1
|
Yu H, Jin S, Zeng M, Yang Z, Wang X. TIGIT antibody with PVR competitive ability enhances cancer immunotherapy and capable of eliciting anti-tumour immune memory. Br J Cancer 2025:10.1038/s41416-025-03046-w. [PMID: 40394151 DOI: 10.1038/s41416-025-03046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 04/01/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND T-cell immunoreceptor with immunoglobulin (Ig) and ITIM domains (TIGIT) is a checkpoint receptor thought to be involved in mediating T-cell exhaustion and dysfunction of natural killer (NK) cells in tumours and is emerging as novel promising targets in immunotherapy, however, the ligand binding and the efficacy of its antibody still need to be further explored. METHODS Four different TIGIT antibodies in characteristics of antigen binding, in vitro effects on activated T cells, Fc region functions and tumour inhibition in animal models were compared. The antibody as monotherapy and combined with anti-PD-L1 antibody, effects on PBMC in ex vivo coculture with autologous human CRC organoids as well as PK profile were evaluated. RESULTS Studies demonstrated that TIGIT antibody with PVR-competitive ability as monotherapy resulted in inhibition of tumour growth, sustained anti-tumour immune memory in tumour re-challenge mice, enhanced anti-tumour therapy in combination with anti-PD-L1. Ex vivo coculture assay suggested that TIGIT antibody treatment activated immune cells and promoted infiltration and tumour killing ability of autologous PBMC in human CRC organoids. CONCLUSIONS Our study broadens the knowledge of TIGIT antibody in cancer immunotherapy and may benefit future development of next-generation checkpoint inhibitors with improved clinical outcomes.
Collapse
Affiliation(s)
- Huijuan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shaowen Jin
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Zeng
- Guangdong Annpobio Co., Ltd, Guangzhou, China
| | | | - Xiaofei Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
- Guangdong Annpobio Co., Ltd, Guangzhou, China.
| |
Collapse
|
2
|
Gill GS, Kharb S, Goyal G, Das P, Kurdia KC, Dhar R, Karmakar S. Immune Checkpoint Inhibitors and Immunosuppressive Tumor Microenvironment: Current Challenges and Strategies to Overcome Resistance. Immunopharmacol Immunotoxicol 2025:1-45. [PMID: 40376861 DOI: 10.1080/08923973.2025.2504906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
Immune checkpoint inhibitors (ICIs) are shown to improve cancer treatment effectiveness by boosting the immune system of the patient. Nevertheless, the unique and highly suppressive TME poses a significant challenge, causing heterogeneity of response or resistance in a considerable number of patients. This review focuses on the evasive attributes of the TME. Immune evasion mechanism in TME include immunosuppressive cells, cytokine and chemokine signaling, metabolic alterations and overexpression of immune checkpoint molecules such as PD-1, CTLA-4, LAG-3, TIM-3, TIGIT, BTLA and their interactions within the TME. In addition, this review focuses on the overcoming resistance by targeting immunosuppressive cells, normalizing tumor blood vessels, blocking two or three checkpoints simultaneously, combining vaccines, oncolytic viruses and metabolic inhibitors with ICIs or other therapies. This review also focuses on the necessity of finding predictive markers for the stratification of patients and to check response of ICIs treatment. It remains to be made certain by new research and intelligent innovations how these discoveries of the TME and its interplay facilitate ICI treatment and change the face of cancer treatment.
Collapse
Affiliation(s)
- Gurpreet Singh Gill
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Simmi Kharb
- Department of Biochemistry, Pt. B.D. Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Gitanjali Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kailash Chand Kurdia
- Department of GI Surgery & Liver Transplantation, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Kim S, Jeon SH, Kim Y, Park N, Kim IA. TIGIT blockade increases efficacy of PD-1 blockade combined with radiation therapy in triple-negative breast cancer model. Radiother Oncol 2025; 208:110932. [PMID: 40360046 DOI: 10.1016/j.radonc.2025.110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/17/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND AND PURPOSE T-cell immunoreceptor with Ig and ITIM domains (TIGIT) suppresses functions of CD8+ T cells, and radiation therapy (RT) induces stimulation of regulatory T cells (Tregs), thereby limiting antitumor efficacy. This study aims to investigate the role of TIGIT in the immunosuppressive tumor environment and evaluate the potential of TIGIT blockade (αTIGIT) to enhance antitumor immune responses. METHODS We analyzed public transcriptomic data to identify the expression patterns of TIGIT on T cells in breast cancer and its prognostic impact. In addition, a murine TNBC model was utilized to evaluate the effects of αPD-1, local RT, and αTIGIT. T cells in tumors, tumor-draining lymph nodes (TdLNs), and the spleen were analyzed to assess the antitumor immune responses upon the treatments. RESULTS The analysis revealed that TIGIT is predominantly expressed on T cells within breast cancer, and the expression of TIGIT was associated with poor outcomes in TNBC patients. In the murine model, the combination of αPD-1 and RT increased TIGIT+CD226+CD8+ TILs, which are crucial for the efficacy of αTIGIT. Adding αTIGIT to αPD-1 and RT (αPD-1/RT) resulted in a synergistic antitumor effect, which was accompanied by increased infiltration of CD8+ TILs in both irradiated and nonirradiated tumors by the triple combination therapy compared to αPD-1/RT. The triple combination therapy also resulted in a less exhausted phenotype among CD8+ TILs and increased the proliferation of splenic CD8+ T cells. Moreover, αTIGIT significantly reduced Tregs in tumors, TdLNs, and the spleen when combined with αPD-1/RT. CONCLUSION αTIGIT exhibits synergistic effects when added to αPD-1/RT by increasing the infiltration and activation of CD8+ TILs while reducing Tregs. The study suggests that αTIGIT could be an effective strategy to enhance the antitumor efficacy of αPD-1 and RT in TNBC.
Collapse
Affiliation(s)
- Seongmin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yoomin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nawon Park
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Ah Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Jiang Y, Li X, Zhou W, Zhu H, Lao Y, Huang X, Huang L, Deng Z, Tang Y, Wang J. The imbalance of follicular helper T cells and follicular regulatory T cells is involved in renal injury in active lupus nephritis. Hum Immunol 2025; 86:111258. [PMID: 39954558 DOI: 10.1016/j.humimm.2025.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE This study is to research the role of follicular helper T (TFH) cells and follicular regulatory T (TFR) cells in the progression of lupus nephritis (LN). METHODS A total of 33 active LN patients, 30 stable LN patients, and 30 healthy controls (HC) were included in this study. The frequencies of TFH, TFR, T cell Ig and ITIM domain (TIGIT) + TFR, and CD226 + TFR cells in peripheral blood were measured using flow cytometry. The distribution and proportion of TFH and TFR cells in renal tissue were assessed using a multiplex immunohistochemical. RESULTS Active LN had a significantly lower TFR and TFR/TFH ratio in peripheral blood than HC and stable LN. TIGIT + TFR was lower in active LN, while CD226 + TFR was higher. In LN, TFR and TFR/TFH ratio showed a negative correlation with creatinine (CREA), but a positive correlation with endogenous creatinine clearance (Ccr). TFH and TFR mainly infiltrated the renal interstitium or surrounding renal tubules and participated in the formation of ectopic lymphoid-like structures in active LN. In active LN, TFH cells in renal tissue were higher than in control renal tissue. The tissue TFH showed a positive correlation with the activity index, CREA, but a negative correlation with Ccr. The tissue TFR/TFH ratio showed a negative correlation with the activity index, CREA, but a positive correlation with Ccr. CONCLUSION In active LN, the proportions of TFR cells in peripheral blood are reduced and function is impaired. In active LN, TFH and TFR imbalances have been observed and are associated with renal injury.
Collapse
Affiliation(s)
- Yanting Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Xi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Wei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Haiqing Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Yuehong Lao
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Xiaoxia Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Liuyi Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Zhenjia Deng
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Yuting Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Jian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China.
| |
Collapse
|
5
|
Chen P, Ren L, Guo Y, Sun Y. Boosting antitumor immunity in breast cancers: Potential of adjuvants, drugs, and nanocarriers. Int Rev Immunol 2025; 44:141-164. [PMID: 39611269 DOI: 10.1080/08830185.2024.2432499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Despite advancements in breast cancer treatment, therapeutic resistance, and tumor recurrence continue to pose formidable challenges. Therefore, a deep knowledge of the intricate interplay between the tumor and the immune system is necessary. In the pursuit of combating breast cancer, the awakening of antitumor immunity has been proposed as a compelling avenue. Tumor stroma in breast cancers contains multiple stromal and immune cells that impact the resistance to therapy and also the expansion of malignant cells. Activating or repressing these stromal and immune cells, as well as their secretions can be proposed for exhausting resistance mechanisms and repressing tumor growth. NK cells and T lymphocytes are the prominent components of breast tumor immunity that can be triggered by adjuvants for eradicating malignant cells. However, stromal cells like endothelial and fibroblast cells, as well as some immune suppressive cells, consisting of premature myeloid cells, and some subsets of macrophages and CD4+ T lymphocytes, can dampen antitumor immunity in favor of breast tumor growth and therapy resistance. This review article aims to research the prospect of harnessing the power of drugs, adjuvants, and nanoparticles in awakening the immune reactions against breast malignant cells. By investigating the immunomodulatory properties of pharmacological agents and the synergistic effects of adjuvants, this review seeks to uncover the mechanisms through which antitumor immunity can be triggered. Moreover, the current review delineates the challenges and opportunities in the translational journey from bench to bedside.
