1
|
Wu Y, Huang C, Wei Y, Kang Z, Zhang W, Xie J, Xiong L, Zhou M, Zhang G, Chen R. Comparative analysis of the growth differences between hybrid Ningdu Yellow chickens and their parentals. Poult Sci 2024; 103:104239. [PMID: 39454533 PMCID: PMC11546192 DOI: 10.1016/j.psj.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 10/28/2024] Open
Abstract
Although the local high quality chicken breed in China has excellent flavor, its growth rate is inferior to that of foreign breeds. To improve the growth rate of local chicken breeds, it is crucial to study the mechanism of chicken muscle development. Herein, Ningdu Yellow chicken was used as the research object, and a new hybrid breed (W) was obtained by crossing the G, H and D lines, which combined the excellent physiological characteristics of its parents. Combined analysis of Ningdu Yellow chickens and their parents was carried out. Chickens from 105-day-old lines (W, G, H) were selected, and breast meat and serum were extracted for transcriptome sequencing and metabolome determination to study their growth differences. The live weight, carcass weight, half-eviscerated weight, eviscerated weight, and breast muscle weight of W were significantly higher than those of G and H. Differential expression analysis identified 1700 differentially expressed genes (DEG), and gene ontology and kyoto encyclopedia of genes and genomes (KEGG) analyses identified 33 and 1 pathways related to growth and development and steroid biosynthesis, respectively. Next, pairwise analysis identified 57 KEGG pathways, among which the MAPK signaling, steroid hormone biosynthesis, tight junction, and PPAR signaling pathways were involved in growth and development. Cluster analysis found that genes highly expressed in the W group were associated with regulation of the actin cytoskeleton, riboflavin metabolism, steroid biosynthesis, and glycerophospholipid metabolism. The top 2 clusters obtained by protein-protein interaction analysis were important for the growth and development of chickens. Finally, the metabolomic analysis found key differentially accumulated metabolites (DAM) that might be account for the growth differences. Further integrated analysis identified key DEGs and DAMs that might be responsible for the observed growth differences. This study identified genes governing growth traits in Ningdu Yellow chickens, laying a theoretical foundation for the development of chicken breeding, the utilization of hybrid supporting lines, and promotion of the Chinese chicken industry.
Collapse
Affiliation(s)
- Yanping Wu
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Cong Huang
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Yue Wei
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Zhaofeng Kang
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Weihong Zhang
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Jinfang Xie
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Ligen Xiong
- Department of Biological Technology, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Min Zhou
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, 330100, China
| | - Guosheng Zhang
- Agricultural Technology Extension Center of Jiangxi Province, Jiangxi Agricultural University, Nanchang, Jiangxi, 330046, China
| | - Rongjun Chen
- Department of Biological Technology, Huida Industry Co., Ltd., Ningdu, Jiangxi, 342800, China
| |
Collapse
|
2
|
Akbarzadeh R, Müller A, Humrich JY, Riemekasten G. When natural antibodies become pathogenic: autoantibodies targeted against G protein-coupled receptors in the pathogenesis of systemic sclerosis. Front Immunol 2023; 14:1213804. [PMID: 37359516 PMCID: PMC10285309 DOI: 10.3389/fimmu.2023.1213804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a chronic, multisystem connective tissue, and autoimmune disease with the highest case-specific mortality and complications among rheumatic diseases. It is characterized by complex and variable features such as autoimmunity and inflammation, vasculopathy, and fibrosis, which pose challenges in understanding the pathogenesis of the disease. Among the large variety of autoantibodies (Abs) present in the sera of patients suffering from SSc, functionally active Abs against G protein-coupled receptors (GPCRs), the most abundant integral membrane proteins, have drawn much attention over the last decades. These Abs play an essential role in regulating the immune system, and their functions are dysregulated in diverse pathological conditions. Emerging evidence indicates that functional Abs targeting GPCRs, such as angiotensin II type 1 receptor (AT1R) and the endothelin-1 type A receptor (ETAR), are altered in SSc. These Abs are part of a network with several GPCR Abs, such as those directed to the chemokine receptors or coagulative thrombin receptors. In this review, we summarize the effects of Abs against GPCRs in SSc pathologies. Extending the knowledge on pathophysiological roles of Abs against GPCRs could provide insights into a better understanding of GPCR contribution to SSc pathogenesis and therefore help in developing potential therapeutic strategies that intervene with pathological functions of these receptors.
Collapse
|
3
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
4
|
TNS1: Emerging Insights into Its Domain Function, Biological Roles, and Tumors. BIOLOGY 2022; 11:biology11111571. [PMID: 36358270 PMCID: PMC9687257 DOI: 10.3390/biology11111571] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
Tensins are a family of cellular-adhesion constituents that have been extensively studied. They have instrumental roles in the pathogenesis of numerous diseases. The mammalian tensin family comprises four members: tensin1 (TNS1), tensin2, tensin3, and tensin4. Among them, TNS1 has recently received attention from researchers because of its structural properties. TNS1 engages in various biological processes, such as cell adhesion, polarization, migration, invasion, proliferation, apoptosis, and mechano-transduction, by interacting with various partner proteins. Moreover, the abnormal expression of TNS1 in vivo is associated with the development of various diseases, especially tumors. Interestingly, the role of TNS1 in different tumors is still controversial. Here, we systematically summarize three aspects of TNS1: the gene structure, the biological processes underlying its action, and the dual regulatory role of TNS1 in different tumors through different mechanisms, of which we provide the first overview.
Collapse
|
5
|
Ogunlade B, Guidry JJ, Mukerjee S, Sriramula S, Lazartigues E, Filipeanu CM. The Actin Bundling Protein Fascin-1 as an ACE2-Accessory Protein. Cell Mol Neurobiol 2022; 42:255-263. [PMID: 32865675 PMCID: PMC7456754 DOI: 10.1007/s10571-020-00951-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 01/02/2023]
Abstract
We have previously shown that angiotensin-converting enzyme 2 (ACE2), an enzyme counterbalancing the deleterious effects of angiotensin type 1 receptor activation by production of vasodilatory peptides Angiotensin (Ang)-(1-9) and Ang-(1-7), is internalized and degraded in lysosomes following chronic Ang-II treatment. However, the molecular mechanisms involved in this effect remain unknown. In an attempt to identify the accessory proteins involved in this effect, we conducted a proteomic analysis in ACE2-transfected HEK293T cells. A single protein, fascin-1, was found to differentially interact with ACE2 after Ang-II treatment for 4 h. The interactions between fascin-1 and ACE2 were confirmed by confocal microscopy and co-immunoprecipitation. Overexpression of fascin-1 attenuates the effects of Ang-II on ACE2 activity. In contrast, downregulation of fascin-1 severely decreased ACE2 enzymatic activity. Interestingly, in brain homogenates from hypertensive mice, we observed a significant reduction of fascin-1, suggesting that the levels of this protein may change in cardiovascular diseases. In conclusion, we identified fascin-1 as an ACE2-accessory protein, interacting with the enzyme in an Ang-II dependent manner and contributing to the regulation of enzyme activity.
Collapse
Affiliation(s)
- Blessing Ogunlade
- Department of Pharmacology, College of Medicine, Howard University, 520 W St., NW, Washington, DC, 20059, USA
| | - Jessie J Guidry
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Snigdha Mukerjee
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Southeast Louisiana Veterans Health Care Systems, New Orleans, LA, 70119, USA
| | - Catalin M Filipeanu
- Department of Pharmacology, College of Medicine, Howard University, 520 W St., NW, Washington, DC, 20059, USA.
| |
Collapse
|
6
|
Nizioł M, Zińczuk J, Zaręba K, Guzińska-Ustymowicz K, Pryczynicz A. Immunohistochemical Analysis of the Expression of Adhesion Proteins: TNS1, TNS2 and TNS3 in Correlation with Clinicopathological Parameters in Gastric Cancer. Biomolecules 2021; 11:640. [PMID: 33926026 PMCID: PMC8146480 DOI: 10.3390/biom11050640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tensins belong to the group of adhesion proteins that are involved in cell adhesion and migration, actin cytoskeleton maintenance and intercellular communication. TNS1, TNS2 and TNS3 proteins expression was evaluated in 90 patients with gastric cancer by immunohistochemistry method. TNS1 was more frequently present in non-differentiated tumors compared to poorly and moderately differentiated tumors (p = 0.016). TNS1 was also more often observed in metastatic tumors compared to those without distant metastases (p = 0.001). TNS2 was more common in moderately differentiated tumors than in poorly or non-differentiated ones (p = 0.041). TNS2 expression was also more frequently present in tumors with peritumoral inflammation (p = 0.041) and with concomitant H. pylori infection (p = 0.023). In contrast, TNS3 protein was more prevalent in moderately than in poorly and non-differentiated tumors (p = 0.023). No significant relationship was found between tensins' expression and the overall survival rate of patients. TNS1 protein expression is associated with a poor-prognosis type of GC. Higher expression of TNS2 is accompanied by peritumoral inflammation and H. pylori infection, which favor the development of GC of a better prognosis, similarly to higher TNS3 protein expression.
Collapse
Affiliation(s)
- Marcin Nizioł
- Department of General Pathomorphology, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland; (M.N.); (K.G.-U.)
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland;
| | - Konrad Zaręba
- 2nd Clinical Department of General and Gastroenterological Surgery, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland;
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland; (M.N.); (K.G.-U.)
