1
|
González-Gutiérrez A, Gaete J, Esparza A, Ibacache A, Contreras EG, Sierralta J. Starvation Induces Upregulation of Monocarboxylate Transport in Glial Cells at the Drosophila Blood-Brain Barrier. Glia 2025. [PMID: 40241296 DOI: 10.1002/glia.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Living organisms can sense and adapt to constant changes in food availability. Maintaining a homeostatic supply of energy molecules is crucial for animal survival and normal organ functioning, particularly the brain, due to its high-energy demands. However, the mechanisms underlying brain adaptive responses to food availability have not been completely established. The nervous system is separated from the rest of the body by a physical barrier called the blood-brain barrier (BBB). In addition to its structural role, the BBB regulates the transport of metabolites and nutrients into the nervous system. This regulation is achieved through adaptive mechanisms that control the transport of nutrients, including glucose and monocarboxylates such as lactate, pyruvate, and ketone bodies. In Drosophila melanogaster, carbohydrate transporters increase their expression in glial cells of the BBB in response to starvation. However, changes in the expression or activity of Drosophila monocarboxylate transporters (dMCTs) at the BBB have not yet been reported. Here, we show that neuronal ATP levels remain unaffected despite reduced energy-related metabolites in the hemolymph of Drosophila larvae during starvation. Simultaneously, the transport of lactate and beta-hydroxybutyrate increases in the glial cells of the BBB. Using genetically encoded sensors, we identified Yarqay as a proton-coupled monocarboxylate transporter whose expression is upregulated in the subperineurial glia of the BBB during starvation. Our findings reveal a novel component of the adaptive response of the brain to starvation: the increase in the transport of monocarboxylates across the BBB, mediated by Yarqay, a novel dMCT enriched in the BBB.
Collapse
Affiliation(s)
- Andrés González-Gutiérrez
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Independencia, Chile
| | - Jorge Gaete
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Andrés Esparza
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Andrés Ibacache
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Esteban G Contreras
- Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jimena Sierralta
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Independencia, Chile
| |
Collapse
|
2
|
Su T, Si Y. PCSK9 exacerbates sevoflurane-induced neuroinflammatory response and apoptosis by up-regulating cGAS-STING signal. Tissue Cell 2025; 93:102739. [PMID: 39818066 DOI: 10.1016/j.tice.2025.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a postoperative complication that can be induced by anaesthesia. PCSK9 has been shown to have a role in neuronal development and apoptosis. However, PCSK9 has not been studied in sevoflurane-induced POCD-related disorders. OBJECTIVE To explore whether PCSK9 can exacerbate sevoflurane-induced neuroinflammatory response and apoptosis by up-regulating cGAS-STING signalling. METHODS A POCD model was constructed by stimulating BV2 microglia with Sevoflurane. CCK8 was used to detect the cell viability, and immunofluorescence was used to observe the expression of microglial activation markers (Iba-1, CD11b) and BDNF to determine the activation of BV2 microglia. Cell proliferation was measured by EDU staining, and apoptosis was analyzed by flow cytometry and western blot. The levels of inflammatory cytokines, ROS, MDA, SOD and CAT were respectively detected by ELISA, DCFH-DA staining, and kits to determine the neuroinflammation and oxidative stress of cells. Mitochondrial ROS, mitochondrial membrane potential, mtDNA and ATP levels were measured to evaluate cellular mitochondrial function. RESULTS Transfection of si-PCSK9 inhibited Sevoflurane-induced microglial activation and restored cellular viability, promoted cell proliferation, inhibited apoptosis and neuroinflammation, decreased ROS and MDA levels in the cells while up-regulating the levels of SOD and CAT, thus inhibiting oxidative stress, restored the mitochondrial membrane potential to normal and decreased mitochondrial ROS and mtDNA levels and increased ATP production, thereby alleviating mitochondrial dysfunction. Moreover, PCSK9 depletion also down-regulated the expression of cGAS and STING to inactivate cGAS-STING signaling. However, cGAS overexpression partially reversed the effects of si-PCSK9. CONCLUSION PCSK9 exacerbates sevoflurane-induced neuroinflammatory response and apoptosis by upregulating cGAS-STING signaling.
Collapse
Affiliation(s)
- Tao Su
- Anesthesia Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
| | - Yuting Si
- Anesthesia Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| |
Collapse
|
3
|
Skartun O, Smith CR, Laupsa-Borge J, Dankel SN. Symptoms during initiation of a ketogenic diet: a scoping review of occurrence rates, mechanisms and relief strategies. Front Nutr 2025; 12:1538266. [PMID: 40206956 PMCID: PMC11978633 DOI: 10.3389/fnut.2025.1538266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Background Evidence for the clinical utility of ketogenic diets (KD) is mounting. The transition to a KD (keto-induction) can however trigger unpleasant transient symptoms (≪keto-flu≫) which may deter continued adherence. Knowledge of strategies that mitigate symptoms during keto-induction may facilitate adoption of a KD. Aim We aimed to perform a scoping review of the available scientific literature with regards to symptom occurrence rates, possible mechanisms and proposed interventions for symptom relief during keto-induction. Methods Embase, Medline and Web of Science electronic databases were searched systematically using terms associated with the KD and keto-induction in conjunction with terms capturing adverse effects. In addition, additional relevant studies were retrieved from the identified articles' references. Results The available literature on keto-induction symptoms is highly heterogenous, but common transient symptoms are reported across multiple populations, including descriptions of "keto-flu," nausea, emesis, reduced appetite, hypoglycaemia, acidosis, increased risk of kidney stones, altered liver biochemistry, and skin rash. Mechanisms have been proposed based on general insights into physiology, but few have been empirically tested. However, approaches to reduce symptoms of keto-initiation are reported, including avoidance of the traditionally used fasted initiation and supplementation of medium-chain triglycerides (MCT) and ketone salts. There is a physiological rationale for supplementation with electrolytes and ketone esters, but a lack of clinical studies documenting their effect. Conclusion Several transient symptoms have been associated with keto-induction, although a limited number of studies have directly examined them, or the mechanisms and possible interventions for symptom alleviation. Further research is warranted to close knowledge gaps highlighted in this review.
Collapse
|
4
|
Plaisance EP. Hepatic metabolism and ketone production in metabolic dysfunction-associated steatotic liver disease. Curr Opin Gastroenterol 2025; 41:81-86. [PMID: 39782299 DOI: 10.1097/mog.0000000000001079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW Metabolic dysfunction-associated steatotic liver disease (MASLD) is present in 25-35% of individuals in the United States. The purpose of this review is to provide the contextual framework for hepatic ketogenesis in MASLD and to spotlight recent advances that have improved our understanding of the mechanisms that drive its development and progression. RECENT FINDINGS Traditionally, hepatic ketogenesis has only been considered metabolically during prolonged fasting/starvation or with carbohydrate deplete ketogenic diets where ketones provide important alternative energy sources. Over the past 2 years, it has become increasingly clear from preclinical rodent and human clinical studies that hepatic ketogenic insufficiency is a key contributor to the initiation and progression of MASLD. SUMMARY A more thorough understanding of the metabolic dysregulation that occurs between the liver and extrahepatic tissues has significant potential in the development of innovative nutritional and pharmacological approaches to the treatment of MASLD.
Collapse
Affiliation(s)
- Eric P Plaisance
- Department of Nutrition Sciences
- Nutrition Obesity Research Center
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Zhu Y, Verkhratsky A, Chen H, Yi C. Understanding glucose metabolism and insulin action at the blood-brain barrier: Implications for brain health and neurodegenerative diseases. Acta Physiol (Oxf) 2025; 241:e14283. [PMID: 39822067 PMCID: PMC11737474 DOI: 10.1111/apha.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins. An exception to this are brain regions, such as the hypothalamus and circumventricular organs, which are irrigated by fenestrated capillaries, allowing rapid and direct response to various blood components. We overview the metabolic functions of the BBB, with an emphasis on the impact of altered glucose metabolism and insulin signaling on BBB in the pathogenesis of neurodegenerative diseases. Notably, endothelial cells constituting the BBB exhibit distinct metabolic characteristics, primarily generating ATP through aerobic glycolysis. This occurs despite their direct exposure to the abundant oxygen in the bloodstream, which typically supports oxidative phosphorylation. The effects of insulin on astrocytes, which form the glial limitans component of the BBB, show a marked sexual dimorphism. BBB nutrient sensing in the hypothalamus, along with insulin signaling, regulates systemic metabolism. Insulin modifies BBB permeability by regulating the expression of tight junction proteins, angiogenesis, and vascular remodeling, as well as modulating blood flow in the brain. The disruptions in glucose and insulin signaling are particularly evident in neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, where BBB breakdown accelerates cognitive decline. This review highlights the critical role of normal glucose metabolism and insulin signaling in maintaining BBB functionality and investigates how disruptions in these pathways contribute to the onset and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiyi Zhu
- Research CenterThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Department of NeurosciencesUniversity of the Basque Country, CIBERNEDLeioaBizkaiaSpain
- IKERBASQUE Basque Foundation for ScienceBilbaoSpain
- Department of Forensic Analytical Toxicology, School of Forensic MedicineChina Medical UniversityShenyangChina
| | - Hui Chen
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Chenju Yi
- Research CenterThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseGuangzhouChina
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational ResearchShenzhenChina
| |
Collapse
|
6
|
Queathem ED, Moazzami Z, Stagg DB, Nelson AB, Fulghum K, Hayir A, Seay A, Gillingham JR, d’Avignon DA, Han X, Ruan HB, Crawford PA, Puchalska P. Ketogenesis supports hepatic polyunsaturated fatty acid homeostasis via fatty acid elongation. SCIENCE ADVANCES 2025; 11:eads0535. [PMID: 39879309 PMCID: PMC11777252 DOI: 10.1126/sciadv.ads0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based 13C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism. Unexpectedly, mouse liver and primary hepatocytes consumed ketone bodies to support fatty acid biosynthesis via both de novo lipogenesis (DNL) and polyunsaturated fatty acid (PUFA) elongation. While an acetoacetate intermediate was not absolutely required for ketone bodies to source DNL, PUFA elongation required activation of acetoacetate by cytosolic acetoacetyl-coenzyme A synthetase (AACS). Moreover, AACS deficiency diminished free and esterified PUFAs in hepatocytes, while ketogenic insufficiency depleted PUFAs and increased liver triacylglycerols. These findings suggest that hepatic ketogenesis influences PUFA metabolism, representing a molecular mechanism through which ketone bodies could influence systemic physiology and chronic diseases.
