1
|
Feola K, Venable AH, Broomfield T, Llamas CB, Mishra P, Huen SC. Cell-specific oxidative metabolism of the renal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.622516. [PMID: 39651228 PMCID: PMC11623503 DOI: 10.1101/2024.11.24.622516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The metabolic health of the kidney is a primary determinant of the risk of progressive kidney disease. Our understanding of the metabolic processes that fuel kidney functions is limited by the kidney's structural and functional heterogeneity. As the kidney contains many different cell types, we hypothesize that intra-renal mitochondrial heterogeneity contributes to cell-specific metabolism. To interrogate this, we utilized a recently developed mitochondrial tagging technique to isolate kidney cell-type specific mitochondria. Here, we investigate mitochondrial functional capacities and the metabolomes of the early and late proximal tubule (PT) and the distal convoluted tubule (DCT). The conditional MITO-Tag allele was combined with Slc34a1-CreERT2 , Ggt1-Cre , or Pvalb-Cre alleles to generate mouse models capable of cell-specific isolation of hemagglutinin (HA)-tagged mitochondria from the early PT, late PT, or the DCT, respectively. Functional assays measuring mitochondrial respiratory and fatty acid oxidation (FAO) capacities and metabolomics were performed on anti-HA immunoprecipitated mitochondria from kidneys of ad libitum fed and 24-hour fasted male mice. The renal MITO-Tag models targeting the early PT, late PT, and DCT revealed differential mitochondrial respiratory and FAO capacities which dynamically changed during fasting conditions. Changes with mitochondrial metabolomes induced by fasting suggest that the late PT significantly increases FAO during fasting. The renal MITO-Tag model captured differential mitochondrial metabolism and functional capacities across the early PT, late PT, and DCT at baseline and in response to fasting. Translational Statement While the renal cortex is often considered a single metabolic compartment, we discovered significant diversity of mitochondrial metabolomes and functional capacities across the proximal tubule and the distal convoluted tubule. As mitochondrial dysfunction is a major biochemical pathway related to kidney disease progression, understanding the differences in mitochondrial metabolism across distinct kidney cell populations is thus critical in the development of effective and targeted therapeutic therapies for acute and chronic kidney disease.
Collapse
|
2
|
Sakowska J, Arcimowicz Ł, Jankowiak M, Papak I, Markiewicz A, Dziubek K, Kurkowiak M, Kote S, Kaźmierczak-Siedlecka K, Połom K, Marek-Trzonkowska N, Trzonkowski P. Autoimmunity and Cancer-Two Sides of the Same Coin. Front Immunol 2022; 13:793234. [PMID: 35634292 PMCID: PMC9140757 DOI: 10.3389/fimmu.2022.793234] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune disease results from the immune response against self-antigens, while cancer develops when the immune system does not respond to malignant cells. Thus, for years, autoimmunity and cancer have been considered as two separate fields of research that do not have a lot in common. However, the discovery of immune checkpoints and the development of anti-cancer drugs targeting PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways proved that studying autoimmune diseases can be extremely helpful in the development of novel anti-cancer drugs. Therefore, autoimmunity and cancer seem to be just two sides of the same coin. In the current review, we broadly discuss how various regulatory cell populations, effector molecules, genetic predisposition, and environmental factors contribute to the loss of self-tolerance in autoimmunity or tolerance induction to cancer. With the current paper, we also aim to convince the readers that the pathways involved in cancer and autoimmune disease development consist of similar molecular players working in opposite directions. Therefore, a deep understanding of the two sides of immune tolerance is crucial for the proper designing of novel and selective immunotherapies.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Martyna Jankowiak
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Liu S, Zhang H, Li Y, Zhang Y, Bian Y, Zeng Y, Yao X, Wan J, Chen X, Li J, Wang Z, Qin Z. S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation. J Immunother Cancer 2021; 9:jitc-2021-002548. [PMID: 34145030 PMCID: PMC8215236 DOI: 10.1136/jitc-2021-002548] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 11/07/2022] Open
Abstract
Background The peroxisome proliferator-activated receptor γ (PPAR-γ)-dependent upregulation of fatty acid oxidation (FAO) mediates protumor (also known as M2-like) polarization of tumor-associated macrophages (TAMs). However, upstream factors determining PPAR-γ upregulation in TAM protumor polarization are not fully identified. S100A4 plays crucial roles in promotion of cancer malignancy and mitochondrial metabolism. The fact that macrophage-derived S100A4 is major source of extracellular S100A4 suggests that macrophages contain a high abundance of intracellular S100A4. However, whether intracellular S100A4 in macrophages also contributes to cancer malignancy by enabling TAMs to acquire M2-like protumor activity remains unknown. Methods Growth of tumor cells was evaluated in murine tumor models. TAMs were isolated from the tumor grafts in whole-body S100A4-knockout (KO), macrophage-specific S100A4-KO and transgenic S100A4WT−EGFP mice (expressing enhanced green fluorescent protein (EGFP) under the control of the S100A4 promoter). In vitro induction of macrophage M2 polarization was conducted by interleukin 4 (IL-4) stimulation. RNA-sequencing, real-time quantitative PCR, flow cytometry, western blotting, immunofluorescence staining and mass spectrometry were used to determine macrophage phenotype. Exogenous and endogenous FAO, FA uptake and measurement of lipid content were used to analyze macrophage metabolism. Results TAMs contain two subsets based on whether they express S100A4 or not and that S100A4+ subsets display protumor phenotypes. S100A4 can be induced by IL-4, an M2 activator of macrophage polarization. Mechanistically, S100A4 controls the upregulation of PPAR-γ, a transcription factor required for FAO induction during TAM protumor polarization. In S100A4+ TAMs, PPAR-γ mainly upregulates CD36, a FA transporter, to enhance FA absorption as well as FAO. In contrast, S100A4-deficient TAMs exhibited decreased protumor activity because of failure in PPAR-γ upregulation-dependent FAO induction. Conclusions We find that macrophagic S100A4 enhances protumor macrophage polarization as a determinant of PPAR-γ-dependent FAO induction. Accordingly, our findings provide an insight into the general mechanisms of TAM polarization toward protumor phenotypes. Therefore, our results strongly suggest that targeting macrophagic S100A4 may be a potential strategy to prevent TAMs from re-differentiation toward a protumor phenotype.
Collapse
Affiliation(s)
- Shuangqing Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huilei Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yana Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Bian
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqiong Zeng
- School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianru Li
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Basic Medical, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Yokoyama T, Gochuico BR. Hermansky-Pudlak syndrome pulmonary fibrosis: a rare inherited interstitial lung disease. Eur Respir Rev 2021; 30:30/159/200193. [PMID: 33536261 DOI: 10.1183/16000617.0193-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease of unknown aetiology with a poor prognosis. Studying genetic diseases associated with pulmonary fibrosis provides insights into the pathogenesis of the disease. Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder characterised by abnormal biogenesis of lysosome-related organelles, manifests with oculocutaneous albinism and excessive bleeding of variable severity. Pulmonary fibrosis is highly prevalent in three out of 10 genetic types of HPS (HPS-1, HPS-2 and HPS-4). Thus, genotyping of individuals with HPS is clinically relevant. HPS-1 tends to affect Puerto Rican individuals due to a genetic founder effect. HPS pulmonary fibrosis shares some clinical features with idiopathic pulmonary fibrosis (IPF), including dyspnoea, cough, restrictive lung physiology and computed tomography (CT) findings of fibrosis. In contrast to IPF, HPS pulmonary fibrosis generally affects children (HPS-2) or middle-aged adults (HPS-1 or HPS-4) and may be associated with ground-glass opacification in CT scans. Histopathology of HPS pulmonary fibrosis, and not IPF, shows vacuolated hyperplastic type II cells with enlarged lamellar bodies and alveolar macrophages with lipofuscin-like deposits. Antifibrotic drugs approved as treatment for IPF are not approved for HPS pulmonary fibrosis. However, lung transplantation has been performed in patients with severe HPS pulmonary fibrosis. HPS pulmonary fibrosis serves as a model for studying fibrotic lung disease and fibrosis in general.
Collapse
Affiliation(s)
- Tadafumi Yokoyama
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Dept of Pediatrics, Kanazawa University, Kanazawa, Japan
| | - Bernadette R Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Yu Z, Liao J, Chen Y, Zou C, Zhang H, Cheng J, Liu D, Li T, Zhang Q, Li J, Yang X, Ye Y, Huang Z, Long X, Yang R, Mo Z. Single-Cell Transcriptomic Map of the Human and Mouse Bladders. J Am Soc Nephrol 2019; 30:2159-2176. [PMID: 31462402 DOI: 10.1681/asn.2019040335] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Having a comprehensive map of the cellular anatomy of the normal human bladder is vital to understanding the cellular origins of benign bladder disease and bladder cancer. METHODS We used single-cell RNA sequencing (scRNA-seq) of 12,423 cells from healthy human bladder tissue samples taken from patients with bladder cancer and 12,884 cells from mouse bladders to classify bladder cell types and their underlying functions. RESULTS We created a single-cell transcriptomic map of human and mouse bladders, including 16 clusters of human bladder cells and 15 clusters of mouse bladder cells. The homology and heterogeneity of human and mouse bladder cell types were compared and both conservative and heterogeneous aspects of human and mouse bladder evolution were identified. We also discovered two novel types of human bladder cells. One type is ADRA2A + and HRH2 + interstitial cells which may be associated with nerve conduction and allergic reactions. The other type is TNNT1 + epithelial cells that may be involved with bladder emptying. We verify these TNNT1 + epithelial cells also occur in rat and mouse bladders. CONCLUSIONS This transcriptomic map provides a resource for studying bladder cell types, specific cell markers, signaling receptors, and genes that will help us to learn more about the relationship between bladder cell types and diseases.