Collapse
Affiliation(s)
- Ping Chen
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Ren
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Youwei Guo
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Yan Sun
- Pharmacy Department, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
6
|
Kareva I, Hu P, Pierre V, Kitzing T, Victor A, Richter E, Gao W, Venkatakrishnan K, Zutshi A. Model-Informed Selection of the Recommended Phase 2 Dosage for Anti-TIGIT Immunotherapy Leveraging co-Expressed PD-1 Inhibitor Target Engagement. Clin Pharmacol Ther 2025; 117:1451-1459. [PMID: 39921877 PMCID: PMC11993286 DOI: 10.1002/cpt.3590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Refining dose projections requires a deep understanding of drug-target relationships at the site of action, which is often challenging to achieve. Here we present a case study of how one can refine dose projections for a TIGIT-targeted immunotherapy by leveraging information from the well-studied PD-1 pathway since the co-expression of PD-1 and TIGIT on immune cells provides a unique opportunity to extrapolate data from one target to inform the dosing strategy for the other. We develop a fit-for-purpose mathematical model that captures the experimentally observed relationship between the concentration of a mouse PD-1 antagonist in the plasma and PD-1 target engagement within the tumor microenvironment (TME). We then assess the applicability of this PD-1 model to elucidate the relationship between drug concentration and target engagement for tiragolumab, an anti-TIGIT antibody, across various doses. This analysis aims to refine our understanding of the dose-response relationship for targeting TIGIT, a critical step in optimizing therapeutic efficacy, without conducting additional experiments. The approach is then extended to project efficacious doses for M6223, another anti-TIGIT antibody, using the established PD-1 model, by leveraging the M6223 clinical PK and PD data, as well as virtual population analysis. This work provides a case study of a possible framework for refining dose projections via quantitative estimation of drug-target relationship at the site of action by leveraging established drug-target relationships. Through extrapolating information from a well-characterized pathway, we offer a method to inform dose optimization strategies with limited data using model-informed drug development.
Collapse
Affiliation(s)
| | - Ping Hu
- CPET, EMD SeronoBillericaMassachusettsUSA
| | | | | | - Anja Victor
- The Healthcare Business of Merck KGaADarmstadtGermany
| | | | - Wei Gao
- CPET, EMD SeronoBillericaMassachusettsUSA
| | | | | |
Collapse
|
7
|
Liu R, Jiang X, Dong R, Zhang Y, Gai C, Wei P. Revealing the mechanisms and therapeutic potential of immune checkpoint proteins across diverse protein families. Front Immunol 2025; 16:1499663. [PMID: 40356928 PMCID: PMC12066663 DOI: 10.3389/fimmu.2025.1499663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Host immune responses to antigens are tightly regulated through the activation and inhibition of synergistic signaling networks that maintain homeostasis. Stimulatory checkpoint molecules initiate attacks on infected or tumor cells, while inhibitory molecules halt the immune response to prevent overreaction and self-injury. Multiple immune checkpoint proteins are grouped into families based on common structural domains or origins, yet the variability within and between these families remains largely unexplored. In this review, we discuss the current understanding of the mechanisms underlying the co-suppressive functions of CTLA-4, PD-1, and other prominent immune checkpoint pathways. Additionally, we examine the IgSF, PVR, TIM, SIRP, and TNF families, including key members such as TIGIT, LAG-3, VISTA, TIM-3, SIRPα, and OX40. We also highlight the unique dual role of VISTA and SIRPα in modulating immune responses under specific conditions, and explore potential immunotherapeutic pathways tailored to the distinct characteristics of different immune checkpoint proteins. These insights into the unique advantages of checkpoint proteins provide new directions for drug discovery, emphasizing that emerging immune checkpoint molecules could serve as targets for novel therapies in cancer, autoimmune diseases, infectious diseases, and transplant rejection.
Collapse
Affiliation(s)
| | | | | | | | - Cong Gai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Huang S, Kang Y, Liu T, Xiong Y, Yang Z, Zhang Q. The role of immune checkpoints PD-1 and CTLA-4 in cardiovascular complications leading to heart failure. Front Immunol 2025; 16:1561968. [PMID: 40255399 PMCID: PMC12006013 DOI: 10.3389/fimmu.2025.1561968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
Immune checkpoints, such as PD-1 and CTLA-4, are crucial regulators of immune responses, acting as gatekeepers to balance immunity against foreign antigens and self-tolerance. These checkpoints play a key role in maintaining cardiac homeostasis by preventing immune-mediated damage to critical organs like the heart. In this study, we explored the involvement of PD-1 and CTLA-4 in cardiovascular complications, particularly atherosclerosis and myocarditis, which can lead to heart failure. We conducted a comprehensive analysis using animal models and clinical data to assess the effects of immune checkpoint inhibition on cardiac function. Our findings indicate that disruption of PD-1 and CTLA-4 pathways exacerbates myocardial inflammation, accelerates atherosclerotic plaque formation, and promotes the development of heart failure. Additionally, we observed that immune checkpoint inhibition in these models led to increased infiltration of T lymphocytes, higher levels of pro-inflammatory cytokines, and enhanced tissue damage. These results suggest that PD-1 and CTLA-4 are critical in preserving cardiac health, and their inhibition can result in severe cardiovascular toxicity. Our study emphasizes the need for careful monitoring of cardiovascular health in patients undergoing immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Shoulian Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yu Kang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Xiong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixuan Yang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Pizzarello CR, Jackson CM, Herman K, Seppo AE, Rebhahn J, Scherzi T, Berin MC, Looney RJ, Mosmann TR, Järvinen KM. A Phenotypically Distinct Human Th2 Cell Subpopulation Is Associated With Development of Allergic Disorders in Infancy. Allergy 2025; 80:949-964. [PMID: 39899007 PMCID: PMC11971024 DOI: 10.1111/all.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/18/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Little is known about the ontogeny of T cell immunity during infancy in farming and urban lifestyles due to the lack of immunophenotyping in such birth cohorts. METHODS Two birth cohorts (farming and urban) at differing risks and rates of allergic diseases were compared. Blood mononuclear cells were collected from infants at birth, and 6 and 12 months of age. Full spectrum flow cytometry, followed by traditional gating and the Scalable Weighted Iterative Flow-clustering Technique (SWIFT) high-dimensional analysis, were used to identify cell populations that differed between farming and urban infants. Additionally, single-cell RNAseq and multiplex cytokine assays were used to assess the function of cell populations of interest. RESULTS Several regulatory T cell (Treg) subpopulations were elevated in farming lifestyles and in non-atopic infants. A unique effector memory CD25+CD127+CD161-CD49d+CCR4+CRTH2+ Th2 population was elevated at 6 months in urban infants and in those who developed atopic dermatitis and/or food allergy and allergic sensitization. Although this population shared Th2 and IL-9 skewing with Th2A cells, the population uniquely failed to express CD161, produced more IL-2 and TNF-α, and upregulated the differentially expressed genes (DEGs), FOXP3 and the cytokine inducible SH2-containing protein gene (CISH) relative to Th2A cells. This population has been termed Th2B cells. CONCLUSION We describe a unique effector memory Th2 population elevated in urban high-risk infants, potentially implicated in the development of allergic disease.
Collapse
Affiliation(s)
- Catherine R Pizzarello
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Courtney M Jackson
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York, USA
| | - Katherine Herman
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York, USA
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York, USA
| | - Jonathan Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Tyler Scherzi
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - R John Looney
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
10
|
Mikulak J, Terzoli S, Marzano P, Cazzetta V, Martiniello G, Piazza R, Viano ME, Vitobello D, Portuesi R, Grizzi F, Hegazi MAAA, Fiamengo B, Basso G, Parachini L, Mannarino L, D'Incalci M, Marchini S, Mavilio D. Immune evasion mechanisms in early-stage I high-grade serous ovarian carcinoma: insights into regulatory T cell dynamics. Cell Death Dis 2025; 16:229. [PMID: 40164596 PMCID: PMC11958665 DOI: 10.1038/s41419-025-07557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
The mechanisms driving immune evasion in early-stage I high-grade serous ovarian carcinoma (HGSOC) remain poorly understood. To investigate this, we performed single-cell RNA-sequencing analysis. Our findings revealed a highly immunosuppressive HGSOC microenvironment, characterized by abundant infiltration of regulatory T cells (Tregs). Trajectory analysis uncovered differentiation pathways of naïve Tregs, which underwent either activation and proliferation or transcriptional instability. The predicted Treg-cell interaction network, including crosstalk within tumor cells, facilitates Treg mobility and maturation while reinforcing their immunosuppressive function and persistence in the tumor. Moreover, their interactions with immune cells likely inhibit CD8 T cells and antigen-presenting cells, supporting tumor immune escape. Additionally, more immunogenic tumor conditions, marked by IFNγ production, may contribute to Treg destabilization. Our findings underscore the pivotal role of Tregs in early immune evasion of HGSOC and provide insights into potential therapeutic strategies targeting their activity and differentiation fate.
Collapse
Affiliation(s)
- Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Paolo Marzano
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giampaolo Martiniello
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Maria Estefania Viano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Domenico Vitobello
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Rosalba Portuesi
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A A A Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Barbara Fiamengo
- Unit of Pathological Anatomy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gianluca Basso
- Humanitas Genomic Facility, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lara Parachini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
11
|
Chuang CH, Guo JC, Kato K, Hsu CH. Exploring novel immunotherapy in advanced esophageal squamous cell carcinoma: Is targeting TIGIT an answer? Esophagus 2025; 22:139-147. [PMID: 39847233 PMCID: PMC11929690 DOI: 10.1007/s10388-024-01105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignancy in Asia. Recent advancements in immune checkpoint inhibitors (ICIs) have markedly transformed the systemic therapy landscape for ESCC. Anti-PD-1-based combination with chemotherapy or with ipilimumab, an anti-CTLA-4 antibody, have been established as the new standard first-line treatments for patients with advanced ESCC. Moreover, anti-PD-1 monotherapy has demonstrated improved efficacy and survival compared with second-line chemotherapy in previously treated patients with ESCC. Novel ICIs targeting other immune checkpoints also show potential for enhancing anticancer therapy in advanced ESCC.The TIGIT/PVR pathway represents a new immune checkpoint. Preclinical studies have indicated that the dual blockade of TIGIT and PD-1 can enhance antitumor immune responses. Clinical trials have reported that combining anti-TIGIT with anti-PD-1/PD-L1 antibodies elicited clinical responses in patients with advanced ESCC. In the first-line systemic therapy setting, combinations of dual ICIs targeting TIGIT and PD-1/PD-L1 plus platinum-based chemotherapy have demonstrated acceptable toxicity profiles and promising antitumor activity in several phase II trials and one phase III study. However, the role of adding an anti-TIGIT antibody to the current standard of anti-PD-1/PD-L1 plus platinum-based chemotherapy in first-line therapy for advanced ESCC remains to be fully determined, necessitating further clinical trials. Ongoing studies are also investigating the role of anti-TIGIT, with or without anti-PD-1/PD-L1, in locoregional ESCC. Additional research is essential to optimize the potential of anti-TIGIT therapy in ESCC and other malignancies by identifying predictive biomarkers, determining optimal antibody types, and gaining key mechanistic insights.