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland; (M.N.); (K.G.-U.)
| |
Collapse
|
7
|
Nizioł M, Pryczynicz A. The role of tensins in malignant neoplasms. Arch Med Sci 2021; 19:1382-1397. [PMID: 37732046 PMCID: PMC10507764 DOI: 10.5114/aoms/127085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/01/2020] [Indexed: 09/22/2023] Open
Abstract
Tensins belong to the family of adhesion proteins which form focal adhesions serving as a bridge between the extracellular matrix and intracellular actin skeleton. The tensin family consists of four members (tensin-1 to -4) which are widely expressed in normal and cancerous tissues. The presence of Src homology 2 and phosphotyrosine binding domains is a unique feature of tensins which enables them to interact with tyrosine-phosphorylated proteins in PI3K/Akt and β-integrin/FAK signaling pathways. The tensin-mediated signaling pathway regulates physiological processes including cell motility and cytoskeleton integrity. The expression of tensins varies among cancers. Several papers report tensins as tumor suppressive proteins, whereas tensins may promote epithelial to mesenchymal transition and cancer cell metastasis. Recent findings and further research on tensins as therapeutic targets in cancers may contribute to identifying effective anti-cancer therapy. In this review we focus on the role of tensins in normal and cancer cells. We discuss potential mechanism(s) involved in carcinogenesis.
Collapse
Affiliation(s)
- Marcin Nizioł
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Zamel IA, Palakkott A, Ashraf A, Iratni R, Ayoub MA. Interplay Between Angiotensin II Type 1 Receptor and Thrombin Receptor Revealed by Bioluminescence Resonance Energy Transfer Assay. Front Pharmacol 2020; 11:1283. [PMID: 32973514 PMCID: PMC7468457 DOI: 10.3389/fphar.2020.01283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The key hormone of the renin-angiotensin system (RAS), angiotensin II (AngII), and thrombin are known to play major roles in the vascular system and its related disorders. Previous studies reported connections between AngII and thrombin in both physiological and pathophysiological models. However, the molecular mechanisms controlling such interplay at the level of their receptors belonging to the family of G protein-coupled receptors (GPCRs) are not fully understood. In this study, we investigated the functional interaction between the AngII type 1 receptor (AT1R) and the thrombin receptor [or protease-activated receptor 1 (PAR1)] in human embryonic kidney 293 (HEK293) cells. For this, we used various bioluminescence resonance energy transfer (BRET) proximity-based assays to profile the coupling to the heterotrimeric Gαq protein, β-arrestin recruitment, and receptor internalization and trafficking in intact cells. The overall dose-response and real-time kinetic BRET data demonstrated the specific molecular proximity between AT1R and PAR1 resulting in their functional interaction. This was characterized by thrombin inducing BRET increase within AT1R/Gαq and AT1R/β-arrestin pairs and synergistic effects observed upon the concomitant activation of both receptors suggesting a positive allosteric interaction. The BRET data corroborated with the data on the downstream Gαq/inositol phosphate pathway. Moreover, the selective pharmacological blockade of the receptors revealed the implication of both AT1R and PAR1 protomers in such a synergistic interaction and the possible transactivation of AT1R by PAR1. Interestingly, the positive action of PAR1 on AT1R activation was contrasted with its apparent inhibition of AT1R internalization and its endosomal trafficking. Finally, BRET saturation and co-immunoprecipitation assays supported the physical AT1-PAR1 interaction in HEK293 cells. Our study reveals for the first time the functional interaction between AT1R and PAR1 in vitro characterized by a transactivation and positive allosteric modulation of AT1R and inhibition of its desensitization and internalization. This finding may constitute the molecular basis of the well-known interplay between RAS and thrombin. Thus, our data should lead to revising some findings on the implication of RAS and thrombin in vascular physiology and pathophysiology revealing the importance to consider the functional and pharmacological interaction between AT1R and thrombin receptors.
Collapse
Affiliation(s)
- Isra Al Zamel
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Luan Z, Liu B, Shi L. Angiotensin II-induced micro RNA-21 culprit for non-small-cell lung adenocarcinoma. Drug Dev Res 2019; 80:1031-1039. [PMID: 31823412 DOI: 10.1002/ddr.21597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
Lung cancer is among the most complicated cancers, with an estimated 1.6 million deaths each year for both men and women. However, the proportion of lung cancer patients in developing nations has increased from 31% to 49.9% in the last two decades. There are two main subtypes of lung cancer, small-cell lung carcinoma and non-small-cell lung carcinoma (NSCLC), accounting for 15% and 85% of all lung cancer, respectively. Adenocarcinoma is the most common type of lung cancer in smokers and nonsmokers in men and women regardless of their age. Chemicals in cigarette smoke and nicotine enter our bloodstream and can then affect the entire body and finally lead to the activation of several important, pro-survival signaling pathways. The biologically active peptide of RAAS on overstimulation enhance Ang II mediates cell proliferation, fibrosis and inflammatory effects via AT1 receptor. Very few studies highlight the diagnostic and therapeutic potential of miRNAs with the EGFR-regulated miRNA-21.
Collapse
Affiliation(s)
- Zhaoji Luan
- Department of Respiratory and Critical Care Medicine, ZiBo First Hospital, Zibo, Shandong Province, China
| | - Baoliang Liu
- Department of Respiratory and Critical Care Medicine, ZiBo First Hospital, Zibo, Shandong Province, China
| | - Lina Shi
- Department of Hematology, ZiBo First Hospital, Boshan District, Zibo, Shandong Province, China
| |
Collapse
|
10
|
Zhang Z, Du H, Yang C, Li Q, Qiu M, Song X, Yu C, Jiang X, Liu L, Hu C, Xia B, Xiong X, Yang L, Peng H, Jiang X. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim Biotechnol 2019; 30:233-241. [PMID: 30601081 DOI: 10.1080/10495398.2018.1476377] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: The goal of this study was to investigate the mechanisms of muscle growth and development of three chicken breeds. Participants: Eighteen chickens, including three different breeds with different growth speeds (White Broiler, Daheng, and Commercial Layers of Roman), were used. Methods: Total RNA from breast muscle of these chickens was subjected to a gene expression microarray. Differentially expressed genes (DEGs) were screened and functional enrichment analysis was performed using DAVID. Seven DEGs were confirmed by quantitative reverse transcription PCR. Results: Overall, 8,398 DEGs were found among the different lines. The DEGs between each two lines that were unique for a developmental stage were greater than those that were common during all stages. Functional analysis revealed that DEGs across the entire developmental process were primarily involved in positive cell proliferation, growth, cell differentiation, and developmental processes. Genes involved in muscle regulation, muscle construction, and muscle cell differentiation were upregulated in the faster-growing breed compared to the slower-growing breed. DEGs including myosin heavy chain 15 (MYH15), myozenin 2 (MYOZ2), myosin-binding protein C (MYBPC3), insulin-like growth factor 2 (IGF2), apoptosis regulator (BCL-2), AP-1 transcription factor subunit (JUN), and AP-1 transcription factor subunit (FOS) directly regulated muscle growth or were in the center of the protein-protein interaction network. Pathways, including the extracellular matrix (ECM)-receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and focal adhesion, were the most enriched DEGs between lines or within lines under different developmental stages. Conclusions: Genes involved in muscle construction and cell differentiation were differentially expressed among the three breeds.
Collapse
Affiliation(s)
- Zengrong Zhang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China.,b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Huarui Du
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Chaowu Yang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Qingyun Li
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Mohan Qiu
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Xiaoyan Song
- b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Chunlin Yu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Xiaoyu Jiang
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Lan Liu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Chenming Hu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Bo Xia
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Xia Xiong
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Li Yang
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Han Peng
- b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Xiaosong Jiang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China.,b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| |
Collapse
|
11
|
Chen C, Shenoy AK, Padia R, Fang D, Jing Q, Yang P, Su SB, Huang S. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2', 4'-Tetrahydroxychalcone. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:243. [PMID: 30285892 PMCID: PMC6171243 DOI: 10.1186/s13046-018-0902-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 02/03/2023]
Abstract
Background Licorice is an herb extensively used for both culinary and medicinal purposes. Various constituents of licorice have been shown to exhibit anti-tumorigenic effect in diverse cancer types. However, majority of these studies focus on the aspect of their growth-suppressive role. In this study, we systematically analyzed known licorice’s constituents on the goal of identifying component(s) that can effectively suppress both cell migration and growth. Methods Effect of licorice’s constituents on cell growth was evaluated by MTT assay while cell migration was assessed by both wound-healing and Transwell assays. Cytoskeleton reorganization and focal adhesion assembly were visualized by immunofluorescence staining with labeled phalloidin and anti-paxillin antibody. Activity of Src in cells was judged by western blot using phosphor-Src416 antibody while Src kinase activity was measured using Promega Src kinase assay system. Anti-tumorigenic capabilities of isoliquiritigenin (ISL) and 2, 4, 2′, 4’-Tetrahydroxychalcone (THC) were investigated using lung cancer xenograft model. Results Using a panel of lung cancer cell lines, ISL was identified as the only licorice’s constituent capable of inhibiting both cell migration and growth. ISL-led inhibition in cell migration resulted from impaired cytoskeleton reorganization and focal adhesion assembly. Assessing the phosphorylation of 141 cytoskeleton dynamics-associated proteins revealed that ISL reduced the abundance of Tyr421-phosphorylation of cortactin, Tyr925- and Tyr861-phosphorylation of FAK, indicating the involvement of Src because these sites are known to be phosphorylated by Src. Enigmatically, ISL inhibited Src in cells while displayed no effect on Src activity in cell-free system. The discrepancy was explained by the observation that THC, one of the major ISL metabolite identified in lung cancer cells abrogated Src activity both in cells and cell-free system. Similar to ISL, THC deterred cell migration and abolished cytoskeleton reorganization/focal adhesion assembly. Furthermore, we showed both ISL and THC suppressed in vitro lung cancer cell invasion and in vivo tumor progression. Conclusion Our study suggests that ISL inhibits lung cancer cell migration and tumorigenesis by interfering with Src through its metabolite THC. As licorice is safely used for culinary purposes, our study suggests that ISL or THC may be safely used as a Src inhibitor. Electronic supplementary material The online version of this article (10.1186/s13046-018-0902-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changliang Chen
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Anitha K Shenoy
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.,Department of Pharmaceutics and Biomedical Sciences, California Health Sciences University, Clovis, CA, USA
| | - Ravi Padia
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Dongdong Fang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Jing
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ping Yang
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai, China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shuang Huang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
van der Flier S, van der Kwast T, Claassen C, Timmermans M, Brinkman A, Henzen-Logmans S, Foekens J, Dorssers L. Immunohistochemical Study of the BCAR1/p130Cas Protein in Non-Malignant and Malignant Human Breast Tissue. Int J Biol Markers 2018. [DOI: 10.1177/172460080101600303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BCAR1/p130Cas is a docking protein involved in intracellular signaling pathways and in vitro resistance of estrogen-dependent breast cancer cells to antiestrogens. The BCAR1/p130Cas protein level in primary breast cancer cytosols was found to correlate with rapid recurrence of disease. A high BCAR1/p130Cas level was also associated with a higher likelihood of resistance to first-line tamoxifen treatment in patients with advanced breast cancer. Using antibodies raised against the rat p130Cas protein, we determined by immunohistochemical methods the BCAR1/p130Cas localization in primary breast carcinomas, in tumors of stromal origin, and in non-neoplastic breast tissues. The BCAR1/p130Cas protein was detected in the cytoplasm of non-malignant and neoplastic epithelial cells and in the vascular compartment of all tissue sections analyzed. Immunohistochemistry demonstrated variable intensity of BCAR1/p130Cas staining and variation in the proportion of BCAR1/p130Cas-positive epithelial tumor cells for the different breast carcinomas. Double immunohistochemical staining for BCAR1/p130Cas and estrogen receptor confirmed coexpression in non-malignant luminal epithelial cells and malignant breast tumor cells. The stromal cells in non-malignant tissues and tumor tissues as well as breast tumors of mesodermal origin did not stain for BCAR1/p130Cas. This immunohistochemical study demonstrates a variable expression of BCAR1/p130Cas in malignant and non-malignant breast epithelial cells, which may be of benefit for diagnostic purposes.