Collapse
Affiliation(s)
- Zhenyuan Yu
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Departments of Urology and.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Yang Chen
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Departments of Urology and.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, China.,Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Jiwen Cheng
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Departments of Urology and.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Deyun Liu
- Institute of Urology and Nephrology.,Departments of Urology and
| | - Tianyu Li
- Institute of Urology and Nephrology.,Departments of Urology and
| | - Qingyun Zhang
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jiaping Li
- Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China; and
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Yu Ye
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Scientific Research Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiguang Huang
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Xinyang Long
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, .,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Institute of Urology and Nephrology, .,Center for Genomic and Personalized Medicine.,Departments of Urology and.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| |
Collapse
|
6
|
Inhibition of TGF- β1 Signaling by IL-15: A Novel Role for IL-15 in the Control of Renal Epithelial-Mesenchymal Transition: IL-15 Counteracts TGF- β1-Induced EMT in Renal Fibrosis. Int J Cell Biol 2019; 2019:9151394. [PMID: 31360169 PMCID: PMC6642769 DOI: 10.1155/2019/9151394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/10/2018] [Accepted: 05/29/2019] [Indexed: 01/23/2023] Open
Abstract
Renal tubulointerstitial fibrosis is the final common pathway in end-stage renal disease and is characterized by aberrant accumulation of extracellular matrix (ECM) components secreted by myofibroblasts. Tubular type 2 EMT, induced by TGF-β, plays an important role in renal fibrosis, by participating directly or indirectly in myofibroblasts generation. TGF-β1-induced apoptosis and fibrosis in experimental chronic murine kidney diseases are concomitantly associated with an intrarenal decreased expression of the IL-15 survival factor. Since IL-15 counteracts TGF-β1 effects in different cell models, we analyzed whether (1) human chronic inflammatory nephropathies evolving towards fibrosis could be also characterized by a weak intrarenal IL-15 expression and (2) IL-15 could inhibit epithelial-mesenchymal transition (EMT) and excess matrix deposition in human renal proximal tubular epithelial cells (RPTEC). Our data show that different human chronic kidney diseases are characterized by a strong decreased expression of intrarenal IL-15, which is particularly relevant in diabetic nephropathy, in which type 2 tubular EMT plays an important role in fibrosis. Moreover, primary epithelial tubular cultures deprived of growth supplements rapidly produce active TGF-β1 inducing a “spontaneous” EMT process characterized by the loss of membrane-bound IL-15 (mbIL-15) expression. Both “spontaneous” EMT and recombinant human (rh) TGF-β1-induced EMT models can be inhibited by treating RPTEC and HK2 cells with rhIL-15. Through a long-lasting phospho-c-jun activation, IL-15 inhibits rhTGF-β1-induced Snail1 expression, the master inducer of EMT, and blocks TGF-β1-induced tubular EMT and downstream collagen synthesis. In conclusion, our data suggest that intrarenal IL-15 could be a natural inhibitor of TGF-β in human kidney able to guarantee epithelial homeostasis and to prevent EMT process. Thus, both in vivo and in vitro an unbalance in intrarenal IL-15 and TGF-β1 levels could render RPTEC cells more prone to undergo EMT process. Exogenous IL-15 treatment could be beneficial in some human nephropathies such as diabetic nephropathy.
Collapse
|
7
|
Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6595437. [PMID: 31317035 PMCID: PMC6601481 DOI: 10.1155/2019/6595437] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is an essential mechanism in myocardial fibrosis (MF). Tongxinluo (TXL) has been confirmed to protect the endothelium against reperfusion injury after acute myocardial infarction (AMI). However, whether TXL can inhibit MF after AMI via inhibiting EndMT remained unknown. This study aims to identify the role of EndMT in MF after AMI as well as the protective effects and underlying mechanisms of TXL on MF. The AMI model was established in rats by ligating left anterior descending coronary artery. Then, rats were administered with high- (0.8 g·kg−1·d−1), mid- (0.4 g·kg−1·d−1), and low- (0.2 g·kg−1·d−1) dose Tongxinluo and benazepril for 4 weeks, respectively. Cardiac function, infarct size, MF, and related indicators of EndMT were measured. In vitro, human cardiac microvascular endothelial cells (HCMECs) were pretreated with TXL for 4 h and then incubated in hypoxia conditions for 3 days to induce EndMT. Under this hypoxic condition, neuregulin-1 (NRG-1) siRNA were further applied to silence NRG-1 expression. Immunofluorescence microscopy was used to assess expression of endothelial marker of vWF and fibrotic marker of Vimentin. Related factors of EndMT were determined by Western blot analysis. TXL treatment significantly improved cardiac function, ameliorated MF, reduced collagen of fibrosis area (types I and III collagen) and limited excessive extracellular matrix deposition (mmp2 and mmp9). In addition, TXL inhibited EndMT in cardiac tissue and hypoxia-induced HCMECs. In hypoxia-induced HCMECs, TXL increased the expression of endothelial markers, whereas decreasing the expression of fibrotic markers, partially through enhanced expressions of NRG-1, phosphorylation of ErbB2, ErbB4, AKT, and downregulated expressions of hypoxia inducible factor-1a and transcription factor snail. After NRG-1 knockdown, the protective effect of TXL on HCMEC was partially abolished. In conclusion, TXL attenuates MF after AMI by inhibiting EndMT and through activating the NRG-1/ErbB- PI3K/AKT signalling cascade.
Collapse
|
8
|
Qingshen Buyang Formula Attenuates Renal Fibrosis in 5/6 Nephrectomized Rats via Inhibiting EMT and Wnt/ β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5370847. [PMID: 31186661 PMCID: PMC6521559 DOI: 10.1155/2019/5370847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 11/20/2022]
Abstract
As renal fibrosis significantly contributes to various kinds of chronic kidney diseases, this study aimed to investigate the renal protective effects of Qingshen Buyang Formula against renal fibrosis on 5/6 nephrectomized rats, and its underlying mechanisms were explored. A total of 24 male Sprague-Dawley rats were randomly divided into sham operation group (Sham group), 5/6 nephrectomy group (5/6Nx group), and Qingshen Buyang Formula treatment group (QBF group). The intervention was intragastric administration for 12 weeks. In the end, the blood samples were collected to test renal functional parameters, urine proteins were measured, and the left kidneys were removed for histological studies, as well as mRNA and protein expression analysis. The results showed that Qingshen Buyang Formula significantly decreased BUN, Scr, and proteinuria in 5/6Nx rats. Meanwhile, it ameliorated the kidney injury and fibrosis, exemplified by the depressed expression of collagen I and fibronectin (FN), which are the main components of ECM. Furthermore, the process of EMT inhibited the Wnt/β-catenin signaling pathway related genes, such as Wnt4, TCF4, β-catenin, and p-GSK3β. Collectively, the Qingshen Buyang Formula can improve renal function and attenuate renal fibrosis, and its underlying mechanisms may be related with inhibiting EMT and Wnt/β-catenin signaling pathway.
Collapse
|
9
|
Cameron RB, Gibbs WS, Miller SR, Dupre TV, Megyesi J, Beeson CC, Schnellmann RG. Proximal Tubule β 2-Adrenergic Receptor Mediates Formoterol-Induced Recovery of Mitochondrial and Renal Function after Ischemia-Reperfusion Injury. J Pharmacol Exp Ther 2019; 369:173-180. [PMID: 30709866 PMCID: PMC11046739 DOI: 10.1124/jpet.118.252833] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/04/2019] [Indexed: 04/28/2024] Open
Abstract
Acute kidney injury (AKI) is the rapid loss of renal function after an insult, and renal proximal tubule cells (RPTCs) are central to the pathogenesis of AKI. The β 2-adrenergic receptor (β 2AR) agonist formoterol accelerates the recovery of renal function in mice after ischemia-reperfusion injury (IRI) with associated rescue of mitochondrial proteins; however, the cell type responsible for this recovery remains unknown. The role of RPTCs in formoterol-induced recovery of renal function was assessed in a proximal tubule-specific knockout of the β 2AR (γGT-Cre:ADRB2Flox/Flox). These mice and wild-type controls (ADRB2Flox/Flox) were subjected to renal IRI, followed by once-daily dosing of formoterol beginning 24 hours post-IRI and euthanized at 144 hours. Compared with ADRB2Flox/Flox mice, γGT-Cre:ADRB2Flox/Flox mice had decreased renal cortical mRNA expression of the β 2AR. After IRI, formoterol treatment restored renal function in ADRB2Flox/Flox but not γGT-Cre:ADRB2Flox/Flox mice as measured by serum creatinine, histopathology, and expression of kidney injury marker-1 (KIM-1). Formoterol-treated ADRB2Flox/Flox mice exhibited recovery of mitochondrial proteins and DNA copy number, whereas γGT-Cre:ADRB2Flox/Flox mice treated with formoterol did not. Analysis of mitochondrial morphology by transmission electron microscopy demonstrated that formoterol increased mitochondrial number and density in ADRB2Flox/Flox mice but not in γGT-Cre:ADRB2Flox/Flox mice. These data demonstrate that proximal tubule β 2AR regulates renal mitochondrial homeostasis. Formoterol accelerates the recovery of renal function after AKI by activating proximal tubule β 2AR to induce mitochondrial biogenesis and demonstrates the overall requirement of RPTCs in renal recovery.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Whitney S Gibbs
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Siennah R Miller
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Tess V Dupre
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Judit Megyesi
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| |
Collapse
|
10
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
11
|
Chan SC, Zhang Y, Shao A, Avdulov S, Herrera J, Aboudehen K, Pontoglio M, Igarashi P. Mechanism of Fibrosis in HNF1B-Related Autosomal Dominant Tubulointerstitial Kidney Disease. J Am Soc Nephrol 2018; 29:2493-2509. [PMID: 30097458 DOI: 10.1681/asn.2018040437] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mutation of HNF1B, the gene encoding transcription factor HNF-1β, is one cause of autosomal dominant tubulointerstitial kidney disease, a syndrome characterized by tubular cysts, renal fibrosis, and progressive decline in renal function. HNF-1β has also been implicated in epithelial-mesenchymal transition (EMT) pathways, and sustained EMT is associated with tissue fibrosis. The mechanism whereby mutated HNF1B leads to tubulointerstitial fibrosis is not known. METHODS To explore the mechanism of fibrosis, we created HNF-1β-deficient mIMCD3 renal epithelial cells, used RNA-sequencing analysis to reveal differentially expressed genes in wild-type and HNF-1β-deficient mIMCD3 cells, and performed cell lineage analysis in HNF-1β mutant mice. RESULTS The HNF-1β-deficient cells exhibited properties characteristic of mesenchymal cells such as fibroblasts, including spindle-shaped morphology, loss of contact inhibition, and increased cell migration. These cells also showed upregulation of fibrosis and EMT pathways, including upregulation of Twist2, Snail1, Snail2, and Zeb2, which are key EMT transcription factors. Mechanistically, HNF-1β directly represses Twist2, and ablation of Twist2 partially rescued the fibroblastic phenotype of HNF-1β mutant cells. Kidneys from HNF-1β mutant mice showed increased expression of Twist2 and its downstream target Snai2. Cell lineage analysis indicated that HNF-1β mutant epithelial cells do not transdifferentiate into kidney myofibroblasts. Rather, HNF-1β mutant epithelial cells secrete high levels of TGF-β ligands that activate downstream Smad transcription factors in renal interstitial cells. CONCLUSIONS Ablation of HNF-1β in renal epithelial cells leads to the activation of a Twist2-dependent transcriptional network that induces EMT and aberrant TGF-β signaling, resulting in renal fibrosis through a cell-nonautonomous mechanism.