Collapse
Affiliation(s)
- Eric D. Queathem
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zahra Moazzami
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David B. Stagg
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alisa B. Nelson
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kyle Fulghum
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Abdirahman Hayir
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alisha Seay
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jacob R. Gillingham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - D. André d’Avignon
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xianlin Han
- Department of Medicine-Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter A. Crawford
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
7
|
Kolnes KJ, Nilsen ETF, Brufladt S, Meadows AM, Jeppesen PB, Skattebo Ø, Johansen EI, Birk JB, Højlund K, Hingst J, Skålhegg BS, Kjøbsted R, Griffin JL, Kolnes AJ, O'Rahilly S, Wojtaszewski JFP, Jensen J. Effects of seven days' fasting on physical performance and metabolic adaptation during exercise in humans. Nat Commun 2025; 16:122. [PMID: 39747857 PMCID: PMC11695724 DOI: 10.1038/s41467-024-55418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Humans have, throughout history, faced periods of starvation necessitating increased physical effort to gather food. To explore adaptations in muscle function, 13 participants (7 males and 6 females) fasted for seven days. They lost 4.6 ± 0.3 kg lean and 1.4 ± 0.1 kg fat mass. Maximal isometric and isokinetic strength remained unchanged, while peak oxygen uptake decreased by 13%. Muscle glycogen was halved, while expression of electron transport chain proteins was unchanged. Pyruvate dehydrogenase kinase 4 (PDK4) expression increased 13-fold, accompanied by inhibitory pyruvate dehydrogenase phosphorylation, reduced carbohydrate oxidation and decreased exercise endurance capacity. Fasting had no impact on 5' AMP-activated protein kinase (AMPK) activity, challenging its proposed role in muscle protein degradation. The participants maintained muscle strength and oxidative enzymes in skeletal muscle during fasting but carbohydrate oxidation and high-intensity endurance capacity were reduced.
Collapse
Affiliation(s)
- Kristoffer J Kolnes
- Norwegian School of Sport Sciences, Oslo, Norway
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | | | | | - Allison M Meadows
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Maryland, USA
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Jesper B Birk
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Janne Hingst
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn S Skålhegg
- Department of Nutrition, Division for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - Rasmus Kjøbsted
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Rowett Institute, Foresterhill Health Campus, University of Aberdeen, Aberdeen, UK
| | - Anders J Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jørgen F P Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Rebello CJ, Zhang D, Anderson JC, Bowman RF, Peeke PM, Greenway FL. From starvation to time-restricted eating: a review of fasting physiology. Int J Obes (Lond) 2025; 49:43-48. [PMID: 39369112 DOI: 10.1038/s41366-024-01641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
We have long known that subjects with obesity who fast for several weeks survive. Calculations that assume the brain can only use glucose indicated that all carbohydrate and protein sources would be consumed by the brain within several weeks yet subjects with obesity who fasted for several weeks survived. This anomaly led to the determination of the metabolic role of ketone bodies. Subsequent studies transformed our understanding of ketone bodies and illustrated the value of challenging the norm and adapting theory to evidence. Although prolonged fasting is no longer a treatment for obesity, the early studies of starvation provided valuable insights about macronutrient metabolism and ketone body adaptations that fasting elicits. Intermittent fasting and its variants such as time-restricted eating are fasting models that are far less regimented than starvation and severe calorie restriction; yet they produce metabolic benefits. The mechanisms that produce the metabolic changes that intermittent fasting elicits are relatively unknown. In this article, we review the physiology of starvation, starvation adaptation diets, diet-induced ketosis, and intermittent fasting. Understanding the premise and physiology that these regimens induce is necessary to draw parallels and provoke thoughts on the mechanisms underlying the metabolic benefits of intermittent fasting and its variants.
Collapse
Affiliation(s)
- Candida J Rebello
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Dachuan Zhang
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Joseph C Anderson
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | | | - Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
9
|
Shippy DC, Evered AH, Ulland TK. Ketone body metabolism and the NLRP3 inflammasome in Alzheimer's disease. Immunol Rev 2025; 329:e13365. [PMID: 38989642 PMCID: PMC11724017 DOI: 10.1111/imr.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1β and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and β-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.
Collapse
Affiliation(s)
- Daniel C. Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Abigail H. Evered
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Cellular and Molecular Pathology Graduate Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
10
|
Madhavan SS, Stubbs BJ. Beta-hydroxybutyrate. Trends Endocrinol Metab 2025; 36:96-97. [PMID: 39765208 PMCID: PMC11707391 DOI: 10.1016/j.tem.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 01/11/2025]
Affiliation(s)
- Sidharth S Madhavan
- Buck Institute for Research on Aging, Novato, CA, USA; Leonard Davis School of Gerontology at University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
11
|
Peter-Okaka U, Boison D. Neuroglia and brain energy metabolism. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:117-126. [PMID: 40122620 PMCID: PMC12011283 DOI: 10.1016/b978-0-443-19104-6.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The glial control of energy homeostasis is of crucial importance for health and disease. Astrocytes in particular play a major role in controlling the equilibrium among adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine. Any energy crisis leads to a drop in ATP, and the resulting increase in adenosine is an evolutionary ancient mechanism to suppress energy-consuming activities. The maintenance of brain energy homeostasis, in turn, requires the availability of energy sources, such as glucose and ketones. Astrocytes have assumed an important role in enabling efficient energy utilization by neurons. In addition, neurons are under the metabolic control of astrocytes through regulation of glutamate and GABA levels. The intricate interplay between glial brain energy metabolism and brain function can be best understood once the homeostatic system of energy metabolism is brought out of control. This has best been studied within the context of epilepsy where metabolic treatments provide unprecedented opportunities for the control of seizures that are refractory to conventional antiseizure medications. This chapter will discuss astroglial energy metabolism in the healthy brain and will use epilepsy as a model condition in which glial brain energy homeostasis is disrupted. We will conclude with an outlook on how those principles can be applied to other conditions such as Alzheimer disease.
Collapse
Affiliation(s)
- Uchenna Peter-Okaka
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
12
|
Smith DM, Choi J, Wolfgang MJ. Tissue specific roles of fatty acid oxidation. Adv Biol Regul 2025; 95:101070. [PMID: 39672726 PMCID: PMC11832339 DOI: 10.1016/j.jbior.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Mitochondrial long chain fatty acid β-oxidation is a critical central carbon catabolic process. The importance of fatty acid oxidation is made evident by the life-threatening disease associated with diverse inborn errors in the pathway. While inborn errors show multisystemic requirements for fatty acid oxidation, it is not clear from the clinical presentation of these enzyme deficiencies what the tissue specific roles of the pathway are compared to secondary systemic effects. To understand the cell or tissue specific contributions of fatty acid oxidation to systemic physiology, conditional knockouts in mice have been employed to determine the requirements of fatty acid oxidation in disparate cell types. This has produced a host of surprising results that sometimes run counter to the canonical view of this metabolic pathway. The rigor of conditional knockouts has also provided clarity over previous research utilizing cell lines in vitro or small molecule inhibitors with dubious specificity. Here we will summarize current research using mouse models of Carnitine Palmitoyltransferases to determine the tissue specific roles and requirements of long chain mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
14
|
Martínez-Martos JM, Cantón-Habas V, Rich-Ruíz M, Reyes-Medina MJ, Ramírez-Expósito MJ, Carrera-González MDP. Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications. Life (Basel) 2024; 14:1547. [PMID: 39768255 PMCID: PMC11677427 DOI: 10.3390/life14121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity. Adult neurogenesis in the dentate gyrus, dendritic spine density, and electrophysiological plasticity contribute to the hippocampus' remarkable plasticity. Glucose transporters GLUT3 and GLUT4 are expressed in human hippocampal neurons, with proper glucose metabolism being crucial for learning and memory. Sex hormones play a major role, with the aromatase enzyme that generates estradiol increasing in neurons and astrocytes as an endogenous neuroprotective mechanism. Inhibition of aromatase increases gliosis and neurodegeneration after brain injury. Genetic variants of aromatase may confer higher Alzheimer's risk. Estrogen replacement therapy in postmenopausal women prevents hippocampal hypometabolism and preserves memory. Insulin is also a key regulator of hippocampal glucose metabolism and cognitive processes. Dysregulation of the insulin-sensitive glucose transporter GLUT4 may explain the comorbidity between type II diabetes and Alzheimer's. GLUT4 colocalizes with the insulin-regulated aminopeptidase IRAP in neuronal vesicles, suggesting an activity-dependent glucose uptake mechanism. Sex differences in brain metabolism are an important factor in understanding neurodegenerative diseases, and future research must elucidate the underlying mechanisms and potential therapeutic implications of these differences.
Collapse
Affiliation(s)
- José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain; (J.M.M.-M.); (M.J.R.-E.)
| | - Vanesa Cantón-Habas
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (V.C.-H.); (M.R.-R.); (M.J.R.-M.)
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004 Cordoba, Spain
| | - Manuel Rich-Ruíz
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (V.C.-H.); (M.R.-R.); (M.J.R.-M.)
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004 Cordoba, Spain
| | - María José Reyes-Medina
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (V.C.-H.); (M.R.-R.); (M.J.R.-M.)
| | - María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain; (J.M.M.-M.); (M.J.R.-E.)
| | - María del Pilar Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain; (J.M.M.-M.); (M.J.R.-E.)
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004 Cordoba, Spain
| |
Collapse
|
15
|
Ye Y, Fu C, Li Y, Sun J, Li X, Chai S, Li S, Hou M, Cai H, Wang Z, Wu M. Alternate-day fasting improves cognitive and brain energy deficits by promoting ketone metabolism in the 3xTg mouse model of Alzheimer's disease. Exp Neurol 2024; 381:114920. [PMID: 39142368 DOI: 10.1016/j.expneurol.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is characterized by disorders in brain energy. The lack of sufficient energy for nerve function leads to cognitive dysfunction and massive neuronal loss in AD. Ketone bodies are an alternative to glucose as a source of energy in the brain, and alternate-day fasting (ADF) promotes the production of the ketone body β-hydroxybutyric acid (βOHB). In this study, 7-month-old male WT mice and 3xTg mice underwent dietary control for 20 weeks. We found that ADF increased circulating βOHB concentrations in 3xTg mice, improved cognitive function, reduced anxiety-like behaviors, improved hippocampal synaptic plasticity, and reduced neuronal loss, Aβ oligomers and tau hyperphosphorylation. In addition, ADF improved mitochondrial bioenergetic function by promoting brain ketone metabolism and rescued brain energy deficits in 3xTg mice. A safety evaluation showed that ADF improved exercise endurance and liver and kidney function in 3xTg mice without negatively affecting muscle motor and heart functions. This study provides a theoretical basis and strong support for the application of ADF as a non-drug strategy for preventing and treating brain energy defects in the early stage of AD.