Collapse
Affiliation(s)
- S. van der Flier
- Department of Pathology/ Division of Molecular Biology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
- Josephine Nefkens Institute, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - T.H. van der Kwast
- Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - C.J.C. Claassen
- Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
- Department of Medical Oncology/Division of Endocrine Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - M. Timmermans
- Department of Medical Oncology/Division of Endocrine Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - A. Brinkman
- Department of Pathology/ Division of Molecular Biology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - S.C. Henzen-Logmans
- Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
- present address: N.V. Organon, Oss
| | - J.A. Foekens
- Department of Medical Oncology/Division of Endocrine Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - L.C.J. Dorssers
- Department of Pathology/ Division of Molecular Biology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| |
Collapse
|
13
|
Jalouli M, Mokas S, Turgeon CA, Lamalice L, Richard DE. Selective HIF-1 Regulation under Nonhypoxic Conditions by the p42/p44 MAP Kinase Inhibitor PD184161. Mol Pharmacol 2017; 92:510-518. [PMID: 28814529 DOI: 10.1124/mol.117.108654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/02/2017] [Indexed: 02/14/2025] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key gene regulator for cellular adaptation to low oxygen. In addition to hypoxia, several nonhypoxic stimuli, including hormones and growth factors, are essential for cell-specific HIF-1 regulation. Our studies have highlighted angiotensin II (AngII), a vasoactive hormone, as a potent HIF-1 activator in vascular smooth muscle cells (VSMC). AngII increases HIF-1 transcriptional activity by modulating specific signaling pathways. In VSMC, p42/p44 mitogen-activated protein kinase (MAPK) pathway activation is essential for HIF-1-mediated transcription during AngII treatment. The present study shows that PD184161, a potent MEK1/2 inhibitor, is an HIF-1 blocker in Ang II-treated VSMC. Unlike PD98059, a widely-used MEK1/2 inhibitor, we found that PD184161 blocked AngII-driven HIF-1α protein induction in a dose-dependent manner. Interestingly, the effect of PD184161 was specific to nonhypoxic activators, since HIF-1α induction by hypoxia (1% O2) was unaffected under similar conditions. VSMC treatment with MG132, a proteasome inhibitor, indicated that PD184161 influenced HIF-1α protein stability. PD184161 also increased HIF-1α binding to von Hippel-Lindau tumor suppressor protein, an E3 ligase component and an indication of HIF-1α hydroxylation. Finally, we show that PD184161 blocked mitochondrial ROS (mtROS) production and cellular ATP levels, at the same time enhancing ascorbate availability in AngII-treated VSMC. Taken together, our study indicates that, independently of p42/p44 MAPK activation, PD184161 blocks mtROS generation by AngII, leading to re-establishment of cellular ascorbate levels, increased VHL binding, and decreased HIF-1α stability. Therefore, this study reveals a previously unsuspected role for PD184161 as an HIF-1 inhibitor in VSMC under nonhypoxic conditions.
Collapse
Affiliation(s)
- Maroua Jalouli
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Sophie Mokas
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Catherine A Turgeon
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Laurent Lamalice
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Darren E Richard
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
14
|
Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat Rev Rheumatol 2017; 13:648-656. [PMID: 28855694 DOI: 10.1038/nrrheum.2017.134] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.
Collapse
|
15
|
Abstract
Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Albany Medical College, Albany, NY, United States.
| |
Collapse
|
16
|
Integrin signaling in atherosclerosis. Cell Mol Life Sci 2017; 74:2263-2282. [PMID: 28246700 DOI: 10.1007/s00018-017-2490-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.
Collapse
|
17
|
c- Src and its role in cystic fibrosis. Eur J Cell Biol 2016; 95:401-413. [DOI: 10.1016/j.ejcb.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022] Open
|
18
|
Liu Y, Wang TT, Zhang R, Fu WY, Wang X, Wang F, Gao P, Ding YN, Xie Y, Hao DL, Chen HZ, Liu DP. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J Exp Med 2016; 213:2473-2488. [PMID: 27670594 PMCID: PMC5068228 DOI: 10.1084/jem.20151794] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/26/2016] [Indexed: 12/29/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), characterized by a localized dilation of the abdominal aorta, is a life-threatening vascular pathology. Because of the current lack of effective treatment for AAA rupture, prevention is of prime importance for AAA management. Calorie restriction (CR) is a nonpharmacological intervention that delays the aging process and provides various health benefits. However, whether CR prevents AAA formation remains untested. In this study, we subjected Apoe-/- mice to 12 wk of CR and then examined the incidence of angiotensin II (AngII)-induced AAA formation. We found that CR markedly reduced the incidence of AAA formation and attenuated aortic elastin degradation in Apoe-/- mice. The expression and activity of Sirtuin 1 (SIRT1), a key metabolism/energy sensor, were up-regulated in vascular smooth muscle cells (VSMCs) upon CR. Importantly, the specific ablation of SIRT1 in smooth muscle cells abolished the preventive effect of CR on AAA formation in Apoe-/- mice. Mechanistically, VSMC-SIRT1-dependent deacetylation of histone H3 lysine 9 on the matrix metallopeptidase 2 (Mmp2) promoter was required for CR-mediated suppression of AngII-induced MMP2 expression. Together, our findings suggest that CR may be an effective intervention that protects against AAA formation.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ting-Ting Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ran Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wen-Yan Fu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Peng Gao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang-Nan Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Xie
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - De-Long Hao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
19
|
Abstract
Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
Yuan TY, Chen YC, Zhang HF, Li L, Jiao XZ, Xie P, Fang LH, Du GH. DL0805-2, a novel indazole derivative, relaxes angiotensin II-induced contractions of rat aortic rings by inhibiting Rho kinase and calcium fluxes. Acta Pharmacol Sin 2016; 37:604-16. [PMID: 27041459 DOI: 10.1038/aps.2015.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022]
Abstract
AIM DL0805-2 [N-(1H-indazol-5-yl)-1-(4-methylbenzyl) pyrrolidine-3-carboxamide] is a DL0805 derivative with more potent vasorelaxant activity and lower toxicity. This study was conducted to investigate the vasorelaxant mechanisms of DL0805-2 on angiotensin II (Ang II)-induced contractions of rat thoracic aortic rings in vitro. METHODS Rat thoracic aortic rings and rat aortic vascular smooth muscle cells (VSMCs) were pretreated with DL0805-2, and then stimulated with Ang II. The tension of the aortic rings was measured through an isometric force transducer. Ang II-induced protein phosphorylation, ROS production and F-actin formation were assessed with Western blotting and immunofluorescence assays. Intracellular free Ca(2+) concentrations were detected with Fluo-3 AM. RESULTS Pretreatment with DL0805-2 (1-100 μmol/L) dose-dependently inhibited the constrictions of the aortic rings induced by a single dose of Ang II (10(-7) mol/L) or accumulative addition of Ang II (10(-10)-10(-7) mol/L). The vasodilatory effect of DL0805-2 was independent of endothelium. In the aortic rings, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) suppressed Ang II-induced Ca(2+) influx and intracellular Ca(2+) mobilization, and Ang II-induced phosphorylation of two substrates of Rho kinase (MLC and MYPT1). In VSMCs, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) also suppressed Ang II-induced Ca(2+) fluxes and phosphorylation of MLC and MYPT1. In addition, pretreatment with DL0805-2 attenuated ROS production and F-actin formation in the cells. CONCLUSION DL0805-2 exerts a vasodilatory action in rat aortic rings through inhibiting the Rho/ROCK pathway and calcium fluxes.