Collapse
Affiliation(s)
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota; and
| | | | | | | | | | - Marco Pontoglio
- Department of Development, Reproduction and Cancer, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016/Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris-Descartes, Paris, France
| | | |
Collapse
|
12
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
13
|
Jin H, Wang Y, Wang D, Zhang L. Effects of Qingshen Granules on the Oxidative Stress-NF/kB Signal Pathway in Unilateral Ureteral Obstruction Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4761925. [PMID: 29576795 PMCID: PMC5822778 DOI: 10.1155/2018/4761925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/09/2017] [Accepted: 12/17/2017] [Indexed: 12/25/2022]
Abstract
Background. The activation of NF-kappa B (NF/kB) signaling pathway plays an important role in the process of epithelial-mesenchymal transition (EMT) and renal interstitial fibrosis (RIF) in renal tubules. The process of oxidative stress reaction in kidney is via excessive reactive oxygen species (ROS) production to activate NF/kB signaling pathway. Qingshen Granule (QSG) is an effective Chinese formula utilized to treat chronic renal failure. Previous studies confirmed that QSG could inhibit RIF in unilateral ureteral obstruction (UUO) rats. In this study, we used UUO rats to investigate the effects of QSG on oxidative stress and the activation of NF/kB signaling. Seventy male Sprague-Dawley (SD) rats were randomly divided into a sham group, UUO model group, Qingshen Granules (QSG) high-dose, medium-dose, and low-dose groups, PDTC group, and candesartan group (10 rats in each group). Our study demonstrated that oxidative stress-NF/kB signal pathway contributed to the formation of UUO renal interstitial fibrosis. QSG may protect against RIF by inhibiting the oxidative stress-NF/kB signal pathway, reducing inflammation, and improving renal tubular EMT.
Collapse
Affiliation(s)
- Hua Jin
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Dong Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| |
Collapse
|
14
|
Zhao Y, Qiao X, Tan TK, Zhao H, Zhang Y, Liu L, Zhang J, Wang L, Cao Q, Wang Y, Wang Y, Wang YM, Lee VWS, Alexander SI, Harris DCH, Zheng G. Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial-mesenchymal transition. Nephrol Dial Transplant 2018; 32:781-791. [PMID: 27566305 PMCID: PMC5427520 DOI: 10.1093/ndt/gfw308] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/12/2016] [Indexed: 11/28/2022] Open
Abstract
Background: Endothelial cells are known to contribute to kidney fibrosis via endothelial–mesenchymal transition (EndoMT). Matrix metalloproteinase 9 (MMP-9) is known to be profibrotic. However, whether MMP-9 contributes to kidney fibrosis via EndoMT is unknown. Methods: Primary mouse renal peritubular endothelial cells (MRPECs) were isolated and treated by recombinant human transforming growth factor beta 1 (rhTGF-β1) with or without MMP-9 inhibitor or by recombinant human MMP-9 (rhMMP-9) alone. Kidney fibrosis was induced by unilateral ureteral obstruction (UUO) in MMP-9 knockout (KO) and wide-type (WT) control mice. The effects of MMP-9 on EndoMT of MRPECs and kidney fibrosis were examined. Results: We showed that MRPECs underwent EndoMT after rhTGF-β1 treatment or in UUO kidney as evidenced by decreased expression of endothelial markers, vascular endothelial cadherin (VE-cadherin) and CD31, and increased levels of mesenchymal markers, α-smooth muscle actin (α-SMA) and vimentin. The expression of fibrosis markers was also up-regulated significantly after rhTGF-β1 treatment in MRPECs. The EndoMT and fibrosis markers were significantly less in rhTGF-β1-treated MMP-9 KO MRPECs, whereas MMP-9 alone was sufficient to induce EndoMT in MRPECs. UUO kidney of MMP-9 KO mice showed significantly less interstitial fibrosis and EndoMT in MRPECs. Notch signaling shown by Notch intracellular domain (NICD) was increased, while Notch-1 was decreased in rhTGF-β1-treated MRPECs of MMP-9 WT but not MMP-9 KO mice. Inhibition of MMP-9 or Notch signaling prevented rhTGF-β1- or rhMMP-9-induced α-SMA and NICD upregulation in MRPECs. UUO kidney of MMP-9 KO mice had less staining of Notch signaling transcription factor Hey-1 in VE-cadherin-positive MRPECs than WT controls. Conclusions: Our results demonstrate that MMP-9-dependent Notch signaling plays an important role in kidney fibrosis through EndoMT of MRPECs.
Collapse
Affiliation(s)
- Ye Zhao
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,The School of Biomedical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xi Qiao
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, People's Republic of China
| | - Thian Kui Tan
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Hong Zhao
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yun Zhang
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Experimental Centre of Science and Research, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Lixin Liu
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Experimental Centre of Science and Research, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianlin Zhang
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, People's Republic of China
| | - Qi Cao
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ya Wang
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Vincent W S Lee
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Seoane J, Gomis RR. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022277. [PMID: 28246180 DOI: 10.1101/cshperspect.a022277] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) induces a pleiotropic pathway that is modulated by the cellular context and its integration with other signaling pathways. In cancer, the pleiotropic reaction to TGF-β leads to a diverse and varied set of gene responses that range from cytostatic and apoptotic tumor-suppressive ones in early stage tumors, to proliferative, invasive, angiogenic, and oncogenic ones in advanced cancer. Here, we review the knowledge accumulated about the molecular mechanisms involved in the dual response to TGF-β in cancer, and how tumor cells evolve to evade the tumor-suppressive responses of this signaling pathway and then hijack the signal, converting it into an oncogenic factor. Only through the detailed study of this complexity can the suitability of the TGF-β pathway as a therapeutic target against cancer be evaluated.
Collapse
Affiliation(s)
- Joan Seoane
- Translational Research Program, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Roger R Gomis
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Aristolochic Acid-Induced Autophagy Promotes Epithelial-to-Myofibroblast Transition in Human Renal Proximal Tubule Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9596256. [PMID: 29234448 PMCID: PMC5664270 DOI: 10.1155/2017/9596256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/10/2017] [Accepted: 09/05/2017] [Indexed: 01/16/2023]
Abstract
Autophagy plays an essential role in cellular homeostasis in kidney. Previous studies have found that aristolochic acid (AA) can induce autophagy of renal tubular epithelial cells and epithelial-to-myofibroblast transition (EMT). However, the relationship between AA-induced autophagy and EMT is unclear. Our results showed that, after AA stimulation, the appearance of autophagy preceded EMT. Autophagy of HKC cells began to increase gradually from the 3rd hour, reached the peak at 12th hour, and then weakened gradually until 36th hour; the EMT process of HKC continued to increase from 6th hour to 36th hour after AA stimulation. The enhancement of autophagy using autophagy inducers, rapamycin or serum-free medium, led to an aggravation of EMT and upregulated expression of fibronectin, a component of extracellular matrix, in AA-treated HKC cells. In contrast, the inhibition of autophagy by autophagy inhibitor, 3-methyladenine, or by knockdown of Beclin 1 led to an attenuation of EMT and downregulated expression of fibronectin in AA-treated HKC cells. Taken together, our study suggests that, after AA stimulation, two types of cell responses of HKC cells, autophagy and EMT, will successively appear, and autophagy can promote EMT of HKC.
Collapse
|
17
|
Hannan RT, Peirce SM, Barker TH. Fibroblasts: Diverse Cells Critical to Biomaterials Integration. ACS Biomater Sci Eng 2017; 4:1223-1232. [PMID: 31440581 DOI: 10.1021/acsbiomaterials.7b00244] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblasts are key participants in wound healing and inflammation, and are capable of driving the progression of tissue repair to fully functional tissue or pathologic scar, or fibrosis, depending on the specific mechanical and biochemical cues with which they are presented. Thus, understanding and modulating the fibroblastic response to implanted materials is paramount to achieving desirable outcomes, such as long-term implant function or tissue regeneration. However, fibroblasts are remarkably heterogeneous and can differ vastly in their contributions to regeneration and fibrosis. This heterogeneity exists between tissues and within tissues, down to the level of individual cells. This review will discuss the role of fibroblasts, the pitfalls of describing them as a collective, the specifics of their function, and potential future directions to better understand and organize their highly variable biology.
Collapse
Affiliation(s)
- Riley T Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Shayn M Peirce
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| |
Collapse
|
18
|
Shenqiwan Ameliorates Renal Fibrosis in Rats by Inhibiting TGF- β1/Smads Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28638433 PMCID: PMC5468597 DOI: 10.1155/2017/7187038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Epithelial-mesenchymal transition (EMT) refers to the transition of epithelial cells into mesenchymal cells. Emerging evidence suggests that EMT is a key point in renal interstitial fibrosis (RIF). Traditional Chinese Medicine Shenqiwan (SQW) is widely used in clinical treatment of chronic kidney disease, but the underlying mechanism remains unclear. The purpose of this study is to investigate the effect of SQW on renal fibrosis and its association with TGF-β1/Smads signaling pathway. A rat model of adenine (150 mg/kg) was established and intragastrically treated with various concentrations of SQW at dose of 1.5 g/kg, 3 g/kg, and 6 g/kg. Control group and model group were given the same volume of saline. Meanwhile, the positive control group was treated with Enalapril (4 mg/kg). Animals were sacrificed on 21st day after administration. The results showed that SQW could significantly relieve renal pathological damage caused by adenine, increase gene and protein expression of E-cadherin, and decrease the expression of Vimentin in kidney samples. In addition, SQW efficiently inhibited the mRNA and protein expression of p-Smad2/3 by upregulating Smad7. These results suggest that SQW could slow down the progression of renal fibrosis, possibly by inhibiting TGF-β1/Smads signaling pathway.