Collapse
Affiliation(s)
- Yucai Ye
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Chaojing Fu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Yan Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Junli Sun
- School of Anesthesiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xinru Li
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shifan Chai
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shuo Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Meng Hou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Hongyan Cai
- Department of Microbiology and Immunology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaojun Wang
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| | - Meina Wu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| |
Collapse
|
16
|
González Ibáñez F, VanderZwaag J, Deslauriers J, Tremblay MÈ. Ultrastructural features of psychological stress resilience in the brain: a microglial perspective. Open Biol 2024; 14:240079. [PMID: 39561812 PMCID: PMC11576122 DOI: 10.1098/rsob.240079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Psychological stress is the major risk factor for major depressive disorder. Sustained stress causes changes in behaviour, brain connectivity and in its cells and organelles. Resilience to stress is understood as the ability to recover from stress in a positive way or the resistance to the negative effects of psychological stress. Microglia, the resident immune cells of the brain, are known players of stress susceptibility, but less is known about their role in stress resilience and the cellular changes involved. Ultrastructural analysis has been a useful tool in the study of microglia and their function across contexts of health and disease. Despite increased access to electron microscopy, the interpretation of electron micrographs remains much less accessible. In this review, we will first present microglia and the concepts of psychological stress susceptibility and resilience. Afterwards, we will describe ultrastructural analysis, notably of microglia, as a readout to study the mechanisms underlying psychological stress resilience. Lastly, we will cover nutritional ketosis as a therapeutic intervention that was shown to be effective in promoting psychological stress resilience as well as modifying microglial function and ultrastructure.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
17
|
Edwards MGP, Furuholmen-Jenssen T, Søegaard EGI, Thapa SB, Andersen JR. Exploring diet-induced ketosis with exogenous ketone supplementation as a potential intervention in post-traumatic stress disorder: a feasibility study. Front Nutr 2024; 11:1406366. [PMID: 39588043 PMCID: PMC11586679 DOI: 10.3389/fnut.2024.1406366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 11/27/2024] Open
Abstract
Background Post-Traumatic Stress Disorder (PTSD) is a severe and pervasive mental disorder, and patients experience numerous distressing symptoms and impairments that significantly impact their lives. In addition to being a mental disorder, PTSD is strongly associated with a wide range of metabolic abnormalities that affect the entire body. Existing treatment options of psychotherapy and medications are often ineffective. Exploring other potential treatments is necessitated. The ketogenic diet has shown potential as a metabolic therapy in certain neurological and mental disorders and is a promising intervention in the treatment of PTSD. Aim This study aimed to examine if a 4-week ketogenic diet intervention supplemented with exogenous ketones (KD-KS) was feasible in adult patients with PTSD, to what extent it was possible to recruit patients, attain and maintain ketosis (plasma concentration of β-hydroxybutyrate (BHB) ≥ 0.5 mmol/L), the occurrence of serious adverse reactions and adverse reactions to KD-KS, and acceptance of treatment. Our exploratory aims were changes in PTSD symptoms and health-related quality of life (QoL) from baseline to 4 weeks. Methods Patients 18 ≤ 65 years old, diagnosed with PTSD, and receiving outpatient treatment for PTSD at Southern Oslo District Psychiatric Centre (DPC), Oslo University Hospital, Oslo, Norway, were included. The intervention consisted of a ketogenic diet supplemented with β-hydroxybutyrate salt to obtain ketosis. PTSD symptoms were measured with the PTSD Checklist for DSM-5 (PCL-5) and QoL was measured with the RAND 36-Item Health Survey 1.0. Results During a 21-week inclusion period, three of four eligible patients (75% [95% CI: 30 to 95%]) were included. Two patients (67% [95% CI: 21 to 94%]) completed the 4-week intervention and one patient (33% [95% CI: 6 to 79%]) completed 2 weeks of intervention before discontinuing. Ketosis was achieved on day 1 in one patient, and on day 2 in two patients, and was maintained in 87% of the intervention. There were no serious adverse reactions. Adverse reactions were reported in a total of 70% of intervention days, the most frequent being headache followed by fatigue. The participant-perceived degree of adverse reactions was low to moderate. The treatment was accepted by patients on all intervention days. PCL-5 decreased by 20 points (70 to 50) in patient 1 and by 10 points (50 to 40) in patient 2, from baseline to 4 weeks, which is a reliable and clinically meaningful improvement. QoL improved in six of eight RAND-36 subscales in patient 1 and three of eight in patient 2. Patient 3 did not complete assessments after week 2. Conclusion To the best of our knowledge, this feasibility study is the first study examining a ketogenic diet intervention in patients with PTSD. Three of four predefined feasibility criteria were achieved. Ketosis was attained fast and maintained, patients were compliant and there were clinically meaningful improvements in PTSD symptoms and QoL. Despite the small sample size, the knowledge obtained in this study is important for the planning of future studies with ketogenic diet interventions in this patient group. It is a first step for potential dietary and metabolic therapies in PTSD. Further feasibility and pilot studies with larger sample sizes are needed to determine feasibility and safety before planning future randomised controlled trials investigating an effect. Clinical trial registration https://ClinicalTrials.gov, identifier NCT05415982.
Collapse
Affiliation(s)
- Maria G. P. Edwards
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Furuholmen-Jenssen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik Ganesh Iyer Søegaard
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Suraj Bahadur Thapa
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jens R. Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Arbizu J, Morbelli S, Minoshima S, Barthel H, Kuo P, Van Weehaeghe D, Horner N, Colletti PM, Guedj E. SNMMI Procedure Standard/EANM Practice Guideline for Brain [ 18F]FDG PET Imaging, Version 2.0. J Nucl Med 2024:jnumed.124.268754. [PMID: 39419552 DOI: 10.2967/jnumed.124.268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
PREAMBLEThe Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine.The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized.These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, both the SNMMI and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines.The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain;
| | - Silvia Morbelli
- Nuclear Medicine Unit, Citta'della Scenza e della Salute di Torino, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | | | | | - Neil Horner
- Atlantic Health System, Morristown, New Jersey, and Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrick M Colletti
- Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, California; and
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille University, Marseille, France
| |
Collapse
|
19
|
Fulghum K, Salathe SF, Davis X, Thyfault JP, Puchalska P, Crawford PA. Ketone body metabolism and cardiometabolic implications for cognitive health. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:29. [PMID: 40093558 PMCID: PMC11908690 DOI: 10.1038/s44324-024-00029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/05/2024] [Indexed: 03/19/2025]
Abstract
Cardiometabolic complications of obesity present a growing public health concern and are associated with poor outcomes, mediated in part by an increased risk for cardiovascular disease, metabolic dysfunction-associated fatty liver disease, and systemic insulin resistance. Recent studies support that both insulin resistance and obesity are also associated with aberrant brain metabolism and cognitive impairment similar to what is observed in neurodegenerative diseases. Central to these pathological outcomes are adverse changes in tissue glucose and ketone body metabolism, suggesting that regulation of substrate utilization could be a mechanistic link between the cardiometabolic outcomes of obesity and the progression of cognitive decline. Here, we review ketone body metabolism in physiological and pathological conditions with an emphasis on the therapeutic potential of ketone bodies in treating cardiometabolic diseases and neurodegenerative diseases that lead to cognitive decline. We highlight recent findings in the associations among cardiometabolic disease, ketone body metabolism, and cognitive health while providing a theoretical framework by which ketone bodies may promote positive health outcomes and preserve cognitive function.
Collapse
Affiliation(s)
- Kyle Fulghum
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sebastian F. Salathe
- Departments of Cell Biology and Physiology and Internal Medicine – Division of Endocrinology and Metabolism, Kansas University Medical Center, Kansas City, KS, USA
| | - Xin Davis
- Departments of Cell Biology and Physiology and Internal Medicine – Division of Endocrinology and Metabolism, Kansas University Medical Center, Kansas City, KS, USA
| | - John P. Thyfault
- Departments of Cell Biology and Physiology and Internal Medicine – Division of Endocrinology and Metabolism, Kansas University Medical Center, Kansas City, KS, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
21
|
Annoni F, Su F, Peluso L, Lisi I, Caruso E, Pischiutta F, Gouvea Bogossian E, Garcia B, Njimi H, Vincent JL, Gaspard N, Ferlini L, Creteur J, Zanier ER, Taccone FS. Infusion of sodium DL-3-ß-hydroxybutyrate decreases cerebral injury biomarkers after resuscitation in experimental cardiac arrest. Crit Care 2024; 28:314. [PMID: 39304944 PMCID: PMC11414246 DOI: 10.1186/s13054-024-05106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Cerebral complications after cardiac arrest (CA) remain a major problem worldwide. The aim was to test the effects of sodium-ß-hydroxybutyrate (SBHB) infusion on brain injury in a clinically relevant swine model of CA. RESULTS CA was electrically induced in 20 adult swine. After 10 min, cardiopulmonary resuscitation was performed for 5 min. After return of spontaneous circulation (ROSC), the animals were randomly assigned to receive an infusion of balanced crystalloid (controls, n = 11) or SBHB (theoretical osmolarity 1189 mOsm/l, n = 8) for 12 h. Multimodal neurological and cardiovascular monitoring were implemented in all animals. Nineteen of the 20 animals achieved ROSC. Blood sodium concentrations, osmolarity and circulating KBs were higher in the treated animals than in the controls. SBHB infusion was associated with significantly lower plasma biomarkers of brain injury at 6 (glial fibrillary acid protein, GFAP and neuron specific enolase, NSE) and 12 h (neurofilament light chain, NFL, GFAP and NSE) compared to controls. The amplitude of the stereoelectroencephalograph (sEEG) increased in treated animals after ROSC compared to controls. Cerebral glucose uptake was lower in treated animals. CONCLUSIONS In this experimental model, SBHB infusion after resuscitated CA was associated with reduced circulating markers of cerebral injury and increased sEEG amplitude.
Collapse
Affiliation(s)
- Filippo Annoni
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Lennik Road 808, 1070, Brussels, Belgium.
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium.
| | - Fuhong Su
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Lennik Road 808, 1070, Brussels, Belgium
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Lennik Road 808, 1070, Brussels, Belgium
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesiology and Intensive Care, Humanitas Gavazzeni, Via M Gavazzeni 21, 24125, Bergamo, Italy
| | - Ilaria Lisi
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Enrico Caruso
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Francesca Pischiutta
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Lennik Road 808, 1070, Brussels, Belgium
| | - Bruno Garcia
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Lennik Road 808, 1070, Brussels, Belgium
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium
| | - Hassane Njimi
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Lennik Road 808, 1070, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Lennik Road 808, 1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Neurology Department, School of Medicine, Yale University, New Haven, CT, USA
| | - Lorenzo Ferlini
- Department of Neurology, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Lennik Road 808, 1070, Brussels, Belgium
| | - Elisa R Zanier
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Lennik Road 808, 1070, Brussels, Belgium
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium
| |
Collapse
|
22
|
Frank GKW, Scolnick B. Therapeutic ketogenic diet as treatment for anorexia nervosa. Front Nutr 2024; 11:1392135. [PMID: 39296512 PMCID: PMC11409850 DOI: 10.3389/fnut.2024.1392135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder. However, we lack neurobiological models and interventions to explain and treat the core characteristics of food restriction, feeling fat, and body size overestimation. Research has made progress in understanding brain function involved in the pathophysiology of AN, but translating those results into biological therapies has been challenging. Studies have suggested that metabolic factors could contribute to developing and maintaining AN pathophysiology. Here, we describe a neurobiological model for why using a therapeutic ketogenic diet could address key alterations in brain function in AN and prevent the desire for weight loss and associated eating disorder-specific symptoms. This translational model is based on animal studies and human data and integrates behavioral traits, brain neural energy metabolism, and neurotransmitter function. Pilot data indicate that the intervention can dramatically reduce eating and body-related fears, although larger studies across illness stages still need to be conducted.