Collapse
Affiliation(s)
- Chien-Huai Chuang
- Department of Medical Oncology, National Taiwan University Cancer Center, 7 Chung-Shan South Road, Taipei, 10002, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jhe-Cyuan Guo
- Department of Medical Oncology, National Taiwan University Cancer Center, 7 Chung-Shan South Road, Taipei, 10002, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Chih-Hung Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, 7 Chung-Shan South Road, Taipei, 10002, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
12
|
McTaggart T, Lim JX, Smith KJ, Heaney B, McDonald D, Hulme G, Hussain R, Coxhead J, Mann DA, Sayer AA, Granic A, Amarnath S. Deciphering Novel Communication Patterns in T Regulatory Cells From Very Old Adults. Aging Cell 2025:e70044. [PMID: 40100045 DOI: 10.1111/acel.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/30/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
Regulatory T cells (Tregs) are important in maintaining tolerance and are key players in immunity. In aging, increased Treg function along with low-grade inflammation has been reported. This dichotomy of enhanced Treg function along with inflammation highlights the importance of understanding Treg biology and communication patterns in the very old. In this proof-of-concept study, we demonstrate that aged Tregs (85 years) do not significantly communicate with CD4+ and CD8+ T effectors when compared with healthy < 66-year-olds. Of note was the enhanced communication of aged Tregs with CD3+CD8+CD56+CD161- NK-like T-cell populations, which are important in antitumor and chronic viral diseases in older individuals. We found that in turn this population of killer-like T cells showed diminished cytotoxic characteristics, and killer receptor expression. Taken together, our proof-of-concept study delineates the biology of Tregs and identifies previously undefined communication patterns in the very old.
Collapse
Affiliation(s)
- Tegan McTaggart
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Jing Xuan Lim
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Katie J Smith
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Bronagh Heaney
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - David McDonald
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Gillian Hulme
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Derek A Mann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Avan A Sayer
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- AGE Research Group, Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Antoneta Granic
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- AGE Research Group, Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Shoba Amarnath
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
13
|
Naing A, McKean M, Tolcher A, Victor A, Hu P, Gao W, Nogueira Filho MAF, Kitzing T, Gleicher S, Holland D, Richter E, Tadjalli-Mehr K, Siu LL. TIGIT inhibitor M6223 as monotherapy or in combination with bintrafusp alfa in patients with advanced solid tumors: a first-in-human, phase 1, dose-escalation trial. J Immunother Cancer 2025; 13:e010584. [PMID: 39929671 PMCID: PMC11815413 DOI: 10.1136/jitc-2024-010584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND M6223 is an intravenous (IV), Fc-competent, fully human, antagonistic, anti-T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) antibody. Bintrafusp alfa (BA) is a bifunctional fusion protein that simultaneously blocks nonredundant immunosuppressive TGF-β and PD-(L)1 pathways. METHODS This first-in-human, dose-escalation study in patients with advanced solid tumors (N=58; aged ≥18 years, ECOG PS≤1) evaluated M6223 alone (Part 1A, n=40; M6223 10-2400 mg every 2 weeks, n=32; M6223 2400 mg every 3 weeks, n=8) or with BA (Part 1B, n=18; M6223 300-1600 mg with BA 1200 mg; both every 2 weeks, intravenous). Primary objectives were safety, tolerability, maximum tolerated dose (MTD) and recommended dose for expansion (RDE). Additional objectives included pharmacokinetics, pharmacodynamics and clinical activity (NCT04457778). RESULTS Two dose-limiting toxicities were observed: grade 3 adrenal insufficiency (Part 1A: M6223 900 mg every 2 weeks) and grade 3 anemia (Part 1B: M6223 300 mg, only BA related). MTD was not reached. Overall, median overall survival and progression-free survival were 7.6 (95% CI 4.9, 12.0) and 1.4 (95% CI 1.3, 1.8) months, respectively. Stable disease as best response was observed in 13 (32.5%) and 5 (27.8%) patients in parts 1A and 1B, respectively. M6223±BA displayed a linear pharmacokinetic profile. Anti-TIGIT mode-of-action-related pharmacodynamic effects were observed in peripheral blood and in tumor tissue. RDEs were 1600 mg every 2 weeks or 2400 mg every 3 weeks for M6223 monotherapy and 1600+1200 mg every 2 weeks for M6223+BA. CONCLUSIONS M6223±BA had a manageable safety profile, with RDEs defined for both monotherapy and combination therapy. Further evaluation of M6223 is ongoing in combination with the PD-L1 inhibitor avelumab in patients with advanced urothelial carcinoma (JAVELIN Bladder Medley; NCT05327530). TRIAL REGISTRATION NUMBER NCT04457778.
Collapse
Affiliation(s)
- Aung Naing
- The University of Texas MD Anderson Cancer Centre, Houston, Texas, USA
| | | | | | | | - Ping Hu
- EMD Serono, Billerica, Massachusetts, USA
| | - Wei Gao
- EMD Serono, Billerica, Massachusetts, USA
| | | | | | | | | | | | | | - Lillian L Siu
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Li G, Li S, Jiang Y, Chen T, An Z. Unleashing the Power of immune Checkpoints: A new strategy for enhancing Treg cells depletion to boost antitumor immunity. Int Immunopharmacol 2025; 147:113952. [PMID: 39764997 DOI: 10.1016/j.intimp.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025]
Abstract
Regulatory T (Treg) cells, immunosuppressive CD4+ T cells, can impede anti-tumor immunity, complicating cancer treatment. Since their discovery, numerous studies have been dedicated to understand Treg cell biology, with a focus on checkpoint pathways' role in their generation and function. Immune checkpoints, such as PD-1/PD-L1, CTLA-4, TIGIT, TIM-3, and OX40, are pivotal in controlling Treg cell expansion and activity in the tumor microenvironment (TME), affecting their ability to suppress immune responses. This review examines the complex relationship between these checkpoints and Tregs in the TME, and how they influence tumor immunity. We also discuss the therapeutic potential of targeting these checkpoints to enhance anti-tumor immunity, including the use of immune checkpoint blockade (ICB) therapies and novel approaches such as CCR8-targeted therapies. Understanding the interaction between immune checkpoints and Treg cells can lead to more effective immunotherapeutic strategies, such as combining CCR8-targeted therapies with immune checkpoint inhibitors, to improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Guoxin Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Siqi Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yilin Jiang
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tao Chen
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Chiarolla CM, Schulz AR, Meir M, Ferrara S, Xiao Y, Reu-Hofer S, Romero-Olmedo AJ, Falcone V, Hoffmann K, Büttner-Herold M, Prelog M, Rosenwald A, Hengel H, Lohoff M, Chang HD, Schlegel N, Mei HE, Berberich-Siebelt F. Pro-inflammatory NK-like T cells are expanded in the blood and inflamed intestine in Crohn's disease. Mucosal Immunol 2025; 18:162-175. [PMID: 39521274 DOI: 10.1016/j.mucimm.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Altered intestinal immune homeostasis leads to chronic inflammation in Crohn's disease (CD). To address disease- and tissue-specific alterations, we performed a T cell-centric mass cytometry analysis of peripheral and intestinal lymphocytes from patients with CD and healthy donors' PBMCs. Chronic intestinal inflammation enforced activation, exhaustion, and terminal differentiation of CD4+ and CD8+ T cells and a relative enrichment of CD4+ regulatory T (Treg) cells. Moreover, enigmatic rare Treg subsets appeared upon inflammation, e.g. CD4+FOXP3+HLA-DR+TIGIT- and CD4+FOXP3+CD56+, expressing pro-inflammatory IFN-γ upon in vitro stimulation. Some conventional T (Tcon) cells acquired NK-like features. In CD patients' blood, not well studied CD16+CCR6+CD127+ T cells appeared, being CD4+ or CD8+, a phenotype inducible on healthy T cells by CD blood plasma. Upon CD16-mediated antibody binding, they could attain effector function. These findings suggest an uncommon pro-inflammatory innate-like differentiation of Treg and Tcon cells with acquisition of non-specific cytotoxicity. Most likely, this is both cause and consequence of intestinal inflammation during CD.
Collapse
Affiliation(s)
- Cristina M Chiarolla
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Axel R Schulz
- Mass Cytometry Lab, German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Michael Meir
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian Ferrara
- Mass Cytometry Lab, German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Simone Reu-Hofer
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Addi J Romero-Olmedo
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Valeria Falcone
- Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Katja Hoffmann
- Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany; Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michael Lohoff
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| | - Hyun-Dong Chang
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, 10117 Berlin, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Henrik E Mei
- Mass Cytometry Lab, German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | | |
Collapse
|
16
|
Li S, Pan Y, Ye R, Wang Y, Li L. Immune checkpoints in B-cell Lymphoma: Still an Unmet challenge from Basic research to clinical practice. Int Immunopharmacol 2025; 146:113717. [PMID: 39673995 DOI: 10.1016/j.intimp.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In the last decade, advancements in immunotherapy knowledge have highlighted CTLA-4, PD-1, LAG-3, TIM-3, and TIGIT, decisive immune checkpoints exhibiting within the tumor microenvironment (TME), as fundamental objects for cancer immunotherapy. The widespread clinical use of immune checkpoint inhibitors (ICls), employing PD-1/PD-L1 or CTLA-4 antibodies to obstruct crucial checkpoint regulators, is noted in treating B-cell lymphoma patients. Nevertheless, the prolonged advantages of the currently employed treatments against CTLA-4, PD-1, and PD-L1 are uncommon among patients. Thus, recent focus has been progressively moved to additional immune checkpoints on T cells, like LAG-3, TIM-3, and TIGIT, which are now seen as reassuring targets for treatment and broadly acknowledged. There are several types of immunecheckpoint molecules expressed by T cells, and inhibitors targeting immune checkpoints can revive and amplify the immune response of T lymphocytes against tumors, a crucial aspect in lymphoma therapy. However, there is little knowledge about their regulation. Herein, we discuss the anti-tumor effects and functions of ICIs in controlling T-cell activity, as well as the progress in combined application with other immunotherapies.
