BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:E1-9. [PMID: 10969042 DOI: 10.1161/01.res.87.5.e1] [Cited by in Crossref: 1668] [Cited by in F6Publishing: 921] [Article Influence: 75.8] [Reference Citation Analysis]
Number Citing Articles
1 Lima Martínez MM, Contreras MA, Marín W, D’marco L. Statins in COVID-19: Is there any foundation? Clínica e Investigación en Arteriosclerosis (English Edition) 2020;32:278-81. [DOI: 10.1016/j.artere.2020.11.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Shim KY, Eom YW, Kim MY, Kang SH, Baik SK. Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension. Korean J Intern Med. 2018;33:453-461. [PMID: 29462546 DOI: 10.3904/kjim.2017.317] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
3 Barbuddhe SB, Rawool DB, Gaonkar PP, Vergis J, Dhama K, Malik SS. Global scenario, public health concerns and mitigation strategies to counter current ongoing SARS-CoV-2 / COVID-19 pandemic. Hum Vaccin Immunother 2020;16:3023-33. [PMID: 33121328 DOI: 10.1080/21645515.2020.1810496] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Ji X, Tan W, Zhang C, Zhai Y, Hsueh Y, Zhang Z, Zhang C, Lu Y, Duan B, Tan G, Na R, Deng G, Niu G. TWIRLS, a knowledge-mining technology, suggests a possible mechanism for the pathological changes in the human host after coronavirus infection via ACE2. Drug Dev Res 2020. [PMID: 32657473 DOI: 10.1002/ddr.21717] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
5 Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 2021;6:233. [PMID: 34117216 DOI: 10.1038/s41392-021-00653-w] [Reference Citation Analysis]
6 Derruau S, Bouchet J, Nassif A, Baudet A, Yasukawa K, Lorimier S, Prêcheur I, Bloch-Zupan A, Pellat B, Chardin H, Jung S, On Behalf Of Task Force Covid-Collège National des EnseignantS En Biologie Orale Cnesbo-France. COVID-19 and Dentistry in 72 Questions: An Overview of the Literature. J Clin Med 2021;10:779. [PMID: 33669185 DOI: 10.3390/jcm10040779] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Sato K, Sinclair JE, Sadeghirad H, Fraser JF, Short KR, Kulasinghe A. Cardiovascular disease in SARS-CoV-2 infection. Clin Transl Immunology 2021;10:e1343. [PMID: 34512975 DOI: 10.1002/cti2.1343] [Reference Citation Analysis]
8 Yacoub R, Campbell KN. Inhibition of RAS in diabetic nephropathy. Int J Nephrol Renovasc Dis 2015;8:29-40. [PMID: 25926752 DOI: 10.2147/IJNRD.S37893] [Cited by in Crossref: 15] [Cited by in F6Publishing: 30] [Article Influence: 2.1] [Reference Citation Analysis]
9 Nigro E, Perrotta F, Polito R, D'Agnano V, Scialò F, Bianco A, Daniele A. Metabolic Perturbations and Severe COVID-19 Disease: Implication of Molecular Pathways. Int J Endocrinol 2020;2020:8896536. [PMID: 33312199 DOI: 10.1155/2020/8896536] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Jani V, Koulgi S, Uppuladinne VNM, Sonavane U, Joshi R. An insight into the inhibitory mechanism of phytochemicals and FDA-approved drugs on the ACE2-Spike complex of SARS-CoV-2 using computational methods. Chem Zvesti 2021;:1-24. [PMID: 33994655 DOI: 10.1007/s11696-021-01680-1] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Del Turco S, Vianello A, Ragusa R, Caselli C, Basta G. COVID-19 and cardiovascular consequences: Is the endothelial dysfunction the hardest challenge? Thromb Res 2020;196:143-51. [PMID: 32871306 DOI: 10.1016/j.thromres.2020.08.039] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
12 Shigemura N, Takai S, Hirose F, Yoshida R, Sanematsu K, Ninomiya Y. Expression of Renin-Angiotensin System Components in the Taste Organ of Mice. Nutrients 2019;11:E2251. [PMID: 31546789 DOI: 10.3390/nu11092251] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