Collapse
Affiliation(s)
- Guido K W Frank
- Department of Psychiatry, San Diego School of Medicine, University of California, San Diego, San Diego, CA, United States
| | | |
Collapse
|
23
|
Miyatsu T, McAdam J, Coleman K, Chappe E, Tuggle SC, McClure T, Bamman MM. Effect of ketone monoester supplementation on elite operators' mountaineering training. Front Physiol 2024; 15:1411421. [PMID: 39290617 PMCID: PMC11405315 DOI: 10.3389/fphys.2024.1411421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Special Operations Forces (SOF) often conduct operations in physiologically stressful environments such as severe heat, cold, or hypoxia, which can induce decreases in a variety of cognitive abilities. Given the promising empirical demonstration of the efficacy of exogenous ketone monoester (KME) supplementation in attenuating cognitive performance decrease during hypoxia at rest in a laboratory setting, we conducted a real-world, field experiment examining KME's efficacy during high-altitude mountaineering, an austere environment in which US SOF have conducted increasing numbers of operations over the past two decades. Methods Specifically, 34 students and cadre at the US Army 10th Special Forces Group Special Operations Advanced Mountaineering School (SOAMS) participated in a randomized, double-blind, placebo (PLA)-controlled crossover trial (KME vs. PLA) over 2 days of tactical mountain operations training. The participants ascended from 7,500 ft in altitude (basecamp) to 12,460 ft on 1 day and 13,627 ft the other day (in randomized order), while performing various training activities inducing high physical and cognitive loads over 8-12 h, and consumed six doses of KME or PLA 2-3 h apart throughout each training day. Results and Discussion While KME increased blood ketone levels and decreased glucose levels, there were no clear indications that the elevated ketone level enhanced physical or cognitive performance. KME also produced a greater incidence of heartburn, nausea, and vomiting. In these elite operators, high-altitude mountaineering had a limited impact on cognitive performance, and KME supplementation did not demonstrate any benefit.
Collapse
Affiliation(s)
- Toshiya Miyatsu
- Healthspan, Resilience and Performance Research, Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Jeremy McAdam
- Healthspan, Resilience and Performance Research, Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Kody Coleman
- Healthspan, Resilience and Performance Research, Institute for Human and Machine Cognition, Pensacola, FL, United States
- Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Ed Chappe
- Healthspan, Resilience and Performance Research, Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Steven C Tuggle
- Healthspan, Resilience and Performance Research, Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Tyler McClure
- Healthspan, Resilience and Performance Research, Institute for Human and Machine Cognition, Pensacola, FL, United States
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Marcas M Bamman
- Healthspan, Resilience and Performance Research, Institute for Human and Machine Cognition, Pensacola, FL, United States
| |
Collapse
|
24
|
Volek JS, Kackley ML, Buga A. Nutritional Considerations During Major Weight Loss Therapy: Focus on Optimal Protein and a Low-Carbohydrate Dietary Pattern. Curr Nutr Rep 2024; 13:422-443. [PMID: 38814519 PMCID: PMC11327213 DOI: 10.1007/s13668-024-00548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Considering the high prevalence of obesity and related metabolic impairments in the population, the unique role nutrition has in weight loss, reversing metabolic disorders, and maintaining health cannot be overstated. Normal weight and well-being are compatible with varying dietary patterns, but for the last half century there has been a strong emphasis on low-fat, low-saturated fat, high-carbohydrate based approaches. Whereas low-fat dietary patterns can be effective for a subset of individuals, we now have a population where the vast majority of adults have excess adiposity and some degree of metabolic impairment. We are also entering a new era with greater access to bariatric surgery and approval of anti-obesity medications (glucagon-like peptide-1 analogues) that produce substantial weight loss for many people, but there are concerns about disproportionate loss of lean mass and nutritional deficiencies. RECENT FINDINGS No matter the approach used to achieve major weight loss, careful attention to nutritional considerations is necessary. Here, we examine the recent findings regarding the importance of adequate protein to maintain lean mass, the rationale and evidence supporting low-carbohydrate and ketogenic dietary patterns, and the potential benefits of including exercise training in the context of major weight loss. While losing and sustaining weight loss has proven challenging, we are optimistic that application of emerging nutrition science, particularly personalized well-formulated low-carbohydrate dietary patterns that contain adequate protein (1.2 to 2.0 g per kilogram reference weight) and achieve the beneficial metabolic state of euketonemia (circulating ketones 0.5 to 5 mM), is a promising path for many individuals with excess adiposity.
Collapse
Affiliation(s)
- Jeff S Volek
- Department of Human Sciences, The Ohio State University, 305 Annie & John Glenn Ave, Columbus, OH, 43210, USA.
| | - Madison L Kackley
- Department of Human Sciences, The Ohio State University, 305 Annie & John Glenn Ave, Columbus, OH, 43210, USA
| | - Alex Buga
- Department of Human Sciences, The Ohio State University, 305 Annie & John Glenn Ave, Columbus, OH, 43210, USA
| |
Collapse
|
25
|
Rong L, Peng Y, Shen Q, Chen K, Fang B, Li W. Effects of ketogenic diet on cognitive function of patients with Alzheimer's disease: a systematic review and meta-analysis. J Nutr Health Aging 2024; 28:100306. [PMID: 38943982 DOI: 10.1016/j.jnha.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Ketogenic diets (KD) have shown remarkable effects in many disease areas. It has been demonstrated in numerous animal experiments that KD is effective in the treatment of Alzheimer's disease (AD). But the clinical effect of treating AD is uncertain. OBJECTIVE To systematically review the impact of KD on cognitive function in AD. METHODS We conducted a search of three international databases-PubMed, Cochrane Library, and Embase-to retrieve RCTs on the KD intervention for AD from the inception of the databases through October 2023. Two reviewers searched and screened the literature, extracted and checked relevant data independently, and assessed the risk of bias of the included studies. The meta-analysis was carried out utilizing RevMan 5.3 software. RESULTS A total of 10 RCTS involving 691 patients with AD were included. There were 357 participants in the intervention group and 334 participants in the control group. The duration of the KD intervention ranged from a minimum of 3 months to a maximum of 15 months. Meta-analysis results showed that KD could effectively improve the mental state of the elderly (NM scale) [MD = 7.56, 95%CI (3.02, 12.10), P = 0.001], MMSE [MD = 1.25, 95%CI (0.46, 2.04), P = 0.002], and ADAS-Cog [MD = -3.43, 95%CI (-5.98, -0.88), P = 0.008]. The elevation of ketone body (β-hydroxybutyric) [MD = 118.84, 95%CI (15.20, 222.48), P = 0.02] may also lead to the elevation of triglyceride [MD = 0.19, 95%CI (0.03, 0.35), P = 0.02] and low density lipoprotein [MD = 0.31, 95%CI (0.04, 0.58), P = 0.02]. CONCLUSION Research conducted has indicated that the KD can enhance the mental state and cognitive function of those with AD, albeit potentially leading to an elevation in blood lipid levels. In summary, the good intervention effect and safety of KD are worthy of promotion and application in clinical treatment of AD.
Collapse
Affiliation(s)
- Liyang Rong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Sanya Hospital of Traditional Chinese Medicine, Sanya, China
| | - Yating Peng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Keying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
26
|
Queathem ED, Moazzami Z, Stagg DB, Nelson AB, Fulghum K, Hayir A, Seay A, Gillingham JR, d'Avignon DA, Han X, Ruan HB, Crawford PA, Puchalska P. Ketogenesis supports hepatic polyunsaturated fatty acid homeostasis via fatty acid elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602593. [PMID: 39026753 PMCID: PMC11257565 DOI: 10.1101/2024.07.09.602593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Therapeutic interventions targeting hepatic lipid metabolism in metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) remain elusive. Using mass spectrometry-based stable isotope tracing and shotgun lipidomics, we established a novel link between ketogenesis and MASLD pathophysiology. Our findings show that mouse liver and primary hepatocytes consume ketone bodies to support fatty acid (FA) biosynthesis via both de novo lipogenesis (DNL) and FA elongation. Analysis of 13 C-labeled FAs in hepatocytes lacking mitochondrial D-β-hydroxybutyrate dehydrogenase (BDH1) revealed a partial reliance on mitochondrial conversion of D-βOHB to acetoacetate (AcAc) for cytoplasmic DNL contribution, whereas FA elongation from ketone bodies was fully dependent on cytosolic acetoacetyl-CoA synthetase (AACS). Ketone bodies were essential for polyunsaturated FA (PUFA) homeostasis in hepatocytes, as loss of AACS diminished both free and esterified PUFAs. Ketogenic insufficiency depleted liver PUFAs and increased triacylglycerols, mimicking human MASLD, suggesting that ketogenesis supports PUFA homeostasis, and may mitigate MASLD-MASH progression in humans.
Collapse
|
27
|
Reddy BL, Reddy VS, Saier MH. Health Benefits of Intermittent Fasting. Microb Physiol 2024; 34:142-152. [PMID: 38955141 PMCID: PMC11262566 DOI: 10.1159/000540068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
We propose that intermittent fasting (time-restricted eating), in agreement with the conclusions of other biologists, as revealed in recent publications, promotes the achievement of numerous health benefits including the extension of human and animal lifespans. Background: There is evidence, obtained both with animal model systems and with humans, that intermittent fasting has health benefits. These benefits include extended longevity, weight loss, and counteracting various disease conditions. Such procedures positively influence the benefits of human tissue-specific microbiomes and minimize the consequences of organellar apoptosis. Key Messages: In this review, we attempt to summarize the predominant evidence, published in the scientific literature, relevant to the conclusions that in general, and in many specific instances, intermittent fasting has long-term benefits to animals, including humans, with respect to overall and specific organismal health and longevity.