Collapse
Affiliation(s)
- Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yuanyuan Pan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yu Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
17
|
Galasso L, Termite F, Mignini I, Esposto G, Borriello R, Vitale F, Nicoletti A, Paratore M, Ainora ME, Gasbarrini A, Zocco MA. Unraveling the Role of Fusobacterium nucleatum in Colorectal Cancer: Molecular Mechanisms and Pathogenic Insights. Cancers (Basel) 2025; 17:368. [PMID: 39941737 PMCID: PMC11816155 DOI: 10.3390/cancers17030368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Fusobacterium nucleatum, a gram-negative anaerobic bacterium, has emerged as a significant player in colorectal cancer (CRC) pathogenesis. The bacterium causes a persistent inflammatory reaction in the colorectal mucosa by stimulating the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α, creating an environment conducive to cancer progression. F. nucleatum binds to and penetrates epithelial cells through adhesins such as FadA, impairing cell junctions and encouraging epithelial-to-mesenchymal transition (EMT), which is associated with cancer advancement. Additionally, the bacterium modulates the host immune system, suppressing immune cell activity and creating conditions favorable for tumor growth. Its interactions with the gut microbiome contribute to dysbiosis, further influencing carcinogenic pathways. Evidence indicates that F. nucleatum can inflict DNA damage either directly via reactive oxygen species or indirectly by creating a pro-inflammatory environment. Additionally, it triggers oncogenic pathways, especially the Wnt/β-catenin signaling pathway, which promotes tumor cell growth and longevity. Moreover, F. nucleatum alters the tumor microenvironment, impacting cancer cell behavior, metastasis, and therapeutic responses. The purpose of this review is to elucidate the molecular mechanisms by which F. nucleatum contributes to CRC. Understanding these mechanisms is crucial for the development of targeted therapies and diagnostic strategies for CRC associated with F. nucleatum.
Collapse
Affiliation(s)
- Linda Galasso
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Fabrizio Termite
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Irene Mignini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Giorgio Esposto
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Raffaele Borriello
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Federica Vitale
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Alberto Nicoletti
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Mattia Paratore
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Elena Ainora
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Assunta Zocco
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| |
Collapse
|
18
|
Li G, Cui J, Li T, Li W, Chen P. A risk signature constructed by Tregs-related genes predict the clinical outcomes and immune therapeutic response in kidney cancer. Discov Oncol 2025; 16:64. [PMID: 39833617 PMCID: PMC11747013 DOI: 10.1007/s12672-025-01787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Regulatory T cells (Tregs) have been found to be related to immune therapeutic resistance in kidney cancer. However, the potential Tregs-related genes still need to be explored. Our study found that patients with high Tregs activity show poor prognosis. Through co-expression and differential expression analysis, we screened several Tregs-related genes (KTRGs) in kidney renal clear cell carcinoma. We further conducted the univariate Cox regression analysis and determined the prognosis-related KTRGs. Through the machine learning algorithm-Boruta, the potentially important KTRGs were screened further and submitted to construct a risk model. The risk model could predict the prognosis of RCC patients well, high risk patients show a poorer outcomes than low risk patients. Multivariate Cox regression analysis reveals that risk score is an independent prognostic factor. Then, the nomogram model based on KTRG risk score and other clinical variables was further established, which shows a high predicted accuracy and clinical benefit based on model validation methods. In addition, we found EMT, JAK/STAT3, and immune-related pathways highly enriched in high risk groups, while metabolism-related pathways show a low enrichment. Through analyzing two other external immune therapeutic datasets, we found that the risk score could predict the patient's immune therapeutic response. High-risk groups represent a worse therapeutic response than low-risk groups. In summary, we identified several Tregs-related genes and constructed a risk model to predict prognosis and immune therapeutic response. We hope these organized data can provide a theoretical basis for exploring potential Tregs' targets to synergize the immune therapy for RCC patients.
Collapse
Affiliation(s)
- Gang Li
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China
| | - Jingmin Cui
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China
| | - Tao Li
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China
| | - Wenhan Li
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China
| | - Peilin Chen
- Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China.
| |
Collapse
|
19
|
Sun J, Tian Y, Yang C. Target therapy of TIGIT; a novel approach of immunotherapy for the treatment of colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:231-241. [PMID: 39158733 DOI: 10.1007/s00210-024-03346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), a newly discovered checkpoint, is characterized by its elevated expression on CD4 + T cells, CD8 + T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). Research to date has been shown that TIGIT has been linked to exhaustion of NK cell both and T cells in numerous cancers. CD155, being the specific ligand of TIGIT in humans, emerges as a key target for immunotherapy owing to its crucial interaction with TIGIT. Furthermore, numerous studies have demonstrated that the combination of TIGIT with other immune checkpoint inhibitors (ICIs) and/or traditional treatments elicits a potent antitumor response in colorectal cancer (CRC). This review provides an overview of the structure, function, and signaling pathways associated with TIGIT across multiple immune system cell types. Additionally, focusing on the role of TIGIT in the progression of CRC, this study reviewed various studies exploring TIGIT-based immunotherapy in CRC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yan Tian
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Changqing Yang
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
20
|
Hosseininejad-Chafi M, Eftekhari Z, Oghalaie A, Behdani M, Sotoudeh N, Kazemi-Lomedasht F. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy. Med Oncol 2024; 42:36. [PMID: 39719469 DOI: 10.1007/s12032-024-02588-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection. Traditional antibodies, such as IgGs, have been widely used in immune therapies but are limited by their size and complexity. Nanobodies (Nbs), derived from camelid heavy-chain-only antibodies, offer a promising alternative. These small, stable antibody fragments retain the antigen-binding specificity of traditional antibodies but have enhanced solubility and the ability to target otherwise inaccessible epitopes. This review explores the use of Nbs as ICIs, emphasizing their potential in cancer immunotherapy and other immune-related treatments. Their unique structural properties and small size make Nbs highly effective tools for modulating immune responses, representing a novel approach in the evolving landscape of checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Nazli Sotoudeh
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
21
|
Tang Q, Leng S, Tan Y, Cheng H, Liu Q, Wang Z, Xu Y, Zhu L, Wang C. Chitosan/dextran-based organohydrogel delivers EZH2 inhibitor to epigenetically reprogram chemo/immuno-resistance in unresectable metastatic melanoma. Carbohydr Polym 2024; 346:122645. [PMID: 39245506 DOI: 10.1016/j.carbpol.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Melanoma either intrinsically possesses resistance or rapidly acquires resistance to anti-tumor therapy, which often leads to local recurrence or distant metastasis after resection. In this study, we found histone 3 lysine 27 (H3K27) demethylated by an inhibitor of histone methyltransferase EZH2 could epigenetically reverse the resistance to chemo-drug paclitaxel (PTX), or enhance the efficacy of immune checkpoint inhibitor anti-TIGIT via downregulating TIGIT ligand CD155. Next, to address the complexity in the combination of multiple bioactive molecules with distinct therapeutic properties, we developed a polysaccharides-based organohydrogel (OHG) configured with a heterogenous network. Therein, hydroxypropyl chitosan (HPC)-stabilized emulsions for hydrophobic drug entrapment were crosslinked with oxidized dextran (Odex) to form a hydrophilic gel matrix to facilitate antibody accommodation, which demonstrated a tunable sustained release profile by optimizing emulsion/gel volume ratios. As results, local injection of OHG loaded with EZH2 inhibitor UNC1999, PTX and anti-TIGIT did not only synergistically enhance the cytotoxicity of PTX, but also reprogrammed the immune resistance via bi-directionally blocking TIGIT/CD155 axis, leading to the recruitment of cytotoxic effector cells into tumor and conferring a systemic immune memory to prevent lung metastasis. Hence, this polysaccharides-based OHG represents a potential in-situ epigenetic-, chemo- and immunotherapy platform to treat unresectable metastatic melanoma.
Collapse
Affiliation(s)
- Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaolong Leng
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China
| | - Yinqiu Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China
| | - Huan Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong 523710, PR China
| | - Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, No.245, People East Road, Kunming 650051, PR China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China.
| | - Linyu Zhu
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China.
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, PR China.
| |
Collapse
|
22
|
Shao Y, Yang WY, Nanayakkara G, Saaoud F, Ben Issa M, Xu K, Lu Y, Jiang X, Mohsin S, Wang H, Yang X. Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4 +Foxp3 + Regulatory T Cell Immunosuppression. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100022. [PMID: 39926714 PMCID: PMC11804271 DOI: 10.53941/ijddp.2024.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Although previous reviews explored the roles of selected immune checkpoints (ICPs) in cardiovascular diseases (CVD) and cerebrovascular diseases from various perspectives, many related aspects have yet to be thoroughly reviewed and analyzed. Our comprehensive review addresses this gap by discussing the cellular functions of ICPs, focusing on the tissue-specific and microenvironment-localized transcriptomic and posttranslational regulation of ICP expressions, as well as their functional interactions with metabolic reprogramming. We also analyze how 14 pairs of ICPs, including CTLA-4/CD86-CD80, PD1-PDL-1, and TIGIT-CD155, regulate CVD pathogenesis. Additionally, the review covers the roles of ICPs in modulating CD4+Foxp3+ regulatory T cells (Tregs), T cells, and innate immune cells in various CVDs and cerebrovascular diseases. Furthermore, we outline seven immunological principles to guide the development of new ICP-based therapies for CVDs. This timely and thorough analysis of recent advancements and challenges provide new insights into the role of ICPs in CVDs, cerebrovascular diseases and Tregs, and will support the development of novel therapeutics strategies for these diseases.
Collapse
Affiliation(s)
- Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - William Y. Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Gayani Nanayakkara
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT84112, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Sadia Mohsin
- Aging + Cardiovascular Discovery Center (ACDC), Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| |
Collapse
|
23
|
Dookie RS, Villegas-Mendez A, Cheeseman A, Jones AP, Barroso R, Barrett JR, Draper SJ, Janse CJ, Grogan JL, MacDonald AS, Couper KN. Synergistic blockade of TIGIT and PD-L1 increases type-1 inflammation and improves parasite control during murine blood-stage Plasmodium yoelii non-lethal infection. Infect Immun 2024; 92:e0034524. [PMID: 39324794 PMCID: PMC11556036 DOI: 10.1128/iai.00345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Pro-inflammatory immune responses are rapidly suppressed during blood-stage malaria but the molecular mechanisms driving this regulation are still incompletely understood. In this study, we show that the co-inhibitory receptors TIGIT and PD-1 are upregulated and co-expressed by antigen-specific CD4+ T cells (ovalbumin-specific OT-II cells) during non-lethal Plasmodium yoelii expressing ovalbumin (PyNL-OVA) blood-stage infection. Synergistic blockade of TIGIT and PD-L1, but not individual blockade of each receptor, during the early stages of infection significantly improved parasite control during the peak stages (days 10-15) of infection. Mechanistically, this protection was correlated with significantly increased plasma levels of IFN-γ, TNF, and IL-2, and an increase in the frequencies of IFN-γ-producing antigen-specific T-bet+ CD4+ T cells (OT-II cells), but not antigen-specific CD8+ T cells (OT-I cells), along with expansion of the splenic red pulp and monocyte-derived macrophage populations. Collectively, our study identifies a novel role for TIGIT in combination with the PD1-PD-L1 axis in regulating specific components of the pro-inflammatory immune response and restricting parasite control during the acute stages of blood-stage PyNL infection.