Collapse
|
21
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
22
|
Yang K, Wang X, Liu Z, Lu L, Mao J, Meng H, Wang Y, Hu Y, Zeng Y, Zhang X, Chen Q, Liu Y, Shen W. Oxidized low-density lipoprotein promotes macrophage lipid accumulation via the toll-like receptor 4-Src pathway. Circ J 2015; 79:2509-16. [PMID: 26399924 DOI: 10.1253/circj.cj-15-0345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Uptake of oxidized low-density lipoprotein (oxLDL) by macrophages is recognized as a crucial step in the development of atherosclerosis, whereas the precise molecular mechanisms involving it remain to be elucidated. METHODS AND RESULTS This study focused on determining the role of toll-like receptor 4 (TLR4) and Src kinase in macrophage lipid accumulation. oxLDL significantly enhanced Src kinase activity and intracellular lipid contents in RAW264.7 macrophages, whereas the small interference RNA-mediated knockdown of TLR4 and Src or chemical inhibition of Src activity blocked oxLDL-induced lipid accumulation. Immunoprecipitation and immunofluorescence studies demonstrated that TLR4 was associated with Src on the plasma membrane upon oxLDL stimulation. CONCLUSIONS The results of the present study suggest an essential role of TLR4-Src signaling in macrophages in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Ke Yang
- Institute of Cardiovascular Disease, Ruijin Hospital, Jiaotong University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H15-44. [PMID: 25934099 DOI: 10.1152/ajpheart.00459.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR), renin angiotensin system blockade (RAS-bl), and rapamycin-mediated mechanistic target of rapamycin (mTOR) inhibition increase survival and retard aging across species. Previously, we have summarized CR and RAS-bl's converging effects, and the mitochondrial function changes associated with their physiological benefits. mTOR inhibition and enhanced sirtuin and KLOTHO signaling contribute to the benefits of CR in aging. mTORC1/mTORC2 complexes contribute to cell growth and metabolic regulation. Prolonged mTORC1 activation may lead to age-related disease progression; thus, rapamycin-mediated mTOR inhibition and CR may extend lifespan and retard aging through mTORC1 interference. Sirtuins by deacetylating histone and transcription-related proteins modulate signaling and survival pathways and mitochondrial functioning. CR regulates several mammalian sirtuins favoring their role in aging regulation. KLOTHO/fibroblast growth factor 23 (FGF23) contribute to control Ca(2+), phosphate, and vitamin D metabolism, and their dysregulation may participate in age-related disease. Here we review how mTOR inhibition extends lifespan, how KLOTHO functions as an aging suppressor, how sirtuins mediate longevity, how vitamin D loss may contribute to age-related disease, and how they relate to mitochondrial function. Also, we discuss how RAS-bl downregulates mTOR and upregulates KLOTHO, sirtuin, and vitamin D receptor expression, suggesting that at least some of RAS-bl benefits in aging are mediated through the modulation of mTOR, KLOTHO, and sirtuin expression and vitamin D signaling, paralleling CR actions in age retardation. Concluding, the available evidence endorses the idea that RAS-bl is among the interventions that may turn out to provide relief to the spreading issue of age-associated chronic disease.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - Felipe Inserra
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - León Ferder
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| |
Collapse
|
24
|
Hagihara GN, Lobato NS, Filgueira FP, Akamine EH, Aragão DS, Casarini DE, Carvalho MHC, Fortes ZB. Upregulation of ERK1/2-eNOS via AT2 receptors decreases the contractile response to angiotensin II in resistance mesenteric arteries from obese rats. PLoS One 2014; 9:e106029. [PMID: 25170617 PMCID: PMC4149482 DOI: 10.1371/journal.pone.0106029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022] Open
Abstract
It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II (Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially activated by Ang II in obese animals. The role of AT2 receptors was also evaluated. Male monosodium glutamate-induced obese (obese) and non-obese Wistar rats (control) were used. The circulating concentrations of Ang I and Ang II, determined by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response. Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2 receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent manner in obese rats.
Collapse
Affiliation(s)
- Graziela N. Hagihara
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Nubia S. Lobato
- Department of Biological Sciences, Division of Cardiovascular Physiology, Federal University of Goias, Jatai, Brazil
| | - Fernando P. Filgueira
- Department of Biological Sciences, Division of Cardiovascular Physiology, Federal University of Goias, Jatai, Brazil
| | - Eliana H. Akamine
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Danielle S. Aragão
- Department of Medicine, Division of Nephrology, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Dulce E. Casarini
- Department of Medicine, Division of Nephrology, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Helena C. Carvalho
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Zuleica B. Fortes
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
25
|
Zhang SM, Zhu LH, Li ZZ, Wang PX, Chen HZ, Guan HJ, Jiang DS, Chen K, Zhang XF, Tian S, Yang D, Zhang XD, Li H. Interferon regulatory factor 3 protects against adverse neo-intima formation. Cardiovasc Res 2014; 102:469-479. [PMID: 24596398 DOI: 10.1093/cvr/cvu052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
AIMS Vascular smooth muscle cell (VSMC) proliferation is central to the pathophysiology of neo-intima formation. Interferon regulatory factor 3 (IRF3) inhibits the growth of cancer cells and fibroblasts. However, the role of IRF3 in vascular neo-intima formation is unknown. We evaluated the protective role of IRF3 against neo-intima formation in mice and the underlying mechanisms. METHODS AND RESULTS IRF3 expression was down-regulated in VSMCs after carotid wire injury in vivo, and in SMCs after platelet-derived growth factor (PDGF)-BB challenge in vitro. Global knockout of IRF3 (IRF3-KO) led to accelerated neo-intima formation and proliferation of VSMCs, whereas the opposite was seen in SMC-specific IRF3 transgenic mice. Mechanistically, we identified IRF3 as a novel regulator of peroxisome proliferator-activated receptor γ (PPARγ), a negative regulator of SMC proliferation after vascular injury. Binding of IRF3 to the AB domain of PPARγ in the nucleus of SMCs facilitated PPARγ transactivation, resulting in decreased proliferation cell nuclear antigen expression and suppressed proliferation. Overexpression of wild-type, but not truncated, IRF3 with a mutated IRF association domain (IAD) retained the ability to exert anti-proliferative effect. CONCLUSIONS IRF3 inhibits VSMC proliferation and neo-intima formation after vascular injury through PPARγ activation.
Collapse
Affiliation(s)
- Shu-Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Li-Hua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zuo-Zhi Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Jing Guan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Ke Chen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Da Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Xiao-Dong Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Paxillin and focal adhesion kinase colocalise in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 2014; 142:245-56. [PMID: 24671495 DOI: 10.1007/s00418-014-1212-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/15/2023]
Abstract
Focal adhesion kinase (FAK) and paxillin are functionally linked hormonal- and mechano-sensitive proteins. We aimed to describe paxillin's subcellular distribution using widefield and confocal immunofluorescence microscopy and test the hypothesis that FAK and paxillin colocalise in human skeletal muscle and its associated microvasculature. Percutaneous muscle biopsies were collected from the m. vastus lateralis of seven healthy males, and 5-μm cryosections were stained with anti-paxillin co-incubated with anti-dystrophin to identify the sarcolemma, anti-myosin heavy chain type I for fibre-type differentiation, anti-dihydropyridine receptor to identify T-tubules, lectin UEA-I to identify the endothelium of microvessels and anti-α-smooth muscle actin to identify vascular smooth muscle cells (VSMC). Colocalisation of anti-paxillin with anti-dystrophin or anti-FAK was quantified using Pearson's correlation coefficient on confocal microscopy images. Paxillin was primarily present in (sub)sarcolemmal regions of skeletal muscle fibres where it colocalised with dystrophin (r = 0.414 ± 0.026). The (sub)sarcolemmal paxillin immunofluorescence intensity was ~2.4-fold higher than in sarcoplasmic regions (P < 0.001) with sarcoplasmic paxillin immunofluorescence intensity ~10 % higher in type I than in type II fibres (P < 0.01). In some longitudinally orientated fibres, paxillin formed striations that corresponded to the I-band region. Paxillin immunostaining was highest in endothelial and VSMC and distributed heterogeneously in both cell types. FAK and paxillin colocalised at (sub)sarcolemmal regions and within the microvasculature (r = 0.367 ± 0.036). The first images of paxillin in human skeletal muscle suggest paxillin is present in (sub)sarcolemmal and I-band regions of muscle fibres and within the microvascular endothelium and VSMC. Colocalisation of FAK and paxillin supports their suggested role in hormonal and mechano-sensitive signalling.