Collapse
Affiliation(s)
- B. Lakshmi Reddy
- Department of Molecular Biology, University of California at San Diego 9500 Gilman Dr. La Jolla, CA 92093-0116 USA
| | | | - Milton H. Saier
- Department of Molecular Biology, University of California at San Diego 9500 Gilman Dr. La Jolla, CA 92093-0116 USA
| |
Collapse
|
28
|
Koutnik AP, Klein S, Robinson AT, Watso JC. Efficacy and Safety of Long-term Ketogenic Diet Therapy in a Patient With Type 1 Diabetes. JCEM CASE REPORTS 2024; 2:luae102. [PMID: 38989268 PMCID: PMC11234288 DOI: 10.1210/jcemcr/luae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Indexed: 07/12/2024]
Abstract
Fewer than 1% of patients with type 1 diabetes achieve normal glycemic control (glycated hemoglobin [HbA1c] < 5.7%/ < 39 mmol/mol). Additionally, exogenous insulin administration often causes "iatrogenic hyperinsulinemia," leading to whole-body insulin resistance and increased risk of cardiovascular complications. We present data on the clinical efficacy and safety of a long-term (10-year) ketogenic diet (≤50 g carbohydrates/day) therapy in a patient with type 1 diabetes. The use of a ketogenic diet resulted in successful glycemic control, assessed by HbA1c (5.5%; 36.6 mmol/mol), continuous glucose monitoring median glucose (98 mg/dL; 5.4 mmol/L), and glucose time-in-range of 70 to 180 mg/dL (90%) without acute glycemic complications. In conjunction, there was a 43% decrease in daily insulin requirements. Low-density lipoprotein cholesterol increased, whereas small-dense low-density lipoprotein was in the normal range (<90 nmol/L). No adverse effects were observed on thyroid function, kidney function, or bone mineral density. This case report demonstrates that a long-term ketogenic diet in a person with type 1 diabetes has considerable therapeutic benefits.
Collapse
Affiliation(s)
- Andrew P Koutnik
- Sansum Diabetes Research Institute, Santa Barbara, CA 93105, USA
- Human Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| | - Samuel Klein
- Sansum Diabetes Research Institute, Santa Barbara, CA 93105, USA
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Joseph C Watso
- Cardiovascular & Applied Physiology Laboratory, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
29
|
Gülersoy E, Balıkçı C, Şahan A, Günal İ, Atlı MO. NMR-based metabolomic investigation of dogs with acute flaccid paralysis due to tick paralysis. Vet Med Sci 2024; 10:e1528. [PMID: 38952268 PMCID: PMC11217601 DOI: 10.1002/vms3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Acute flaccid paralysis (AFP) is a complex clinical syndrome with various aetiologies. If untreated, AFP may lead to death due to failure of respiratory muscles. Tick paralysis, which is a noninfectious neurologic syndrome of AFP, occurs following tick attachment, engorgement, and injection of tick saliva toxins. There is no specific diagnostic test for tick paralysis, and mortality increases as definitive diagnosis is delayed. Although metabolomic investigation of tick saliva was conducted, there is a lack of research on metabolomic evaluation of hosts affected by tick paralysis. OBJECTIVES Thus, the aim of this study is to investigate metabolomic changes in serum samples of dogs with tick paralysis due to Rhipicephalus sanguineus using NMR-based metabolomics and to identify potential diagnostic/prognostic markers. MATERIALS AND METHODS Forty dogs infested with R. sanguineus, with clinical findings compatible with AFP and with a confirmed tick paralysis diagnosis ex juvantibus, constituted the Paralysis Group. Ten healthy dogs, which were admitted either for vaccination and/or check-up purposes, constituted the Control Group. After the confirmation tick paralysis, medical history, vaccination and nutritional status, body surface area and estimated tick numbers of all the dogs were noted. Physical examination included body temperature, heart and respiratory rate, capillary refill time evaluation and Modified Glasgow Coma Scale calculation. Serum samples were extracted from venous blood samples of all the dogs and were prepared for NMR analysis, and NMR-based metabolomics identification and quantification were performed. RESULTS NMR-based serum metabolomics of the present study revealed distinct up/down-regulated expressions, presenting a promising avenue. Moreover, it was observed that energy metabolism and especially liver functions were impaired in dogs with tick paralysis, and not only the respiratory system but also the kidneys were affected. CONCLUSION It was concluded that the present approach may help to better understand the pathological mechanisms developing in cases of AFP due to tick paralysis.
Collapse
Affiliation(s)
- Erdem Gülersoy
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Canberk Balıkçı
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Adem Şahan
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - İsmail Günal
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Mehmet Osman Atlı
- Veterinary FacultyDepartment of Reproduction and Artificial InseminationHarran UniversityŞanlıurfaTurkey
| |
Collapse
|
30
|
Burén J, Svensson M, Liv P, Sjödin A. Effects of a Ketogenic Diet on Body Composition in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients 2024; 16:2030. [PMID: 38999778 PMCID: PMC11243114 DOI: 10.3390/nu16132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study investigates the effects of a ketogenic low-carbohydrate high-fat (LCHF) diet on body composition in healthy, young, normal-weight women. With the increasing interest in ketogenic diets for their various health benefits, this research aims to understand their impact on body composition, focusing on women who are often underrepresented in such studies. Conducting a randomized controlled feeding trial with a crossover design, this study compares a ketogenic LCHF diet to a Swedish National Food Agency (NFA)-recommended control diet over four weeks. Seventeen healthy, young, normal-weight women adhered strictly to the provided diets, with ketosis confirmed through blood β-hydroxybutyrate concentrations. Dual-energy X-ray absorptiometry (DXA) was utilized for precise body composition measurements. To avoid bias, all statistical analyses were performed blind. The findings reveal that the ketogenic LCHF diet led to a significant reduction in both lean mass (-1.45 kg 95% CI: [-1.90;-1.00]; p < 0.001) and fat mass (-0.66 kg 95% CI: [-1.00;-0.32]; p < 0.001) compared to the control diet, despite similar energy intake and physical activity levels. This study concludes that while the ketogenic LCHF diet is effective for weight loss, it disproportionately reduces lean mass over fat mass, suggesting the need for concurrent strength training to mitigate muscle loss in women following this diet.
Collapse
Affiliation(s)
- Jonas Burén
- Department of Food, Nutrition and Culinary Science, Umeå University, 90187 Umeå, Sweden;
- Umeå School of Sport Sciences, Umeå University, 90187 Umeå, Sweden;
| | - Michael Svensson
- Umeå School of Sport Sciences, Umeå University, 90187 Umeå, Sweden;
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, 90187 Umeå, Sweden
| | - Per Liv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, 90187 Umeå, Sweden;
| | - Anna Sjödin
- Department of Food, Nutrition and Culinary Science, Umeå University, 90187 Umeå, Sweden;
- Umeå School of Sport Sciences, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
31
|
Rico JE, Barrientos-Blanco MA. Invited review: Ketone biology-The shifting paradigm of ketones and ketosis in the dairy cow. J Dairy Sci 2024; 107:3367-3388. [PMID: 38246539 DOI: 10.3168/jds.2023-23904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Ketosis is currently regarded as a major metabolic disorder of dairy cows, reflective of the animal's efforts to adapt to energy deficit while transitioning into lactation. Currently viewed as a pathology by some, ketosis is associatively implicated in milk production losses and peripartal health complications that increase the risk of early removal of cows from the herd, thus carrying economic losses for dairy farmers and jeopardizing the sustainability of the dairy industry. Despite decades of intense research in the mitigation of ketosis and its sequelae, our ability to lessen its purported effects remains limited. Moreover, the association of ketosis to reduced milk production and peripartal disease is often erratic and likely mired by concurrent potential confounders. In this review, we discuss the potential reasons for these apparent paradoxes in the light of currently available evidence, with a focus on the limitations of observational research and the necessary steps to unambiguously identify the effects of ketosis on cow health and performance via controlled randomized experimentation. A nuanced perspective is proposed that considers the dissociation of ketosis-as a disease-from healthy hyperketonemia. Furthermore, in consideration of a growing body of evidence that highlights positive roles of ketones in the mitigation of metabolic dysfunction and chronic diseases, we consider the hypothetical functions of ketones as health-promoting metabolites and ponder on their potential usefulness to enhance dairy cow health and productivity.
Collapse
Affiliation(s)
- J Eduardo Rico
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 24740.
| | | |
Collapse
|
32
|
Meeusen H, Romagnolo A, Holsink SAC, van den Broek TJM, van Helvoort A, Gorter JA, van Vliet EA, Verkuyl JM, Silva JP, Aronica E. A novel hepatocyte ketone production assay to help the selection of nutrients for the ketogenic diet treatment of epilepsy. Sci Rep 2024; 14:11940. [PMID: 38789658 PMCID: PMC11126716 DOI: 10.1038/s41598-024-62723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The classic ketogenic diet is an effective treatment option for drug-resistant epilepsy, but its high fat content challenges patient compliance. Optimizing liver ketone production guided by a method comparing substrates for their ketogenic potential may help to reduce the fat content of the diet without loss in ketosis induction. Here, we present a liver cell assay measuring the β-hydroxybutyrate (βHB) yield from fatty acid substrates. Even chain albumin-conjugated fatty acids comprising between 4 and 18 carbon atoms showed a sigmoidal concentration-βHB response curve (CRC) whereas acetate and omega-3 PUFAs produced no CRC. While CRCs were not distinguished by their half-maximal effective concentration (EC50), they differed by maximum response, which related inversely to the carbon chain length and was highest for butyrate. The assay also suitably assessed the βHB yield from fatty acid blends detecting shifts in maximum response from exchanging medium chain fatty acids for long chain fatty acids. The assay further detected a dual role for butyrate and hexanoic acid as ketogenic substrate at high concentration and ketogenic enhancer at low concentration, augmenting the βHB yield from oleic acid and a fatty acid blend. The assay also found propionate to inhibit ketogenesis from oleic acid and a fatty acid blend at low physiological concentration. Although the in vitro assay shows promise as a tool to optimize the ketogenic yield of a fat blend, its predictive value requires human validation.
Collapse
Affiliation(s)
- Hester Meeusen
- Department of (Neuro)Pathology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Alessia Romagnolo
- Department of (Neuro)Pathology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Sophie A C Holsink
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Thijs J M van den Broek
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Ardy van Helvoort
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
- Department of Respiratory Medicine, NUTRIM - Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - J Martin Verkuyl
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands
| | - Jose P Silva
- Department of Nutritional Physiology and Functional Nutrients, Medical & Nutrition Science, Danone Nutricia Research, Uppsalalaan 12, 3584CT, Utrecht, The Netherlands.