Collapse
Affiliation(s)
- Rebecca S. Dookie
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ana Villegas-Mendez
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antonn Cheeseman
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adam P. Jones
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ruben Barroso
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Leiden Malaria Group, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jane L. Grogan
- Department of Cancer Immunology, Genentech, South San Francisco, California, USA
| | - Andrew S. MacDonald
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kevin N. Couper
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Wei X, Zhao L, Yang F, Yang Y, Zhang H, Du K, Tian X, Fan R, Si G, Wang K, Li Y, Wei Z, He M, Sui J. A CD25×TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion. Mol Ther 2024; 32:4075-4094. [PMID: 39245938 PMCID: PMC11573620 DOI: 10.1016/j.ymthe.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Intratumoral regulatory T cells (Tregs) express high levels of CD25 and TIGIT, which are also recognized as markers of effector T cell (Teff) activation. Targeting these molecules each alone with monoclonal antibodies (mAbs) poses a risk of concurrently depleting both Teffs and peripheral Tregs, thereby compromising the effectiveness and selectivity of intratumoral Treg depletion. Here, leveraging the increased abundance of CD25+ TIGIT+ double-positive Tregs in the solid tumor microenvironment (but not in peripheral tissues), we explore the feasibility of using a CD25×TIGIT bispecific antibody (bsAb) to selectively deplete intratumoral Tregs. We initially constructed a bsAb co-targeting mouse CD25 and TIGIT, NSWm7210, and found that NSWm7210 conferred enhanced intratumoral Treg depletion, Teff activation, and tumor suppression as compared to the parental monotherapies in mouse models. We subsequently constructed a bsAb co-targeting human CD25 and TIGIT (NSWh7216), which preferentially eliminated CD25+ TIGIT+ double-positive cells over single-positive cells in vitro. NSWh7216 exhibited enhanced anti-tumor activity without toxicity of peripheral Tregs in CD25 humanized mice compared to the parental monotherapies. Our study illustrates the use of CD25×TIGIT bsAbs as effective agents against solid tumors based on selective depletion of intratumoral Tregs.
Collapse
Affiliation(s)
- Xin Wei
- School of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Linlin Zhao
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Fang Yang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yajing Yang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Huixiang Zhang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Kaixin Du
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Xinxin Tian
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Ruihua Fan
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Guangxu Si
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Kailun Wang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Miaomiao He
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
25
|
Wheless MC, Comer M, Gibson MK. Evolving Treatment Landscape for Advanced Esophageal and Gastroesophageal Junction Adenocarcinoma. Curr Oncol Rep 2024; 26:1469-1488. [PMID: 39441479 PMCID: PMC11579124 DOI: 10.1007/s11912-024-01607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW This review highlights advances and recent changes in the treatment paradigm for advanced esophageal adenocarcinoma (EAC) and gastroesophageal junction adenocarcinoma (GEJAC). RECENT FINDINGS Chemotherapy remains the backbone of treatment for advanced EAC/GEJAC. New targets/agents include immunotherapy, HER-2, claudin18.2, and FGFR2b, with various mechanisms (CAR-T, bispecific mAB, ADCs) altering the treatment landscape against these targets. The approaches to these targets may act together, in sequence, and even synergistically to improve outcomes. Herein, we review the state of the field, including highlighting ongoing clinical trials and additional emerging agents and approaches.
Collapse
Affiliation(s)
- Margaret C Wheless
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margaret Comer
- Vanderbilt University Medical School, Nashville, TN, USA
| | - Michael K Gibson
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA.
| |
Collapse
|
26
|
Liu Y, Zhang J, Li S, Chen W, Wu R, Hao Z, Xu J. Prediction of TNFRSF9 expression and molecular pathological features in thyroid cancer using machine learning to construct Pathomics models. Endocrine 2024; 86:324-332. [PMID: 38753243 DOI: 10.1007/s12020-024-03862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/04/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The TNFRSF9 molecule is pivotal in thyroid carcinoma (THCA) development. This study utilizes Pathomics techniques to predict TNFRSF9 expression in THCA tissue and explore its molecular mechanisms. METHODS Transcriptome data, pathology images, and clinical information from the cancer genome atlas (TCGA) were analyzed. Image segmentation and feature extraction were performed using the OTSU's algorithm and pyradiomics package. The dataset was split for training and validation. Features were selected using maximum relevance minimum redundancy recursive feature elimination (mRMR_RFE) and modeling conducted with the gradient boosting machine (GBM) algorithm. Model evaluation included receiver operating characteristic curve (ROC) analysis. The Pathomics model output a probabilistic pathomics score (PS) for gene expression prediction, with its prognostic value assessed in TNFRSF9 expression groups. Subsequent analysis involved gene set variation analysis (GSVA), immune gene expression, cell abundance, immunotherapy susceptibility, and gene mutation analysis. RESULTS High TNFRSF9 expression correlated with worsened progression-free interval (PFI) and acted as an independent risk factor [hazard ratio (HR) = 2.178, 95% confidence interval (CI) 1.045-4.538, P = 0.038]. Nine pathohistological features were identified. The GBM Pathomics model demonstrated good prediction efficacy [area under the curve (AUC) 0.819 and 0.769] and clinical benefits. High PS was a PFI risk factor (HR = 2.156, 95% CI 1.047-4.440, P = 0.037). Patients with high PS potentially exhibited enriched pathways, increased TIGIT gene expression, Tregs infiltration (P < 0.0001), and higher rates of gene mutations (BRAF, TTN, TG). CONCLUSIONS The GBM Pathomics model constructed based on the pathohistological features of H&E-stained sections well predicted the expression level of TNFRSF9 molecules in THCA.
Collapse
Affiliation(s)
- Ying Liu
- Department of Endocrine and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, China
| | - Junping Zhang
- Department of Endocrine and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shanshan Li
- Department of Endocrine and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wen Chen
- Department of Endocrine and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rongqian Wu
- Department of Endocrine and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zejin Hao
- Department of Endocrine and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrine and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, China.
| |
Collapse
|
27
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|
28
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Hyperactivating EZH2 to augment H3K27me3 levels in regulatory T cells enhances immune suppression by driving early effector differentiation. Cell Rep 2024; 43:114724. [PMID: 39264807 PMCID: PMC12052300 DOI: 10.1016/j.celrep.2024.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here, we assess whether increasing H3K27me3 levels, by using an Ezh2Y641F gain-of-function mutation, will improve Treg cell function. We find that Treg cells expressing Ezh2Y641F display an effector Treg phenotype, are poised for improved homing to organ tissues, and can accelerate remission from autoimmunity. The H3K27me3 landscape and transcriptome of naive Ezh2Y641F Treg cells exhibit a redistribution of H3K27me3 modifications that recapitulates the gene expression profile of activated Ezh2WT Treg cells after CD28 co-stimulation. Altogether, increased H3K27me3 levels promote the differentiation of effector Treg cells that can better suppress autoimmunity.
Collapse
Affiliation(s)
- Janneke G C Peeters
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephanie Silveria
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Merve Ozdemir
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT. Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape. Front Immunol 2024; 15:1424396. [PMID: 39346924 PMCID: PMC11427296 DOI: 10.3389/fimmu.2024.1424396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.
Collapse
Affiliation(s)
- Julio F Inocencio
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stefan Mitrasinovic
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
30
|
Liu Z, Wang G, Liu H, Ding K, Song J, Fu R. ACT001 inhibits primary central nervous system lymphoma tumor growth by enhancing the anti-tumor effect of T cells. Biomed Pharmacother 2024; 178:117133. [PMID: 39024837 DOI: 10.1016/j.biopha.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a group of malignant brain tumors with a poor prognosis, and new therapeutic approaches for this tumor urgently need to be investigated. Formulated from a long-standing anti-inflammatory drugs, ACT001 has demonstrated in clinical research to be able to pass through the blood-brain barrier (BBB) and affect the central nervous system. The effects of ACT001 on PCNSL cell apoptosis, proliferation and immune-related indexes were detected by flow cytometry, and the efficacy of ACT001 was verified in vivo by constructing a mouse PCNSL tumor model. ACT001 significantly inhibited PCNSL cell proliferation and induced apoptosis in vitro. In addition, ACT001 can significantly inhibit the PD-1/PD-L1 expression and restore the function of T cells, so that the immune system cannot allow tumor cells to escape. In vivo experiments show that co-infusion of ACT001 and T cells effectively inhibits PCNSL tumor growth in NSG mice. Our work describes the inhibitory effect of ACT001 on the PCNSL cell line and demonstrated the inhibitory effect of ACT001 on immune checkpoints.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China.
| | - Guanrou Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China.