13 Stilhano RS, Costa AJ, Nishino MS, Shams S, Bartolomeo CS, Breithaupt-Faloppa AC, Silva EA, Ramirez AL, Prado CM, Ureshino RP. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors. FASEB J 2020;34:14103-19. [PMID: 32965736 DOI: 10.1096/fj.202001394RR] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
14 Santos KL, Vento MA, Wright JW, Speth RC. The effects of para-chloromercuribenzoic acid and different oxidative and sulfhydryl agents on a novel, non-AT1, non-AT2 angiotensin binding site identified as neurolysin. Regul Pept 2013;184:104-14. [PMID: 23511333 DOI: 10.1016/j.regpep.2013.03.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
15 Zhao Y, Xu C. [Structure and function of angiotensin converting enzyme and its inhibitors]. Sheng Wu Gong Cheng Xue Bao 2008;24:171-6. [PMID: 18464595 DOI: 10.1016/s1872-2075(08)60007-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
16 Egbi OG, Adejumo OA, Akinbodewa AA. Coronavirus infection and kidney disease: a review of current and emerging evidence. Pan Afr Med J 2020;37:149. [PMID: 33425182 DOI: 10.11604/pamj.2020.37.149.23655] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Pasquarelli-do-Nascimento G, Braz-de-Melo HA, Faria SS, Santos IO, Kobinger GP, Magalhães KG. Hypercoagulopathy and Adipose Tissue Exacerbated Inflammation May Explain Higher Mortality in COVID-19 Patients With Obesity. Front Endocrinol (Lausanne) 2020;11:530. [PMID: 32849309 DOI: 10.3389/fendo.2020.00530] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
18 Iheanacho CO, Odili VU, Eze UIH. Risk of SARS-CoV-2 infection and COVID-19 prognosis with the use of renin-angiotensin-aldosterone system (RAAS) inhibitors: a systematic review. Futur J Pharm Sci 2021;7:73. [PMID: 33778087 DOI: 10.1186/s43094-021-00224-4] [Reference Citation Analysis]
19 Kelly TN, Raj D, Rahman M, Kretzler M, Kallem RR, Ricardo AC, Rosas SE, Tao K, Xie D, Hamm LL, He J; CRIC Study Investigators. The role of renin-angiotensin-aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Nephrol Dial Transplant 2015;30:1711-8. [PMID: 25906781 DOI: 10.1093/ndt/gfv125] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
20 Azzam O, Kiuchi MG, Ho JK, Matthews VB, Gavidia LML, Nolde JM, Carnagarin R, Schlaich MP. New Molecules for Treating Resistant Hypertension: a Clinical Perspective. Curr Hypertens Rep 2019;21:80. [PMID: 31506798 DOI: 10.1007/s11906-019-0978-z] [Reference Citation Analysis]
21 Kouhpayeh S, Shariati L, Boshtam M, Rahimmanesh I, Mirian M, Esmaeili Y, Najaflu M, Khanahmad N, Zeinalian M, Trovato M, Tay FR, Khanahmad H, Makvandi P. The Molecular Basis of COVID-19 Pathogenesis, Conventional and Nanomedicine Therapy. Int J Mol Sci 2021;22:5438. [PMID: 34064039 DOI: 10.3390/ijms22115438] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Edenfield RC, Easley CA 4th. Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Nat Rev Urol 2021. [PMID: 34837081 DOI: 10.1038/s41585-021-00542-5] [Reference Citation Analysis]
23 Bai Y, Wen L, Zhao Y, Li J, Guo C, Zhang X, Yang J, Dong Y, Ma L, Liang G, Kou Y, Wang E. Clinical course and outcomes of COVID-19 patients with chronic obstructive pulmonary disease: A retrospective observational study in Wuhan, China. Medicine (Baltimore) 2022;101:e29141. [PMID: 35550462 DOI: 10.1097/MD.0000000000029141] [Reference Citation Analysis]
24 Zhang L, Zetter MA, Guerra EC, Hernández VS, Mahata SK, Eiden LE. ACE2 in the second act of COVID-19 syndrome: Peptide dysregulation and possible correction with oestrogen. J Neuroendocrinol 2021;33:e12935. [PMID: 33462852 DOI: 10.1111/jne.12935] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Zheng M, Wang J, Ling L, Xue D, Wang S, Zhao Y. Screening and analysis of breast cancer genes regulated by the human mammary microenvironment in a humanized mouse model. Oncol Lett 2016;12:5261-8. [PMID: 28101242 DOI: 10.3892/ol.2016.5310] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