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
33
|
Rog J, Wingralek Z, Nowak K, Grudzień M, Grunwald A, Banaszek A, Karakula-Juchnowicz H. The Potential Role of the Ketogenic Diet in Serious Mental Illness: Current Evidence, Safety, and Practical Advice. J Clin Med 2024; 13:2819. [PMID: 38792361 PMCID: PMC11122005 DOI: 10.3390/jcm13102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that mimics the physiological state of fasting. The potential therapeutic effects in many chronic conditions have led to the gaining popularity of the KD. The KD has been demonstrated to alleviate inflammation and oxidative stress, modulate the gut microbiota community, and improve metabolic health markers. The modification of these factors has been a potential therapeutic target in serious mental illness (SMI): bipolar disorder, major depressive disorder, and schizophrenia. The number of clinical trials assessing the effect of the KD on SMI is still limited. Preliminary research, predominantly case studies, suggests potential therapeutic effects, including weight gain reduction, improved carbohydrate and lipid metabolism, decrease in disease-related symptoms, increased energy and quality of life, and, in some cases, changes in pharmacotherapy (reduction in number or dosage of medication). However, these findings necessitate further investigation through larger-scale clinical trials. Initiation of the KD should occur in a hospital setting and with strict care of a physician and dietitian due to potential side effects of the diet and the possibility of exacerbating adverse effects of pharmacotherapy. An increasing number of ongoing studies examining the KD's effect on mental disorders highlights its potential role in the adjunctive treatment of SMI.
Collapse
Affiliation(s)
- Joanna Rog
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 66 Str., 02-787 Warsaw, Poland
| | - Zuzanna Wingralek
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Katarzyna Nowak
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Monika Grudzień
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Arkadiusz Grunwald
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Agnieszka Banaszek
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Hanna Karakula-Juchnowicz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| |
Collapse
|
34
|
York EM, Miller A, Stopka SA, Martínez-François JR, Hossain MA, Baquer G, Regan MS, Agar NYR, Yellen G. The dentate gyrus differentially metabolizes glucose and alternative fuels during rest and stimulation. J Neurochem 2024; 168:533-554. [PMID: 37929637 PMCID: PMC11070451 DOI: 10.1111/jnc.16004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
The metabolic demands of neuronal activity are both temporally and spatially dynamic, and neurons are particularly sensitive to disruptions in fuel and oxygen supply. Glucose is considered an obligate fuel for supporting brain metabolism. Although alternative fuels are often available, the extent of their contribution to central carbon metabolism remains debated. Differential fuel metabolism likely depends on cell type, location, and activity state, complicating its study. While biosensors provide excellent spatial and temporal information, they are limited to observations of only a few metabolites. On the other hand, mass spectrometry is rich in chemical information, but traditionally relies on cell culture or homogenized tissue samples. Here, we use mass spectrometry imaging (MALDI-MSI) to focus on the fuel metabolism of the dentate granule cell (DGC) layer in murine hippocampal slices. Using stable isotopes, we explore labeling dynamics at baseline, as well as in response to brief stimulation or fuel competition. We find that at rest, glucose is the predominant fuel metabolized through glycolysis, with little to no measurable contribution from glycerol or fructose. However, lactate/pyruvate, β-hydroxybutyrate (βHB), octanoate, and glutamine can contribute to TCA metabolism to varying degrees. In response to brief depolarization with 50 mM KCl, glucose metabolism was preferentially increased relative to the metabolism of alternative fuels. With an increased supply of alternative fuels, both lactate/pyruvate and βHB can outcompete glucose for TCA cycle entry. While lactate/pyruvate modestly reduced glucose contribution to glycolysis, βHB caused little change in glycolysis. This approach achieves broad metabolite coverage from a spatially defined region of physiological tissue, in which metabolic states are rapidly preserved following experimental manipulation. Using this powerful methodology, we investigated metabolism within the dentate gyrus not only at rest, but also in response to the energetic demand of activation, and in states of fuel competition.
Collapse
Affiliation(s)
- Elisa M. York
- Department of Neurobiology, Harvard Medical School,
Boston, MA 02115 USA
| | - Anne Miller
- Department of Neurobiology, Harvard Medical School,
Boston, MA 02115 USA
| | - Sylwia A. Stopka
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | | | - Md Amin Hossain
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Gerard Baquer
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Michael S. Regan
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Nathalie Y. R. Agar
- Surgical Molecular Imaging Laboratory, Department of
Neurosurgery, Brigham and Women's Hospital; Department of Radiology, Brigham
and Women's Hospital; Department of Cancer Biology, Dana-Farber Cancer
Institute; Harvard Medical School, Boston, MA, 02115 USA
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School,
Boston, MA 02115 USA
| |
Collapse
|
35
|
Unlu Y, Piaggi P, Stinson EJ, De Baca TC, Rodzevik TL, Walter M, Krakoff J, Chang DC. Impaired metabolic flexibility to fasting is associated with increased ad libitum energy intake in healthy adults. Obesity (Silver Spring) 2024; 32:949-958. [PMID: 38650517 PMCID: PMC11045162 DOI: 10.1002/oby.24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE We investigated how changes in 24-h respiratory exchange ratio (RER) and substrate oxidation during fasting versus an energy balance condition influence subsequent ad libitum food intake. METHODS Forty-four healthy, weight-stable volunteers (30 male and 14 female; mean [SD], age 39.3 [11.0] years; BMI 31.7 [8.3] kg/m2) underwent 24-h energy expenditure measurements in a respiratory chamber during energy balance (50% carbohydrate, 30% fat, and 20% protein) and 24-h fasting. Immediately after each chamber stay, participants were allowed 24-h ad libitum food intake from computerized vending machines. RESULTS Twenty-four-hour RER decreased by 9.4% (95% CI: -10.4% to -8.5%; p < 0.0001) during fasting compared to energy balance, reflecting a decrease in carbohydrate oxidation (mean [SD], -2.6 [0.8] MJ/day; p < 0.0001) and an increase in lipid oxidation (2.3 [0.9] MJ/day; p < 0.0001). Changes in 24-h RER and carbohydrate oxidation in response to fasting were correlated with the subsequent energy intake such that smaller decreases in fasting 24-h RER and carbohydrate oxidation, but not lipid oxidation, were associated with greater energy intake after fasting (r = 0.31, p = 0.04; r = 0.40, p = 0.007; and r = -0.27, p = 0.07, respectively). CONCLUSIONS Impaired metabolic flexibility to fasting, reflected by an inability to transition away from carbohydrate oxidation, is linked with increased energy intake.
Collapse
Affiliation(s)
- Yigit Unlu
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Emma J. Stinson
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Tomás Cabeza De Baca
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Theresa L. Rodzevik
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Mary Walter
- Clinical Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Douglas C. Chang
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
36
|
Chasseigneaux S, Cochois-Guégan V, Lecorgne L, Lochus M, Nicolic S, Blugeon C, Jourdren L, Gomez-Zepeda D, Tenzer S, Sanquer S, Nivet-Antoine V, Menet MC, Laplanche JL, Declèves X, Cisternino S, Saubaméa B. Fasting upregulates the monocarboxylate transporter MCT1 at the rat blood-brain barrier through PPAR δ activation. Fluids Barriers CNS 2024; 21:33. [PMID: 38589879 PMCID: PMC11003008 DOI: 10.1186/s12987-024-00526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.
Collapse
Affiliation(s)
- Stéphanie Chasseigneaux
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois-Guégan
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Lucas Lecorgne
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Murielle Lochus
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Corinne Blugeon
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Laurent Jourdren
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - David Gomez-Zepeda
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | | | - Valérie Nivet-Antoine
- AP-HP Biochimie générale, Hôpital Necker Enfants Malades, Université Paris Cité, Inserm, Innovations Thérapeutiques en Hémostase, Paris, France
| | - Marie-Claude Menet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, 91400, Orsay, France
| | - Jean-Louis Laplanche
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bruno Saubaméa
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
37
|
Hanin A, Chollet C, Demeret S, Di Meglio L, Castelli F, Navarro V. Metabolomic changes in adults with status epilepticus: A human case-control study. Epilepsia 2024; 65:929-943. [PMID: 38339978 DOI: 10.1111/epi.17899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Status epilepticus (SE) is a life-threatening prolonged epileptic seizure that affects ~40 per 100 000 people yearly worldwide. The persistence of seizures may lead to excitotoxic processes, neuronal loss, and neuroinflammation, resulting in long-term neurocognitive and functional disabilities. A better understanding of the pathophysiological mechanisms underlying SE consequences is crucial for improving SE management and preventing secondary neuronal injury. METHODS We conducted a comprehensive untargeted metabolomic analysis, using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), on plasma and cerebrospinal fluid (CSF) samples from 78 adult patients with SE and 107 control patients without SE, including 29 with CSF for both groups. The metabolomic fingerprints were compared between patients with SE and controls. Metabolites with differences in relative abundances that could not be attributed to treatment or nutrition provided in the intensive care unit were isolated. Enrichment analysis was performed on these metabolites to identify the most affected pathways. RESULTS We identified 76 metabolites in the plasma and 37 in the CSF that exhibited differential expression in patients with SE compared to controls. The enrichment analysis revealed that metabolic dysregulations in patients with SE affected primarily amino acid metabolism (including glutamate, alanine, tryptophan, glycine, and serine metabolism), pyrimidine metabolism, and lipid homeostasis. Specifically, patients with SE had elevated levels of pyruvate, quinolinic acid, and keto butyric acid levels, along with lower levels of arginine, N-acetylaspartylglutamate (NAAG), tryptophan, uracil, and uridine. The tryptophan kynurenine pathway was identified as the most significantly altered in SE, resulting in the overproduction of quinolinic acid, an N-methyl-d-aspartate (NMDA) receptor agonist with pro-inflammatory properties. SIGNIFICANCE This study has identified several pathways that may play pivotal roles in SE consequences, such as the tryptophan kynurenine pathway. These findings offer novel perspectives for the development of neuroprotective therapeutics.
Collapse
Affiliation(s)
- Aurélie Hanin
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Céline Chollet
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Sophie Demeret
- AP-HP, Neuro-Intensive Care Unit, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucas Di Meglio
- AP-HP, Neuro-Intensive Care Unit, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Florence Castelli
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Vincent Navarro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
- Center of Reference for Rare Epilepsies, Epicare, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
38
|
Wolfsdorf JI, Derks TGJ, Drachmann D, Shah P, Thornton PS, Weinstein DA. Idiopathic Pathological Ketotic Hypoglycemia: Finding the Needle in a Haystack. Horm Res Paediatr 2024:1-12. [PMID: 38513624 DOI: 10.1159/000538483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/17/2024] [Indexed: 03/23/2024] Open
Abstract
Sick children often have a decreased appetite and experience vomiting and diarrhea; however, hypoglycemia (plasma glucose concentration ≤50 mg/dL or 2.8 mmol/L) is rare. Ketotic hypoglycemia (KH) is the most common cause of hypoglycemia presenting to an Emergency Department in a previously healthy child between 6 months and 6 years of age. Ketosis and hypoglycemia are now well understood to be normal physiologic responses of young children to prolonged fasting.There is now substantial evidence that the term KH describes a variety of conditions including both the lower end of the normal distribution of fasting tolerance in young children as well as numerous rare disorders that impair fasting adaptation. Recent advances in molecular genetic testing have led to the discovery of these rare disorders. Idiopathic pathological KH is a diagnosis of exclusion that describes rare children who have abnormally limited fasting tolerance, experience recurrent episodes of KH, or develop symptoms of hypoglycemia despite elevated ketone levels, and in whom an explanation cannot be found despite extensive investigation. This review provides an approach to distinguishing between physiological KH and pathological KH and includes recommendations for management.