| |
Collapse
|
31
|
Cai S, Zhao M, Yang G, Li C, Hu M, Yang L, Xing L, Sun X. Modified spatial architecture of regulatory T cells after neoadjuvant chemotherapy in non-small cell lung cancer patients. Int Immunopharmacol 2024; 137:112434. [PMID: 38889507 DOI: 10.1016/j.intimp.2024.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
It is crucial to decipher the modulation of regulatory T cells (Tregs) in tumor microenvironment (TME) induced by chemotherapy, which may contribute to improving the efficacy of neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer (NSCLC). We retrospectively collected specimens from patients with II-III NSCLC, constituting two cohorts: a neoadjuvant chemotherapy (NAC) cohort (N = 141) with biopsy (N = 58) and postoperative specimens (N = 141), and a surgery-only cohort (N = 122) as the control group. Then, the cell density (Dens), infiltration score (InS), and Treg-cell proximity score (TrPS) were conducted using a panel of multiplex fluorescence staining (Foxp3, CD4, CD8, CK, CD31, ɑSMA). Subsequently, the association of Tregs with cancer microvessels (CMVs) and cancer-associated fibroblasts (CAFs) was analyzed. Patients with NAC treatment have a higher density of Tregs in both paired (P < 0.001) and unpaired analysis (P = 0.022). Additionally, patients with NAC treatment showed higher infiltration score (paired, P < 0.001; unpaired, P = 0.014) and more CD8+T cells around Tregs (paired/unpaired, both P < 0.001). Subgroup analysis indicated that tumors with a diameter of ≤ 5 cm exhibited increase in both Dens(Treg) and InS(Treg), and gemcitabine, pemetrexed and taxel enhanced Dens(Treg) and TrPS(CD8) following NAC. Multivariate analysis identified that the Dens(Tregs), InS(Tregs) and TrPS(CD8) were significantly associated with better chemotherapy response [OR = 8.54, 95%CI (1.69, 43.14), P = 0.009; OR = 7.14, 95%CI (1.70, 30.08), P = 0.024; OR = 5.50, 95%CI (1.09, 27.75), P = 0.039, respectively] and positive recurrence-free survival [HR = 3.23, 95%CI (1.47, 7.10), P = 0.004; HR = 2.70; 95%CI (1.27, 5.72); P = 0.010; HR = 2.55, 95%CI (1.21, 5.39), P = 0.014, respectively]. Moreover, TrPS(CD8) and TrPS(CD4) were negatively correlated with the CMVs and CAFs. These discoveries have deepened our comprehension of the immune-modulating impact of chemotherapy and underscored that the modified spatial landscape of Tregs after chemotherapy should be taken into account for personalized immunotherapy, aiming to ultimately improve clinical outcomes in patients with NSCLC.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
32
|
Chen H, Wei J, Zhu Z, Hou Y. Multifaceted roles of PD-1 in tumorigenesis: From immune checkpoint to tumor cell-intrinsic function. Mol Carcinog 2024; 63:1436-1448. [PMID: 38751009 DOI: 10.1002/mc.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Programmed cell death 1 (PD-1), a key immune checkpoint receptor, has been extensively studied for its role in regulating immune responses in cancer. However, recent research has unveiled a complex and dual role for PD-1 in tumorigenesis. While PD-1 is traditionally associated with immune cells, this article explores its expression in various cancer cells and its impact on cancer progression. PD-1's functions extend beyond immune regulation, as it has been found to both promote and suppress tumor growth, depending on the cancer type. These findings have significant implications for the future of cancer treatment and our understanding of the immune response in the context of cancer. This article calls for further research into the multifaceted roles of PD-1 to optimize its therapeutic potential and improve patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jiayu Wei
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhen Zhu
- Zhenjiang Stomatological Hospital, Zhenjiang, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Seel K, Schirrmann RL, Stowitschek D, Ioseliani T, Roiter L, Knierim A, André MC. Blockade of the TIGIT-CD155/CD112 axis enhances functionality of NK-92 but not cytokine-induced memory-like NK cells toward CD155-expressing acute myeloid leukemia. Cancer Immunol Immunother 2024; 73:180. [PMID: 38967649 PMCID: PMC11226419 DOI: 10.1007/s00262-024-03766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
TIGIT is an alternative checkpoint receptor (CR) whose inhibition promotes Graft-versus-Leukemia effects of NK cells. Given the significant immune-permissiveness of NK cells circulating in acute myeloid leukemia (AML) patients, we asked whether adoptive transfer of activated NK cells would benefit from additional TIGIT-blockade. Hence, we characterized cytokine-induced memory-like (CIML)-NK cells and NK cell lines for the expression of inhibitory CRs. In addition, we analyzed the transcription of CR ligands in AML patients (CCLE and Beat AML 2.0 cohort) in silico and evaluated the efficacy of CR blockade using in vitro cytotoxicity assays, CD69, CD107a and IFN-γ expression. Alternative but not classical CRs were abundantly expressed on healthy donor NK cells and even further upregulated on CIML-NK cells. In line with our finding that CD155, one important TIGIT-ligand, is reliably expressed on AMLs, we show improved killing of CD155+-AML blasts by NK-92 but interestingly not CIML-NK cells in the presence of TIGIT-blockade. Additionally, our in silico data (n = 671) show that poor prognosis AML patients rather displayed a CD86low CD112/CD155high phenotype, whereas patients with a better outcome rather exhibited a CD86high CD112/CD155low phenotype. Collectively, our data evidence that the complex CR ligand expression profile on AML blasts may be one explanation for the intrinsic NK cell exhaustion observed in AML patients which might be overcome with adoptive NK-92 transfer in combination with TIGIT-blockade.
Collapse
Affiliation(s)
- Katharina Seel
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Ronja Larissa Schirrmann
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Daniel Stowitschek
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Tamar Ioseliani
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Lea Roiter
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Alina Knierim
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Maya C André
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany.
- Division of Respiratory and Critical Care Medicine, University Children`s Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Miraki Feriz A, Khosrojerdi A, Erfanian N, Azarkar S, Sajjadi SM, Shojaei MJ, Vaferi MJ, Safarpour H, Racanelli V. Targeting the dynamic transcriptional landscape of Treg subpopulations in pancreatic ductal adenocarcinoma: Insights from single-cell RNA sequencing analysis with a focus on CTLA4 and TIGIT. Immunobiology 2024; 229:152822. [PMID: 38852289 DOI: 10.1016/j.imbio.2024.152822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that represents a significant challenge in cancer research and clinical management. In this study, we reanalyzed a published single-cell RNA sequencing (scRNA-seq) dataset from PDAC and adjacent tissues to investigate the heterogeneity of tumor and normal tissue, specifically focusing on the regulatory T cells (Tregs) and their interactions with other cells in the tumor microenvironment (TME). Treg cells were identified and clustered into natural Tregs (nTreg) and induced Tregs (iTreg) based on the expression of specific genes. It was found that the number of iTregs was higher in the tumor than in healthy tissues, while the number of n Tregs was higher in healthy tissues. Differential gene expression analysis was performed, and biological process analysis revealed that the Tregs in PDAC were mostly involved in protein targeting and translation pathways. In addition, ligand-receptor pairs between Tregs and other cell types were identified, and the critical communication pathways between Tregs and endothelial and ductal cells were revealed, which could potentially contribute to the immunosuppressive TME of PDAC. These findings provide insights into the role of Tregs in PDAC and their interactions with other cell types in the TME, highlighting potential targets for immunotherapy, such as the inhibitory immune checkpoint receptors CTLA4 and TIGIT, which are known to be expressed on Tregs and have been shown to play a role in suppressing anti-tumor immune responses.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | | | - Mohammad Javad Vaferi
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), 38122, Trento, Italy.
| |
Collapse
|
35
|
Piovesan D, de Groot AE, Cho S, Anderson AE, Ray RD, Patnaik A, Foster PG, Mitchell CG, Lopez Espinoza AY, Zhu WS, Stagnaro CE, Singh H, Zhao X, Seitz L, Walker NP, Walters MJ, Sivick KE. Fc-Silent Anti-TIGIT Antibodies Potentiate Antitumor Immunity without Depleting Regulatory T Cells. Cancer Res 2024; 84:1978-1995. [PMID: 38635895 DOI: 10.1158/0008-5472.can-23-2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) is an inhibitory receptor on immune cells that outcompetes an activating receptor, CD226, for shared ligands. Tumor-infiltrating lymphocytes express TIGIT and CD226 on regulatory T cells (Treg) and on CD8+ T cells with tumor-reactive or exhausted phenotypes, supporting the potential of therapeutically targeting TIGIT to enhance antitumor immunity. To optimize the efficacy of therapeutic antibodies against TIGIT, it is necessary to understand IgG Fc (Fcγ) receptor binding for therapeutic benefit. In this study, we showed that combining Fc-enabled (Fce) or Fc-silent (Fcs) anti-TIGIT with antiprogrammed cell death protein 1 in mice resulted in enhanced control of tumors by differential mechanisms: Fce anti-TIGIT promoted the depletion of intratumoral Treg, whereas Fcs anti-TIGIT did not. Despite leaving Treg numbers intact, Fcs anti-TIGIT potentiated the activation of tumor-specific exhausted CD8+ populations in a lymph node-dependent manner. Fce anti-TIGIT induced antibody-dependent cell-mediated cytotoxicity against human Treg in vitro, and significant decreases in Treg were measured in the peripheral blood of patients with phase I solid tumor cancer treated with Fce anti-TIGIT. In contrast, Fcs anti-TIGIT did not deplete human Treg in vitro and was associated with anecdotal objective clinical responses in two patients with phase I solid tumor cancer whose peripheral Treg frequencies remained stable on treatment. Collectively, these data provide evidence for pharmacologic activity and antitumor efficacy of anti-TIGIT antibodies lacking the ability to engage Fcγ receptor. SIGNIFICANCE Fcs-silent anti-TIGIT antibodies enhance the activation of tumor-specific pre-exhausted T cells and promote antitumor efficacy without depleting T regulatory cells.
Collapse
|
36
|
Lang Y, Huang H, Jiang H, Wu S, Chen Y, Xu B, Liu Y, Zhu D, Zheng X, Chen L, Jiang J. TIGIT Blockade Reshapes the Tumor Microenvironment Based on the Single-cell RNA-Sequencing Analysis. J Immunother 2024; 47:172-181. [PMID: 38545758 DOI: 10.1097/cji.0000000000000511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/26/2024] [Indexed: 05/09/2024]
Abstract
SUMMARY Immune checkpoint blockade therapy is a pivotal approach in treating malignant tumors. TIGIT has emerged as a focal point of interest among the diverse targets for tumor immunotherapy. Nonetheless, there is still a lack of comprehensive understanding regarding the immune microenvironment alterations following TIGIT blockade treatment. To bridge this knowledge gap, we performed single-cell sequencing on mice both before and after the administration of anti-TIGIT therapy. Our analysis revealed that TIGIT was predominantly expressed on T cells and natural killer (NK) cells. The blockade of TIGIT exhibited inhibitory effects on Treg cells by downregulating the expression of Foxp3 and reducing the secretion of immunosuppressive cytokines. In addition, TIGIT blockade facilitated the activation of NK cells, leading to an increase in cell numbers, and promoted cDC1 maturation through the secretion of XCL1 and Flt3L. This activation, in turn, stimulated the TCR signaling of CD8 + T cells, thereby enhancing their antitumor effect. Consequently, anti-TIGIT therapy demonstrated substantial potential for cancer immunotherapy. Our research provided novel insights into future therapeutic strategies targeting TIGIT for patients with cancer.
