1
|
Li J, He J, Kuhn KA, Li Z. Animal Models Informing the Role of the Microbiome and its Metabolites in Rheumatoid Arthritis. Rheum Dis Clin North Am 2025; 51:325-346. [PMID: 40246443 DOI: 10.1016/j.rdc.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Animal models of rheumatoid arthritis (RA) are essential for understanding the disease's mechanisms and developing new treatments. Recent research highlights the microbiome's significant roles in RA pathogenesis, influencing disease susceptibility and progression. These models allow researchers to investigate the causal relationships between specific microbial species and arthritis development. Despite challenges in translating findings to human conditions, animal models are crucial for uncovering microbiome-related therapeutic strategies, advancing our understanding of RA, and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Place, Aurora, CO 80045, USA
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Place, Aurora, CO 80045, USA
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
2
|
Miljković R, Marinković E, Prodić I, Kovačević A, Protić-Rosić I, Vasić M, Lukić I, Gavrović-Jankulović M, Stojanović M. Ameliorative Effect of Banana Lectin in TNBS-Induced Colitis in C57BL/6 Mice Relies on the Promotion of Antioxidative Mechanisms in the Colon. Biomolecules 2025; 15:476. [PMID: 40305159 PMCID: PMC12024995 DOI: 10.3390/biom15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The global burden of inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, is constantly rising. As IBDs significantly reduce patients' quality of life, prevention and efficient treatment of IBDs are of paramount importance. Although the molecular mechanisms underlying IBD pathogenesis are still not completely understood, numerous studies indicate the essential role of oxidative stress in the progression of the diseases. Objective: The aim of this study was to investigate whether prophylactic administration of recombinant banana lectin (rBanLec) could positively affect antioxidative mechanisms in the colon and thus prevent or alleviate the severity of experimental colitis induced in C57BL/6 mice. Methods: The prophylactic potential of rBanLec, a mannose-binding lectin with immunomodulatory properties, was investigated in a model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in C57BL/6 mice. Mice received rBanLec at various doses (0.1, 1 and 10 μg/mL) before the induction of colitis. The severity of the disease was assessed by weight loss and reduction in colon length, and correlated with histopathological findings, cytokine milieu, and oxidative stress markers in the colon. Results: The obtained results revealed that pretreatment with a low dose of rBanLec (0.1 μg/mL) significantly reduced the severity of TNBS-induced colitis, as indicated by reduced weight loss, less severe histopathological damage, and a favorable anti-inflammatory cytokine milieu (increased IL-10 and TGFβ). In addition, rBanLec pretreatment improved the activity of antioxidant enzymes (SOD, CAT, and GST) and reduced markers of oxidative stress such as nitric oxide levels at the peak of the disease. In contrast, higher doses of rBanLec exacerbated inflammatory responses. Conclusions: Our findings indicate that at low doses rBanLec can alleviate the severity of colitis by modulating oxidative stress and promoting anti-inflammatory cytokine responses, positioning rBanLec as a potential candidate for treating IBDs.
Collapse
Grants
- 451-03-66/2024-03/200177 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-66/2024-03/200007 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-66/2024-03/200168 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-136/2025-03/ 200177 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-136/2025-03/ 200007 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-136/2025-03/ 200168 Ministry of Science, Technological Development and Innovation, Serbia
Collapse
Affiliation(s)
- Radmila Miljković
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Emilija Marinković
- Institute for Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Ivana Prodić
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Ana Kovačević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Isidora Protić-Rosić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (I.P.-R.); (M.G.-J.)
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Marko Vasić
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Ivana Lukić
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Marija Gavrović-Jankulović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (I.P.-R.); (M.G.-J.)
| | - Marijana Stojanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| |
Collapse
|
3
|
Ju HJ, Song WH, Shin JH, Lee JH, Bae JM, Lee YB, Lee M. Characterization of Gut Microbiota in Patients with Active Spreading Vitiligo Based on Whole-Genome Shotgun Sequencing. Int J Mol Sci 2025; 26:2939. [PMID: 40243573 PMCID: PMC11988336 DOI: 10.3390/ijms26072939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Vitiligo is an autoimmune skin disease with a significant psychological burden and complex pathogenesis. While genetic factors contribute approximately 30% to its development, recent evidence suggests a crucial role of the gut microbiome in autoimmune diseases. This study investigated differences in gut microbiome composition and metabolic pathways between active spreading vitiligo patients and healthy controls using shotgun whole-genome sequencing in a Korean cohort. Taxonomic profiling reveals distinct characteristics in microbial community structure, with vitiligo patients showing an imbalanced proportion dominated by Actinomycetota and Bacteroidota. The vitiligo group exhibited significantly reduced abundance of specific species including Faecalibacterium prausnitzii, Faecalibacteriumduncaniae, and Meamonas funiformis, and increased Bifidobacterium bifidum compared to healthy controls. Metabolic pathway analysis identified significant enrichment in O-glycan biosynthesis pathways in vitiligo patients, while healthy controls showed enrichment in riboflavin metabolism and bacterial chemotaxis pathways. These findings provide new insights into the gut-skin axis in vitiligo pathogenesis and suggest potential therapeutic targets through microbiota modulation.
Collapse
Affiliation(s)
- Hyun Jeong Ju
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Woo Hyun Song
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| | - Ji Hae Shin
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Ji Hae Lee
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Jung Min Bae
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Young Bok Lee
- Department of Dermatology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| |
Collapse
|
4
|
Thiran A, Vereecke L. New thoughts on the gut-immune axis of arthritis. Trends Immunol 2025; 46:206-218. [PMID: 40069048 DOI: 10.1016/j.it.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 03/21/2025]
Abstract
Arthritis is associated with varying degrees of intestinal inflammation and microbiota dysbiosis, leading to the 'gut-joint axis hypothesis' in which intestinal and joint inflammation are suggested to be interconnected through immune-microbiota interactions. While clinical observations support this, causality remains uncertain. Rodent models have provided insights into potential mechanisms by uncovering microbial influences and immune pathways that either connect or uncouple gut and joint inflammation. Based on recent findings, we propose the 'immune hypersensitivity hypothesis' whereby central immune hyper-reactivity can independently drive joint inflammation via local sterile triggers, and gut inflammation via microbial triggers. We argue that this suggests a more nuanced role of the microbiota in arthritis pathogenesis that varies according to the predominant immune mechanisms in disease subtypes. We explore gut-immune interactions in arthritis, highlight ongoing challenges, and propose future research directions.
Collapse
Affiliation(s)
- Alexandra Thiran
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB)-University of Ghent (UGent) Center for Inflammation Research, Ghent, Belgium; Ghent Gut Inflammation Group (GGIG), Ghent, Belgium
| | - Lars Vereecke
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB)-University of Ghent (UGent) Center for Inflammation Research, Ghent, Belgium; Ghent Gut Inflammation Group (GGIG), Ghent, Belgium.
| |
Collapse
|
5
|
Jin J, Cai X, Rao P, Xu J, Li J. Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential. Best Pract Res Clin Rheumatol 2025; 39:102035. [PMID: 39863438 DOI: 10.1016/j.berh.2025.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility. Dysbiosis-driven metabolic disruptions, including alterations in short-chain fatty acids and bile acids, further exacerbate immune dysregulation and systemic inflammation. Emerging therapeutic strategies-probiotics, microbial metabolites, fecal microbiota transplantation, and antibiotics-offer innovative avenues for restoring microbial balance and mitigating disease progression. By integrating microbiota-targeted approaches with existing treatments, this review highlights the potential to revolutionize RA management through precision medicine and underscores the need for further research to harness the microbiota's therapeutic potential.
Collapse
Affiliation(s)
- Jiayang Jin
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xuanlin Cai
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Peishi Rao
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Alexander SN, Reed OA, Burton MD. Spinal cord microglia drive sex differences in ethanol-mediated PGE2-induced allodynia. Brain Behav Immun 2024; 122:399-421. [PMID: 39147173 DOI: 10.1016/j.bbi.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
The mechanisms of how long-term alcohol use can lead to persistent pain pathology are unclear. Understanding how earlier events of short-term alcohol use can lower the threshold of non-painful stimuli, described as allodynia could prove prudent to understand important initiating mechanisms. Previously, we observed that short-term low-dose alcohol intake induced female-specific allodynia and increased microglial activation in the spinal cord dorsal horn. Other literature describes how chronic ethanol exposure activates Toll-like receptor 4 (TLR4) to initiate inflammatory responses. TLR4 is expressed on many cell types, and we aimed to investigate whether TLR4 on microglia is sufficient to potentiate allodynia during a short-term/low-dose alcohol paradigm. Our study used a novel genetic model where TLR4 expression is removed from the entire body by introducing a floxed transcriptional blocker (TLR4-null background (TLR4LoxTB)), then restricted to microglia by breeding TLR4LoxTB animals with Cx3CR1:CreERT2 animals. As previously reported, after 14 days of ethanol administration alone, we observed no increased pain behavior. However, we observed significant priming effects 3 hrs post intraplantar injection of a subthreshold dose of prostaglandin E2 (PGE2) in wild-type and microglia-TLR4 restricted female mice. We also observed a significant female-specific shift to pro-inflammatory phenotype and morphological changes in microglia of the lumbar dorsal horn. Investigations in pain priming-associated neuronal subtypes showed an increase of c-Fos and FosB activity in PKCγ interneurons in the dorsal horn of female mice directly corresponding to increased microglial activity. This study uncovers cell- and female-specific roles of TLR4 in sexual dimorphisms in pain induction among non-pathological drinkers.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA
| | - Olivia A Reed
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
7
|
Dong Y, Wang Y, Zhang F, Ma J, Li M, Liu W, Yao J, Sun M, Cao Y, Liu Y, Ying L, Yang Y, Yang Y, She G. Polysaccharides from Gaultheria leucocarpa var. yunnanensis (DBZP) alleviates rheumatoid arthritis through ameliorating gut microbiota. Int J Biol Macromol 2024; 281:136250. [PMID: 39482128 DOI: 10.1016/j.ijbiomac.2024.136250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Gaultheria leucocarpa var. yunnanensis (Dianbaizhu) is a traditional Chinese herb for rheumatoid arthritis (RA). However, its macromolecular components have always been overlooked. This study aimed to investigate the chemical composition and effect on improving RA of polysaccharides from Dianbaizhu (DBZP). The results showed the yield of DBZP was 4.07 % ± 0.03 %, and it was composed of Mannose (6.63 %), ribose (1.33 %), rhamnose (4.53 %), glucuronic acid (2.95 %), galacturonic acid (32.29 %), glucose (13.78 %), galactose (22.97 %), xylose (3.94 %) and arabinose (11.59 %), with a large molecular weight distribution range. DBZP treatment could reduce the paws thickness and arthritis scores of collagen-induced arthritis (CIA) mice, and improve inflammatory cell infiltration, synovial hyperplasia, bone erosion, and deterioration. The abundance of several specific bacteria, such as Lactobacillus, Bacteroides, Alistipes, Mucispirillum, and Candidatus_Saccharimonas, and some metabolites in feces or urine, such as 11beta-hydroxytestosterone, pregnanediol 3-O-glucuronide, p-cresol sulfate and several amino acids and peptides, was also altered. The process of DBZP alleviating RA through gut microbiota involves affecting the digestion and metabolism of carbohydrates and protein, altering sex hormones levels, and regulating intestinal immune function, such as the differentiation and signaling of Th17 cells. These findings suggest that DBZP possesses a protective effect on CIA in mice via modulating gut microbiota.