Collapse
|
19
|
Che M, Shi T, Feng S, Li H, Zhang X, Feng N, Lou W, Dou J, Tang G, Huang C, Xu G, Qian Q, Sun S, He L, Wang H. The MicroRNA-199a/214 Cluster Targets E-Cadherin and Claudin-2 and Promotes High Glucose-Induced Peritoneal Fibrosis. J Am Soc Nephrol 2017; 28:2459-2471. [PMID: 28428333 DOI: 10.1681/asn.2016060663] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Serum response factor (SRF) was found to be involved in the phenotypic transition and fibrosis of the peritoneal membrane during treatment with peritoneal dialysis (PD), but the exact mechanism remains unclear. SRF regulates microRNAs (miRNAs) that contain the SRF-binding consensus (CArG) element in the promoter region. Therefore, we investigated whether the miR-199a/214 gene cluster, which contains a CArG element in its promoter, is directly regulated by SRF. High-glucose (HG) treatment significantly unregulated the expression of the miR-199a-5p/214-3p gene cluster in human peritoneal mesothelial cells (HPMCs). By chromatin immunoprecipitation and reporter assays, we found that SRF binds to the miR-199a-5p/214-3p gene cluster promoter after HG stimulation. In vitro, in HPMCs, silencing of miR-199a-5p or miR-214-3p inhibited the HG-induced phenotypic transition and cell migration but enhanced cell adhesion, whereas ectopic expression of mimic oligonucleotides had the opposite effects. Both miR-199a-5p and miR-214-3p targeted claudin-2 and E-cadherin mRNAs. In a PD rat model, treatment with an SRF inhibitor silenced miR-199a-5p and miR-214-3p and alleviated HG-PD fluid-induced damage and fibrosis. Overall, this study reveals a novel SRF-miR-199a/miR-214-E-cadherin/claudin-2 axis that mediates damage and fibrosis in PD.
Collapse
Affiliation(s)
- Mingwen Che
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Medicine, Hospital of PLA, Korla, Xinjiang, China
| | - Tiantian Shi
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Medicine, Yangling Demonstration Zone Hospital, Yangling, Shaanxi, China; and
| | - Shidong Feng
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huan Li
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaomin Zhang
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ning Feng
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weijuan Lou
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianhua Dou
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guangbo Tang
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Huang
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guoshuang Xu
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Qian
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Mayo Clinic Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Mayo Graduate School, Rochester, Minnesota
| | - Shiren Sun
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijie He
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China; .,Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hanmin Wang
- Department of Nephrology, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China;
| |
Collapse
|
20
|
Zhou D, Fu H, Zhang L, Zhang K, Min Y, Xiao L, Lin L, Bastacky SI, Liu Y. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis. J Am Soc Nephrol 2017; 28:2322-2336. [PMID: 28336721 DOI: 10.1681/asn.2016080902] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/16/2017] [Indexed: 01/15/2023] Open
Abstract
Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β-catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro, incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Lu Zhang
- Division of Nephrology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Zhang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yali Min
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; .,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| |
Collapse
|
21
|
Guiteras R, Flaquer M, Cruzado JM. Macrophage in chronic kidney disease. Clin Kidney J 2016; 9:765-771. [PMID: 27994852 PMCID: PMC5162417 DOI: 10.1093/ckj/sfw096] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has become a major health problem worldwide. This review describes the role of macrophages in CKD and highlights the importance of anti-inflammatory M2 macrophage activation in both renal fibrosis and wound healing processes. Furthermore, the mechanisms by which M2 macrophages induce renal repair and regeneration are still under debate and currently demand more attention. The M1/M2 macrophage balance is related to the renal microenvironment and could influence CKD progression. In fact, an inflammatory renal environment and M2 plasticity can be the major hurdles to establishing macrophage cell-based therapies in CKD. M2 macrophage cell-based therapy is promising if the M2 phenotype remains stable and is 'fixed' by in vitro manipulation. However, a greater understanding of phenotype polarization is still required. Moreover, better strategies and targets to induce reparative macrophages in vivo should guide future investigations in order to abate kidney diseases.
Collapse
Affiliation(s)
- Roser Guiteras
- Experimental Nephrology, Departament de Ciències Clíniques, Universitat de Barcelona, Institut d'Investigació biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Flaquer
- Experimental Nephrology, Departament de Ciències Clíniques, Universitat de Barcelona, Institut d'Investigació biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M. Cruzado
- Experimental Nephrology, Departament de Ciències Clíniques, Universitat de Barcelona, Institut d'Investigació biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Nephrology Department, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
22
|
Zhou D, Tian Y, Sun L, Zhou L, Xiao L, Tan RJ, Tian J, Fu H, Hou FF, Liu Y. Matrix Metalloproteinase-7 Is a Urinary Biomarker and Pathogenic Mediator of Kidney Fibrosis. J Am Soc Nephrol 2016; 28:598-611. [PMID: 27624489 DOI: 10.1681/asn.2016030354] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/07/2016] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7), a secreted zinc- and calcium-dependent endopeptidase, is a transcriptional target of canonical Wnt/β-catenin signaling. Because Wnt/β-catenin is activated in diseased kidney, we hypothesized that urinary MMP-7 level may be used as a noninvasive surrogate biomarker for fibrotic lesions. To test this hypothesis, we conducted a cross-sectional study, measuring urinary MMP-7 levels in a cohort of 102 patients with CKD. Compared with normal subjects, patients with various kidney disorders had markedly elevated urinary levels of MMP-7. Furthermore, urinary MMP-7 levels closely correlated with renal fibrosis scores in patients. In mice, knockout of MMP-7 ameliorated the fibrotic lesions and expression of matrix genes induced by obstructive injury. Genetic ablation of MMP-7 also preserved E-cadherin protein expression and substantially reduced the expression of total and dephosphorylated β-catenin and the de novo expression of vimentin and fibroblast-specific protein 1 in renal tubules of obstructed kidneys. In vitro, MMP-7 proteolytically degraded E-cadherin in proximal tubular cells, leading to β-catenin liberation and nuclear translocation and induction of β-catenin target genes by a mechanism independent of Wnt ligands. Finally, pharmacologic inhibition of MMP-7 immediately after obstructive injury reduced renal fibrosis in vivo These results suggest that MMP-7 not only can serve as a noninvasive biomarker but also is an important pathogenic mediator of kidney fibrosis.
Collapse
Affiliation(s)
| | - Yuan Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology and .,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Horowitz JC, Osterholzer JJ, Marazioti A, Stathopoulos GT. "Scar-cinoma": viewing the fibrotic lung mesenchymal cell in the context of cancer biology. Eur Respir J 2016; 47:1842-54. [PMID: 27030681 DOI: 10.1183/13993003.01201-2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify opportunities to leverage our current understanding of the pathobiology of each disease process in order to advance novel therapeutic approaches for both. We anticipate that such "outside the box" concepts could be translated to a more precise and individualised approach to fibrotic diseases of the lung.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
24
|
Mai X, Shang J, Liang S, Yu B, Yuan J, Lin Y, Luo R, Zhang F, Liu Y, Lv X, Li C, Liang X, Wang W, Zhou J. Blockade of Orai1 Store-Operated Calcium Entry Protects against Renal Fibrosis. J Am Soc Nephrol 2016; 27:3063-3078. [PMID: 26940090 DOI: 10.1681/asn.2015080889] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/18/2016] [Indexed: 01/02/2023] Open
Abstract
Evidence supports an important role of Ca2+ release-activated Ca2+ channel protein 1 (Orai1)-mediated Ca2+ entry in the development of renal fibrosis, a common pathologic feature of CKDs that lead to ESRD, but the molecular mechanisms remain unclear. We determined the role of Orai1 calcium channel in renal fibrosis induced by high-fat diet and by unilateral ureteral obstruction. Mouse kidneys with fibrosis had higher levels of Orai1 protein expression than did kidneys without fibrosis. In vivo knockdown of Orai1 with adenovirus harboring Orai1-short hairpin RNA or inhibition of Orai1 with SKF96365 dramatically prevented renal fibrosis and significantly decreased protein expression of fibronectin, α‑smooth muscle actin, and TGF‑β1 in the kidney cortex of ApoE-/- mice on a high-fat diet and in the obstructed kidneys of mice with unilateral ureteral obstruction. Compared with kidney biopsy specimens of patients with glomerular minimal change disease, those of patients with fibrotic nephropathy had higher expression levels of Orai1. In cultured human proximal tubule epithelial cells (HK2), knockdown of Orai1 Ca2+ channel with adenovirus-Orai1-short hairpin RNA markedly inhibited TGF-β1-induced intracellular Ca2+ influx and phosphorylation of smad2/3. Knockdown or blockade of the Orai1 Ca2+ channel in HK2 cells also prevented epithelial-to-mesenchymal transition induced by TGF‑β1. In conclusion, blockade of the Orai1 Ca2+ channel prevented progression of renal fibrosis in mice, likely by suppressing smad2/3 phosphorylation and TGF-β1-induced epithelial-to-mesenchymal transition. These results render the Orai1 Ca2+ channel a potential therapeutic target against renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyi Mai
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center and
| | - Jinyan Shang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center and
| | - Sijia Liang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center and
| | - Beixin Yu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center and
| | - Jiani Yuan
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center and
| | - Yu Lin
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; and
| | - Renfei Luo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; and
| | - Feiran Zhang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center and
| | - Yingying Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center and
| | - Xiaofei Lv
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center and
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; and
| | - Xinling Liang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; and
| | - Jiaguo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center and
| |
Collapse
|
25
|
Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH, Kellum JA, Ronco C. Progression after AKI: Understanding Maladaptive Repair Processes to Predict and Identify Therapeutic Treatments. J Am Soc Nephrol 2016; 27:687-97. [PMID: 26519085 PMCID: PMC4769207 DOI: 10.1681/asn.2015030309] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent clinical studies indicate a strong link between AKI and progression of CKD. The increasing prevalence of AKI must compel the nephrology community to consider the long-term ramifications of this syndrome. Considerable gaps in knowledge exist regarding the connection between AKI and CKD. The 13th Acute Dialysis Quality Initiative meeting entitled "Therapeutic Targets of Human Acute Kidney Injury: Harmonizing Human and Experimental Animal Acute Kidney Injury" convened in April of 2014 and assigned a working group to focus on issues related to progression after AKI. This article provides a summary of the key conclusions and recommendations of the group, including an emphasis on terminology related to injury and repair processes for both clinical and preclinical studies, elucidation of pathophysiologic alterations of AKI, identification of potential treatment strategies, identification of patients predisposed to progression, and potential management strategies.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular and Integrative Physiology and Department of Medicine, Division of Nephrology, Indiana University, Indianapolis, Indiana;
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ravindra Mehta
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, California
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Robert Unwin
- Division of Medicine, University College London Centre for Nephrology, University College London, London, United Kingdom
| | - Mitchell H Rosner
- Department of Medicine, Nephrology Division and the Centre for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - John A Kellum
- Center for Critical Care Nephrology, The Clinical Research, Investigation, and Systems Modeling of Acute Illness Centre, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Claudio Ronco
- Department of Nephrology Dialysis and Transplantation, San Bortolo Hospital and the International Renal Research Institute, Vicenza, Italy
| |
Collapse
|
26
|
Skierucha M, Milne ANA, Offerhaus GJA, Polkowski WP, Maciejewski R, Sitarz R. Molecular alterations in gastric cancer with special reference to the early-onset subtype. World J Gastroenterol 2016; 22:2460-2474. [PMID: 26937134 PMCID: PMC4768192 DOI: 10.3748/wjg.v22.i8.2460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Currently, gastric cancer (GC) is one of the most frequently diagnosed neoplasms, with a global burden of 723000 deaths in 2012. It is the third leading cause of cancer-related death worldwide. There are numerous possible factors that stimulate the pro-carcinogenic activity of important genes. These factors include genetic susceptibility expressed in a single-nucleotide polymorphism, various acquired mutations (chromosomal instability, microsatellite instability, somatic gene mutations, epigenetic alterations) and environmental circumstances (e.g., Helicobcter pylori infection, EBV infection, diet, and smoking). Most of the aforementioned pathways overlap, and authors agree that a clear-cut pathway for GC may not exist. Thus, the categorization of carcinogenic events is complicated. Lately, it has been claimed that research on early-onset gastric carcinoma (EOGC) and hereditary GC may contribute towards unravelling some part of the mystery of the GC molecular pattern because young patients are less exposed to environmental carcinogens and because carcinogenesis in this setting may be more dependent on genetic factors. The comparison of various aspects that differ and coexist in EOGCs and conventional GCs might enable scientists to: distinguish which features in the pathway of gastric carcinogenesis are modifiable, discover specific GC markers and identify a specific target. This review provides a summary of the data published thus far concerning the molecular characteristics of GC and highlights the outstanding features of EOGC.