Collapse
|
27
|
Chaterji S, Lam CH, Ho DS, Proske DC, Baker AB. Syndecan-1 regulates vascular smooth muscle cell phenotype. PLoS One 2014; 9:e89824. [PMID: 24587062 PMCID: PMC3934950 DOI: 10.1371/journal.pone.0089824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We examined the role of syndecan-1 in modulating the phenotype of vascular smooth muscle cells in the context of endogenous inflammatory factors and altered microenvironments that occur in disease or injury-induced vascular remodeling. METHODS AND RESULTS Vascular smooth muscle cells (vSMCs) display a continuum of phenotypes that can be altered during vascular remodeling. While the syndecans have emerged as powerful and complex regulators of cell function, their role in controlling vSMC phenotype is unknown. Here, we isolated vSMCs from wild type (WT) and syndecan-1 knockout (S1KO) mice. Gene expression and western blotting studies indicated decreased levels of α-smooth muscle actin (α-SMA), calponin, and other vSMC-specific differentiation markers in S1KO relative to WT cells. The spread area of the S1KO cells was found to be greater than WT cells, with a corresponding increase in focal adhesion formation, Src phosphorylation, and alterations in actin cytoskeletal arrangement. In addition, S1KO led to increased S6RP phosphorylation and decreased AKT and PKC-α phosphorylation. To examine whether these changes were present in vivo, isolated aortae from aged WT and S1KO mice were stained for calponin. Consistent with our in-vitro findings, the WT mice aortae stained higher for calponin relative to S1KO. When exposed to the inflammatory cytokine TNF-α, WT vSMCs had an 80% reduction in syndecan-1 expression. Further, with TNF-α, S1KO vSMCs produced increased pro-inflammatory cytokines relative to WT. Finally, inhibition of interactions between syndecan-1 and integrins αvβ3 and αvβ5 using the inhibitory peptide synstatin appeared to have similar effects on vSMCs as knocking out syndecan-1, with decreased expression of vSMC differentiation markers and increased expression of inflammatory cytokines, receptors, and osteopontin. CONCLUSIONS Taken together, our results support that syndecan-1 promotes vSMC differentiation and quiescence. Thus, the presence of syndecan-1 would have a protective effect against vSMC dedifferentiation and this activity is linked to interactions with integrins αvβ3 and αvβ5.
Collapse
Affiliation(s)
- Somali Chaterji
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Christoffer H. Lam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Derek S. Ho
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel C. Proske
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Aaron B. Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
28
|
Soe NN, Sowden M, Baskaran P, Smolock EM, Kim Y, Nigro P, Berk BC. Cyclophilin A is required for angiotensin II-induced p47phox translocation to caveolae in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2013; 33:2147-53. [PMID: 23846495 DOI: 10.1161/atvbaha.113.301894] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Angiotensin II (AngII) signal transduction in vascular smooth muscle cells (VSMC) is mediated by reactive oxygen species (ROS). Cyclophilin A (CyPA) is a ubiquitously expressed cytosolic protein that possesses peptidyl-prolyl cis-trans isomerase activity, scaffold function, and significantly enhances AngII-induced ROS production in VSMC. We hypothesized that CyPA regulates AngII-induced ROS generation by promoting translocation of NADPH oxidase cytosolic subunit p47phox to caveolae of the plasma membrane. APPROACH AND RESULTS Overexpression of CyPA in CyPA-deficient VSMC (CyPA(-/-)VSMC) significantly increased AngII-stimulated ROS production. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors (VAS2870 or diphenylene iodonium) significantly attenuated AngII-induced ROS production in CyPA and p47phox-overexpressing CyPA(-/-)VSMC. Cell fractionation and sucrose gradient analyses showed that AngII-induced p47phox plasma membrane translocation, specifically to the caveolae, was reduced in CyPA(-/-)VSMC compared with wild-type-VSMC. Immunofluorescence studies demonstrated that AngII increased p47phox and CyPA colocalization and translocation to the plasma membrane. In addition, immunoprecipitation of CyPA followed by immunoblotting of p47phox and actin showed that AngII increased CyPA and p47phox interaction. AngII-induced p47phox and actin cell cytoskeleton association was attenuated in CyPA(-/-)VSMC. Mechanistically, inhibition of p47phox phosphorylation and phox homology domain deletion attenuated CyPA and p47phox interaction. Finally, cyclosporine A and CyPA-peptidyl-prolyl cis-trans isomerase mutant, R55A, inhibited AngII-stimulated CyPA and p47phox association in VSMC, suggesting that peptidyl-prolyl cis-trans isomerase activity was required for their interaction. CONCLUSIONS These findings provide the mechanism by which CyPA is an important regulator for AngII-induced ROS generation in VSMC through interaction with p47phox and cell cytoskeleton, which enhances the translocation of p47phox to caveolae.
Collapse
Affiliation(s)
- Nwe Nwe Soe
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Sehgel NL, Zhu Y, Sun Z, Trzeciakowski JP, Hong Z, Hunter WC, Vatner DE, Meininger GA, Vatner SF. Increased vascular smooth muscle cell stiffness: a novel mechanism for aortic stiffness in hypertension. Am J Physiol Heart Circ Physiol 2013; 305:H1281-7. [PMID: 23709594 DOI: 10.1152/ajpheart.00232.2013] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased vascular stiffness is fundamental to hypertension, and its complications, including atherosclerosis, suggest that therapy should also be directed at vascular stiffness, rather than just the regulation of peripheral vascular resistance. It is currently held that the underlying mechanisms of vascular stiffness in hypertension only involve the extracellular matrix and endothelium. We hypothesized that increased large-artery stiffness in hypertension is partly due to intrinsic mechanical properties of vascular smooth muscle cells. After confirming increased arterial pressure and aortic stiffness in spontaneously hypertensive rats, we found increased elastic stiffness of aortic smooth muscle cells of spontaneously hypertensive rats compared with Wistar-Kyoto normotensive controls using both an engineered aortic tissue model and atomic force microscopy nanoindentation. Additionally, we observed different temporal oscillations in the stiffness of vascular smooth muscle cells derived from hypertensive and control rats, suggesting that a dynamic component to cellular elastic stiffness is altered in hypertension. Treatment with inhibitors of vascular smooth muscle cell cytoskeletal proteins reduced vascular smooth muscle cell stiffness from hypertensive and control rats, suggesting their participation in the mechanism. This is the first study demonstrating that stiffness of individual vascular smooth muscle cells mediates vascular stiffness in hypertension, a novel concept, which may elucidate new therapies for hypertension and for vascular stiffness.
Collapse
Affiliation(s)
- Nancy L Sehgel
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barrett A, Pellet-Many C, Zachary IC, Evans IM, Frankel P. p130Cas: a key signalling node in health and disease. Cell Signal 2012; 25:766-77. [PMID: 23277200 DOI: 10.1016/j.cellsig.2012.12.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 01/08/2023]
Abstract
p130Cas/breast cancer anti-oestrogen resistance 1 (BCAR1) is a member of the Cas (Crk-associated substrate) family of adaptor proteins, which have emerged as key signalling nodes capable of interactions with multiple proteins, with important regulatory roles in normal and pathological cell function. The Cas family of proteins is characterised by the presence of multiple conserved motifs for protein-protein interactions, and by extensive tyrosine and serine phosphorylations. Recent studies show that p130Cas contributes to migration, cell cycle control and apoptosis. p130Cas is essential during early embryogenesis, with a critical role in cardiovascular development. Furthermore, p130Cas has been reported to be involved in the development and progression of several human cancers. p130Cas is able to perform roles in multiple processes due to its capacity to regulate a diverse array of signalling pathways, transducing signals from growth factor receptor tyrosine kinases, non-receptor tyrosine kinases, and integrins. In this review we summarise the current understanding of the structure, function, and regulation of p130Cas, and discuss the importance of p130Cas in both physiological and pathophysiological settings, with a focus on the cardiovascular system and cancer.
Collapse
Affiliation(s)
- Angela Barrett
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Fu GX, Xu CC, Zhong Y, Zhu DL, Gao PJ. Aldosterone-induced osteopontin expression in vascular smooth muscle cells involves MR, ERK, and p38 MAPK. Endocrine 2012; 42:676-83. [PMID: 22588951 DOI: 10.1007/s12020-012-9675-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/06/2012] [Indexed: 01/19/2023]
Abstract
Osteopontin (OPN) is known to be one of the cytokines that is involved in the vascular inflammation caused by aldosterone (Ald). Previous reports have shown that Ald increases OPN expression, and the mechanisms for this remain to be clarified. In this study, we investigated how Ald increases OPN expression in the vascular smooth muscle cells (VSMCs) of rats. Ald increased OPN expression time dependently as well as dose dependently. This increase was diminished by spironolactone, a mineralocorticoid receptor (MR) antagonist. PD98059, an inhibitor of p42/44 MAPK pathway, and SB203580, an inhibitor of p38 MAPK pathway, suppressed Ald-induced OPN expression and secretion in VSMCs. VSMCs migration stimulated by aldosterone required OPN expression. In conclusion, these data suggest that Ald-induced OPN expression in VSMC is mediated by MR and signaling cascades involving ERK and p38 MAPK. These molecules may represent therapeutic targets for the prevention of pathological vascular remodeling.