Collapse
Affiliation(s)
- Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yunzi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Letian Ying
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongqi Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
8
|
Ding JQ, Zhang JQ, Zhao SJ, Jiang DB, Lu JR, Yang SY, Wang J, Sun YJ, Huang YN, Hu CC, Zhang XY, Zhang JX, Liu TY, Han CY, Qiao XP, Guo J, Zhao C, Yang K. Follicular CD8 + T cells promote immunoglobulin production and demyelination in multiple sclerosis and a murine model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167303. [PMID: 38878831 DOI: 10.1016/j.bbadis.2024.167303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Emerging evidence underscores the importance of CD8+ T cells in the pathogenesis of multiple sclerosis (MS), but the precise mechanisms remain ambiguous. This study intends to elucidate the involvement of a novel subset of follicular CD8+ T cells (CD8+CXCR5+ T) in MS and an experimental autoimmune encephalomyelitis (EAE) murine model. The expansion of CD8+CXCR5+ T cells was observed in both MS patients and EAE mice during the acute phase. In relapsing MS patients, higher frequencies of circulating CD8+CXCR5+ T cells were positively correlated with new gadolinium-enhancement lesions in the central nervous system (CNS). In EAE mice, frequencies of CD8+CXCR5+ T cells were also positively correlated with clinical scores. These cells were found to infiltrate into ectopic lymphoid-like structures in the spinal cords during the peak of the disease. Furthermore, CD8+CXCR5+ T cells, exhibiting high expression levels of ICOS, CD40L, IL-21, and IL-6, were shown to facilitate B cell activation and differentiation through a synergistic interaction between CD40L and IL-21. Transferring CD8+CXCR5+ T cells into naïve mice confirmed their ability to enhance the production of anti-MOG35-55 antibodies and contribute to the disease progression. Consequently, CD8+CXCR5+ T cells may play a role in CNS demyelination through heightening humoral immune responses.
Collapse
Affiliation(s)
- Jia-Qi Ding
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China; Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun-Qi Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Si-Jia Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Dong-Bo Jiang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Rui Lu
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Shu-Ya Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jing Wang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yuan-Jie Sun
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yi-Nan Huang
- Department of Emergency, the Second Affiliated Hospital (Xixian New District Central Hospital), Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Chen-Chen Hu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xi-Yang Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Xing Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Tian-Yue Liu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Chen-Ying Han
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xu-Peng Qiao
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| | - Cong Zhao
- Department of Neurology, Air Force Medical Center of PLA, Beijing, China.
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| |
Collapse
|
9
|
Tan KBC, Alexander HD, Linden J, Murray EK, Gibson DS. Anti-inflammatory effects of phytocannabinoids and terpenes on inflamed Tregs and Th17 cells in vitro. Exp Mol Pathol 2024; 139:104924. [PMID: 39208564 DOI: 10.1016/j.yexmp.2024.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
AIMS Phytocannabinoids and terpenes from Cannabis sativa have demonstrated limited anti-inflammatory and analgesic effects in several inflammatory conditions. In the current study, we test the hypothesis that phytocannabinoids exert immunomodulatory effects in vitro by decreasing inflammatory cytokine expression and activation. KEY METHODS CD3/CD28 and lipopolysaccharide activated peripheral blood mononuclear cells (PBMCs) from healthy donors (n = 6) were treated with phytocannabinoid compounds and terpenes in vitro. Flow cytometry was used to determine regulatory T cell (Treg) and T helper 17 (Th17) cell responses to treatments. Cell pellets were harvested for qRT-PCR gene expression analysis of cytokines, cell activation markers, and inflammation-related receptors. Cell culture supernatants were analysed by ELISA to quantify IL-6, TNF-α and IL-10 secretion. MAIN FINDINGS In an initial screen of 20 μM cannabinoids and terpenes which were coded to blind investigators, cannabigerol (GL4a), caryophyllene oxide (GL5a) and gamma-terpinene (GL6a) significantly reduced cytotoxicity and gene expression levels of IL6, IL10, TNF, TRPV1, CNR1, HTR1A, FOXP3, RORC and NFKΒ1. Tetrahydrocannabinol (GL7a) suppression of T cell activation was associated with downregulation of RORC and NFKΒ1 gene expression and reduced IL-6 (p < 0.0001) and IL10 (p < 0.01) secretion. Cannabidiol (GL1b) significantly suppressed activation of Tregs (p < 0.05) and Th17 cells (p < 0.05) in a follow-on in vitro dose-response study. IL-6 (p < 0.01) and IL-10 (p < 0.01) secretion was significantly reduced with 50 μM cannabidiol. SIGNIFICANCE The study provides the first evidence that cannabidiol and tetrahydrocannabinol suppress extracellular expression of both anti- and pro-inflammatory cytokines in an in vitro PBMC model of inflammation.
Collapse
Affiliation(s)
- Kyle B C Tan
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom
| | - H Denis Alexander
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom
| | - James Linden
- GreenLight Pharmaceuticals Ltd, Unit 2, Block E, Nutgrove Office Park, Dublin 14, Ireland
| | - Elaine K Murray
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom
| | - David S Gibson
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Londonderry BT47 6SB, United Kingdom.
| |
Collapse
|
10
|
Li J, Li S, Jin J, Guo R, Jin Y, Cao L, Cai X, Rao P, Zhong Y, Xiang X, Sun X, Guo J, Hu F, Ye H, Jia Y, Xiao W, An Y, Zhang X, Xia B, Yang R, Zhou Y, Wu L, Qin J, He J, Wang J, Li Z. The aberrant tonsillar microbiota modulates autoimmune responses in rheumatoid arthritis. JCI Insight 2024; 9:e175916. [PMID: 39163137 PMCID: PMC11457857 DOI: 10.1172/jci.insight.175916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Palatine tonsils are the only air-contacted lymphoid organs that constantly engage in crosstalk with commensal microorganisms and serve as the first handling sites against microbial antigens. While tonsil inflammations have been implicated in various autoimmune diseases, including rheumatoid arthritis (RA), the precise role of tonsillar microbiota in autoimmune pathogenesis remains inadequately characterized. In this study, we profiled the tonsillar microbiota and identified a notable dysbiosis in patients with RA, particularly within the Streptococcus genus. Specifically, patients with RA exhibited an enrichment of pathogenic Streptococcus species, including S. pyogenes, S. dysgalactiae, and S. agalactiae. Colonization with these bacteria significantly exacerbated arthritis severity and increased autoimmune responses in collagen-induced arthritis (CIA). Furthermore, immunization with peptides derived from these pathogenic Streptococcus species directly induced experimental arthritis. Conversely, patients with RA demonstrated a marked deficiency in commensal Streptococcus members, notably S. salivarius. Treatment of CIA mice with S. salivarius attenuated the progression of arthritis and downregulated autoimmune responses. These findings highlight a pathogenic link of tonsillar microbiota with RA, shedding light on their contribution to autoimmunity.
Collapse
Affiliation(s)
- Jing Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Shenghui Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Puensum Genetech Institute, Wuhan, China
| | - Jiayang Jin
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | | | - Yuebo Jin
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xuanlin Cai
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Peishi Rao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yan Zhong
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Rheumatology and Immunology, The People’s Hospital of Xin Jiang Uygur Autonomous Region, Urumqi, China
| | - Xiaohong Xiang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wenjing Xiao
- Emergency Department, Peking University People’s Hospital, Beijing, China
| | - Yuan An
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xuan Zhang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - BinBin Xia
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rentao Yang
- Promegene Translational Research Institute, Shenzhen, China
| | - Yuanjie Zhou
- Promegene Translational Research Institute, Shenzhen, China
| | - Lijun Wu
- Department of Rheumatology and Immunology, The People’s Hospital of Xin Jiang Uygur Autonomous Region, Urumqi, China
| | - Junjie Qin
- Promegene Translational Research Institute, Shenzhen, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Lee J, Reiman D, Singh S, Chang A, Morel L, Chervonsky AV. Microbial influences on severity and sex bias of systemic autoimmunity. Immunol Rev 2024; 325:64-76. [PMID: 38716867 PMCID: PMC11338725 DOI: 10.1111/imr.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, Illinois, USA
| | - Samara Singh
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Laurence Morel
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Alexander V Chervonsky
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Zhao L, Zheng K, Wan X, Xiao Q, Yuan L, Wu C, Bao J. Chinese traditional medicine DZGP beneficially affects gut microbiome, serum metabolites and recovery from rheumatoid arthritis through mediating NF-κB signaling pathway. Heliyon 2024; 10:e33706. [PMID: 39071566 PMCID: PMC11283109 DOI: 10.1016/j.heliyon.2024.e33706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Rheumatoid arthritis (RA) is globally treated with several commercially available anti-inflammatory and analgesic drugs, which pose adverse side effects in many cases. Due to increasing population affected by autoimmune disorder of joints inflammation, it is crucial to use natural therapies, which are less toxic at metabolic level and promote gut health. In this study, we investigated the potential role of a locally developed traditional Chinese medicine (TCM), namely Duzheng tablet (DZGP) in controlling the RA. For this purpose, we introduced RA in male mice and divided them into 5 different groups. High throughput transcriptome analysis of synovial cells after DZGP treatment in arthritic mice revealed a significant alteration of gene expression. The correlation analysis of transcriptome with metabolites revealed that DZGP specifically targeted the B cells mediated immunity pathways. Treatment with DZGP inhibited the cytokines production, while reducing the production of inflammatory TNF-α, which led to the alleviation of inflammatory response in arthritic mice. Additionally, we applied integrated approach using 16S rDNA sequencing to understand the microbial population in relation to metabolites accumulation. The results showed that DZGP promoted the healthy gut microbiota by maintaining the ratio of Firmicutes and Bacteroidota and introduction of two additional phyla namely, Verrucomicrobiota and Cyanobacteria. Therefore, it is concluded that DZGP offers an advantage over commercial drug by changing the metabolic profile, gut microbiota while exhibiting lower cellular toxicity.