Collapse
Affiliation(s)
- Joseph I Wolfsdorf
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Danielle Drachmann
- Ketotic Hypoglycemia International, Skanderborg, Denmark, Patient-Centered Research, Evidera, London, UK
| | - Pratik Shah
- Paediatric Endocrinology and Diabetes, The Royal London Children's Hospital, Barts Health NHS Trust and Honorary Senior Lecturer, Queen Mary University London, London, UK
| | - Paul S Thornton
- Division of Endocrinology and Diabetes and the Congenital Hyperinsulinism Center, Cook Children's Medical Center and Department of Pediatrics, Burnett School of Medicine, Texas Christian University, Fort Worth, Texas, USA
| | - David A Weinstein
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
39
|
Edwards MGP, Andersen JR, Curtis DJ, Riberholt CG, Poulsen I. Diet-induced ketosis in adult patients with subacute acquired brain injury: a feasibility study. Front Med (Lausanne) 2024; 10:1305888. [PMID: 38571572 PMCID: PMC10990248 DOI: 10.3389/fmed.2023.1305888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/23/2023] [Indexed: 04/05/2024] Open
Abstract
Background Research in animal models on cerebral metabolism after brain injury highlights the potential benefits of ketosis in reducing secondary brain injury, but studies in humans are lacking. Aim This study aimed to examine if a 6-week ketogenic diet intervention with added medium-chain triglycerides (MCT) was feasible in adult patients with acquired brain injury in the subacute phase, whether ketosis could be achieved and maintained, and to what extent serious adverse reactions, adverse reactions, serious adverse events, and adverse events occured. Methods Patients ≥18 years of age diagnosed with subacute acquired brain injury and an expectation of hospitalisation ≥6 weeks were included in the intervention group. Patients not included in the intervention group were included in a standard care reference group. The intervention consisted of a ketogenic diet supplemented with MCT to obtain a plasma concentration of β-hydroxybutyrate (BHB) ≥0.5 mmol/L. Patients who were enterally fed were given KetoCal® 2.5:1 LQ MCT Multi Fiber (Nutricia A/S, Allerød, Denmark), supplemented with Liquigen® (Nutricia A/S, Allerød, Denmark). Patients consuming oral nutrition were given KetoCal® 2.5:1 LQ MCT Multi Fiber supplemented with Liquigen®, in addition to ketogenic meals. Results During a 13-week inclusion period, 12 of 13 eligible patients (92% [95% CI: 67% to 99%]) were included in the intervention group, and 17 of 18 excluded patients (94% [95% CI: 74% to 99%]) were included in the reference group. Eight patients (67%) completed the 6-week intervention. It took a median of 1 day to achieve ketosis from starting a 100% MCT ketogenic diet, and it was maintained for 97% of the intervention period after ketosis was obtained. There were no serious adverse reactions to the MCT ketogenic diet, and patients experienced adverse reactions not considered serious in 9.5% of days with the intervention. The MCT ketogenic diet was accepted by patients on all intervention days, and in the two patients transitioning from enteral feeding to oral intake, there were no complications related to transitioning. Conclusion Intervention with MCT ketogenic diet is feasible and tolerated for 6 weeks in hospitalised adult patients with subacute acquired brain injury. Randomised controlled trials are needed to assess the benefits and harms of the MCT ketogenic diet and the effect on patients' recovery.Clinical trial registration: ClinicalTrials.gov, identifier [NCT04308577].
Collapse
Affiliation(s)
- Maria G. P. Edwards
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Jens R. Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Derek J. Curtis
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Christian G. Riberholt
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Ingrid Poulsen
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
40
|
Hannaian SJ, Lov J, Hawley SE, Dargegen M, Malenda D, Gritsas A, Gouspillou G, Morais JA, Churchward-Venne TA. Acute ingestion of a ketone monoester, whey protein, or their co-ingestion in the overnight postabsorptive state elicit a similar stimulation of myofibrillar protein synthesis rates in young males: a double-blind randomized trial. Am J Clin Nutr 2024; 119:716-729. [PMID: 38215886 PMCID: PMC10972741 DOI: 10.1016/j.ajcnut.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Ketone bodies may have anabolic effects in skeletal muscle via their capacity to stimulate protein synthesis. Whether orally ingested exogenous ketones can stimulate postprandial myofibrillar protein synthesis (MyoPS) rates with and without dietary protein co-ingestion is unknown. OBJECTIVES This study aimed to evaluate the effects of ketone monoester intake and elevated blood β-hydroxybutyrate (β-OHB) concentration, with and without dietary protein co-ingestion, on postprandial MyoPS rates and mechanistic target of rapamycin complex 1 (mTORC1) pathway signaling. METHODS In a randomized, double-blind, parallel group design, 36 recreationally active healthy young males (age: 24.2 ± 4.1 y; body fat: 20.9% ± 5.8%; body mass index: 23.4 ± 2 kg/m2) received a primed continuous infusion of L-[ring-2H5]-phenylalanine and ingested one of the following: 1) the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET+PRO). Blood and muscle biopsy samples were collected during basal and postprandial (300 min) conditions to assess β-OHB, glucose, insulin, and amino acid concentrations, MyoPS rates, and mTORC1 pathway signaling. RESULTS Capillary blood β-OHB concentration increased similarly during postprandial conditions in KET and KET+PRO, with both being greater than PRO from 30 to 180 min (treatment × time interaction: P < 0.001). Postprandial plasma leucine and essential amino acid (EAA) incremental area under the curve (iAUC) over 300 min was greater (treatment: both P < 0.001) in KET+PRO compared with PRO and KET. KET, PRO, and KET+PRO stimulated postprandial MyoPS rates (0-300 min) higher than basal conditions [absolute change: 0.020%/h; (95% CI: 0.013, 0.027%/h), 0.014%/h (95% CI: 0.009, 0.019%/h), 0.019%/h (95% CI: 0.014, 0.024%/h), respectively (time: P < 0.001)], with no difference between treatments (treatment: P = 0.383) or treatment × time interaction (interaction: P = 0.245). mTORC1 pathway signaling responses did not differ between treatments (all P > 0.05). CONCLUSIONS Acute oral intake of a ketone monoester, 10 g whey protein, or their co-ingestion in the overnight postabsorptive state elicit a similar stimulation of postprandial MyoPS rates in healthy young males. This trial was registered at clinicaltrials.gov as NCT04565444 (https://clinicaltrials.gov/study/NCT04565444).
Collapse
Affiliation(s)
- Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Jamie Lov
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada
| | - Stephanie E Hawley
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada
| | - Manon Dargegen
- Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Divine Malenda
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada
| | - Ari Gritsas
- Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'activité Physique, Faculté des Sciences, UQAM, Montréal, Quebec, Canada
| | - José A Morais
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada; Division of Geriatric Medicine, McGill University, Montréal, Quebec, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada; Division of Geriatric Medicine, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
41
|
Soni S, Tabatabaei Dakhili SA, Ussher JR, Dyck JRB. The therapeutic potential of ketones in cardiometabolic disease: impact on heart and skeletal muscle. Am J Physiol Cell Physiol 2024; 326:C551-C566. [PMID: 38193855 PMCID: PMC11192481 DOI: 10.1152/ajpcell.00501.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
β-Hydroxybutyrate (βOHB) is the major ketone in the body, and it is recognized as a metabolic energy source and an important signaling molecule. While ketone oxidation is essential in the brain during prolonged fasting/starvation, other organs such as skeletal muscle and the heart also use ketones as metabolic substrates. Additionally, βOHB-mediated molecular signaling events occur in heart and skeletal muscle cells, and via metabolism and/or signaling, ketones may contribute to optimal skeletal muscle health and cardiac function. Of importance, when the use of ketones for ATP production and/or as signaling molecules becomes disturbed in the presence of underlying obesity, type 2 diabetes, and/or cardiovascular diseases, these changes may contribute to cardiometabolic disease. As a result of these disturbances in cardiometabolic disease, multiple approaches have been used to elevate circulating ketones with the goal of optimizing either ketone metabolism or ketone-mediated signaling. These approaches have produced significant improvements in heart and skeletal muscle during cardiometabolic disease with a wide range of benefits that include improved metabolism, weight loss, better glycemic control, improved cardiac and vascular function, as well as reduced inflammation and oxidative stress. Herein, we present the evidence that indicates that ketone therapy could be used as an approach to help treat cardiometabolic diseases by targeting cardiac and skeletal muscles.
Collapse
Affiliation(s)
- Shubham Soni
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Ruppert PMM, Kersten S. Mechanisms of hepatic fatty acid oxidation and ketogenesis during fasting. Trends Endocrinol Metab 2024; 35:107-124. [PMID: 37940485 DOI: 10.1016/j.tem.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
Fasting is part of many weight management and health-boosting regimens. Fasting causes substantial metabolic adaptations in the liver that include the stimulation of fatty acid oxidation and ketogenesis. The induction of fatty acid oxidation and ketogenesis during fasting is mainly driven by interrelated changes in plasma levels of various hormones and an increase in plasma nonesterified fatty acid (NEFA) levels and is mediated transcriptionally by the peroxisome proliferator-activated receptor (PPAR)α, supported by CREB3L3 (cyclic AMP-responsive element-binding protein 3 like 3). Compared with men, women exhibit higher ketone levels during fasting, likely due to higher NEFA availability, suggesting that the metabolic response to fasting shows sexual dimorphism. Here, we synthesize the current molecular knowledge on the impact of fasting on hepatic fatty acid oxidation and ketogenesis.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 C Odense, Denmark
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
43
|
Shahtaghi NR, Soni B, Bakrey H, Bigdelitabar S, Jain SK. Beta-Hydroxybutyrate: A Supplemental Molecule for Various Diseases. Curr Drug Targets 2024; 25:919-933. [PMID: 39238395 DOI: 10.2174/0113894501312168240821082224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
β-hydroxybutyrate (BHB) is a ketone body that serves as an alternative energy source for various tissues, including the brain, heart, and skeletal muscle. As a metabolic intermediate and signaling molecule, BHB plays a crucial role in modulating cellular and physiological processes. Notably, BHB supplementation offers a novel and promising strategy to induce nutritional ketosis without the need for strict dietary adherence or causing nutritional deficiencies. This review article provides an overview of BHB metabolism and explores its applications in age-related diseases. This review conducted a comprehensive search of PubMed, ScienceDirect, and other relevant English-language articles. The main findings were synthesized, and discussed the challenges, limitations, and future directions of BHB supplementation. BHB supplementation holds potential benefits for various diseases and conditions, including neurodegenerative disorders, cardiovascular diseases, cancers, and inflammation. BHB acts through multiple mechanisms, including interactions with cell surface receptors, intracellular enzymes, transcription factors, signaling molecules, and epigenetic modifications. Despite its promise, BHB supplementation faces several challenges, such as determining the optimal dosage, ensuring long-term safety, identifying the most effective type and formulation, establishing biomarkers of response, and conducting cost-effectiveness analyses. BHB supplementation opens exciting avenues for research, including investigating molecular mechanisms, refining optimization strategies, exploring innovation opportunities, and assessing healthspan and lifespan benefits. BHB supplementation represents a new frontier in health research, offering a potential pathway to enhance well-being and extend lifespan.