Collapse
Affiliation(s)
- Yanyan Lang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Hao Huang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Yaping Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Bin Xu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Yingting Liu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Dawei Zhu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
Song T, Yang Y, Wang Y, Ni Y, Yang Y, Zhang L. Bulk and single-cell RNA sequencing reveal the contribution of laminin γ2 -CD44 to the immune resistance in lymphocyte-infiltrated squamous lung cancer subtype. Heliyon 2024; 10:e31299. [PMID: 38803944 PMCID: PMC11129014 DOI: 10.1016/j.heliyon.2024.e31299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The high heterogeneity of lung squamous cell carcinomas (LUSC) and the complex tumor microenvironment lead to non-response to immunotherapy in many patients. Therefore, characterizing the heterogeneity of the tumor microenvironment in patients with LUSC and further exploring the immune features and molecular mechanisms that lead to immune resistance will help improve the efficacy of immunotherapy in such patients. Herein, we retrospectively analyzed the RNA sequencing (RNA-seq) data of 513 LUSC samples with other multiomics and single-cell RNA-seq data and validated key features using multiplex immunohistochemistry. We divided these samples into six subtypes (CS1-CS6) based on the RNA-seq data and found that CS3 activates the immune response with a high level of lymphocyte infiltration and gathers a large number of patients with advanced-stage disease but increases the expression of exhausted markers cytotoxic T-lymphocyte associated protein 4, lymphocyte-activation gene 3, and programmed death-1. The prediction of the response to immunotherapy showed that CS3 is potentially resistant to immune checkpoint blockade therapy, and multi-omic data analysis revealed that CS3 specifically expresses immunosuppression-related proteins B cell lymphoma 2, GRB2-associated binding protein, and dual-specificity phosphatase 4 and has a high mutation ratio of the driver gene ATP binding cassette subfamily A member 13. Furthermore, single-cell RNA-seq verified lymphocyte infiltration in the CS3 subtype and revealed a positive relationship between the expression of LAMC2-CD44 and immune resistance. LAMC2 and CD44 are epithelial-mesenchymal transition-associated genes that modulate tumor proliferation, and multicolor immunofluorescence validated the negative relationship between the expression of LAMC2-CD44 and immune infiltration. Thus, we identified a lymphocyte-infiltrated subtype (CS3) in patients with LUSC that exhibited resistance to immune checkpoint blockade therapy, and the co-hyperexpression of LAMC2-CD44 contributed to immune resistance, which could potentially improve immunological efficacy by targeting this molecule pair in combination with immunotherapy.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yilong Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinyun Ni
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongfeng Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
38
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
39
|
Ren Z, Yang K, Zhu L, Yin D, Zhou Y. Regulatory T cells as crucial trigger and potential target for hyperprogressive disease subsequent to PD-1/PD-L1 blockade for cancer treatment. Int Immunopharmacol 2024; 132:111934. [PMID: 38574701 DOI: 10.1016/j.intimp.2024.111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
PD-1/PD-L1 blockade therapy has brought great success to cancer treatment. Nevertheless, limited beneficiary populations and even hyperprogressive disease (HPD) greatly constrain the application of PD-1/PD-L1 inhibitors in clinical treatment. HPD is a special pattern of disease progression with rapid tumor growth and even serious consequences of patient death, which requires urgent attention. Among the many predisposing causes of HPD, regulatory T cells (Tregs) are suspected because they are amplified in cases of HPD. Tregs express PD-1 thus PD-1/PD-L1 blockade therapy may have an impact on Tregs which leads to HPD. Tregs are a subset of CD4+ T cells expressing FoxP3 and play critical roles in suppressing immunity. Tregs migrate toward tumors in the presence of chemokines to suppress antitumor immune responses, causing cancer cells to grow and proliferate. Studies have shown that deleting Tregs could enhance the efficacy of PD-1/PD-L1 blockade therapy and reduce the occurrence of HPD. This suggests that immunotherapy combined with Treg depletion may be an effective means of avoiding HPD. In this review, we summarized the immunosuppressive-related functions of Tregs in antitumor therapy and focused on advances in therapy combining Tregs depletion with PD-1/PD-L1 blockade in clinical studies. Moreover, we provided an outlook on Treg-targeted HPD early warning for PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Kaiqing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
40
|
Kratchmarov R, Djeddi S, Dunlap G, He W, Jia X, Burk CM, Ryan T, McGill A, Allegretti JR, Kataru RP, Mehrara BJ, Taylor EM, Agarwal S, Bhattacharyya N, Bergmark RW, Maxfield AZ, Lee S, Roditi R, Dwyer DF, Boyce JA, Buchheit KM, Laidlaw TM, Shreffler WG, Rao DA, Gutierrez-Arcelus M, Brennan PJ. TCF1-LEF1 co-expression identifies a multipotent progenitor cell (T H2-MPP) across human allergic diseases. Nat Immunol 2024; 25:902-915. [PMID: 38589618 PMCID: PMC11849131 DOI: 10.1038/s41590-024-01803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.
Collapse
Affiliation(s)
- Radomir Kratchmarov
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Garrett Dunlap
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenqin He
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojiong Jia
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Burk
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tessa Ryan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin M Taylor
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Neil Bhattacharyya
- Massachusetts Eye & Ear Institute, Harvard Medical School, Boston, MA, USA
| | - Regan W Bergmark
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Brigham and Women's Hospital, Boston, MA, USA
| | - Alice Z Maxfield
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Lee
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel Roditi
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wayne G Shreffler
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Huang S, Liu D, Han L, Deng J, Wang Z, Jiang J, Zeng L. Decoding the potential role of regulatory T cells in sepsis-induced immunosuppression. Eur J Immunol 2024; 54:e2350730. [PMID: 38430202 DOI: 10.1002/eji.202350730] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Sepsis, a multiorgan dysfunction with high incidence and mortality, is caused by an imbalanced host-to-infection immune response. Organ-support therapy improves the early survival rate of sepsis patients. In the long term, those who survive the "cytokine storm" and its secondary damage usually show higher susceptibility to secondary infections and sepsis-induced immunosuppression, in which regulatory T cells (Tregs) are evidenced to play an essential role. However, the potential role and mechanism of Tregs in sepsis-induced immunosuppression remains elusive. In this review, we elucidate the role of different functional subpopulations of Tregs during sepsis and then review the mechanism of sepsis-induced immunosuppression from the aspects of regulatory characteristics, epigenetic modification, and immunometabolism of Tregs. Thoroughly understanding how Tregs impact the immune system during sepsis may shed light on preclinical research and help improve the translational value of sepsis immunotherapy.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lei Han
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
42
|
Wu JW, Liu Y, Dai XJ, Liu HM, Zheng YC, Liu HM. CD155 as an emerging target in tumor immunotherapy. Int Immunopharmacol 2024; 131:111896. [PMID: 38518596 DOI: 10.1016/j.intimp.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
43
|
Chen X, Cui Y, Zou L. Treatment advances in high-grade gliomas. Front Oncol 2024; 14:1287725. [PMID: 38660136 PMCID: PMC11039916 DOI: 10.3389/fonc.2024.1287725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
High-grade gliomas (HGG) pose significant challenges in modern tumour therapy due to the distinct biological properties and limitations of the blood-brain barrier. This review discusses recent advancements in HGG treatment, particularly in the context of immunotherapy and cellular therapy. Initially, treatment strategies focus on targeting tumour cells guided by the molecular characteristics of various gliomas, encompassing chemotherapy, radiotherapy and targeted therapy for enhanced precision. Additionally, technological enhancements are augmenting traditional treatment modalities. Furthermore, immunotherapy, emphasising comprehensive tumour management, has gained widespread attention. Immune checkpoint inhibitors, vaccines and CAR-T cells exhibit promising efficacy against recurrent HGG. Moreover, emerging therapies such as tumour treating fields (TTFields) offer additional treatment avenues for patients with HGG. The combination of diverse treatments holds promise for improving the prognosis of HGG, particularly in cases of recurrence.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Cui
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Increased EZH2 function in regulatory T cells promotes their capacity to suppress autoimmunity by driving effector differentiation prior to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588284. [PMID: 38645261 PMCID: PMC11030251 DOI: 10.1101/2024.04.05.588284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here we assessed whether increased EZH2 activity in Treg cells would improve Treg cell function. Using an Ezh2 gain-of-function mutation, Ezh2 Y641F , we found that Treg cells expressing Ezh2 Y641F displayed an increased effector Treg phenotype and were poised for improved homing to organ tissues. Expression of Ezh2 Y641F in Treg cells led to more rapid remission from autoimmunity. H3K27me3 profiling and transcriptomic analysis revealed a redistribution of H3K27me3, which prompted a gene expression profile in naïve Ezh2 Y641F Treg cells that recapitulated aspects of CD28-activated Ezh2 WT Treg cells. Altogether, increased EZH2 activity promotes the differentiation of effector Treg cells that can better suppress autoimmunity. Highlights EZH2 function promotes effector differentiation of Treg cells.EZH2 function promotes Treg cell migration to organ tissues.EZH2 function in Treg cells improves remission from autoimmunity.EZH2 function poises naïve Treg cells to adopt a CD28-activated phenotype.