Collapse
Affiliation(s)
- Liming Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 445000, Enshi, China
| | - Kai Zheng
- Forest Seedlings and Wildlife Protection Management Station of Enshi Tujia and Miao Autonomous Prefecture, 445000, Enshi, China
| | - Xiaolin Wan
- College of Forestry and Horticulture, Hubei Minzu University, 445000, Enshi, China
| | - Qiang Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 445000, Enshi, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, 445000, Enshi, China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
13
|
Liu C, Yan Z, Zhang X, Xia T, Ashaolu JO, Olatunji OJ, Ashaolu TJ. Food-derived bioactive peptides potentiating therapeutic intervention in rheumatoid arthritis. Heliyon 2024; 10:e31104. [PMID: 38778960 PMCID: PMC11109807 DOI: 10.1016/j.heliyon.2024.e31104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the joints of the human body and is projected to have a prevalence age-standardized rate of 1.5 million new cases worldwide by 2030. Several conventional and non-conventional preventive and therapeutic interventions have been suggested but they have their side effects including nausea, abdominal pain, liver damage, ulcers, heightened blood pressure, coagulation, and bleeding. Interestingly, several food-derived peptides (FDPs) from both plant and animal sources are increasingly gaining a reputation for their potential in the management or therapy of RA with little or no side effects. In this review, the concept of inflammation, its major types (acute and chronic), and RA identified as a chronic type were discussed based on its pathogenesis and pathophysiology. The conventional treatment options for RA were briefly outlined as the backdrop of introducing the FDPs that potentiate therapeutic effects in the management of RA.
Collapse
Affiliation(s)
- Chunhong Liu
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Zheng Yan
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Taibao Xia
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Joseph Opeoluwa Ashaolu
- Department of Public Health, Faculty of Basic Medical Sciences, Redeemers University, PMB 230, Ede, Osun State, Nigeria
| | | | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang, 550000, Viet Nam
| |
Collapse
|
14
|
Sherri N, Assaf R, Bitar ER, Znait S, Borghol AH, Kassem A, Rahal EA. Epstein-Barr Virus DNA Exacerbates Arthritis in a Mouse Model via Toll-like Receptor 9. Int J Mol Sci 2024; 25:4661. [PMID: 38731877 PMCID: PMC11083462 DOI: 10.3390/ijms25094661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Epstein-Barr virus (EBV) DNA is known to be shed upon reactivation of latent EBV. Based on our previous findings linking Toll-like receptor-9 (TLR9) to an EBV DNA-driven surge in IL-17A production, we aimed to examine the therapeutic potential of TLR9 inhibition in EBV DNA-exacerbated arthritis in a collagen-induced arthritis (CIA) mouse model. C57BL/6J mice were administered either collagen, EBV DNA + collagen, EBV DNA + collagen + TLR9 inhibitor, or only the TLR9 inhibitor. After 70 days, paw thicknesses, clinical scores, and gripping strength were recorded. Moreover, affected joints, footpads, and colons were histologically scored. Furthermore, the number of cells co-expressing IL-17A, IFN-γ, and FOXP3 in joint sections was determined by immunofluorescence assays. Significantly decreased paw thicknesses, clinical scores, and histological scores with a significantly increased gripping strength were observed in the group receiving EBV DNA + collagen + TLR9 inhibitor, compared to those receiving EBV DNA + collagen. Similarly, this group showed decreased IL-17A+ IFN-γ+, IL-17A+ FOXP3+, and IL-17A+ IFN-γ+ FOXP3+ foci counts in joints. We show that inhibiting TLR9 limits the exacerbation of arthritis induced by EBV DNA in a CIA mouse model, suggesting that TLR9 could be a potential therapeutic target for rheumatoid arthritis management in EBV-infected individuals.
Collapse
MESH Headings
- Animals
- Mice
- Arthritis, Experimental/virology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/virology
- Disease Models, Animal
- DNA, Viral/genetics
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/pathology
- Herpesvirus 4, Human/physiology
- Interleukin-17/metabolism
- Mice, Inbred C57BL
- Toll-Like Receptor 9/metabolism
Collapse
Affiliation(s)
- Nour Sherri
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Rayan Assaf
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Elio R. Bitar
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Sabah Znait
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Aya Kassem
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Elias A. Rahal
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
15
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
16
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
17
|
Khaledi M, Poureslamfar B, Alsaab HO, Tafaghodi S, Hjazi A, Singh R, Alawadi AH, Alsaalamy A, Qasim QA, Sameni F. The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. ANN MICROBIOL 2024; 74:1. [DOI: 10.1186/s13213-023-01744-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
The gut microbiota plays a crucial role in regulating the host’s immune responses during aging, which was characterized by a different abundance of bacteria in several age groups.
Main body
Gut microbiota dysbiosis is associated with aging, antibiotic exposure, underlying diseases, infections, hormonal variations, circadian rhythm, and malnutrition, either singularly or in combination. The appropriate use of prebiotics and probiotics may be able to prevent or reduce this disruption.
Conclusion
The current review focuses on the gut microbiota composition across the life cycle, factors affecting gut microbiota changes with aging, and interventions to modulate gut microbiota.
Collapse
|
18
|
Deshayes S, Baugé C, Dupont PA, Simard C, Rida H, de Boysson H, Manrique A, Aouba A. [ 18F]FDG PET-MR characterization of aortitis in the IL1rn -/- mouse model of giant-cell arteritis. EJNMMI Res 2023; 13:103. [PMID: 38019303 PMCID: PMC10687326 DOI: 10.1186/s13550-023-01039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Metabolic imaging is routinely used to demonstrate aortitis in patients with giant-cell arteritis. We aimed to investigate the preclinical model of aortitis in BALB/c IL1rn-/- mice using [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography-magnetic resonance (PET-MR), gamma counting and immunostaining. We used 15 first-generation specific and opportunistic pathogen-free (SOPF) 9-week-old IL1rn-/- mice, 15 wild-type BALB/cAnN mice and 5 s-generation specific pathogen-free (SPF) 9-week-old IL1rn-/-. Aortic [18F]FDG uptake was assessed as the target-to-background ratio (TBR) using time-of-flight MR angiography as vascular landmarks. RESULTS [18F]FDG uptake measured by PET or gamma counting was similar in the first-generation SOPF IL1rn-/- mice and the wild-type group (p > 0.05). However, the first-generation IL1rn-/- mice exhibited more interleukin-1β (p = 0.021)- and interleukin-6 (p = 0.019)-positive cells within the abdominal aorta than the wild-type mice. In addition, the second-generation SPF group exhibited significantly higher TBR (p = 0.0068) than the wild-type mice on the descending thoracic aorta, unlike the first-generation SOPF IL1rn-/- mice. CONCLUSIONS In addition to the involvement of interleukin-1β and -6 in IL1rn-/- mouse aortitis, this study seems to validate [18F]FDG PET-MR as a useful tool for noninvasive monitoring of aortitis in this preclinical model.
Collapse
Affiliation(s)
- Samuel Deshayes
- Department of Internal Medicine and Clinical Immunology, Normandie University, UNICAEN, CHU de Caen Normandie - Université Basse Normandie, Avenue de la Côte de Nacre, 14000, CAEN, France.
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France.
| | - Caroline Baugé
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
| | | | - Christophe Simard
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
| | - Hanan Rida
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
| | - Hubert de Boysson
- Department of Internal Medicine and Clinical Immunology, Normandie University, UNICAEN, CHU de Caen Normandie - Université Basse Normandie, Avenue de la Côte de Nacre, 14000, CAEN, France
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
| | - Alain Manrique
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
- Department of Nuclear Medicine, Normandie University, UNICAEN, CHU de Caen Normandie, Caen, France
| | - Achille Aouba
- Department of Internal Medicine and Clinical Immunology, Normandie University, UNICAEN, CHU de Caen Normandie - Université Basse Normandie, Avenue de la Côte de Nacre, 14000, CAEN, France.
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France.
| |
Collapse
|
19
|
Koh J, Woo YD, Yoo HJ, Choi JP, Kim SH, Chang YS, Jung KC, Kim JH, Jeon YK, Kim HY, Chung DH. De novo fatty-acid synthesis protects invariant NKT cells from cell death, thereby promoting their homeostasis and pathogenic roles in airway hyperresponsiveness. eLife 2023; 12:RP87536. [PMID: 37917548 PMCID: PMC10622147 DOI: 10.7554/elife.87536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Invariant natural-killer T (iNKT) cells play pathogenic roles in allergic asthma in murine models and possibly also humans. While many studies show that the development and functions of innate and adaptive immune cells depend on their metabolic state, the evidence for this in iNKT cells is very limited. It is also not clear whether such metabolic regulation of iNKT cells could participate in their pathogenic activities in asthma. Here, we showed that acetyl-coA-carboxylase 1 (ACC1)-mediated de novo fatty-acid synthesis is required for the survival of iNKT cells and their deleterious functions in allergic asthma. ACC1, which is a key fatty-acid synthesis enzyme, was highly expressed by lung iNKT cells from WT mice that were developing asthma. Cd4-Cre::Acc1fl/fl mice failed to develop OVA-induced and HDM-induced asthma. Moreover, iNKT cell-deficient mice that were reconstituted with ACC1-deficient iNKT cells failed to develop asthma, unlike when WT iNKT cells were transferred. ACC1 deficiency in iNKT cells associated with reduced expression of fatty acid-binding proteins (FABPs) and peroxisome proliferator-activated receptor (PPAR)γ, but increased glycolytic capacity that promoted iNKT-cell death. Furthermore, circulating iNKT cells from allergic-asthma patients expressed higher ACC1 and PPARG levels than the corresponding cells from non-allergic-asthma patients and healthy individuals. Thus, de novo fatty-acid synthesis prevents iNKT-cell death via an ACC1-FABP-PPARγ axis, which contributes to their homeostasis and their pathogenic roles in allergic asthma.