26 Goidescu CM, Chiorescu RM, Diana ML, Mocan M, Stoia MA, Anton FP, Farcaş AD. ACE2 and Apelin-13: Biomarkers with a Prognostic Value in Congestive Heart Failure. Dis Markers 2021;2021:5569410. [PMID: 34257745 DOI: 10.1155/2021/5569410] [Reference Citation Analysis]
27 Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47:193-199. [PMID: 19333547 DOI: 10.1007/s00592-009-0109-4] [Cited by in Crossref: 438] [Cited by in F6Publishing: 389] [Article Influence: 33.7] [Reference Citation Analysis]
28 Lubbe L, Cozier GE, Oosthuizen D, Acharya KR, Sturrock ED. ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clin Sci (Lond) 2020;134:2851-71. [PMID: 33146371 DOI: 10.1042/CS20200899] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
29 Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the Renin-Angiotensin System and the Vasopressinergic System Interactions in Cardiovascular Disorders. Curr Hypertens Rep 2018;20:19. [PMID: 29556787 DOI: 10.1007/s11906-018-0823-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 6.8] [Reference Citation Analysis]
30 Tan CS, Yeoh SF, Long CM. COVID-19: Critical Role of Angiotensin 1-7 in ACE2 Modulation. Ann Acad Med Singap 2020;49:398-400. [DOI: 10.47102/annals-acadmedsg.202085] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
31 Diniz GP, Senger N, Carneiro-Ramos MS, Santos RA, Barreto-Chaves ML. Cardiac ACE2/angiotensin 1-7/Mas receptor axis is activated in thyroid hormone-induced cardiac hypertrophy. Ther Adv Cardiovasc Dis 2016;10:192-202. [PMID: 26715125 DOI: 10.1177/1753944715623228] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
32 Wang H, Saha AK, Sun X, Kon ND, Ferrario CM, Groban L. Atrial appendage angiotensin-converting enzyme-2, aging and cardiac surgical patients: a platform for understanding aging-related coronavirus disease-2019 vulnerabilities. Curr Opin Anaesthesiol 2021;34:187-98. [PMID: 33606395 DOI: 10.1097/ACO.0000000000000965] [Reference Citation Analysis]
33 Adu-Amankwaah J, Mprah R, Adekunle AO, Ndzie Noah ML, Adzika GK, Machuki JO, Sun H. The cardiovascular aspect of COVID-19. Ann Med 2021;53:227-36. [PMID: 33345626 DOI: 10.1080/07853890.2020.1861644] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
34 Li X, Chen Z, Geng J, Mei Q, Li H, Mao C, Han M. COVID-19 and Male Reproduction: A Thorny Problem. Am J Mens Health 2022;16:15579883221074816. [PMID: 35176914 DOI: 10.1177/15579883221074816] [Reference Citation Analysis]
35 Xia H, Lazartigues E. Angiotensin-converting enzyme 2: central regulator for cardiovascular function. Curr Hypertens Rep. 2010;12:170-175. [PMID: 20424953 DOI: 10.1007/s11906-010-0105-7] [Cited by in Crossref: 73] [Cited by in F6Publishing: 76] [Article Influence: 6.6] [Reference Citation Analysis]
36 Wang M, Zhang B, Jin L. Female fertility under the impact of COVID-19 pandemic: a narrative review. Expert Rev Mol Med 2021;23. [DOI: 10.1017/erm.2021.19] [Reference Citation Analysis]
37 Pereira VM, Reis FM, Cassali GD, Santos SHS, Casalechi M, Santos RAS, Reis AM. Localization of angiotensin-(1-7) and Mas receptor in the rat ovary throughout the estrous cycle. J Mol Histol 2020;51:639-47. [PMID: 32875393 DOI: 10.1007/s10735-020-09910-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Wu Y. Compensation of ACE2 Function for Possible Clinical Management of 2019-nCoV-Induced Acute Lung Injury. Virol Sin 2020;35:256-8. [PMID: 32034638 DOI: 10.1007/s12250-020-00205-6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 24.5] [Reference Citation Analysis]