Collapse
MESH Headings
- Aldosterone/pharmacology
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Blotting, Western
- Carotid Artery Injuries/metabolism
- Cell Movement/drug effects
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- Immunohistochemistry
- Luciferases/metabolism
- MAP Kinase Signaling System/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neointima/pathology
- Oligonucleotides, Antisense/pharmacology
- Osteopontin/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Mineralocorticoid/metabolism
- Transfection
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Guo-Xiang Fu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Min J, Reznichenko M, Poythress RH, Gallant CM, Vetterkind S, Li Y, Morgan KG. Src modulates contractile vascular smooth muscle function via regulation of focal adhesions. J Cell Physiol 2012; 227:3585-92. [PMID: 22287273 DOI: 10.1002/jcp.24062] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Src is a known regulator of focal adhesion turnover in migrating cells; but, in contrast, Src is generally assumed to play little role in differentiated, contractile vascular smooth muscle (dVSM). The goal of the present study was to determine if Src-family kinases regulate focal adhesion proteins and how this might affect contractility of non-proliferative vascular smooth muscle. We demonstrate here, through the use of phosphotyrosine screening, deconvolution microscopy imaging, and differential centrifugation, that the activity of Src family kinases in aorta is regulated by the alpha agonist and vasoconstrictor phenylephrine, and leads to focal adhesion protein phosphorylation and remodeling in dVSM. Furthermore, Src inhibition via morpholino knockdown of Src or by the small molecule inhibitor PP2 prevents phenylephrine-induced adhesion protein phosphorylation, markedly slows the tissue's ability to contract, and decreases steady state contractile force amplitude. Significant vasoconstrictor-induced and Src-dependent phosphorylation of Cas pY-165, FAK pY-925, paxillin pY-118, and Erk1/2 were observed. However, increases in FAK 397 phosphorylation were not seen, demonstrating differences between cells in tissue versus migrating, proliferating cells. We show here that Src, in a cause and effect manner, regulates focal adhesion protein function and, consequently, modulates contractility during the action of a vasoconstrictor. These data point to the possibility that vascular focal adhesion proteins may be useful drug discovery targets for novel therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Jianghong Min
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Chignalia AZ, Schuldt EZ, Camargo LL, Montezano AC, Callera GE, Laurindo FR, Lopes LR, Avellar MCW, Carvalho MHC, Fortes ZB, Touyz RM, Tostes RC. Testosterone Induces Vascular Smooth Muscle Cell Migration by NADPH Oxidase and c-Src–Dependent Pathways. Hypertension 2012; 59:1263-71. [DOI: 10.1161/hypertensionaha.111.180620] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andreia Z. Chignalia
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Elke Z. Schuldt
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Lívia L. Camargo
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Augusto C. Montezano
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Gláucia E. Callera
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Francisco R. Laurindo
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Lucia R. Lopes
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Maria Christina W. Avellar
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Maria Helena C. Carvalho
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Zuleica B. Fortes
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Rhian M. Touyz
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| | - Rita C. Tostes
- From the Institute of Biomedical Sciences (A.Z.C., E.Z.S., L.L.C., L.R.L., M.H.C.C., Z.B.F., R.C.T.), and Heart Institute, School of Medicine (A.Z.C., F.R.L.), University of São Paulo, São Paulo, Brazil; Kidney Research Centre (A.Z.C., E.Z.S., A.C.M., G.E.C., R.M.T.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Section of Experimental Endocrinology (M.C.W.A.), Department of Pharmacology, Federal University of São Paulo, Sao Paulo, Brazil; Department of
| |
Collapse
|
34
|
Abstract
Oxidant stress plays an important role in the pathogenesis of atherosclerosis. In the late 1980s, biological studies demonstrated that oxygen-free radicals oxidize low-density lipoprotein-cholesterol, resulting in the creation of foam cells and inciting the cascade of biological events that ultimately result in the formation of atherosclerosis. In vitro studies showed the ability of antioxidant vitamins to scavenge free radicals and block the oxidation of low-density lipoprotein. This data was supported in vivo by early observational studies suggesting the benefit of antioxidants, particularly vitamin E, in the prevention of coronary artery disease. On the basis of these studies, the use of antioxidant supplements by the general population increased substantially and became a multibillion dollar industry. Despite strong biological evidence and promising observational data, more rigorous scientific evaluation did not support a causational relationship between vitamin supplements and lowering coronary artery disease risk. Several prospective, double-blind, placebo-controlled trials showed no benefit and possibly harmful effects. Therapies such as angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and statins, which are known to have benefit in preventing and treating atherosclerosis by reducing blood pressure and cholesterol, also have a "pleiotropic" effect in reducing the formation of reactive oxygen species (ROS). Advances in molecular biology and the study of ROS led to a better understanding of the mechanisms that govern their production and role in atherogenesis. This progress identified unforeseen pathways by which these drugs favorably alter the balance in ROS production, and have raised possibilities for future targeted therapies in the prevention of atherosclerosis.
Collapse
|
35
|
Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol 2011; 210:271-84. [PMID: 21642378 PMCID: PMC3326601 DOI: 10.1530/joe-11-0083] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rather than being a constitutive enzyme as was first suggested, endothelial nitric oxide synthase (eNOS) is dynamically regulated at the transcriptional, posttranscriptional, and posttranslational levels. This review will focus on how changes in eNOS function are conferred by various posttranslational modifications. The latest knowledge regarding eNOS targeting to the plasma membrane will be discussed as the role of protein phosphorylation as a modulator of catalytic activity. Furthermore, new data are presented that provide novel insights into how disruption of the eNOS dimer prevents eNOS uncoupling and the production of superoxide under conditions of elevated oxidative stress and identifies a novel regulatory region we have termed the 'flexible arm'.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center: CB-3211B, Georgia Health Sciences University, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gu XS, Lei JP, Shi JB, Lian WL, Yang X, Zheng X, Qin YW. Mimecan is involved in aortic hypertrophy induced by sinoaortic denervation in rats. Mol Cell Biochem 2011; 352:309-16. [DOI: 10.1007/s11010-011-0767-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/24/2011] [Indexed: 11/28/2022]
|
37
|
Campbell M, Lie WR, Zhao J, Hayes D, Mistry J, Kung HJ, Luciw PA, Khan IH. Multiplex analysis of Src family kinase signaling by microbead suspension arrays. Assay Drug Dev Technol 2010; 8:488-96. [PMID: 20482378 DOI: 10.1089/adt.2009.0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is renewed interest in the Src family of protein tyrosine kinases (SFKs) as a result of their potential utility as molecular targets for cancer therapy. This protein family consists of 9 nonreceptor tyrosine kinases that, although implicated in a diverse array of cellular functions, possess a similar modular structure. Here we describe a simple and efficient multiplex microbead immunoassay (MMIA), based on Luminex xMAP technology, which allows for the simultaneous detection of 8 phosphorylated SFKs in a single assay. Microbead sets identifiable by unique fluorescence were individually coated with antibodies specific for an individual SFK member. Detection of phosphorylated SFKs was accomplished using a secondary antibody directed against phosphotyrosine. The assay requires < or = 10 microg of cell lysate or nanogram amounts of purified SFK. The use of a generic secondary antibody allows for the expansion of the assay to include any other tyrosine kinase for which a specific antibody exists. Using either mammalian cell lines or purified, recombinant kinases as the SFK source, we demonstrate the utility of the assay by evaluating the phosphorylation status of SFK members following several in vitro manipulations designed to modulate the phosphotyrosine content of the kinases. These results show that the SFK multiplex assay is a robust tool to investigate the function of SFKs in basic and potentially in clinical research.
Collapse
Affiliation(s)
- Mel Campbell
- Center for Comparative Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hall EH, Balsbaugh JL, Rose KL, Shabanowitz J, Hunt DF, Brautigan DL. Comprehensive analysis of phosphorylation sites in Tensin1 reveals regulation by p38MAPK. Mol Cell Proteomics 2010; 9:2853-63. [PMID: 20798394 DOI: 10.1074/mcp.m110.003665] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tensin1 is the archetype of a family of focal adhesion proteins. Tensin1 has a phosphotyrosine binding domain that binds the cytoplasmic tail of β-integrin, a Src homology 2 domain that binds focal adhesion kinase, p130Cas, and the RhoGAP called deleted in liver cancer-1, a phosphatase and tensin homology domain that binds protein phosphatase-1α and other regions that bind F-actin. The association between tensin1 and these partners affects cell polarization, migration, and invasion. In this study we analyzed the phosphorylation of human S-tag-tensin1 expressed in HEK293 cells by mass spectrometry. Peptides covering >90% of the sequence initially revealed 50 phosphorylated serine/phosphorylated threonine (pSer/pThr) but no phosphorylated tyrosine (pTyr) sites. Addition of peroxyvanadate to cells to inhibit protein tyrosine phosphatases exposed 10 pTyr sites and addition of calyculin A to cells to inhibit protein phosphatases type 1 and 2A gave a total of 62 pSer/pThr sites. We also characterized two sites modified by O-linked N-acetylglucosamine. Tensin1 F302A, which does not bind protein phosphatase-1, showed > twofold enhanced phosphorylation of seven sites. The majority of pSer/pThr have adjacent proline (Pro) residues and we show endogenous p38 mitogen activated protein kinase (MAPK) associated with and phosphorylated tensin1 in an in vitro kinase assay. Recombinant p38α MAPK also phosphorylated S-tag-tensin1, resulting in decreased binding with deleted in liver cancer-1. Activation of p38 MAPK in cells by sorbitol-induced hyperosmotic stress increased phosphorylation of S-tag-tensin1, which reduced binding to deleted in liver cancer-1 and increased binding to endogenous pTyr proteins, including p130Cas and focal adhesion kinase. These data demonstrate that tensin1 is extensively phosphorylated on Ser/Thr residues in cells and phosphorylation by p38 MAPK regulates the specificity of the tensin1 Src homology 2 domain for binding to different proteins. Tensin1 provides a hub for connecting signaling pathways involving p38 MAP kinase, tyrosine kinases and RhoGTPases.