Collapse
Affiliation(s)
- Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Yoo
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sae Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Republic of Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyung Kim
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Kim
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Luo Y, Tong Y, Wu L, Niu H, Li Y, Su LC, Wu Y, Bozec A, Zaiss MM, Qing P, Zhao H, Tan C, Zhang Q, Zhao Y, Tang H, Liu Y. Alteration of Gut Microbiota in Individuals at High-Risk for Rheumatoid Arthritis Associated With Disturbed Metabolome and the Initiation of Arthritis Through the Triggering of Mucosal Immunity Imbalance. Arthritis Rheumatol 2023; 75:1736-1748. [PMID: 37219936 DOI: 10.1002/art.42616] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE In this study, we aimed to decipher the gut microbiome (GM) and serum metabolic characteristic of individuals at high risk for rheumatoid arthritis (RA) and to investigate the causative effect of GM on the mucosal immune system and its involvement in the pathogenesis of arthritis. METHODS Fecal samples were collected from 38 healthy individuals and 53 high-risk RA individuals with anti-citrullinated protein antibody (ACPA) positivity (Pre-RA), 12 of 53 Pre-RA individuals developed RA within 5 years of follow-up. The differences in intestinal microbial composition between the healthy controls and Pre-RA individuals or among Pre-RA subgroups were identified by 16S ribosomal RNA sequencing. The serum metabolite profile and its correlation with GM were also explored. Moreover, antibiotic-pretreated mice that received GM from the healthy control or Pre-RA groups were then evaluated for intestinal permeability, inflammatory cytokines, and immune cell populations. Collagen-induced arthritis (CIA) was also applied to test the effect of fecal microbiota transplantation (FMT) from Pre-RA individuals on arthritis severity in mice. RESULTS Stool microbial diversity was lower in Pre-RA individuals than in healthy controls. The bacterial community structure and function significantly differed between healthy controls and Pre-RA individuals. Although there were differences to some extent in the bacterial abundance among the Pre-RA subgroups, no robust functional differences were observed. The metabolites in the serum of the Pre-RA group were dramatically different from those in the healthy controls group, with KEGG pathway enrichment of amino acid and lipid metabolism. Moreover, intestinal bacteria from the Pre-RA group increased intestinal permeability in FMT mice and zonula occludens-1 expression in the small intestine and Caco-2 cells. Moreover, Th17 cells in the mesenteric lymph nodes and Peyer's patches were also increased in mice receiving Pre-RA feces compared to healthy controls. The changes in intestinal permeability and Th17-cell activation prior to arthritis induction enhanced CIA severity in PreRA-FMT mice compared with HC-FMT mice. CONCLUSION Gut microbial dysbiosis and metabolome alterations already occur in individuals at high risk for RA. FMT from preclinical individuals triggers intestinal barrier dysfunction and changes mucosal immunity, further contributing to the development of arthritis.
Collapse
Affiliation(s)
- Yubin Luo
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanli Tong
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Wu
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Haitao Niu
- School of Medicine, Jinan University, Guangzhou, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Chong Su
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic diseases, Enshi, China
| | - Yuxi Wu
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Aline Bozec
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pingying Qing
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhao
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Huairong Tang
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Fan J, Jiang T, He D. Advances in the implications of the gut microbiota on the treatment efficacy of disease-modifying anti-rheumatic drugs in rheumatoid arthritis. Front Immunol 2023; 14:1189036. [PMID: 37841256 PMCID: PMC10568326 DOI: 10.3389/fimmu.2023.1189036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alterations in the composition or function of the gut microbiota are associated with the etiology of human diseases. Drug-microbiota interactions can affect drug bioavailability, effectiveness, and toxicity through various routes. For instance, the direct effect of microbial enzymes on drugs can either boost or diminish their efficacy. Thus, considering its wide range of metabolic capabilities, the gut microbiota is a promising target for pharmacological modulation. Furthermore, drugs can alter the microbiota and the mechanisms by which they interact with their host. Individual variances in microbial profiles can also contribute to the different host responses to various drugs. However, the influence of interactions between the gut microbiota and drugs on treatment efficacy remains poorly elucidated. In this review, we will discuss the impact of microbiota dysbiosis in the pathogenesis of rheumatoid arthritis (RA), and we will attempt to elucidate the crosstalk between the gut microbiota and disease-modifying anti-rheumatic drugs (DMARDs), with an emphasis on how drug-microbiota interactions affect the treatment efficacy in RA. We speculate that improved knowledge of these critical interactions will facilitate the development of novel therapeutic options that use microbial markers for predicting or optimizing treatment outcomes.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Liang Y, Liu M, Cheng Y, Wang X, Wang W. Prevention and treatment of rheumatoid arthritis through traditional Chinese medicine: role of the gut microbiota. Front Immunol 2023; 14:1233994. [PMID: 37781405 PMCID: PMC10538529 DOI: 10.3389/fimmu.2023.1233994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Recently, despite the increasing availability of treatments for Rheumatoid arthritis (RA), the incidence of RA and associated disability-adjusted life years have been on the rise globally in the late decades. At present, accumulating evidence has been advanced that RA is related to the gut microbiota, therefore, the therapeutic approaches for RA by regulating the gut microbiota are anticipated to become a new means of treatment. Traditional Chinese medicine (TCM) can regulate immunity, reduce inflammation and improve quality of life in various ways. Moreover, it can treat diseases by affecting the gut microbiota, which is a good way to treat RA. In this review, we mainly explore the relationship between TCM and gut microbiota regarding the perspective of treating RA. Moreover, we comprehensively summarize the roles of gut microbiota in the onset, development, progression, and prognosis of RA. Additionally, we elucidate the mechanism of TCM prevention and treatment of RA by the role of microbiota. Finally, we provide an evidence-based rationale for further investigation of microbiota-targeted intervention by TCM.
Collapse
Affiliation(s)
- Yujiao Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingxue Cheng
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijie Wang
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
23
|
Bekbossynova M, Tauekelova A, Sailybayeva A, Kozhakhmetov S, Mussabay K, Chulenbayeva L, Kossumov A, Khassenbekova Z, Vinogradova E, Kushugulova A. Unraveling Acute and Post-COVID Cytokine Patterns to Anticipate Future Challenges. J Clin Med 2023; 12:5224. [PMID: 37629267 PMCID: PMC10455949 DOI: 10.3390/jcm12165224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The aims of this study were to analyze cytokine profiles in patients with COVID-19, gain insights into the immune response during acute infection, identify cytokines associated with disease severity and post-COVID complications, and explore potential biomarkers for prognosis and therapeutic targets. Using a multiplex analysis, we studied the cytokine pattern in 294 acute COVID-19 and post-COVID patients with varying severities of infection. Our findings revealed that disease severity was associated with elevated levels of IL-15, IL-8, and fractalkine. Severe/extremely severe forms in comparison with mild/moderate disease were associated with MCP-1, IFNa2, IL-7, IL-15, EGF, IP-10, IL-8, Eotaxin, FGF-2, GROa, sCD40L, and IL-10. The key cytokines of post-COVID are FGF-2, VEGF-A, EGF, IL-12(p70), IL-13, and IL-6. By the sixth month after recovering from a coronavirus infection, regardless of disease severity, some patients may develop complications such as arterial hypertension, type 2 diabetes mellitus, glucose intolerance, thyrotoxicosis, atherosclerosis, and rapid progression of previously diagnosed conditions. Each complication is characterized by distinct cytokine profiles. Importantly, these complications can also be predicted during the acute phase of the coronavirus infection. Understanding cytokine patterns can aid in predicting disease progression, identifying high-risk patients, and developing targeted interventions to improve the outcomes of COVID-19.
Collapse
Affiliation(s)
- Makhabbat Bekbossynova
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
| | - Ainur Tauekelova
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
| | - Aliya Sailybayeva
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
| | - Samat Kozhakhmetov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Karakoz Mussabay
- Department of Microbiology and Virology Named after Sh.I.Sarbasova, Astana Medical University, Astana 010000, Kazakhstan;
| | - Laura Chulenbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Alibek Kossumov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Zhanagul Khassenbekova
- Department of General Pharmacology, Astana Medical University, Astana 010000, Kazakhstan;
| | - Elizaveta Vinogradova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Almagul Kushugulova
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
- Almagul Kushugulova, Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave., 53, Block S1, Office 303, Astana 010000, Kazakhstan
| |
Collapse
|
24
|
Thompson KN, Bonham KS, Ilott NE, Britton GJ, Colmenero P, Bullers SJ, McIver LJ, Ma S, Nguyen LH, Filer A, Brough I, Pearson C, Moussa C, Kumar V, Lam LH, Jackson MA, Pawluk A, Kiriakidis S, Taylor PC, Wedderburn LR, Marsden B, Young SP, Littman DR, Faith JJ, Pratt AG, Bowness P, Raza K, Powrie F, Huttenhower C. Alterations in the gut microbiome implicate key taxa and metabolic pathways across inflammatory arthritis phenotypes. Sci Transl Med 2023; 15:eabn4722. [PMID: 37494472 DOI: 10.1126/scitranslmed.abn4722] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Musculoskeletal diseases affect up to 20% of adults worldwide. The gut microbiome has been implicated in inflammatory conditions, but large-scale metagenomic evaluations have not yet traced the routes by which immunity in the gut affects inflammatory arthritis. To characterize the community structure and associated functional processes driving gut microbial involvement in arthritis, the Inflammatory Arthritis Microbiome Consortium investigated 440 stool shotgun metagenomes comprising 221 adults diagnosed with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and 219 healthy controls and individuals with joint pain without an underlying inflammatory cause. Diagnosis explained about 2% of gut taxonomic variability, which is comparable in magnitude to inflammatory bowel disease. We identified several candidate microbes with differential carriage patterns in patients with elevated blood markers for inflammation. Our results confirm and extend previous findings of increased carriage of typically oral and inflammatory taxa and decreased abundance and prevalence of typical gut clades, indicating that distal inflammatory conditions, as well as local conditions, correspond to alterations to the gut microbial composition. We identified several differentially encoded pathways in the gut microbiome of patients with inflammatory arthritis, including changes in vitamin B salvage and biosynthesis and enrichment of iron sequestration. Although several of these changes characteristic of inflammation could have causal roles, we hypothesize that they are mainly positive feedback responses to changes in host physiology and immune homeostasis. By connecting taxonomic alternations to functional alterations, this work expands our understanding of the shifts in the gut ecosystem that occur in response to systemic inflammation during arthritis.