Collapse
|
45
|
Chaudhuri SM, Weinberg SE, Wang D, Yalom LK, Montauti E, Iyer R, Tang AY, Torres Acosta MA, Shen J, Mani NL, Wang S, Liu K, Lu W, Bui TM, Manzanares LD, Dehghani Z, Wai CM, Gao B, Wei J, Yue F, Cui W, Singer BD, Sumagin R, Zhang Y, Fang D. Mediator complex subunit 1 architects a tumorigenic Treg cell program independent of inflammation. Cell Rep Med 2024; 5:101441. [PMID: 38428427 PMCID: PMC10983042 DOI: 10.1016/j.xcrm.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Collapse
Affiliation(s)
- Shuvam M Chaudhuri
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel E Weinberg
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dongmei Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lenore K Yalom
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy Y Tang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manuel A Torres Acosta
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikita L Mani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiyuan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Triet M Bui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura D Manzanares
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeinab Dehghani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ching Man Wai
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
46
|
Mattisson J, Halvardson J, Davies H, Bruhn-Olszewska B, Olszewski P, Danielsson M, Bjurling J, Lindberg A, Zaghlool A, Rychlicka-Buniowska E, Dumanski JP, Forsberg LA. Loss of chromosome Y in regulatory T cells. BMC Genomics 2024; 25:243. [PMID: 38443832 PMCID: PMC10913415 DOI: 10.1186/s12864-024-10168-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Mosaic loss of chromosome Y (LOY) in leukocytes is the most prevalent somatic aneuploidy in aging humans. Men with LOY have increased risks of all-cause mortality and the major causes of death, including many forms of cancer. It has been suggested that the association between LOY and disease risk depends on what type of leukocyte is affected with Y loss, with prostate cancer patients showing higher levels of LOY in CD4 + T lymphocytes. In previous studies, Y loss has however been observed at relatively low levels in this cell type. This motivated us to investigate whether specific subsets of CD4 + T lymphocytes are particularly affected by LOY. Publicly available, T lymphocyte enriched, single-cell RNA sequencing datasets from patients with liver, lung or colorectal cancer were used to study how LOY affects different subtypes of T lymphocyte. To validate the observations from the public data, we also generated a single-cell RNA sequencing dataset comprised of 23 PBMC samples and 32 CD4 + T lymphocytes enriched samples. RESULTS Regulatory T cells had significantly more LOY than any other studied T lymphocytes subtype. Furthermore, LOY in regulatory T cells increased the ratio of regulatory T cells compared with other T lymphocyte subtypes, indicating an effect of Y loss on lymphocyte differentiation. This was supported by developmental trajectory analysis of CD4 + T lymphocytes culminating in the regulatory T cells cluster most heavily affected by LOY. Finally, we identify dysregulation of 465 genes in regulatory T cells with Y loss, many involved in the immunosuppressive functions and development of regulatory T cells. CONCLUSIONS Here, we show that regulatory T cells are particularly affected by Y loss, resulting in an increased fraction of regulatory T cells and dysregulated immune functions. Considering that regulatory T cells plays a critical role in the process of immunosuppression; this enrichment for regulatory T cells with LOY might contribute to the increased risk for cancer observed among men with Y loss in leukocytes.
Collapse
Affiliation(s)
- Jonas Mattisson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bożena Bruhn-Olszewska
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Paweł Olszewski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcus Danielsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Josefin Bjurling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amanda Lindberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | - Lars A Forsberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- The Beijer Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Jiang S, Wang W, Yang Y. TIGIT: A potential immunotherapy target for gynecological cancers. Pathol Res Pract 2024; 255:155202. [PMID: 38367600 DOI: 10.1016/j.prp.2024.155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Gynecological cancer represents a significant global health challenge, and conventional treatment modalities have demonstrated limited efficacy. However, recent investigations into immune checkpoint pathways have unveiled promising opportunities for enhancing the prognosis of patients with cancer. Among these pathways, TIGIT has surfaced as a compelling candidate owing to its capacity to augment the immune function of NK and T cells through blockade, thereby yielding improved anti-tumor effects and prolonged patient survival. Global clinical trials exploring TIGIT blockade therapy have yielded promising preliminary findings. Nevertheless, further research is imperative to comprehensively grasp the potential of TIGIT-based immunotherapy in optimizing therapeutic outcomes for gynecological cancers. This review primarily delineates the regulatory network and immunosuppressive mechanism of TIGIT, expounds upon its expression and therapeutic potential in three major gynecological cancers, and synthesizes the clinical trials of TIGIT-based cancer immunotherapy. Such insights aim to furnish novel perspectives and serve as reference points for subsequent research and clinical application targeting TIGIT in gynecological cancers.
Collapse
Affiliation(s)
- Siyue Jiang
- The third People's Hospital of Suining, Suining, Sichuan, China
| | - Wenhua Wang
- First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
48
|
Casey M, Lee C, Kwok WY, Law SC, Corvino D, Gandhi MK, Harrison SJ, Nakamura K. Regulatory T cells hamper the efficacy of T-cell-engaging bispecific antibody therapy. Haematologica 2024; 109:787-798. [PMID: 37767564 PMCID: PMC10905103 DOI: 10.3324/haematol.2023.283758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
T-cell-engaging bispecific antibodies (T-BsAb) have produced impressive clinical responses in patients with relapsed/refractory B-cell malignancies, although treatment failure remains a major clinical challenge. Growing evidence suggests that a complex interplay between immune cells and tumor cells is implicated in the mechanism of action and therefore, understanding immune regulatory mechanisms might provide a clue for how to improve the efficacy of T-BsAb therapy. Here, we investigated the functional impact of regulatory T (Treg) cells on anti-tumor immunity elicited by T-BsAb therapy. In a preclinical model of myeloma, the activation and expansion of Treg cells in the bone marrow were observed in response to anti-B-cell maturation antigen (BCMA) T-BsAb therapy. T-BsAb triggered the generation of induced Treg cells from human conventional CD4 cells after co-culture with tumor cells. Moreover, T-BsAb directly activated freshly isolated circulating Treg cells, leading to the production of interleukin-10 and inhibition of T-BsAb-mediated CD8 T-cell responses. The activation of Treg cells was also seen in bone marrow samples from myeloma patients after ex vivo treatment with T-BsAb, further supporting that T-BsAb have an impact on Treg homeostasis. Importantly, transient ablation of Treg cells in combination with T-BsAb therapy dramatically improved effector lymphocyte activities and disease control in the preclinical myeloma model, leading to prolonged survival. Together, this information suggests that therapy-induced activation of Treg cells critically regulates anti-tumor immunity elicited by T-BsAb therapy, with important implications for improving the efficacy of such treatment.
Collapse
Affiliation(s)
- Mika Casey
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD
| | - Carol Lee
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD
| | - Wing Yu Kwok
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD
| | - Soi Cheng Law
- Mater Research, University of Queensland, Brisbane, QLD
| | - Dillon Corvino
- Institute of Experimental Oncology, University Hospital Bonn, Bonn
| | | | - Simon J Harrison
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia; Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville
| | - Kyohei Nakamura
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD.
| |
Collapse
|
49
|
Joller N, Anderson AC, Kuchroo VK. LAG-3, TIM-3, and TIGIT: Distinct functions in immune regulation. Immunity 2024; 57:206-222. [PMID: 38354701 PMCID: PMC10919259 DOI: 10.1016/j.immuni.2024.01.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
LAG-3, TIM-3, and TIGIT comprise the next generation of immune checkpoint receptors being harnessed in the clinic. Although initially studied for their roles in restraining T cell responses, intense investigation over the last several years has started to pinpoint the unique functions of these molecules in other immune cell types. Understanding the distinct processes that these receptors regulate across immune cells and tissues will inform the clinical development and application of therapies that either antagonize or agonize these receptors, as well as the profile of potential tissue toxicity associated with their targeting. Here, we discuss the distinct functions of LAG-3, TIM-3, and TIGIT, including their contributions to the regulation of immune cells beyond T cells, their roles in disease, and the implications for their targeting in the clinic.
Collapse
Affiliation(s)
- Nicole Joller
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
50
|
Wienke J, Visser LL, Kholosy WM, Keller KM, Barisa M, Poon E, Munnings-Tomes S, Himsworth C, Calton E, Rodriguez A, Bernardi R, van den Ham F, van Hooff SR, Matser YAH, Tas ML, Langenberg KPS, Lijnzaad P, Borst AL, Zappa E, Bergsma FJ, Strijker JGM, Verhoeven BM, Mei S, Kramdi A, Restuadi R, Sanchez-Bernabeu A, Cornel AM, Holstege FCP, Gray JC, Tytgat GAM, Scheijde-Vermeulen MA, Wijnen MHWA, Dierselhuis MP, Straathof K, Behjati S, Wu W, Heck AJR, Koster J, Nierkens S, Janoueix-Lerosey I, de Krijger RR, Baryawno N, Chesler L, Anderson J, Caron HN, Margaritis T, van Noesel MM, Molenaar JJ. Integrative analysis of neuroblastoma by single-cell RNA sequencing identifies the NECTIN2-TIGIT axis as a target for immunotherapy. Cancer Cell 2024; 42:283-300.e8. [PMID: 38181797 PMCID: PMC10864003 DOI: 10.1016/j.ccell.2023.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Pediatric patients with high-risk neuroblastoma have poor survival rates and urgently need more effective treatment options with less side effects. Since novel and improved immunotherapies may fill this need, we dissect the immunoregulatory interactions in neuroblastoma by single-cell RNA-sequencing of 24 tumors (10 pre- and 14 post-chemotherapy, including 5 pairs) to identify strategies for optimizing immunotherapy efficacy. Neuroblastomas are infiltrated by natural killer (NK), T and B cells, and immunosuppressive myeloid populations. NK cells show reduced cytotoxicity and T cells have a dysfunctional profile. Interaction analysis reveals a vast immunoregulatory network and identifies NECTIN2-TIGIT as a crucial immune checkpoint. Combined blockade of TIGIT and PD-L1 significantly reduces neuroblastoma growth, with complete responses (CR) in vivo. Moreover, addition of TIGIT+PD-L1 blockade to standard relapse treatment in a chemotherapy-resistant Th-ALKF1174L/MYCN 129/SvJ syngeneic model induces CR. In conclusion, our integrative analysis provides promising targets and a rationale for immunotherapeutic combination strategies.
Collapse
Affiliation(s)
- Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Lindy L Visser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Waleed M Kholosy
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kaylee M Keller
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Sophie Munnings-Tomes
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Courtney Himsworth
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Elizabeth Calton
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | | | - Ronald Bernardi
- Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Femke van den Ham
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Yvette A H Matser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Michelle L Tas
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Anne L Borst
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Elisa Zappa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Bronte M Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Amira Kramdi
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Restuadi Restuadi
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK; NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Alvaro Sanchez-Bernabeu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht University, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Juliet C Gray
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | | | | | - Marc H W A Wijnen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Karin Straathof
- University College London (UCL) Great Ormond Street Institute of Child Health, London, UK; UCL Cancer Institute, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht University, Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht University, Utrecht, the Netherlands
| | - Jan Koster
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Isabelle Janoueix-Lerosey
- Institut Curie, Inserm U830, PSL Research University, Diversity and Plasticity of Childhood Tumors Lab, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, UK
| | | | | | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Division Imaging & Cancer, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|