Collapse
|
27
|
Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem Cells Int 2016; 2016:3543678. [PMID: 26941801 PMCID: PMC4752998 DOI: 10.1155/2016/3543678] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/10/2016] [Indexed: 12/26/2022] Open
Abstract
Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
|
28
|
Dong Y, Yang M, Zhang J, Peng X, Cheng J, Cui T, Du J. Depletion of CD8+ T Cells Exacerbates CD4+ T Cell-Induced Monocyte-to-Fibroblast Transition in Renal Fibrosis. THE JOURNAL OF IMMUNOLOGY 2016; 196:1874-81. [PMID: 26773152 DOI: 10.4049/jimmunol.1501232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/20/2015] [Indexed: 01/28/2023]
Abstract
Bone marrow-derived monocyte-to-fibroblast transition is a key step in renal fibrosis pathogenesis, which is regulated by the inflammatory microenvironment. However, the mechanism by which the inflammatory microenvironment regulates this transition is not fully understood. In this study, we examined how the CD8(+) T cell/IFN-γ microenvironment regulates the monocyte-to-fibroblast transition in renal fibrosis. Genetic ablation of CD8 promoted a monocyte-to-fibroblast transition and increased renal interstitial fibrosis, whereas reconstitution of CD8 knockout (KO) mice with CD8(+) T cells decreased fibrosis. However, depletion of CD4(+) T cells in CD8 KO mice also reduced fibrosis. To elucidate the role of CD4(+) T cells in mediating CD8-regulated monocyte-to-fibroblast transition, CD4(+) T cells were isolated from obstructed kidneys of CD8 KO or wild-type mice. CD4(+) T cells isolated from CD8 KO obstructed kidney expressed more IL-4 and GATA3 and less IFN-γ and T-bet and showed increased monocyte-to-fibroblast transition in vitro compared with those isolated from wild-type obstructed kidney. To examine the role of IFN-γ-expressing CD8(+) T cells, we reconstituted CD8 KO mice with CD8(+) T cells isolated from IFN-γ KO mice. The IFN-γ KO CD8(+) cells had no effect on IL-4, GATA3, IFN-γ, and T-bet mRNA expression in obstructed kidneys or renal fibrosis. Taken together, our findings identify the axis of CD8(+) T cells and IFN-γ-CD4(+) T cells as an important microenvironment for the monocyte-to-fibroblast transition, which negatively regulates renal fibrosis.
Collapse
Affiliation(s)
- Yanjun Dong
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital Medical University, Beijing 100029, China; and
| | - Min Yang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital Medical University, Beijing 100029, China; and Beijing Chao-Yang Hospital of the Capital Medical University, Beijing 100020, China
| | - Jing Zhang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital Medical University, Beijing 100029, China; and
| | - Xiaogang Peng
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital Medical University, Beijing 100029, China; and
| | - Jizhong Cheng
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital Medical University, Beijing 100029, China; and
| | - Taigeng Cui
- Beijing Chao-Yang Hospital of the Capital Medical University, Beijing 100020, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital of the Capital Medical University, Beijing 100029, China; and
| |
Collapse
|
29
|
Effect of Huai Qi Huang on Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells through miR-200a. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8612190. [PMID: 26884796 PMCID: PMC4738749 DOI: 10.1155/2016/8612190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 11/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is a vital mechanism of renal fibrosis. Mounting evidence suggests that miR-200a expression decreases in tubular epithelial cells in unilateral ureteral obstruction (UUO) rats. Moreover, it has been demonstrated that Huai Qi Huang (HQH) can ameliorate tubulointerstitial damage in adriamycin nephrosis and delay kidney dysfunction in primary glomerular disease. However, the effect of HQH on EMT of tubular epithelial cells in UUO rats and its molecular mechanism is unclear. In order to explore the effect of HQH on EMT and its molecular mechanism in renal fibrosis, in vitro and in vivo experiments were performed in our study. Our results showed that HQH increased miR-200a expression in UUO rats and in TGF-β1 stimulated NRK-52E cells. Meanwhile, HQH decreased ZEB1 and ZEB2 (the transcriptional repressors of E-cadherin), α-SMA expression in renal tubular epithelial cells in vitro and in vivo. Furthermore, we found that HQH protected kidney from fibrosis in UUO rats. The results demonstrated that HQH regulated miR-200a/ZEBs pathway and inhibited EMT process, which may be a mechanism of protecting effect on tubular cells in renal fibrosis.
Collapse
|
30
|
Revisiting Epithelial-to-Mesenchymal Transition in Liver Fibrosis: Clues for a Better Understanding of the "Reactive" Biliary Epithelial Phenotype. Stem Cells Int 2016; 2016:2953727. [PMID: 26880950 PMCID: PMC4736590 DOI: 10.1155/2016/2953727] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/20/2015] [Indexed: 12/27/2022] Open
Abstract
Whether liver epithelial cells contribute to the development of hepatic scarring by undergoing epithelial-to-mesenchymal transition (EMT) is a controversial issue. Herein, we revisit the concept of EMT in cholangiopathies, a group of severe hepatic disorders primarily targeting the bile duct epithelial cell (cholangiocyte), leading to progressive portal fibrosis, the main determinant of liver disease progression. Unfortunately, therapies able to halt this process are currently lacking. In cholangiopathies, fibrogenesis is part of ductular reaction, a reparative complex involving epithelial, mesenchymal, and inflammatory cells. Ductular reactive cells (DRC) are cholangiocytes derived from the activation of the hepatic progenitor cell compartment. These cells are arranged into irregular strings and express a “reactive” phenotype, which enables them to extensively crosstalk with the other components of ductular reaction. We will first discuss EMT in liver morphogenesis and then highlight how some of these developmental programs are partly reactivated in DRC. Evidence for “bona fide” EMT changes in cholangiocytes is lacking, but expression of some mesenchymal markers represents a fundamental repair mechanism in response to chronic biliary damage with potential harmful fibrogenetic effects. Understanding microenvironmental cues and signaling perturbations promoting these changes in DRC may help to identify potential targets for new antifibrotic therapies in cholangiopathies.