Collapse
Affiliation(s)
- Kelsey N Thompson
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kevin S Bonham
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicholas E Ilott
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Graham J Britton
- Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paula Colmenero
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Samuel J Bullers
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Lauren J McIver
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Siyuan Ma
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Long H Nguyen
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Filer
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and Research Into Inflammatory Arthritis Centre Versus Arthritis, University of Birmingham, Chesterfield S41 7TD, UK
| | - India Brough
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Claire Pearson
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Caroline Moussa
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Vinod Kumar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Lilian H Lam
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Matthew A Jackson
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - April Pawluk
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Serafim Kiriakidis
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, UCLH, and GOSH, Chesterfield S41 7TD, UK
- NIHR Great Ormond Street Biomedical Research Centre, University College London, London WC1N 1EH, UK
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Brian Marsden
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Stephen P Young
- Department of Rheumatology, Sandwell & West Birmingham NHS Trust, West Bromwich B71 4HJ, UK
| | - Dan R Littman
- Howard Hughes Medical Institute and the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jeremiah J Faith
- Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Research into Inflammatory Arthritis Centre Versus Arthritis, Newcastle Birmingham, Glasgow, and Oxford, Chesterfield S41 7TD, UK
- Department of Rheumatology, Musculoskeletal Services Directorate, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Paul Bowness
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and Research Into Inflammatory Arthritis Centre Versus Arthritis, University of Birmingham, Chesterfield S41 7TD, UK
- Department of Rheumatology, Sandwell & West Birmingham NHS Trust, West Bromwich B71 4HJ, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Curtis Huttenhower
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
25
|
Jin J, Li J, Hou M, Ding X, Zhong Y, He J, Sun X, Ye H, Li R, Wu L, Wang J, Guo J, Li Z. A Shifted Urinary Microbiota Associated with Disease Activity and Immune Responses in Rheumatoid Arthritis. Microbiol Spectr 2023; 11:e0366222. [PMID: 37227288 PMCID: PMC10269647 DOI: 10.1128/spectrum.03662-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Recent evidence emphasized the role of the microbiota in the etiopathogenesis of rheumatoid arthritis (RA). Indeed, it has been demonstrated that urinary tract infections are implicated in RA pathogenesis. However, a definitive association between the urinary tract microbiota and RA remains to be investigated. Urine samples from 39 patients affected by RA, including treatment-naive patients, and 37 age- and sex-matched healthy individuals were collected. In RA patients, the urinary microbiota showed an increase in microbial richness and a decrease in microbial dissimilarity, especially in treatment-naive patients. A total of 48 altered genera with different absolute quantities were detected in patients with RA. The 37 enriched genera included Proteus, Faecalibacterium, and Bacteroides, while the 11 deficient genera included Gardnerella, Ruminococcus, Megasphaera, and Ureaplasma. Notably, the more abundant genera in RA patients were correlated with the disease activity score of 28 joints-erythrocyte sedimentation rates (DAS28-ESR) and an increase in plasma B cells. Furthermore, the altered urinary metabolites, such as proline, citric acid, and oxalic acid, were positively associated with RA patients, and they were closely correlated with urinary microbiota. These findings suggested a strong association between the altered urinary microbiota and metabolites with disease severity and dysregulated immune responses in RA patients. IMPORTANCE We revealed that the profile of the urinary tract microbiota in RA featured with increased microbial richness and shifted taxa, associated with immunological and metabolic changes of the disease, underlining the interplay between urinary microbiota and host autoimmunity.
Collapse
Affiliation(s)
- Jiayang Jin
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Meiling Hou
- TinyGene Bio-Tech (Shanghai) Co., Ltd., Shanghai, China
| | - Xu Ding
- TinyGene Bio-Tech (Shanghai) Co., Ltd., Shanghai, China
| | - Yan Zhong
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Rheumatology and Immunology, The People’s Hospital of Xin Jiang Uygur Autonomous Region, Urumqi, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ru Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lijun Wu
- Department of Rheumatology and Immunology, The People’s Hospital of Xin Jiang Uygur Autonomous Region, Urumqi, China
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
26
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
27
|
Zhao J, Zhang B, Meng W, Hu J. Elucidating a fresh perspective on the interplay between exosomes and rheumatoid arthritis. Front Cell Dev Biol 2023; 11:1177303. [PMID: 37187619 PMCID: PMC10175795 DOI: 10.3389/fcell.2023.1177303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by chronic synovitis and the destruction of bones and joints. Exosomes are nanoscale lipid membrane vesicles originating from multivesicular bodies and are used as a vital means of intercellular communication. Both exosomes and the microbial community are essential in RA pathogenesis. Multiple types of exosomes from different origins have been demonstrated to have effects on various immune cells through distinct mechanisms in RA, which depend on the specific cargo carried by the exosomes. Tens of thousands of microorganisms exist in the human intestinal system. Microorganisms exert various physiological and pathological effects on the host directly or through their metabolites. Gut microbe-derived exosomes are being studied in the field of liver disease; however, information on their role in the context of RA is still limited. Gut microbe-derived exosomes may enhance autoimmunity by altering intestinal permeability and transporting cargo to the extraintestinal system. Therefore, we performed a comprehensive literature review on the latest progress on exosomes in RA and provided an outlook on the potential role of microbe-derived exosomes as emerging players in clinical and translational research on RA. This review aimed to provide a theoretical basis for developing new clinical targets for RA therapy.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Nephropathy, The Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Binbin Zhang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wanting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Tsetseri MN, Silman AJ, Keene DJ, Dakin SG. The role of the microbiome in rheumatoid arthritis: a review. Rheumatol Adv Pract 2023; 7:rkad034. [PMID: 38606003 PMCID: PMC11007908 DOI: 10.1093/rap/rkad034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/13/2024] Open
Abstract
The close bidirectional relationship between the microbiome and the immune system is well supported, and a role of gut dysbiosis has been implied in many systemic autoimmune diseases. This review aims to provide a critical summary and appraisal of 6 murine studies and 16 clinical studies. The findings of the literature review suggest that gut dysbiosis precedes arthritis and that local intestinal inflammation leads to systemic inflammation in genetically predisposed individuals. However, the exact mechanism by which microorganisms provoke immune responses at distal sites remains to be elucidated. Although a characteristic RA microbiome was not identified, there were some common findings among studies: overabundance of Prevotella copri in early RA patients, and proliferation of the genus Collinsela and some Lactobacillus species. Three mechanisms by which microbiota might contribute to RA pathogenesis were proposed: inflammatory responses (P. copri and Lactobacillus), molecular mimicry (P. copri) and loss of intestinal barrier integrity (Collinsella). Larger longitudinal studies are required in order to shed light on the mechanisms involved and unravel the therapeutic potential of the microbiome, and clinical trials are needed to evaluate the safety and efficacy of the implied therapeutic interventions.
Collapse
Affiliation(s)
- Maria-Nefeli Tsetseri
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alan J Silman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - David J Keene
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Koh JH, Lee EH, Cha KH, Pan CH, Kim D, Kim WU. Factors associated with the composition of the gut microbiome in patients with established rheumatoid arthritis and its value for predicting treatment responses. Arthritis Res Ther 2023; 25:32. [PMID: 36864473 PMCID: PMC9979421 DOI: 10.1186/s13075-023-03013-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND We aimed to investigate the gut microbiota of patients with established rheumatoid arthritis (RA) who have been managed with disease-modifying anti-rheumatic drugs (DMARDs) for a long time. We focused on factors that might affect composition of the gut microbiota. Furthermore, we investigated whether gut microbiota composition predicts future clinical responses to conventional synthetic DMARDs (csDMARDs) in patients with an insufficient response to initial therapy. METHODS We recruited 94 patients with RA and 30 healthy participants. Fecal gut microbiome was analyzed by 16S rRNA amplificon sequencing; the resulting raw reads were processed based on QIIME2. Calypso online software was used for data visualization and to compare microbial composition between groups. For RA patients with moderate-to-high disease activity, treatment was changed after stool collection, and responses were observed 6 months later. RESULTS The composition of the gut microbiota in patients with established RA was different from that of healthy participants. Young RA patients (< 45 years) had reduced richness, evenness, and distinct gut microbial compositions when compared with older RA patients and healthy individuals. Disease activity and rheumatoid factor levels were not associated with microbiome composition. Overall, biological DMARDs and csDMARDs, except sulfasalazine and TNF inhibitors, respectively, were not associated with the gut microbial composition in patients with established RA. However, the combination of Subdoligranulum and Fusicatenibacter genera was associated with a future good response to second-line csDMARDs in patients who showed an insufficient response to first-line csDMARDs. CONCLUSION Gut microbial composition in patients with established RA is different from that in healthy individuals. Thus, the gut microbiome has the potential to predict responses of some RA patients to csDMARDs.