Collapse
Affiliation(s)
- Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Bindu Soni
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Hossamaldeen Bakrey
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Samira Bigdelitabar
- Department of Microbiology, Government Medical College, 143001, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
- Centre for Basic & Translational Research in Health Sciences (CBTHRS), Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| |
Collapse
|
44
|
Ye YC, Chai SF, Li XR, Wu MN, Cai HY, Wang ZJ. Intermittent fasting and Alzheimer's disease-Targeting ketone bodies as a potential strategy for brain energy rescue. Metab Brain Dis 2024; 39:129-146. [PMID: 37823968 DOI: 10.1007/s11011-023-01288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.
Collapse
Affiliation(s)
- Yu- Cai Ye
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shi-Fan Chai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Ru Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
45
|
Tiwari A, Hashemiaghdam A, Laramie MA, Maschi D, Haddad T, Stunault MI, Bergom C, Javaheri A, Klyachko V, Ashrafi G. Sirtuin3 ensures the metabolic plasticity of neurotransmission during glucose deprivation. J Cell Biol 2024; 223:e202305048. [PMID: 37988067 PMCID: PMC10660140 DOI: 10.1083/jcb.202305048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Neurotransmission is an energetically expensive process that underlies cognition. During intense electrical activity or dietary restrictions, the glucose level in the brain plummets, forcing neurons to utilize alternative fuels. However, the molecular mechanisms of neuronal metabolic plasticity remain poorly understood. Here, we demonstrate that glucose-deprived neurons activate the CREB and PGC1α transcriptional program, which induces expression of the mitochondrial deacetylase Sirtuin 3 (Sirt3) both in vitro and in vivo. We show that Sirt3 localizes to axonal mitochondria and stimulates mitochondrial oxidative capacity in hippocampal nerve terminals. Sirt3 plays an essential role in sustaining synaptic transmission in the absence of glucose by providing metabolic support for the retrieval of synaptic vesicles after release. These results demonstrate that the transcriptional induction of Sirt3 facilitates the metabolic plasticity of synaptic transmission.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marissa A. Laramie
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dario Maschi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tristaan Haddad
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marion I. Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali Javaheri
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran VA Hospital, St. Louis, MO, USA
| | - Vitaly Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
46
|
Gabuzyan R, Lee C, Nygaard HB. Ketogenic Approaches for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2024; 101:S443-S453. [PMID: 39422952 DOI: 10.3233/jad-240186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dementia represents one of the largest and most urgent public health problems across the globe. Modeling projections have estimated that delaying the onset of Alzheimer's disease (AD) by 6 months would reduce the prevalence by 5%, while a delay of 12 months would reduce the prevalence by 10%. One approach to achieving a delay in the onset of AD is to investigate lifestyle interventions that could be widely implemented with a favorable risk-benefit relationship and socioeconomic profile. Amongst such interventions, there is increasing evidence to support the use of ketogenic interventions in AD. Indeed, it is well known that cerebral glucose metabolism is impaired in AD, even at a preclinical stage, and a growing body of literature suggests that these findings may represent a primary pathogenic mechanism leading to neurodegeneration. Ketones are readily taken up by the brain and can serve as an alternative energy source for neurons and glia, hypothetically bypassing the glucose uptake deficit in AD. In this invited review we discuss the preclinical as well as clinical work aiming to increase ketones as a primary intervention in AD, including variations of the ketogenic diet, medium chain triglyceride supplementation, and newer, more experimental approaches.
Collapse
Affiliation(s)
- Renata Gabuzyan
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Christopher Lee
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Haakon B Nygaard
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
47
|
Reghupaty SC, Dall NR, Svensson KJ. Hallmarks of the metabolic secretome. Trends Endocrinol Metab 2024; 35:49-61. [PMID: 37845120 PMCID: PMC10841501 DOI: 10.1016/j.tem.2023.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The identification of novel secreted factors is advancing at an unprecedented pace. However, there is a critical need to consolidate and integrate this knowledge to provide a framework of their diverse mechanisms, functional significance, and inter-relationships. Complicating this effort are challenges related to nonstandardized methods, discrepancies in sample handling, and inconsistencies in the annotation of unknown molecules. This Review aims to synthesize the rapidly expanding field of the metabolic secretome, encompassing the five major types of secreted factors: proteins, peptides, metabolites, lipids, and extracellular vesicles. By systematically defining the functions and detection of the components within the metabolic secretome, this Review provides a primer into the advances of the field, and how integration of the techniques discussed can provide a deeper understanding of the mechanisms underlying metabolic homeostasis and its disorders.
Collapse
Affiliation(s)
- Saranya C Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Nicholas R Dall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
48
|
Nelson AB, Queathem ED, Puchalska P, Crawford PA. Metabolic Messengers: ketone bodies. Nat Metab 2023; 5:2062-2074. [PMID: 38092961 DOI: 10.1038/s42255-023-00935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
Prospective molecular targets and therapeutic applications for ketone body metabolism have increased exponentially in the past decade. Initially considered to be restricted in scope as liver-derived alternative fuel sources during periods of carbohydrate restriction or as toxic mediators during diabetic ketotic states, ketogenesis and ketone bodies modulate cellular homeostasis in multiple physiological states through a diversity of mechanisms. Selective signalling functions also complement the metabolic fates of the ketone bodies acetoacetate and D-β-hydroxybutyrate. Here we discuss recent discoveries revealing the pleiotropic roles of ketone bodies, their endogenous sourcing, signalling mechanisms and impact on target organs, and considerations for when they are either stimulated for endogenous production by diets or pharmacological agents or administered as exogenous wellness-promoting agents.
Collapse
Affiliation(s)
- Alisa B Nelson
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eric D Queathem
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
49
|
Chang Y, Chen J, Huang R, Wu J, Lin Y, Li Q, Shen G, Feng J. Identification of potential biomarkers in malnutrition children with severity by 1H-NMR-based metabolomics: a preliminary study in the Chinese population. Eur J Nutr 2023; 62:3193-3205. [PMID: 37550595 DOI: 10.1007/s00394-023-03224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Child malnutrition is a global public health problem, but the underlying pathophysiologic mechanisms with severity remain poorly understood, and the potential biomarkers served to the clinical diagnosis are still not available. This study aimed to identify the serum metabolic characteristics of malnourished children with severity. METHODS Fasted overnight serum samples were collected following clinical standard procedures among 275 malnourished and 199 healthy children from the Women and Children's Hospital, Xiamen University Child Health Department from July 2020 to May 2022. Nuclear magnetic resonance (NMR)-based metabolomics strategy was applied to identify the potential serum biomarkers of malnutrition from 275 malnourished children aged 4 to 84 months with mild (Mil, 199 cases), moderate (Mod, 101 cases), and severe (Sev, 7 cases) malnutrition. RESULTS Ten, fifteen, and fifteen differential metabolites were identified from the Mil, Mod, and Sev malnutrition groups, respectively. Eight common metabolites, including increased acetoacetate, acetone, ethanol, succinate, 3-hydroxybutyrate, and decreased alanine, methionine, and N-acetyl-glycoprotein, could be the potential biomarkers for malnourished children. The altered metabolic pathways were mainly related to energy metabolism and amino acid metabolism via the network-based pathway enrichment. CONCLUSION Eight potential biomarkers, including acetoacetate, acetone, ethanol, succinate, 3-hydroxybutyrate, alanine, methionine, and N-acetyl-glycoprotein, could characterize the child malnutrition. Child malnutrition-induced abnormal energy metabolism, impaired nutrition utilization and the reduced nutrient availability, and more metabolic disturbance will appear with the severity. Our results are valuable for further studies on the etiology and pathogenesis of malnutrition for clinical intervention and improvement.
Collapse
Affiliation(s)
- Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Xiamen, 361005, Fujian, China
| | - Jing Chen
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Rong Huang
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Xiamen, 361005, Fujian, China
| | - Yanyan Lin
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Xiamen, 361005, Fujian, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Xiamen, 361005, Fujian, China.
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Xiamen, 361005, Fujian, China
| |
Collapse
|
50
|
Afshar M, van Hall G. LC-MS/MS method for quantitative profiling of ketone bodies, α-keto acids, lactate, pyruvate and their stable isotopically labelled tracers in human plasma: An analytical panel for clinical metabolic kinetics and interactions. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1230:123906. [PMID: 37925904 DOI: 10.1016/j.jchromb.2023.123906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
An important area within clinical research is in vivo metabolism of ketone bodies (β-hydroxybutyrate and acetoacetate) and in connection metabolites that may affect their production and/or cellular transport such as the keto-acids from the branched-chain amino acids, lactate and pyruvate. To determine in vivo metabolite turnover, availability of accurate and sensitive methods for analyzing the plasma concentrations of these metabolites and their stable isotopically labeled enrichments is mandatory. Therefore, the present study describes a high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous analysis of ketone bodies, α-keto acids, lactate, pyruvate, and their tracer enrichments in humans using 2 different derivatization techniques with 4-bromo-N-methylbenzylamine and O-benzylhydroxylamine as derivatization reagents, and 1-ethyl-3-dimethylaminopropyl carbodiimide as coupling compound followed by a single LC-MS/MS run. The method was validated for matrix effects, linearity, accuracy, precision, recovery, stability, and enrichment (ratio) analysis of a stable isotopically labelled analytes (tracers) continuously infused in humans divided by the unlabeled endogenous analyte (tracee) that makes it possible to quantify the analyte in vivo synthesis and degradation rates. The applied parallel derivatization procedure yielded good sensitivity for all analytes of interest and their tracers. Despite the double derivatization method, mixing the ethyl acetate portions at the final stage made it possible to simultaneously analyze all compounds in a single LC-MS/MS run. Moreover, the liquid chromatography method was optimized to robustly quantify the keto acids derived from leucine (α-keto-isocaproic acid) and isoleucine (α-keto-β-methylvaleric acid), the compounds with similar chemical structure and identical molecular weights. The presented method is designed and validated for human plasma. However, care should be taken in blood sampling and processing procedures as well as quick freezing and storage at -80 °C due to the instability of especially acetoacetate.
Collapse
Affiliation(s)
- Minoo Afshar
- Clinical Metabolomics Core Facility (CMCF), Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility (CMCF), Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|