Collapse
|
31
|
Shen M, Liu X, Zhang H, Guo SW. Transforming growth factor β1 signaling coincides with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis in mice. Hum Reprod 2015; 31:355-69. [PMID: 26689216 DOI: 10.1093/humrep/dev314] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/25/2015] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Do platelets have any role in the development of adenomyosis? SUMMARY ANSWER Activated platelets coincide with the release of transforming growth factor (TGF)-β1 and induction of the TGF-β/Smad signaling pathway as well as evidence of epithelial-mesenchymal transition (EMT) and fibroblast-to-myofibroblast transdifferentiation (FMT) in a mouse model of adenomyosis, resulting ultimately in fibrosis, as in adenomyosis. WHAT IS KNOWN ALREADY Both EMT and FMT are known to play vital roles in fibrogenesis in general and in endometriosis in particular. EMT has been implicated in the development of adenomyosis, but this was based primarily on cross-sectional observation. It is unclear as to whether adenomyotic lesions and their microenvironment have the machinery to promote EMT and FMT, resulting ultimately in fibrosis. There has not been any published study on the role of platelets in the development of adenomyosis, even though adenomyotic lesions undergo repeated cycles of tissue injury and repair, which implicates the involvement of platelets and constitutes an environment conducive for fibrogenesis. STUDY DESIGN, SIZE, DURATION Adenomyosis was induced in 28 female ICR mice by neonatal dosing of tamoxifen. Another 32 were neonatally dosed without tamoxifen. These mice were sacrificed serially and their tissue samples were subsequently evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS Female ICR mice with and without induced adenomyosis were sacrificed in batch at 5, 10, 15, 42 and 60 days of age. The depth of myometrial infiltration of endometrial tissues was assessed and immunohistochemistry analysis of biomarkers of EMT and FMT, as well as TGF-β1, phosphorylated Smad3 (p-Smad3) and markers of proliferation, angiogenesis and extracellular matrix (ECM) deposits was performed in ectopic (for adenomyotic mice) and eutopic (controls) endometrial tissue samples. Masson trichrome and Van Gieson stainings were performed to quantify the extent of fibrosis in lesions. Progesterone receptor isoform B (PR-B) staining also was performed. MAIN RESULTS AND THE ROLE OF CHANCE While TGF-β1 immunoreactivity was consistently low in control endometrium, its level was increased dramatically starting from Day 10, along with the extent of platelet aggregation. Staining for TGF-β1 and p-Smad3 increased progressively as adenomyosis progressed, along with markers for proliferation, angiogenesis and ECM deposits. Consistently, staining of vimentin (a marker for stromal or mesenchymal cells) was also increased while that of E-cadherin (a marker for epithelial cells) was reduced. PR-B staining also decreased progressively. Starting from Day 42, α-SMA staining, a marker for myofibroblasts, was elevated in lesions, while in control endometrium, it was negative. Concomitantly, the extent of fibrosis also was increased. LIMITATIONS, REASONS FOR CAUTION This study is limited by the use of histochemistry and immunohistochemistry analyses only and the lack of intervention. WIDER IMPLICATIONS OF THE FINDINGS Like their endometriotic counterpart, adenomyotic lesions and their microenvironment may contain all the necessary molecular machinery to promote fibrogenesis. Platelet-induced activation of the TGF-β/Smad signaling pathway may be a driving force in EMT and FMT in the development of adenomyosis, leading to fibrosis. This study provides the first piece of evidence that adenomyotic lesions are wounds that undergo repeated injury and healing, and as such, platelets play critical roles in the development of adenomyosis. It suggests the potential for the use of anti-platelet therapy in the treatment of adenomyosis, and also opens a new venue for developing novel biomarkers for diagnostic or prognostic purposes. STUDY FUNDING/COMPETING INTERESTS Support for data collection and analysis was provided by grants from the National Science Foundation of China. None of the authors has anything to disclose.
Collapse
Affiliation(s)
- Minhong Shen
- Shanghai Obstetrics/Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - Xishi Liu
- Shanghai Obstetrics/Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical Collage, Fudan University, Shanghai 200032, China
| | - Sun-Wei Guo
- Shanghai Obstetrics/Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
| |
Collapse
|
32
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
33
|
Wu H, Chen J, Xu J, Dong Z, Meyuhas O, Chen JK. Blocking rpS6 Phosphorylation Exacerbates Tsc1 Deletion-Induced Kidney Growth. J Am Soc Nephrol 2015; 27:1145-58. [PMID: 26296742 DOI: 10.1681/asn.2014121264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 07/16/2015] [Indexed: 11/03/2022] Open
Abstract
The molecular mechanisms underlying renal growth and renal growth-induced nephron damage remain poorly understood. Here, we report that in murine models, deletion of the tuberous sclerosis complex protein 1 (Tsc1) in renal proximal tubules induced strikingly enlarged kidneys, with minimal cystogenesis and occasional microscopic tumorigenesis. Signaling studies revealed hyperphosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and increased phosphorylation of ribosomal protein S6 (rpS6) in activated renal tubules. Notably, knockin of a nonphosphorylatable rpS6 in these Tsc1-mutant mice exacerbated cystogenesis and caused drastic nephron damage and renal fibrosis, leading to kidney failure and a premature death rate of 67% by 9 weeks of age. In contrast, Tsc1 single-mutant mice were all alive and had far fewer renal cysts at this age. Mechanistic studies revealed persistent activation of mammalian target of rapamycin complex 1 (mTORC1) signaling causing hyperphosphorylation and consequent accumulation of 4E-BP1, along with greater cell proliferation, in the renal tubules of Tsc1 and rpS6 double-mutant mice. Furthermore, pharmacologic treatment of Tsc1 single-mutant mice with rapamycin reduced hyperphosphorylation and accumulation of 4E-BP1 but also inhibited phosphorylation of rpS6. Rapamycin also exacerbated cystic and fibrotic lesions and impaired kidney function in these mice, consequently leading to a premature death rate of 40% within 2 weeks of treatment, despite destroying tumors and decreasing kidney size. These findings indicate that Tsc1 prevents aberrant renal growth and tumorigenesis by inhibiting mTORC1 signaling, whereas phosphorylated rpS6 suppresses cystogenesis and fibrosis in Tsc1-deleted kidneys.
Collapse
Affiliation(s)
- Huijuan Wu
- Department of Cellular Biology and Anatomy, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Jianchun Chen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jinxian Xu
- Department of Cellular Biology and Anatomy, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia; and
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia;
| |
Collapse
|
34
|
O'Beirne SL, Walsh SM, Fabre A, Reviriego C, Worrell JC, Counihan IP, Lumsden RV, Cramton-Barnes J, Belperio JA, Donnelly SC, Boylan D, Marchal-Sommé J, Kane R, Keane MP. CXCL9 Regulates TGF-β1-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2788-96. [PMID: 26268659 DOI: 10.4049/jimmunol.1402008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 07/12/2015] [Indexed: 01/22/2023]
Abstract
Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1-induced EMT. A decrease in TGF-β1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1-induced EMT.
Collapse
Affiliation(s)
- Sarah L O'Beirne
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Sinead M Walsh
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Aurélie Fabre
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Carlota Reviriego
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Julie C Worrell
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Ian P Counihan
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Robert V Lumsden
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jennifer Cramton-Barnes
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Seamas C Donnelly
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Denise Boylan
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joëlle Marchal-Sommé
- INSERM Unité Mixte de Recherche 700, Physiopathologie et Epidémiologie de l'Insuffisance Respiratoire, Universite Denis Diderot, Paris 7, Unité de Formation et de Recherche de Médecine, 75018 Paris, France
| | - Rosemary Kane
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Michael P Keane
- St. Vincent's University Hospital and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland;
| |
Collapse
|
35
|
Slyne J, Slattery C, McMorrow T, Ryan MP. New developments concerning the proximal tubule in diabetic nephropathy:in vitromodels and mechanisms. Nephrol Dial Transplant 2015. [DOI: 10.1093/ndt/gfv264] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
36
|
Han SH, Malaga-Dieguez L, Chinga F, Kang HM, Tao J, Reidy K, Susztak K. Deletion of Lkb1 in Renal Tubular Epithelial Cells Leads to CKD by Altering Metabolism. J Am Soc Nephrol 2015; 27:439-53. [PMID: 26054542 DOI: 10.1681/asn.2014121181] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/12/2015] [Indexed: 12/30/2022] Open
Abstract
Renal tubule epithelial cells are high-energy demanding polarized epithelial cells. Liver kinase B1 (LKB1) is a key regulator of polarity, proliferation, and cell metabolism in epithelial cells, but the function of LKB1 in the kidney is unclear. Our unbiased gene expression studies of human control and CKD kidney samples identified lower expression of LKB1 and regulatory proteins in CKD. Mice with distal tubule epithelial-specific Lkb1 deletion (Ksp-Cre/Lkb1(flox/flox)) exhibited progressive kidney disease characterized by flattened dedifferentiated tubule epithelial cells, interstitial matrix accumulation, and dilated cystic-appearing tubules. Expression of epithelial polarity markers β-catenin and E-cadherin was not altered even at later stages. However, expression levels of key regulators of metabolism, AMP-activated protein kinase (Ampk), peroxisome proliferative activated receptor gamma coactivator 1-α (Ppargc1a), and Ppara, were significantly lower than those in controls and correlated with fibrosis development. Loss of Lkb1 in cultured epithelial cells resulted in energy depletion, apoptosis, less fatty acid oxidation and glycolysis, and a profibrotic phenotype. Treatment of Lkb1-deficient cells with an AMP-activated protein kinase (AMPK) agonist (A769662) or a peroxisome proliferative activated receptor alpha agonist (fenofibrate) restored the fatty oxidation defect and reduced apoptosis. In conclusion, we show that loss of LKB1 in renal tubular epithelial cells has an important role in kidney disease development by influencing intracellular metabolism.
Collapse
Affiliation(s)
- Seung Hyeok Han
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Laura Malaga-Dieguez
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frank Chinga
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyun Mi Kang
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jianling Tao
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kimberly Reidy
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York; and
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|
37
|
Ferulic Acid Attenuates TGF-β1-Induced Renal Cellular Fibrosis in NRK-52E Cells by Inhibiting Smad/ILK/Snail Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:619720. [PMID: 25949265 PMCID: PMC4408646 DOI: 10.1155/2015/619720] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/18/2015] [Indexed: 12/04/2022]
Abstract
Renal fibrosis is a common cause of renal dysfunction with chronic kidney disease. Central to this process is epithelial-mesenchymal transformation (EMT) of proximal tubular epithelial cells driven by transforming growth factor-β1 (TGF-β1) signaling. The present study aimed to investigate the effect of Ferulic acid (FA) on EMT of renal proximal tubular epithelial cell line (NRK-52E) induced by TGF-β1 and to elucidate its underlying mechanism against EMT related to TGF-β1/Smads pathway. The NRK-52E cells were treated for 48 h with TGF-β1 (5 ng/mL) in different concentrations of FA (0 to 200 µM). Fibronectin, a mesenchymal marker, was assessed by western blotting. Western blotting was also used to examine the EMT markers (E-cadherin, and α-smooth muscle actin (α-SMA)), signal transducer (p-Smad2/3), and EMT initiator (Snail). ILK was also assayed by western blotting. The results showed that TGF-β1 induced spindle-like morphological transition in NRK-52E cells. Smad2/3 signaling pathway activation, increased fibronectin, α-SMA, ILK, and Snail expression, and decreased E-cadherin expression in TGF-β1-treated NRK-52E cells. FA efficiently blocked P-Smad2/3 activation and attenuated all these EMT changes induced by TGF-β1. These findings suggest that FA may serve as a potential fibrosis antagonist for renal proximal tubule cells by inhibiting EMT process.