Collapse
Affiliation(s)
- Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Center for Integrative Rheumatoid Transcriptomics and Dynamics, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eun Ha Lee
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Center for Integrative Rheumatoid Transcriptomics and Dynamics, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
30
|
Topol IA, Polyakova IS, Elykova AV. Role of intestinal microbiota in regulation of immune reactions of gut-associated lymphoid tissue under stress and following the modulation of its composition by antibiotics and probiotics administration. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the past two decades, active study of the microbial ecosystem of the host organism gastrointestinal tract has led to the recognition of gut microbiome as a "key player" that carries a significant immune pressure and is responsible both for the course of physiological processes and for the development of pathological conditions in humans and animals. A vast number of bacteria living in the human gastrointestinal tract are considered as an organ functioning in dialogue in formation of immunological tolerance, the regulation of normal functional activity of the immune system and maintaining the intestinal mucosa homeostasis. However, disturbances in interaction between these physiological systems is closely related to the pathogenesis of different immune-mediated diseases. In turn, in a large number of works chronic social stress, along with the use of antibiotics, pre- and probiotics, is recognized as one of the leading factors modulating in the microbiota of the gastrointestinal tract. This review focuses on the role of the gut microbiome in the regulation of immune responses of GALT under stress and modulation of its composition by antibiotics and probiotics administration.
Collapse
|
31
|
Shon HJ, Kim YM, Kim KS, Choi JO, Cho SH, An S, Park SH, Cho YJ, Park JH, Seo SU, Cho JY, Kim WU, Kim D. Protective role of colitis in inflammatory arthritis via propionate-producing Bacteroides in the gut. Front Immunol 2023; 14:1064900. [PMID: 36793721 PMCID: PMC9923108 DOI: 10.3389/fimmu.2023.1064900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Objectives To investigate whether and how inflammatory disease in the intestine influences the development of arthritis, considering that organ-to-organ communication is associated with many physiological and pathological events. Methods First, mice were given drinking water containing dextran sodium sulfate (DSS) and then subjected to inflammatory arthritis. We compared the phenotypic symptoms between the cohoused and separately-housed mice. Next, donor mice were divided into DSS-treated and untreated groups and then cohoused with recipient mice. Arthritis was then induced in the recipients. The fecal microbiome was analyzed by 16S rRNA amplicon sequencing. We obtained type strains of the candidate bacteria and generated propionate-deficient mutant bacteria. Short-chain fatty acids were measured in the bacterial culture supernatant, serum, feces, and cecum contents using gas chromatography-mass spectrometry. Mice fed with candidate and mutant bacteria were subjected to inflammatory arthritis. Results Contrary to expectations, the mice treated with DSS exhibited fewer symptoms of inflammatory arthritis. Intriguingly, the gut microbiota contributes, at least in part, to the improvement of colitis-mediated arthritis. Among the altered microorganisms, Bacteroides vulgatus and its higher taxonomic ranks were enriched in the DSS-treated mice. B. vulgatus, B. caccae, and B. thetaiotaomicron exerted anti-arthritic effects. Propionate production deficiency further prevented the protective effect of B. thetaiotaomicron on arthritis. Conclusions We suggest a novel relationship between the gut and joints and an important role of the gut microbiota as communicators. Moreover, the propionate-producing Bacteroides species examined in this study may be a potential candidate for developing effective treatments for inflammatory arthritis.
Collapse
Affiliation(s)
- Hoh-Jeong Shon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu-Mi Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyeong Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ouk Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyun Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sujin An
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se-Hyeon Park
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute for Basic Science, Seoul, Republic of Korea.,Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
32
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Zádori ZS, Király K, Al-Khrasani M, Gyires K. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacol Ther 2023; 241:108327. [PMID: 36473615 DOI: 10.1016/j.pharmthera.2022.108327] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.
Collapse
Affiliation(s)
- Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Peretti S, Torracchi S, Russo E, Bonomi F, Fiorentini E, Aoufy KE, Bruni C, Lepri G, Orlandi M, Chimenti MS, Guiducci S, Amedei A, Matucci-Cerinic M, Bellando Randone S. The Yin-Yang Pharmacomicrobiomics on Treatment Response in Inflammatory Arthritides: A Narrative Review. Genes (Basel) 2022; 14:89. [PMID: 36672830 PMCID: PMC9859330 DOI: 10.3390/genes14010089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
(1) Background: Gut microbiota (GM) is the set of microorganisms inhabiting the gastroenteric tract that seems to have a role in the pathogenesis of rheumatic diseases. Recently, many authors proved that GM may influence pharmacodynamics and pharmacokinetics of several drugs with complex interactions that are studied by the growing field of pharmacomicrobiomics. The aim of this review is to highlight current evidence on pharmacomicrobiomics applied to the main treatments of Rheumatoid Arthritis and Spondyloarthritis in order to maximize therapeutic success, in the framework of Personalized Medicine. (2) Methods: We performed a narrative review concerning pharmacomicrobiomics in inflammatory arthritides. We evaluated the influence of gut microbiota on treatment response of conventional Disease Modifying Anti-Rheumatic drugs (cDMARDs) (Methotrexate and Leflunomide) and biological Disease Modifying Anti-Rheumatic drugs (bDMARDs) (Tumor necrosis factor inhibitors, Interleukin-17 inhibitors, Interleukin 12/23 inhibitors, Abatacept, Janus Kinase inhibitors and Rituximab). (3) Results: We found a great amount of studies concerning Methotrexate and Tumor Necrosis Inhibitors (TNFi). Conversely, fewer data were available about Interleukin-17 inhibitors (IL-17i) and Interleukin 12/23 inhibitors (IL-12/23i), while none was identified for Janus Kinase Inhibitors (JAKi), Tocilizumab, Abatacept and Rituximab. We observed that microbiota and drugs are influenced in a mutual and reciprocal way. Indeed, microbiota seems to influence therapeutic response and efficacy, whereas in the other hand, drugs may restore healthy microbiota. (4) Conclusions: Future improvement in pharmacomicrobiomics could help to detect an effective biomarker able to guide treatment choice and optimize management of inflammatory arthritides.
Collapse
Affiliation(s)
- Silvia Peretti
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Sara Torracchi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Francesco Bonomi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Elisa Fiorentini
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Khadija El Aoufy
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Cosimo Bruni
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
- Department of Rheumatology, University Hospital of Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Gemma Lepri
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Martina Orlandi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Medicina dei Sistemi, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Guiducci
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Silvia Bellando Randone
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
35
|
Cuesta N, Fernández-Veledo S, Punzón C, Moreno C, Barrocal B, Sreeramkumar V, Desco M, Fresno M. Opposing Actions of TLR2 and TLR4 in Adipocyte Differentiation and Mature-Onset Obesity. Int J Mol Sci 2022; 23:ijms232415682. [PMID: 36555322 PMCID: PMC9779340 DOI: 10.3390/ijms232415682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding the signaling cascades that govern adipocyte metabolism and differentiation is necessary for the development of therapies for obesity. Toll-like receptors (TLRs) are key mediators in adipogenesis, but their specific role is not completely understood. In this study, siRNA knockdown of Tlr2 in 3T3-L1 cells allowed them to differentiate more efficiently into adipocytes, whereas the opposite was observed for the knockdown of Tlr4. At the same time, we show that TLR2 knock-out mice spontaneously developed mature-onset obesity and insulin resistance. Besides a higher incidence of hyperplasia and hypertrophy in white adipose tissue (WAT), we found a significantly increased number of adipocyte precursor cells in TLR2-/- mice compared to TLR4-/- mice. Interestingly, genetic inactivation of Tlr4 in TLR2-/- mice reverted their increased adiposity, insulin resistance, and restored normal levels of adipocyte precursor cells. These findings provide evidence that TLR2 and TLR4 play opposing roles in WAT homeostasis and point to the existence of cross-regulation among TLR2 and TLR4 during adipocyte differentiation both in vitro and in vivo.
Collapse
Affiliation(s)
- Natalia Cuesta
- School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Sonia Fernández-Veledo
- Instituto de Investigación Sanitaria Pere Virgili, University Hospital of Tarragona Joan XXIII, 43007 Tarragona, Spain
| | - Carmen Punzón
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Cristóbal Moreno
- School of Medicine, Universidad Alfonso X el Sabio, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Beatriz Barrocal
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Vinatha Sreeramkumar
- School of Health and Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Manuel Desco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
36
|
Li J, Wang L, Zeng G, Li H, Luo J, Tian Q, Zhang Z. Chymotrypsin attenuates adjuvant-induced arthritis by downregulating TLR4, NF-κB, MMP-1, TNF-α, IL-1β, and IL-6 expression in Sprague-Dawley rats. Immunopharmacol Immunotoxicol 2022; 44:959-969. [PMID: 35737007 DOI: 10.1080/08923973.2022.2093743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is mainly characterized by synovial hyperplasia, angiogenesis, inflammatory cells infiltration. Chymotrypsin is a proteolytic enzyme with anti-inflammatory effects. The current project was intended to test the efficacy and mechanism of chymotrypsin in adjuvant-induced arthritis (AIA) rats to provide an experimental basis for the clinical application of chymotrypsin. METHODS Sprague-Dawley rats were injected with complete Freund's adjuvant (CFA) in the hind left paw pad to establish an AIA model. Forty rats were randomly divided into five groups (n = 8): blank; CFA model (model); low-dose chymotrypsin (CLD), 0.53 mg/kg; high-dose chymotrypsin (CHD), 1.06 mg/kg; piroxicam, 10 mg/kg. The treatments were performed in the subplantar region of the left hind paw from Day 8 (D8) to Day 28 after adjuvant injection. The body weight, paw diameter, swelling degree of paw, and arthritic score were measured on D0, D7, D14, D21, and D28. All animals were sacrificed on D29. Subsequently, the synovial tissue of the ankle joint of the rats was stained with HE to generate pathological sections for observation of the pathological changes of synovial tissue from the ankle joint. The protein levels of MMP-1, TNF-α, IL-1β, and IL-6 in the rats' serum were determined by ELISA. Western blotting was used to detect the protein expression of TLR4 and NF-κB in the rat ankle tissue. The mRNA expression of TLR4, NF-κB, IL-1β, IL-6, and TNF-α in synovial tissue of the ankle joint was detected by RT-qPCR. RESULTS The body weight of the rats in each group showed an increasing trend, and there was no significant difference in weight between the groups. CHD and piroxicam suppressed paw swelling and arthritic scores and decreased synovial hyperplasia, inflammatory cell infiltration, pannus formation, and bone destruction. Furthermore, the overproduction of MMP-1, TNF-α, IL-1β, and IL-6 in serum was remarkably attenuated in the chymotrypsin- and piroxicam-treated rats. The protein levels of TLR4 and NF-κB in the synovial tissue of the chymotrypsin group and the piroxicam group were significantly lower than those in the model group. Likewise, the rats treated with chymotrypsin and piroxicam had a substantial decline in the mRNA expression of TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in synovial tissue. CONCLUSIONS Chymotrypsin alleviates the joint damage of AIA rats, probably by reducing the expression of MMP-1, TNF-α, IL-1β, and IL-6 through TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guangting Zeng
- Department of Pharmacy, The First People's Hospital of Chenzhou, Xiangnan University, Chenzhou, China
| | - Huilan Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qijun Tian
- Jianqiao Pharmaceutical Limited Liability Company of Hunan Province, Changsha, China
| | - Zanling Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Cao Y, Zhong Q, Tang F, Yao X, Liu Z, Zhang X. Anethole ameliorates inflammation induced by monosodium urate in an acute gouty arthritis model via inhibiting TLRs/MyD88 pathway. Allergol Immunopathol (Madr) 2022; 50:107-114. [PMID: 36335453 DOI: 10.15586/aei.v50i6.682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To assess the effects of anethole on monosodium urate (MSU)-induced inflammatory response, investigate its role in acute gouty arthritis (AGA), and verify its molecular mechanism. METHODS Hematoxylin and eosin staining assay and time-dependent detection of degree of ankle swelling were performed to assess the effects of anethole on joint injury in MSU-induced AGA mice. Enzyme-linked-immunosorbent serologic assay was performed to demonstrate the production levels of inflammatory factors (interleukin 1β [IL-1β], interleukin 6 [IL-6], interleukin 8 [IL-8], tumor necrosis factor α [TNF-α], and monocyte chemo-attractant protein-1 [MCP-1]) in MSU-induced AGA mice. Western blot assays were used to confirm the effects of anethole on oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activity and the activation of toll-like receptors (TLRs)-myeloid differentiation factor 88 (MyD88) pathway in MSU-induced AGA mice. RESULTS We observed that a significant joint injury occurred in MSU-induced AGA mice. Anethole could alleviate the pathological injury of the synovium in MSU-induced AGA mice and suppressed ankle swelling. In addition, we observed that anethole could inhibit MSU-induced inflammatory response and inflammasome activation in MSU-induced AGA mice. Moreover, we discovered that anethole enabled to inhibit the activation of TLRs/MyD88 pathway in MSU-induced AGA mice. Our findings further confirmed that anethole contributed to the inhibitory effects on progression in MSU-induced AGA mice. CONCLUSION It confirmed that anethole ameliorated the MSU-induced inflammatory response in AGA mice in vivo via inhibiting TLRs-MyD88 pathway.