Collapse
Affiliation(s)
- Emily H Hall
- Center for Cell Signaling, University of Virginia, 1400 Jefferson Park Ave, P.O. Box 800577-MSB7125, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
39
|
Smolock EM, Korshunov VA. Pharmacological inhibition of Axl affects smooth muscle cell functions under oxidative stress. Vascul Pharmacol 2010; 53:185-92. [PMID: 20643227 DOI: 10.1016/j.vph.2010.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/17/2010] [Accepted: 07/13/2010] [Indexed: 02/07/2023]
Abstract
We previously demonstrated that reactive oxygen species (ROS) activate Axl, a receptor tyrosine kinase, resulting in increased survival of rat aortic smooth muscle cells (RASMs). Our experiments in Axl knockout mice showed significant reduction in vascular pathologies. We hypothesize that selective pharmacological inhibitors of Axl could prove beneficial in treating vascular diseases associated with oxidative stress. We investigated a role for two novel compounds specific for Axl (R428 and R572) on ligand independent activation of Axl mediated cell survival and migration. Stimulation of RASMs with H(2)O(2) for 5 min significantly increased Akt phosphorylation (p-Akt). Inhibition at 50% (IC(50)) of p-Akt was calculated at lower concentrations in R428 (100 nM) and R572 (10 nM) compared to Fc-Axl (2 microg/mL). Flow cytometry staining with Annexin V showed a 2-fold increase in apoptosis with R428 and R572 compared to Fc-Axl after H(2)O(2), which was validated by concomitant increases in cleaved caspase-3. Pretreatment with R428 and R572 decreased cell migration by approximately 50% in response to 20% serum (similar to that after Fc-Axl). R428 and R572 decreased intracellular production of ROS in comparison to Fc-Axl. In conclusion, R428 and R572 are more potent inhibitors of ligand independent mediated Axl signaling compared to Fc-Axl in RASMs under oxidative stress.
Collapse
Affiliation(s)
- E M Smolock
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
40
|
Cavet ME, Smolock EM, Menon P, Konishi A, Korshunov VA, Berk BC. Gas6-Axl pathway: the role of redox-dependent association of Axl with nonmuscle myosin IIB. Hypertension 2010; 56:105-11. [PMID: 20479336 PMCID: PMC2888491 DOI: 10.1161/hypertensionaha.109.144642] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 04/15/2010] [Indexed: 01/06/2023]
Abstract
In vascular smooth muscle cells, Axl is a key receptor tyrosine kinase, because it is upregulated in injury, increases migration and neointima formation, and is activated by reactive oxygen species. Reaction of glutathione with cysteine residues (termed "glutathiolation") is an important posttranslational redox modification that may alter protein activity and protein-protein interactions. To investigate the mechanisms by which reactive oxygen species increase Axl-dependent vascular smooth muscle cell function we assayed for glutathiolated proteins that associated with Axl in a redox-dependent manner. We identified glutathiolated nonmuscle myosin heavy chain (MHC)-IIB as a novel Axl interacting protein. This interaction was specific in that other myosins did not interact with Axl. The endogenous ligand for Axl, Gas6, increased production of reactive oxygen species in vascular smooth muscle cells and also increased the association of Axl with MHC-IIB. Antioxidants ebselen and N-acetylcysteine decreased the association of Axl with MHC-IIB in response to both Gas6 and reactive oxygen species. Blocking the Axl-MHC-IIB interaction with the specific myosin II inhibitor blebbistatin decreased phosphorylation of Axl and activation of extracellular signal-regulated kinase 1/2 and Akt. Association of MHC-IIB with Axl was increased in balloon-injured rat carotid vessels. Finally, expression of MHC-IIB was upregulated in the neointima of the carotid artery after balloon injury similar to upregulation of Axl protein expression, as shown in our previous studies. These results demonstrate a novel interaction between Axl and MHC-IIB in response to reactive oxygen species. This interaction provides a direct link between Axl and molecular motors crucial for directed cell migration, which may mediate increased migration in vascular dysfunction.
Collapse
Affiliation(s)
- Megan E. Cavet
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, Rochester, NY
| | - Elaine M. Smolock
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, Rochester, NY
| | - Prashanthi Menon
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, Rochester, NY
| | - Atsushi Konishi
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, Rochester, NY
| | - Vyacheslav A. Korshunov
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, Rochester, NY
| | - Bradford C. Berk
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, Rochester, NY
| |
Collapse
|
41
|
Kyotani Y, Zhao J, Tomita S, Nakayama H, Isosaki M, Uno M, Yoshizumi M. Olmesartan inhibits angiotensin II-Induced migration of vascular smooth muscle cells through Src and mitogen-activated protein kinase pathways. J Pharmacol Sci 2010; 113:161-8. [PMID: 20508392 DOI: 10.1254/jphs.09332fp] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Clinical studies have shown that angiotensin-receptor blockers (ARBs) reduce the risk of cardiovascular diseases in hypertensive patients. It is assumed that the reduction of the risk by ARBs may be attributed in part to the inhibition of angiotensin II (AII)-induced vascular smooth muscle cell (VSMC) migration associated with atherosclerosis. However, the effect of ARBs on AII-induced changes in intracellular signaling and resultant cell migration has not been well established. Here, we investigated the effect of olmesartan, an ARB, on AII-induced extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) activation and rat aortic smooth muscle cell (RASMC) migration. Olmesartan inhibited AII-induced ERK1/2 and JNK activation at lower concentrations (10 nM). On the other hand, PP2, a Src tyrosine kinase inhibitor, also inhibited AII-induced ERK1/2 and JNK activation, but its effect on ERK1/2 was less pronounced than that of olmesartan. Olmesartan, U0126 (an ERK1/2 inhibitor), SP600125 (a JNK inhibitor), and PP2 potently inhibited AII-induced RASMC migration. From these findings, it was inferred that angiotensin-receptor blockade by olmesartan results in the inhibition of AII-induced activation of Src, ERK1/2, and JNK in RASMC. Olmesartan may be a potent inhibitor of AII-induced VSMC migration, which may be involved in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Yoji Kyotani
- Department of Pharmacology, Nara Medical University School of Medicine, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Isenovic ER, Kedees MH, Haidara MA, Trpkovic A, Mikhailidis DP, Marche P. Involvement of ERK1/2 kinase in insulin-and thrombin-stimulated vascular smooth muscle cell proliferation. Angiology 2010; 61:357-364. [PMID: 20304866 DOI: 10.1177/0003319709358693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well recognized that the proliferation of vascular smooth muscle cells (VSMCs) is a key event in the pathogenesis of various vascular diseases, including atherosclerosis and hypertension. We have previously shown that among extracellular signal-regulated protein kinases (ERKs), the 42- and 44-kDa isoforms (ERK1/2) participate in the cellular mitogenic machinery triggered by several VSMCs activators, including insulin (INS) and thrombin (Thr). However, understanding of the intracellular signal transduction pathways involved is incomplete. This review considers the recent findings in INS and Thr signaling mechanisms that modulate the proliferation of VSMCs with particular emphasis on the ERK1/2 signaling pathway, an important mediator of VSMCs hypertrophy and vascular disease. Moreover, because the ERK1/2 pathway have been acknowledged as an important mediator of VSMCs hypertrophy, ERK1/2 is identified as a key target for novel therapeutic interventions to minimize irreversible tissue damage associated with hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Esma R Isenovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory for Molecular Genetics and Radiobiology, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
43
|
Tazzeo T, Worek F, Janssen L. The NADPH oxidase inhibitor diphenyleneiodonium is also a potent inhibitor of cholinesterases and the internal Ca(2+) pump. Br J Pharmacol 2009; 158:790-6. [PMID: 19788497 DOI: 10.1111/j.1476-5381.2009.00394.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Diphenyleneiodonium (DPI) is often used as an NADPH oxidase inhibitor, but is increasingly being found to have unrelated side effects. We investigated its effects on smooth muscle contractions and the related mechanisms. EXPERIMENTAL APPROACH We studied isometric contractions in smooth muscle strips from bovine trachea. Cholinesterase activity was measured using a spectrophotometric assay; internal Ca(2+) pump activity was assessed by Ca(2+) uptake into smooth muscle microsomes. KEY RESULTS Contractions to acetylcholine were markedly enhanced by DPI (10(-4) M), whereas those to carbachol (CCh) were not, suggesting a possible inhibition of cholinesterase. DPI markedly suppressed contractions evoked by CCh, KCl and 5-HT, and also unmasked phasic activity in otherwise sustained responses. Direct biochemical assays confirmed that DPI was a potent inhibitor of acetylcholinesterase and butyrylcholinesterase (IC(50) approximately 8 x 10(-6) M and 6 x 10(-7) M, respectively), following a readily reversible, mixed non-competitive type of inhibition. The inhibitory effects of DPI on CCh contractions were not mimicked by another NADPH oxidase inhibitor (apocynin), nor the Src inhibitors PP1 or PP2, ruling out an action through the NADPH oxidase signalling pathway. Several features of the DPI-mediated suppression of agonist-evoked responses (i.e. suppression of peak magnitudes and unmasking of phasic activity) are similar to those of cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump. Direct measurement of microsomal Ca(2+) uptake revealed that DPI modestly inhibits the internal Ca(2+) pump. CONCLUSIONS AND IMPLICATIONS DPI inhibits cholinesterase activity and the internal Ca(2+) pump in tracheal smooth muscle.