Collapse
|
38
|
Abstract
Fibrosis, with resultant loss of organ function, is the endpoint of many diseases. Despite this, no effective anti-fibrotic therapies exist. The myofibroblast is the key cell driving fibrosis but its origins remain controversial. A growing body of work provides strong evidence that the pericyte, a perivascular cell present throughout the microvasculature, is a major myofibroblast precursor in multiple tissues. This review summarizes the principle experimental and clinical evidence underpinning this conclusion and outlines strategies for targeting pericyte transdifferentiation during fibrogenesis. Successful targeting of pro-fibrogenic pericytes has the potential to halt or even reverse fibrosis and thus reduce the enormous worldwide healthcare burden that currently exists as a result of fibrotic disease.
Collapse
Affiliation(s)
- S N Greenhalgh
- From the MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - K P Conroy
- From the MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - N C Henderson
- From the MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
39
|
Xavier S, Vasko R, Matsumoto K, Zullo JA, Chen R, Maizel J, Chander PN, Goligorsky MS. Curtailing endothelial TGF-β signaling is sufficient to reduce endothelial-mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol 2014; 26:817-29. [PMID: 25535303 DOI: 10.1681/asn.2013101137] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Excessive TGF-β signaling in epithelial cells, pericytes, or fibroblasts has been implicated in CKD. This list has recently been joined by endothelial cells (ECs) undergoing mesenchymal transition. Although several studies focused on the effects of ablating epithelial or fibroblast TGF-β signaling on development of fibrosis, there is a lack of information on ablating TGF-β signaling in the endothelium because this ablation causes embryonic lethality. We generated endothelium-specific heterozygous TGF-β receptor knockout (TβRII(endo+/-)) mice to explore whether curtailed TGF-β signaling significantly modifies nephrosclerosis. These mice developed normally, but showed enhanced angiogenic potential compared with TβRII(endo+/+) mice under basal conditions. After induction of folic acid nephropathy or unilateral ureteral obstruction, TβRII(endo+/-) mice exhibited less tubulointerstitial fibrosis, enhanced preservation of renal microvasculature, improvement in renal blood flow, and less tissue hypoxia than TβRII(endo+/+) counterparts. In addition, partial deletion of TβRII in the endothelium reduced endothelial-to-mesenchymal transition (EndoMT). TGF-β-induced canonical Smad2 signaling was reduced in TβRII(+/-) ECs; however, activin receptor-like kinase 1 (ALK1)-mediated Smad1/5 phosphorylation in TβRII(+/-) ECs remained unaffected. Furthermore, the S-endoglin/L-endoglin mRNA expression ratio was significantly lower in TβRII(+/-) ECs compared with TβRII(+/+) ECs. These observations support the hypothesis that EndoMT contributes to renal fibrosis and curtailing endothelial TGF-β signals favors Smad1/5 proangiogenic programs and dictates increased angiogenic responses. Our data implicate endothelial TGF-β signaling and EndoMT in regulating angiogenic and fibrotic responses to injury.
Collapse
Affiliation(s)
- Sandhya Xavier
- Departments of Medicine, Pharmacology, Physiology, and Renal Research Institute, New York Medical College, Valhalla, New York; and
| | - Radovan Vasko
- Departments of Medicine, Pharmacology, Physiology, and Renal Research Institute, New York Medical College, Valhalla, New York; and Department of Nephrology and Rheumatology, University Medical Center, Goettingen, Germany
| | - Kei Matsumoto
- Departments of Medicine, Pharmacology, Physiology, and Renal Research Institute, New York Medical College, Valhalla, New York; and
| | - Joseph A Zullo
- Departments of Medicine, Pharmacology, Physiology, and Renal Research Institute, New York Medical College, Valhalla, New York; and
| | - Robert Chen
- Departments of Medicine, Pharmacology, Physiology, and Renal Research Institute, New York Medical College, Valhalla, New York; and
| | - Julien Maizel
- Departments of Medicine, Pharmacology, Physiology, and Renal Research Institute, New York Medical College, Valhalla, New York; and
| | | | - Michael S Goligorsky
- Departments of Medicine, Pharmacology, Physiology, and Renal Research Institute, New York Medical College, Valhalla, New York; and
| |
Collapse
|
40
|
Kleaveland KR, Velikoff M, Yang J, Agarwal M, Rippe RA, Moore BB, Kim KK. Fibrocytes are not an essential source of type I collagen during lung fibrosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:5229-39. [PMID: 25281715 DOI: 10.4049/jimmunol.1400753] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Progressive fibrosis involves accumulation of activated collagen-producing mesenchymal cells. Fibrocytes are hematopoietic-derived cells with mesenchymal features that potentially have a unique and critical function during fibrosis. Fibrocytes have been proposed as an important direct contributor of type I collagen deposition during fibrosis based largely on fate-mapping studies. To determine the functional contribution of hematopoietic cell-derived type I collagen to fibrogenesis, we use a double-transgenic system to specifically delete the type I collagen gene across a broad population of hematopoietic cells. These mice develop a robust fibrotic response similar to littermate genotype control mice injured with bleomycin indicating that fibrocytes are not a necessary source of type I collagen. Using collagen-promoter GFP mice, we find that fibrocytes express type I collagen. However, fibrocytes with confirmed deletion of the type I collagen gene have readily detectable intracellular type I collagen indicating that uptake of collagen from neighboring cells account for much of the fibrocyte collagen. Collectively, these results clarify several seemingly conflicting reports regarding the direct contribution of fibrocytes to collagen deposition.
Collapse
Affiliation(s)
- Kathryn R Kleaveland
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Miranda Velikoff
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Jibing Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Manisha Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Richard A Rippe
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| |
Collapse
|
41
|
Canaud G, Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 2014; 30:575-83. [PMID: 25016609 DOI: 10.1093/ndt/gfu230] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For several decades, acute kidney injury (AKI) was generally considered a reversible process leading to complete kidney recovery if the individual survived the acute illness. Recent evidence from epidemiologic studies and animal models, however, have highlighted that AKI can lead to the development of fibrosis and facilitate the progression of chronic renal failure. When kidney injury is mild and baseline function is normal, the repair process can be adaptive with few long-term consequences. When the injury is more severe, repeated, or to a kidney with underlying disease, the repair can be maladaptive and epithelial cell cycle arrest may play an important role in the development of fibrosis. Indeed, during the maladaptive repair after a renal insult, many tubular cells that are undergoing cell division spend a prolonged period in the G2/M phase of the cell cycle. These tubular cells recruit intracellular pathways leading to the synthesis and the secretion of profibrotic factors, which then act in a paracrine fashion on interstitial pericytes/fibroblasts to accelerate proliferation of these cells and production of interstitial matrix. Thus, the tubule cells assume a senescent secretory phenotype. Characteristic features of these cells may represent new biomarkers of fibrosis progression and the G2/M-arrested cells may represent a new therapeutic target to prevent, delay or arrest progression of chronic kidney disease. Here, we summarize recent advances in our understanding of the biology of the cell cycle and how cell cycle arrest links AKI to chronic kidney disease.
Collapse
Affiliation(s)
- Guillaume Canaud
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V Bonventre
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
42
|
Lan A, Du J. Potential role of Akt signaling in chronic kidney disease. Nephrol Dial Transplant 2014; 30:385-94. [PMID: 24891436 DOI: 10.1093/ndt/gfu196] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal fibrosis, particularly tubulointerstitial fibrosis, is the common final outcome of almost all chronic kidney diseases. However, the mechanisms involved in the development of renal fibrosis are poorly understood. The Akt (also known as protein kinase B, PKB) family is serine/threonine protein kinases that play critical roles in regulating growth, proliferation, survival, metabolism and other cellular activities. Cytokines, high-glucose medium, transforming growth factor-β1 or advanced glycation end-products activate Akt in different renal cells. Increased Akt activation has been found in experimental tubulointerstitial fibrosis. In addition, Akt activation is also an important node in diverse signaling cascades involved in kidney damage. These data give evidence for a role for Akt in renal fibrosis, but no reviews are available on the role of Akt in the process. Thus, our aim is to review the role of Akt activation and signaling in renal fibrosis.
Collapse
Affiliation(s)
- Aiping Lan
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing An Zhen Hospital, Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing 100029, China
| | - Jie Du
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing An Zhen Hospital, Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing 100029, China
| |
Collapse
|
43
|
Moon SY, Kim HS, Nho KW, Jang YJ, Lee SK. Endoplasmic reticulum stress induces epithelial-mesenchymal transition through autophagy via activation of c-Src kinase. Nephron Clin Pract 2014; 126:127-40. [PMID: 24863135 DOI: 10.1159/000362457] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/20/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been implicated in inducing epithelial-mesenchymal transition (EMT). ER stress is also known to induce autophagy. However, it is unclear whether ER stress-induced autophagy contributes to EMT. We hypothesized that ER stress might induce EMT through autophagy via activation of c-Src kinase in tubular epithelial cells. METHOD All experiments were performed using HK-2 cells. Protein expression was measured by Western blot analysis. Immunofluorescence and small interfering RNA (siRNA) experiments were performed. RESULTS Chemical ER stress inducers such as tunicamycin (TM, 0.2 μM) and thapsigargin (TG, 0.2 μM) induced EMT, as shown by upregulation of α-smooth muscle actin and downregulation of E-cadherin. ER stress inhibitors such as 4-PBA and salubrinal suppressed both TM- and TG-induced EMT. TM and TG also induced autophagy, as evidenced by upregulation of LC3-II and beclin-1, which were abolished by pretreatment with ER stress inhibitors. Transfection with siRNA targeting ER stress protein (IRE-1) blocked the TM- or TG-induced EMT and autophagy. Autophagy inhibitors such as 3-methyladenine and bafilomycin inhibited the TM- or TG-induced EMT. Transfection with siRNA targeting autophagy protein (beclin-1) also blocked the TM- or TG-induced EMT. Both TM and TG induced activation of c-Src kinase. Inhibitor of c-Src kinase (PP2) suppressed the TM- or TG-induced autophagy and EMT. CONCLUSION ER stress by TM or TG induced EMT through autophagy via activation of c-Src kinase in tubular epithelial cells.