Collapse
Affiliation(s)
- Yuepeng Cao
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Qin Zhong
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Fang Tang
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Xueming Yao
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Zhengqi Liu
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China;
| | - Xiaodong Zhang
- Second Clinical School of Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| |
Collapse
|
38
|
Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front Immunol 2022; 13:906258. [PMID: 36341463 PMCID: PMC9632986 DOI: 10.3389/fimmu.2022.906258] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
Trillions of microbes survive and thrive inside the human body. These tiny creatures are crucial to the development and maturation of our immune system and to maintain gut immune homeostasis. Microbial dysbiosis is the main driver of local inflammatory and autoimmune diseases such as colitis and inflammatory bowel diseases. Dysbiosis in the gut can also drive systemic autoimmune diseases such as type 1 diabetes, rheumatic arthritis, and multiple sclerosis. Gut microbes directly interact with the immune system by multiple mechanisms including modulation of the host microRNAs affecting gene expression at the post-transcriptional level or production of microbial metabolites that interact with cellular receptors such as TLRs and GPCRs. This interaction modulates crucial immune functions such as differentiation of lymphocytes, production of interleukins, or controlling the leakage of inflammatory molecules from the gut to the systemic circulation. In this review, we compile and analyze data to gain insights into the underpinning mechanisms mediating systemic autoimmune diseases. Understanding how gut microbes can trigger or protect from systemic autoimmune diseases is crucial to (1) tackle these diseases through diet or lifestyle modification, (2) develop new microbiome-based therapeutics such as prebiotics or probiotics, (3) identify diagnostic biomarkers to predict disease risk, and (4) observe and intervene with microbial population change with the flare-up of autoimmune responses. Considering the microbiome signature as a crucial player in systemic autoimmune diseases might hold a promise to turn these untreatable diseases into manageable or preventable ones.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Biology Department, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Biology Department, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Biology Department, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
39
|
Opoku YK, Asare KK, Ghartey-Quansah G, Afrifa J, Bentsi-Enchill F, Ofori EG, Koomson CK, Kumi-Manu R. Intestinal microbiome–rheumatoid arthritis crosstalk: The therapeutic role of probiotics. Front Microbiol 2022; 13:996031. [PMID: 36329845 PMCID: PMC9623317 DOI: 10.3389/fmicb.2022.996031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common systemic autoimmune disease with a global health importance. It is characterized by long-term complications, progressive disability and high mortality tied to increased social-economic pressures. RA has an inflammatory microenvironment as one of the major underlying factors together with other complex processes. Although mechanisms underlying the triggering of RA remain partially elusive, microbiota interactions have been implicated. Again, significant alterations in the gut microbiome of RA patients compared to healthy individuals have intimated a chronic inflammatory response due to gut dysbiosis. Against this backdrop, myriads of studies have hinted at the prospective therapeutic role of probiotics as an adjuvant for the management of RA in the quest to correct this dysbiosis. In this article, the major gut microbiome alterations associated with RA are discussed. Subsequently, the role of the gut microbiome dysbiosis in the initiation and progression of RA is highlighted. Lastly, the effect and mechanism of action of probiotics in the amelioration of symptoms and severity of RA are also espoused. Although strain-specific, probiotic supplementation as adjuvant therapy for the management of RA is very promising and warrants more research.
Collapse
Affiliation(s)
- Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
- *Correspondence: Yeboah Kwaku Opoku,
| | - Kwame Kumi Asare
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - George Ghartey-Quansah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justice Afrifa
- Department of Medical Laboratory Science, University of Cape Coast, Cape Coast, Ghana
| | - Felicity Bentsi-Enchill
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Eric Gyamerah Ofori
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Charles Kwesi Koomson
- Department of Integrated Science Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Rosemary Kumi-Manu
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| |
Collapse
|
40
|
Zhu J, Wang T, Lin Y, Xiong M, Chen J, Jian C, Zhang J, Xie H, Zeng F, Huang Q, Su J, Zhao Y, Li S, Zeng F. The change of plasma metabolic profile and gut microbiome dysbiosis in patients with rheumatoid arthritis. Front Microbiol 2022; 13:931431. [PMID: 36329847 PMCID: PMC9623673 DOI: 10.3389/fmicb.2022.931431] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which is associated with progressive disability, systemic complications, and early death. But its etiology and pathogenesis are not fully understood. We aimed to investigate the alterations in plasma metabolite profiles, gut bacteria, and fungi and their role of them in the pathogenesis of RA. Methods Metabolomics profiling of plasma from 363 participants including RA (n = 244), systemic lupus erythematosus (SLE, n = 50), and healthy control (HC, n = 69) were performed using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The differentially expressed metabolites were selected among groups and used to explore important metabolic pathways. Gut microbial diversity analysis was performed by 16S rRNA sequencing and ITS sequencing (RA = 195, HC = 269), and the specific microbial floras were identified afterward. The diagnosis models were established based on significant differential metabolites and microbial floras, respectively. Results There were 63 differential metabolites discovered between RA and HC groups, mainly significantly enriched in the arginine and proline metabolism, glycine, serine, and threonine metabolism, and glycerophospholipid metabolism between RA and HC groups. The core differential metabolites included L-arginine, creatine, D-proline, ornithine, choline, betaine, L-threonine, LysoPC (18:0), phosphorylcholine, and glycerophosphocholine. The L-arginine and phosphorylcholine were increased in the RA group. The AUC of the predictive model was 0.992, based on the combination of the 10 differential metabolites. Compared with the SLE group, 23 metabolites increased and 61 metabolites decreased in the RA group. However, no significant metabolic pathways were enriched between RA and SLE groups. On the genus level, a total of 117 differential bacteria genera and 531 differential fungal genera were identified between RA and HC groups. The results indicated that three bacteria genera (Eubacterium_hallii_group, Escherichia-Shigella, Streptococcus) and two fungal genera (Candida and Debaryomyces) significantly increased in RA patients. The AUC was 0.80 based on a combination of six differential bacterial genera and the AUC was 0.812 based on a combination of seven differential fungal genera. Functional predictive analysis displayed that differential bacterial and differential fungus both were associated with KEGG pathways involving superpathway of L-serine and glycine biosynthesis I, arginine, ornithine, and proline interconversion. Conclusion The plasma metabolism profile and gut microbe profile changed markedly in RA. The glycine, serine, and threonine metabolism and arginine and proline metabolism played an important role in RA.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Wang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Yifei Lin
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Minghao Xiong
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | | | - Congcong Jian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Huanhuan Xie
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Fanwei Zeng
- Sichuan Province Orthopaedic Hospital, Chengdu, China
| | - Qian Huang
- Dazhou Vocational and Technical College, Dazhou, China
| | - Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Clinical Institute of Inflammation and Immunology, Sichuan University, Chengdu, China
- *Correspondence: Yi Zhao,
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
- Shilin Li,
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
- Fanxin Zeng,
| |
Collapse
|
41
|
Stephens M. The emerging potential of Aptamers as therapeutic agents in infection and inflammation. Pharmacol Ther 2022; 238:108173. [DOI: 10.1016/j.pharmthera.2022.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
42
|
Li J, Jin J, Li S, Zhong Y, Jin Y, Zhang X, Xia B, Zhu Y, Guo R, Sun X, Guo J, Hu F, Xiao W, Huang F, Ye H, Li R, Zhou Y, Xiang X, Yao H, Yan Q, Su L, Wu L, Luo T, Liu Y, Guo X, Qin J, Qi H, He J, Wang J, Li Z. Tonsillar Microbiome-Derived Lantibiotics Induce Structural Changes of IL-6 and IL-21 Receptors and Modulate Host Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202706. [PMID: 36031409 PMCID: PMC9596850 DOI: 10.1002/advs.202202706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Emerging evidence emphasizes the functional impacts of host microbiome on the etiopathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). However, there are limited mechanistic insights into the contribution of microbial biomolecules especially microbial peptides toward modulating immune homeostasis. Here, by mining the metagenomics data of tonsillar microbiome, a deficiency of the encoding genes of lantibiotic peptides salivaricins in RA patients is identified, which shows strong correlation with circulating immune cells. Evidence is provided that the salivaricins exert immunomodulatory effects in inhibiting T follicular helper (Tfh) cell differentiation and interleukin-21 (IL-21) production. Mechanically, salivaricins directly bind to and induce conformational changes of IL-6 and IL-21 receptors, thereby inhibiting the bindings of IL-6 and IL-21 to their receptors and suppressing the downstream signaling pathway. Finally, salivaricin administration exerts both prophylactic and therapeutic effects against experimental arthritis in a murine model of RA. Together, these results provide a mechanism link of microbial peptides-mediated immunomodulation.
