antibody and osimertinib, a third generation TKI, on anti-tumor activity were tested using in vitro and in vivo experiments. RESULTS CKAP4 was released from lung cancer cells with exosomes, and its trafficking to exosomes was regulated by palmitoylation. CKAP4 was detected in sera from mice inoculated with lung cancer cells overexpressing CKAP4. In 92 lung cancer patients, positive DKK1 and CKAP4 expression patients showed worse prognoses. Serum CKAP4 positivity was higher in lung cancer patients than in HCs. After surgical operation, serum CKAP4 levels were decreased. CKAP4 overexpression in lung cancer cells promoted in vitro cell proliferation and in vivo subcutaneous tumor growth, which were inhibited by an anti-CKAP4 antibody. Moreover, treatment with this antibody or osimertinib, a third generation TKI, inhibited AKT activity, sphere formation, and xenograft tumor growth in lung cancer cells harboring EGFR mutations and expressing both DKK1 and CKAP4, while their combination showed stronger inhibition. CONCLUSIONS CKAP4 may represent a novel biomarker and molecular target for lung cancer, and combination therapy with an anti-CKAP4 antibody and osimertinib could provide a new lung cancer therapeutic strategy.
Collapse
Affiliation(s)
- Akihiro Nagoya
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryota Sada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Hirokazu Kimura
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
50
|
Yao CY, Gao ZX, Hou LL, Fang D. DKK1 promotes NUAK1 transcriptional expression through the activation Akt in hepatocellular carcinoma. Cell Biol Int 2023; 47:383-393. [PMID: 36480792 DOI: 10.1002/cbin.11974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
NUAK1 is a serine/threonine kinase that has been shown to be associated with poor prognosis in several cancers. Although NUAK1 is frequently overexpressed at the transcript level in hepatocellular carcinoma (HCC), the actual role of NUAK1 and the mechanism of its overexpression in HCC has yet to be reported. In the present study, we found that NUAK1 expression was significantly increased in human HCC tumor tissues. Overexpression of NUAK1 dramatically enhanced HCC cells proliferation and migration in vitro. Stable induction of NUAK1 expression promoted tumor growth and tumor metastases to the lungs in the subcutaneous xenograft models and intravenous metastasis models. At the cellular level, enforced expression of Dickkopf-1 (DKK1) activated the Akt signaling pathway, thereby promoting the mRNA and protein expression of NUAK1 in HCC cells. By contrast, depletion of DKK1 was found to attenuate the mRNA and protein expression of NUAK1. In the subcutaneous xenograft models, stable induction of DKK1 expression not only accelerated tumor growth but also increased p-Akt and NUAK1 expression; whereas knockdown of DKK1 inhibited tumor growth, p-Akt and NUAK1 expression. Furthermore, immunohistochemical analysis of 20 HCC clinical samples showed that the expression level of NUAK1 was positively correlated with DKK1 and p-Akt. Taken together, we provide the first evidence that DKK1 promotes NUAK1 transcriptional expression via the activation Akt in HCC.
Collapse
Affiliation(s)
- Chao-Yan Yao
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Zi-Xuan Gao
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Li-Li Hou
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China.,Quality and Technique Supervision, Inspection and Testing Center of Xuchang City, Xuchang, China
| | - Dong Fang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| |
Collapse
|