Collapse
Affiliation(s)
- Soo Young Moon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan, Seoul, Korea
| | | | | | | | | |
Collapse
|
44
|
Ding Y, Kim SL, Lee SY, Koo JK, Wang Z, Choi ME. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol 2014; 25:2835-46. [PMID: 24854279 DOI: 10.1681/asn.2013101068] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that cells use to degrade and recycle cellular proteins and remove damaged organelles. During the past decade, there has been a growing interest in defining the basic cellular mechanism of autophagy and its roles in health and disease. However, the functional role of autophagy in kidney fibrosis remains poorly understood. Here, using GFP-LC3 transgenic mice, we show that autophagy is induced in renal tubular epithelial cells (RTECs) of obstructed kidneys after unilateral ureteral obstruction (UUO). Deletion of LC3B (LC3(-/-) mice) resulted in increased collagen deposition and increased mature profibrotic factor TGF-β levels in obstructed kidneys. Beclin 1 heterozygous (beclin 1(+/-)) mice also displayed increased collagen deposition in the obstructed kidneys after UUO. We also show that TGF-β1 induces autophagy in primary mouse RTECs and human renal proximal tubular epithelial (HK-2) cells. LC3 deficiency resulted in increased levels of mature TGF-β in primary RTECs. Under conditions of TGF-β1 stimulation and autoinduction, inhibition of autolysosomal protein degradation by bafilomycin A1 increased mature TGF-β protein levels without alterations in TGF-β1 mRNA. These data suggest a novel intracellular mechanism by which mature TGF-β1 protein levels may be regulated in RTECs through autophagic degradation, which suppresses kidney fibrosis induced by UUO. The dual functions of TGF-β1, as an inducer of TGF-β1 autoinduction and an inducer of autophagy and TGF-β degradation, underscore the multifunctionality of TGF-β1.
Collapse
Affiliation(s)
- Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, New York; and
| | - Sung ll Kim
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, New York; and
| | - So-Young Lee
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Internal Medicine, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Ja Kun Koo
- Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, New York; and
| | - Zhibo Wang
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, New York; and
| |
Collapse
|
45
|
Expression of stem cell and epithelial-mesenchymal transition markers in circulating tumor cells of breast cancer patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:415721. [PMID: 24895575 PMCID: PMC4034492 DOI: 10.1155/2014/415721] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/12/2022]
Abstract
Evaluation and characterization of circulating tumor cells (CTCs) have become a major focus of translational cancer research. Presence of CTCs predicts worse clinical outcome in early and metastatic breast cancer. Whether all cells from the primary tumor have potential to disseminate and form subsequent metastasis remains unclear. As part of the metastatic cascade, tumor cells lose their cell-to-cell adhesion and undergo epithelial-mesenchymal transition (EMT) in order to enter blood circulation. During EMT epithelial antigens are downregulated; thus, such tumor cells might elude classical epithelial marker-based detection. Several researchers postulated that some CTCs express stem cell-like phenotype; this might lead to chemoresistance and enhanced metastatic potential of such cells. In the present review, we discuss current data on EMT and stem cell markers in CTCs of breast cancer and their clinical significance.
Collapse
|
46
|
Follistatin, an activin antagonist, ameliorates renal interstitial fibrosis in a rat model of unilateral ureteral obstruction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:376191. [PMID: 24883308 PMCID: PMC4026945 DOI: 10.1155/2014/376191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/14/2014] [Indexed: 02/04/2023]
Abstract
Activin, a member of the TGF-β superfamily, regulates cell growth and differentiation in various cell types. Activin A acts as a negative regulator of renal development as well as tubular regeneration after renal injury. However, it remains unknown whether activin A is involved in renal fibrosis. To clarify this issue, we utilized a rat model of unilateral ureteral obstruction (UUO). The expression of activin A was significantly increased in the UUO kidneys compared to that in contralateral kidneys. Activin A was detected in glomerular mesangial cells and interstitial fibroblasts in normal kidneys. In UUO kidneys, activin A was abundantly expressed by interstitial α-SMA-positive myofibroblasts. Administration of recombinant follistatin, an activin antagonist, reduced the fibrotic area in the UUO kidneys. The number of proliferating cells in the interstitium, but not in the tubules, was significantly lower in the follistatin-treated kidneys. Expression of α-SMA, deposition of type I collagen and fibronectin, and CD68-positive macrophage infiltration were significantly suppressed in the follistatin-treated kidneys. These data suggest that activin A produced by interstitial fibroblasts acts as a potent profibrotic factor during renal fibrosis. Blockade of activin A action may be a novel approach for the prevention of renal fibrosis progression.
Collapse
|
47
|
Pinhal CS, Lopes A, Torres DB, Felisbino SL, Rocha Gontijo JA, Boer PA. Time-course morphological and functional disorders of the kidney induced by long-term high-fat diet intake in female rats. Nephrol Dial Transplant 2014; 28:2464-76. [PMID: 24078639 DOI: 10.1093/ndt/gft304] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Evidence is emerging that highlights the far-reaching consequences of a high-fat diet (HFD) on kidney morphology and function disorders. METHODS The present study was performed on 3-, 5-, 7- and 9-week-old HFD female rats compared with the appropriate gender and age-matched animals. We evaluated the kidney expression of angiotensin type II receptor and fibrotic and epithelial-to-mesenchymal transition (EMT) markers, by immunoblotting and immunohistochemical and histological techniques, in parallel with kidney function. RESULTS In the current study, the time-course HFD-treated group showed, by immunoblotting and immunohistochemical analysis, an early time-course increase in the expression of transforming growth factor β-1 (TGFβ-1) in the entire kidney of HFD-treated rats, compared with that observed in the control group. Simultaneously, the study shows a transient increase in the expression of ZEB2 in the HFD whole kidney accompanied by a fall in the E-cadherin expression and increased collagen and fibronectin deposition. A pronounced decrease in fractional urinary sodium excretion was also demonstrated in the long-term HFD-treated rats. The decreased FENa(+) was accompanied by a fall in FEPNa(+) and FEPPNa(+), which occurred in association with significantly decreased CCr and, certainly on the sodium-filtered load. The reduction in the glomerular filtration rate (GFR) occurred in parallel to proteinuria and glomerular desmin overexpression. CONCLUSIONS The results of the current study suggest that podocyte injury in parallel with observed proteinuria and evidence of EMT transformation are associated with long-term loss of kidney function and renal sodium and water retention.
Collapse
Affiliation(s)
- Carolina Staut Pinhal
- Renal Function Laboratory, Campinas State University, UNICAMP, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Gierut JJ, Jacks TE, Haigis KM. Strategies to achieve conditional gene mutation in mice. Cold Spring Harb Protoc 2014; 2014:339-49. [PMID: 24692485 DOI: 10.1101/pdb.top069807] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The laboratory mouse is an ideal model organism for studying disease because it is physiologically similar to human and also because its genome is readily manipulated. Genetic engineering allows researchers to introduce specific loss-of-function or gain-of-function mutations into genes and then to study the resulting phenotypes in an in vivo context. One drawback of using traditional transgenic and knockout mice to study human diseases is that many mutations passed through the germline can profoundly affect development, thus impeding the study of disease phenotypes in adults. New technology has made it possible to generate conditional mutations that can be introduced in a spatially and/or temporally restricted manner. Mouse strains carrying conditional mutations represent valuable experimental models for the study of human diseases and they can be used to develop strategies for prevention and treatment of these diseases. In this article, we will describe the most widely used DNA recombinase systems used to achieve conditional gene mutation in mouse models and discuss how these systems can be employed in vivo.
Collapse
Affiliation(s)
- Jessica J Gierut
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Charlestown, Massachusetts 02129
| | | | | |
Collapse
|
49
|
Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Adv Med 2014; 2014:473134. [PMID: 26556413 PMCID: PMC4590954 DOI: 10.1155/2014/473134] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/03/2022] Open
Abstract
Peritoneal dialysis (PD) is a therapeutic option for the treatment of end-stage renal disease and is based on the use of the peritoneum as a semipermeable membrane for the exchange of toxic solutes and water. Long-term exposure of the peritoneal membrane to hyperosmotic PD fluids causes inflammation, loss of the mesothelial cells monolayer, fibrosis, vasculopathy, and angiogenesis, which may lead to peritoneal functional decline. Peritonitis may further exacerbate the injury of the peritoneal membrane. In parallel with these peritoneal alterations, mesothelial cells undergo an epithelial to mesenchymal transition (EMT), which has been associated with peritoneal deterioration. Factors contributing to the bioincompatibility of classical PD fluids include the high content of glucose/glucose degradation products (GDPs) and their acidic pH. New generation low-GDPs-neutral pH fluids have improved biocompatibility resulting in better preservation of the peritoneum. However, standard glucose-based fluids are still needed, as biocompatible solutions are expensive for many potential users. An alternative approach to preserve the peritoneal membrane, complementary to the efforts to improve fluid biocompatibility, is the use of pharmacological agents protecting the mesothelium. This paper provides a comprehensive review of recent advances that point to the EMT of mesothelial cells as a potential therapeutic target to preserve membrane function.
Collapse
|
50
|
Contrasting effects of systemic monocyte/macrophage and CD4+ T cell depletion in a reversible ureteral obstruction mouse model of chronic kidney disease. Clin Dev Immunol 2013; 2013:836989. [PMID: 24489579 PMCID: PMC3892942 DOI: 10.1155/2013/836989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/15/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022]
Abstract
Using a reversible UUO model (rUUO), we have demonstrated that C57BL/6 mice are susceptible to development of CKD after obstruction-mediated kidney injury while BALB/c mice are resistant. We hypothesized that selective systemic depletion of subpopulations of inflammatory cells during injury or repair might alter the development of CKD. To investigate the impact of modification of Th-lymphocytes or macrophage responses on development of CKD after rUUO, we used an anti-CD4 antibody (GK1.5) or liposomal clodronate to systemically deplete CD4(+) T cells or monocyte/macrophages, respectively, prior to and throughout the rUUO protocol. Flow cytometry and immunohistochemistry confirmed depletion of target cell populations. C57BL/6 mice treated with the GK1.5 antibody to deplete CD4(+) T cells had higher BUN levels and delayed recovery from rUUO. Treatment of C57BL/6 mice with liposomal clodronate to deplete monocyte/macrophages led to a relative protection from CKD as assessed by BUN values. Our results demonstrate that modulation of the inflammatory response during injury and repair altered the susceptibility of C57BL/6 mice to development of CKD in our rUUO model.
Collapse
|