Collapse
|
43
|
Chatterjee G, Negi S, Basu S, Faintuch J, O'Donovan A, Shukla P. Microbiome systems biology advancements for natural well-being. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155915. [PMID: 35568180 DOI: 10.1016/j.scitotenv.2022.155915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Throughout the years all data from epidemiological, physiological and omics have suggested that the microbial communities play a considerable role in modulating human health. The population of microorganisms residing in the human intestine collectively known as microbiota presents a genetic repertoire that is higher in magnitude than the human genome. They play an essential role in host immunity and neuronal signaling. Rapid enhancement of sequence based screening and development of humanized gnotobiotic model has sparked a great deal of interest among scientists to probe the dynamic interactions of the commensal bacteria. This review focuses on systemic analysis of the gut microbiome to decipher the complexity of the host-microbe intercommunication and gives a special emphasis on the evolution of targeted precision medicine through microbiome engineering. In addition, we have also provided a comprehensive description of how interconnection between metabolism and biochemical reactions in a specific organism can be obtained from a metabolic network or a flux balance analysis and combining multiple datasets helps in the identification of a particular metabolite. The review highlights how genetic modification of the critical components and programming the resident microflora can be employed for targeted precision medicine. Inspite of the ongoing debate on the utility of gut microbiome we have explored on the probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also recapitulates integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet-microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of the disease. Inspite of the ongoing debate on the utility of the gut microbiome we have explored how probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also summarises integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet- microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from the microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of disease.
Collapse
Affiliation(s)
| | - Sangeeta Negi
- NMC Biolab, New Mexico Consortium, Los Alamos, NM, USA; Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Supratim Basu
- NMC Biolab, New Mexico Consortium, Los Alamos, NM, USA
| | - Joel Faintuch
- Department of Gastroenterology, Sao Paulo University Medical School, São Paulo, SP 01246-903, Brazil
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
44
|
Zhao T, Wei Y, Zhu Y, Xie Z, Hai Q, Li Z, Qin D. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Front Immunol 2022; 13:1007165. [PMID: 36159786 PMCID: PMC9499173 DOI: 10.3389/fimmu.2022.1007165] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the joints. Microbial infection is considered a crucial inducer of RA. Alterations in the composition of intestinal bacteria in individuals with preclinical and established RA suggest a vital role of the gut microbiota in immune dysfunction characteristic of RA. However, the mechanisms by which gut dysbiosis contributes to RA are not fully understood. Furthermore, multiple therapies commonly used to treat RA may alter gut microbiota diversity, suggesting that modulating the gut microbiota may help prevent or treat RA. Hence, a better understanding of the changes in the gut microbiota that accompany RA should aid the development of novel therapeutic approaches. This mini-review discusses the impact of gut dysbiosis in the pathogenesis of RA, the selection of gut microbiota-related biomarkers for diagnosing RA, and provides examples of cross-modulation between the gut microbiota and some drugs commonly used to treat RA. Some suggestions and outlooks are also raised, which may help guide future research efforts.
Collapse
Affiliation(s)
- Ting Zhao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Youyang Zhu
- The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qingshan Hai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
45
|
Li K, Wang M, Zhao L, Liu Y, Zhang X. ACPA-negative rheumatoid arthritis: From immune mechanisms to clinical translation. EBioMedicine 2022; 83:104233. [PMID: 36027873 PMCID: PMC9404277 DOI: 10.1016/j.ebiom.2022.104233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
The presence of anti-citrullinated protein autoantibodies (ACPA) is a hallmark feature of rheumatoid arthritis (RA), which causes chronic joint destruction and systemic inflammation. Based on ACPA status, RA patients can be sub-grouped into two major subsets: ACPA-positive RA (ACPA+ RA) and ACPA-negative RA (ACPA– RA). Accumulating evidence have suggested that ACPA+ RA and ACPA– RA are two distinct disease entities with different underlying pathophysiology. In contrast to the well-characterized pathogenic mechanisms of ACPA+ RA, the etiology of ACPA– RA remains largely unknown. In this review, we summarized current knowledge about the primary drivers of ACPA– RA, particularly focusing on the serological, cellular, and molecular aspects of immune mechanisms. A better understanding of the immunopathogenesis in ACPA– RA will help in designing more precisely targeting strategies, and paving the road to personalized treatment. In addition, identification of novel biomarkers in ACPA– RA will substantially promote early treatment and improve the outcomes.
Collapse
Affiliation(s)
- Ketian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China.
| |
Collapse
|
46
|
Attur M, Scher JU, Abramson SB, Attur M. Role of Intestinal Dysbiosis and Nutrition in Rheumatoid Arthritis. Cells 2022; 11:2436. [PMID: 35954278 PMCID: PMC9368368 DOI: 10.3390/cells11152436] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis is a chronic systemic immune-mediated disease caused by genetic and environmental factors. It is often characterized by the generation of autoantibodies that lead to synovial inflammation and eventual multi-joint destruction. A growing number of studies have shown significant differences in the gut microbiota composition of rheumatoid arthritis (RA) patients compared to healthy controls. Environmental factors, and changes in diet and nutrition are thought to play a role in developing this dysbiosis. This review aims to summarize the current knowledge of intestinal dysbiosis, the role of nutritional factors, and its implications in the pathogenesis of rheumatoid arthritis and autoimmunity. The future direction focuses on developing microbiome manipulation therapeutics for RA disease management.
Collapse
Affiliation(s)
- Malavikalakshmi Attur
- Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Jose U Scher
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10003, USA
| | - Steven B. Abramson
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10003, USA
| | - Mukundan Attur
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10003, USA
| |
Collapse
|
47
|
Milenkovic D, Capel F, Combaret L, Comte B, Dardevet D, Evrard B, Guillet C, Monfoulet LE, Pinel A, Polakof S, Pujos-Guillot E, Rémond D, Wittrant Y, Savary-Auzeloux I. Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Crit Rev Food Sci Nutr 2022; 63:11185-11210. [PMID: 35730212 DOI: 10.1080/10408398.2022.2089870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Frédéric Capel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Lydie Combaret
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Blandine Comte
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Bertrand Evrard
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Guillet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Alexandre Pinel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sergio Polakof
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Didier Rémond
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Yohann Wittrant
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | |
Collapse
|
48
|
Wei Z, Li F, Pi G. Association Between Gut Microbiota and Osteoarthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front Cell Infect Microbiol 2022; 12:812596. [PMID: 35372125 PMCID: PMC8966131 DOI: 10.3389/fcimb.2022.812596] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by degeneration of articular cartilage, which leads to joints pain, disability and reduced quality of life in patients with OA. Interpreting the potential mechanisms underlying OA pathogenesis is crucial to the development of new disease modifying treatments. Although multiple factors contribute to the initiation and progression of OA, gut microbiota has gradually been regarded as an important pathogenic factor in the development of OA. Gut microbiota can be regarded as a multifunctional “organ”, closely related to a series of immune, metabolic and neurological functions. This review summarized research evidences supporting the correlation between gut microbiota and OA, and interpreted the potential mechanisms underlying the correlation from four aspects: immune system, metabolism, gut-brain axis and gut microbiota modulation. Future research should focus on whether there are specific gut microbiota composition or even specific pathogens and the corresponding signaling pathways that contribute to the initiation and progression of OA, and validate the potential of targeting gut microbiota for the treatment of patients with OA.
Collapse
Affiliation(s)
| | - Feng Li
- *Correspondence: Feng Li, ; Guofu Pi,
| | - Guofu Pi
- *Correspondence: Feng Li, ; Guofu Pi,
| |
Collapse
|
49
|
Gehlhaar A, Inala A, Llivichuzhca-Loja D, Silva TN, Adegboye CY, O’Connell AE, Konnikova L. Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. J Inflamm Res 2022; 15:1873-1887. [PMID: 35342295 PMCID: PMC8943607 DOI: 10.2147/jir.s288288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.
Collapse
Affiliation(s)
- Arne Gehlhaar
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Ashwin Inala
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | - Tatiana N Silva
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Amy E O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University, New Haven, CT, USA
| |
Collapse
|
50
|
You K, Yang L, Shen J, Liu B, Guo Y, Chen T, Li G, Lu H. Relationship between Gut Microbiota and Bone Health. Mini Rev Med Chem 2022; 22:2406-2418. [PMID: 35249483 DOI: 10.2174/1389557522666220304230920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Gut microbiota (GM) are microorganisms that live in the host gastrointestinal tract, and their abundance varies throughout the host's life. With the development of sequencing technology, the role of GM in various diseases has been increasingly elucidated. Unlike earlier studies on orthopedic diseases, this review elucidates the correlation between GM health and bone health, and discusses the potential mechanism of GM effects on host metabolism, inflammation, and ability to induce or aggravate some common orthopedic diseases such as osteoarthritis, osteoporosis, rheumatoid arthritis, etc. Finally, the prospective methods of GM manipulation and evaluation of potential GM-targeting strategies in the diagnosis and treatment of orthopedic diseases are reviewed.
Collapse
Affiliation(s)
- Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Jun Shen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Yuanqing Guo
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Guowei Li
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|