Collapse
Affiliation(s)
- T Tazzeo
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
44
|
Abstract
Vascular smooth muscle is a key effector in the wall of blood vessels during the pathogenesis of hypertension. Various factors directly elicit smooth muscle cell contraction, migration, growth, and hypertrophy, which lead to the progression of hypertension. Crk-associated substrate (CAS), the first discovered member of the adapter protein CAS family, has recently emerged as a critical cellular component that regulates smooth muscle functions. In this review, the molecular structure and protein interactions of the CAS family members are summarized. Evidence for the role of CAS in the regulation of vascular smooth muscle contractility, cell migration, hypertrophy, and growth is presented. Regulation of CAS by novel tyrosine kinases/phosphatases and unique downstream signaling partners of CAS are also discussed. These new findings establish the important role for CAS in regulating vascular smooth muscle functions. The CAS-associated processes may be new biological targets for the development of new treatment of cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| |
Collapse
|
45
|
Evans JF, Lee JH, Ragolia L. Ang-II-induced Ca(2+) influx is mediated by the 1/4/5 subgroup of the transient receptor potential proteins in cultured aortic smooth muscle cells from diabetic Goto-Kakizaki rats. Mol Cell Endocrinol 2009; 302:49-57. [PMID: 19135126 DOI: 10.1016/j.mce.2008.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 01/04/2023]
Abstract
Angiotensin-II (Ang-II) exerts many of its vascular effects, including the pathophysiological changes associated with type 2 diabetes, through changes in intracellular calcium concentration [Ca(2+)](i). We sought to clarify the mechanism responsible for Ang-II-induced Ca(2+) influx in cultured aortic VSMC using the Goto-Kakizaki (GK) rat model of type 2 diabetes. Ang-II-induced Ca(2+) influx was blocked by neither VDCC nor c-src inhibition but was sensitive to inositol 1,4,5-trisphosphate receptor inhibition, lanthanide and the diacylglycerol analogue, oleoyl-2-acetyl-sn-glycerol. Since transient receptor potential canonical (TRPC)-3 gene expression was undetectable in both WKY and GK VSMCs and TRPC6 gene and protein expression were significantly down-regulated in GK, we believe the 1/4/5 subgroup of TRPC proteins plays a significant role. Furthermore, in GK VSMC the elevated calcium influx observed was not attributable to increased TRPC expression, but rather an alteration of TRPC activity.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Blotting, Western
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- Transient Receptor Potential Channels/genetics
- Transient Receptor Potential Channels/metabolism
Collapse
Affiliation(s)
- Jodi F Evans
- Vascular Biology Institute, Department of Medicine, Winthrop University Hospital, Mineola, NY 11501, United States
| | | | | |
Collapse
|
46
|
de Cavanagh EMV, Ferder M, Inserra F, Ferder L. Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol Heart Circ Physiol 2009; 296:H550-8. [DOI: 10.1152/ajpheart.01176.2008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malfunctioning mitochondria strongly participate in the pathogenesis of cardiovascular damage associated with hypertension and other disease conditions. Eukaryotic cells move, assume their shape, resist mechanical stress, accommodate their internal constituents, and transmit signals by relying on the constant remodeling of cytoskeleton filaments. Mitochondrial ATP is needed to support cytoskeletal dynamics. Conversely, mitochondria need to interact with cytoskeletal elements to achieve normal motility, morphology, localization, and function. Extracellular matrix (ECM) quantity and quality influence cellular growth, differentiation, morphology, survival, and mobility. Mitochondria can sense ECM composition changes, and changes in mitochondrial functioning modify the ECM. Maladaptive ECM and cytoskeletal alterations occur in a number of cardiac conditions and in most types of glomerulosclerosis, leading to cardiovascular and renal fibrosis, respectively. Angiotensin II (ANG II), a vasoactive peptide and growth factor, stimulates cytosolic and mitochondrial oxidant production, eventually leading to mitochondrial dysfunction. Also, by inducing integrin/focal adhesion changes, ANG II regulates ECM and cytoskeletal composition and organization and, accordingly, contributes to the pathogenesis of cardiovascular remodeling. ANG II-initiated integrin signaling results in the release of transforming growth factor-β1 (TGF-β1), a cytokine that modifies ECM composition and structure, induces reorganization of the cytoskeleton, and modifies mitochondrial function. Therefore, it is possible to hypothesize that the depression of mitochondrial energy metabolism brought about by ANG II is preceded by ANG II-induced integrin signaling and the consequent derangement of the cytoskeletal filament network and/or ECM organization. ANG II-dependent TGF-β1 release is a potential link between ANG II, ECM, and cytoskeleton derangements and mitochondrial dysfunction. It is necessary to emphasize that the present hypothesis is among many other plausible explanations for ANG II-mediated mitochondrial dysfunction. A potential limitation of this proposal is that the results compiled here were obtained in different cells, tissues, and/or experimental models.
Collapse
|
47
|
Soe NN, Ishida T, Miho N, Ishida M, Sawano M, Abe K, Chayama K, Kihara Y, Yoshizumi M. Nifedipine Interferes with Migration of Vascular Smooth Muscle Cells via Inhibition of Pyk2-Src Axis. J Atheroscler Thromb 2009; 16:230-8. [DOI: 10.5551/jat.e422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
48
|
Gunst SJ, Zhang W. Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 2008; 295:C576-87. [PMID: 18596210 PMCID: PMC2544441 DOI: 10.1152/ajpcell.00253.2008] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 06/30/2008] [Indexed: 11/22/2022]
Abstract
A growing body of data supports a view of the actin cytoskeleton of smooth muscle cells as a dynamic structure that plays an integral role in regulating the development of mechanical tension and the material properties of smooth muscle tissues. The increase in the proportion of filamentous actin that occurs in response to the stimulation of smooth muscle cells and the essential role of stimulus-induced actin polymerization and cytoskeletal dynamics in the generation of mechanical tension has been convincingly documented in many smooth muscle tissues and cells using a wide variety of experimental approaches. Most of the evidence suggests that the functional role of actin polymerization during contraction is distinct and separately regulated from the actomyosin cross-bridge cycling process. The molecular basis for the regulation of actin polymerization and its physiological roles may vary in diverse types of smooth muscle cells and tissues. However, current evidence supports a model for smooth muscle contraction in which contractile stimulation initiates the assembly of cytoskeletal/extracellular matrix adhesion complex proteins at the membrane, and proteins within this complex orchestrate the polymerization and organization of a submembranous network of actin filaments. This cytoskeletal network may serve to strengthen the membrane for the transmission of force generated by the contractile apparatus to the extracellular matrix, and to enable the adaptation of smooth muscle cells to mechanical stresses. Better understanding of the physiological function of these dynamic cytoskeletal processes in smooth muscle may provide important insights into the physiological regulation of smooth muscle tissues.
Collapse
Affiliation(s)
- Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
49
|
Satoh K, Matoba T, Suzuki J, O'Dell MR, Nigro P, Cui Z, Mohan A, Pan S, Li L, Jin ZG, Yan C, Abe JI, Berk BC. Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation 2008; 117:3088-98. [PMID: 18541741 PMCID: PMC2775430 DOI: 10.1161/circulationaha.107.756106] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Oxidative stress, generated by excessive reactive oxygen species, promotes cardiovascular disease. Cyclophilin A (CyPA) is a 20-kDa chaperone protein secreted from vascular smooth muscle cells (VSMCs) in response to reactive oxygen species that stimulates VSMC proliferation and inflammatory cell migration in vitro; however, the role CyPA plays in vascular function in vivo remains unknown. METHODS AND RESULTS We tested the hypothesis that CyPA contributes to vascular remodeling by analyzing the response to complete carotid ligation in CyPA knockout mice, wild-type mice, and mice that overexpress CyPA in VSMC (VSMC-Tg). After carotid ligation, CyPA expression in vessels of wild-type mice increased dramatically and was significantly greater in VSMC-Tg mice. Reactive oxygen species-induced secretion of CyPA from mouse VSMCs correlated significantly with intracellular CyPA expression. Intimal and medial hyperplasia correlated significantly with CyPA expression after 2 weeks of carotid ligation, with marked decreases in CyPA knockout mice and increases in VSMC-Tg mice. Inflammatory cell migration into the intima was significantly reduced in CyPA knockout mice and increased in VSMC-Tg mice. Additionally, VSMC proliferation assessed by Ki67(+) cells was significantly less in CyPA knockout mice and was increased in VSMC-Tg mice. The importance of CyPA for intimal and medial thickening was shown by strong correlations between CyPA expression and the number of both inflammatory cells and proliferating VSMCs in vivo and in vitro. CONCLUSIONS In response to low flow, CyPA plays a crucial role in VSMC migration and proliferation, as well as inflammatory cell accumulation, thereby regulating flow-mediated vascular remodeling and intima formation.
Collapse
MESH Headings
- Animals
- Aorta
- Carotid Arteries/physiology
- Cell Division
- Culture Media, Conditioned
- Cyclophilin A/deficiency
- Cyclophilin A/genetics
- Cyclophilin A/physiology
- Gene Expression Regulation
- Inflammation/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/physiopathology
- Reactive Oxygen Species/metabolism
- Tunica Intima/cytology
- Tunica Intima/physiology
Collapse
Affiliation(s)
- Kimio Satoh
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Vascular smooth muscle tone plays a fundamental role in regulating blood pressure, blood flow, microcirculation, and other cardiovascular functions. The cellular and molecular mechanisms by which vascular smooth muscle contractility is regulated are not completely elucidated. Recent studies show that the actin cytoskeleton in smooth muscle is dynamic, which regulates force development. In this review, evidence for actin polymerization in smooth muscle upon external stimulation is summarized. Protein kinases such as Abelson tyrosine kinase, focal adhesion kinase, Src, and mitogen-activated protein kinase have been documented to coordinate actin polymerization in smooth muscle. Transmembrane integrins have also been reported to link to signaling pathways modulating actin dynamics. The roles of Rho family of the small proteins that bind to guanosine triphosphate (GTP), also known as GTPases, and the actin-regulatory proteins, including Crk-associated substrate, neuronal Wiskott-Aldrich Syndrome protein, the Arp2/3 complex, and profilin, and heat shock proteins in regulating actin assembly are discussed. These new findings promote our understanding on how smooth muscle contraction is regulated at cellular and molecular levels.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | |
Collapse
|