39 Chen J, Tanguay RL, Tal TL, Gai Z, Ma X, Bai C, Tilton SC, Jin D, Yang D, Huang C, Dong Q. Early life perfluorooctanesulphonic acid (PFOS) exposure impairs zebrafish organogenesis. Aquat Toxicol 2014;150:124-32. [PMID: 24667235 DOI: 10.1016/j.aquatox.2014.03.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
40 Roberts MA, Velkoska E, Ierino FL, Burrell LM. Angiotensin-converting enzyme 2 activity in patients with chronic kidney disease. Nephrol Dial Transplant. 2013;28:2287-2294. [PMID: 23535224 DOI: 10.1093/ndt/gft038] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 4.0] [Reference Citation Analysis]
41 Bonafè M, Prattichizzo F, Giuliani A, Storci G, Sabbatinelli J, Olivieri F. Inflamm-aging: Why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev 2020;53:33-7. [PMID: 32389499 DOI: 10.1016/j.cytogfr.2020.04.005] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 30.5] [Reference Citation Analysis]
42 Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten JJ, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience 2021;24:102021. [PMID: 33426509 DOI: 10.1016/j.isci.2020.102021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
43 Lozahic C, Maddock H, Sandhu H. Anti-cancer Therapy Leads to Increased Cardiovascular Susceptibility to COVID-19. Front Cardiovasc Med 2021;8:634291. [PMID: 33969006 DOI: 10.3389/fcvm.2021.634291] [Reference Citation Analysis]
44 Xiao F, Hiremath S, Knoll G, Zimpelmann J, Srivaratharajah K, Jadhav D, Fergusson D, Kennedy CR, Burns KD. Increased urinary angiotensin-converting enzyme 2 in renal transplant patients with diabetes. PLoS One. 2012;7:e37649. [PMID: 22629438 DOI: 10.1371/journal.pone.0037649] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
45 Hsu CN, Tain YL. Targeting the Renin-Angiotensin-Aldosterone System to Prevent Hypertension and Kidney Disease of Developmental Origins. Int J Mol Sci 2021;22:2298. [PMID: 33669059 DOI: 10.3390/ijms22052298] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
46 Panariello F, Cellini L, Speciani M, De Ronchi D, Atti AR. How Does SARS-CoV-2 Affect the Central Nervous System? A Working Hypothesis. Front Psychiatry 2020;11:582345. [PMID: 33304284 DOI: 10.3389/fpsyt.2020.582345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
47 Haddadi K, Asadian L. Coronavirus Disease 2019: Latest Data on Neuroinvasive Potential. Iran J Med Sci 2020;45:325-32. [PMID: 33060875 DOI: 10.30476/ijms.2020.85980.1561] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Ramírez-lozada T, Loranca-garcía MC, Fuentes-venado CE, Rodríguez-cerdeira C, Ocharan-hernández E, Soriano-ursúa MA, Farfán-garcía ED, Chávez-gutiérrez E, Ramírez-magaña X, Robledo-cayetano M, Loza-mejía MA, Santa-olalla IAG, Torres-paez OU, Pinto-almazán R, Martínez-herrera E. Does the Fetus Limit Antibiotic Treatment in Pregnant Patients with COVID-19? Antibiotics 2022;11:252. [DOI: 10.3390/antibiotics11020252] [Reference Citation Analysis]
49 Xiao L, Sakagami H, Miwa N. ACE2: The key Molecule for Understanding the Pathophysiology of Severe and Critical Conditions of COVID-19: Demon or Angel? Viruses 2020;12:E491. [PMID: 32354022 DOI: 10.3390/v12050491] [Cited by in Crossref: 64] [Cited by in F6Publishing: 55] [Article Influence: 32.0] [Reference Citation Analysis]
50 Wong PC, Guo J, Zhang A. A hypothesis on the conflicting results of angiotensin converting enzyme inhibitor in the prevention of contrast-induced nephropathy. Med Hypotheses 2015;85:874-7. [PMID: 26432630 DOI: 10.1016/j.mehy.2015.09.020] [Reference Citation Analysis]
51 Li RT, Qin CF. Expression pattern and function of SARS-CoV-2 Receptor ACE2. Biosaf Health 2021. [PMID: 34466800 DOI: 10.1016/j.bsheal.2021.08.003] [Reference Citation Analysis]
52 Hajal J, Joubran N, Sleilaty G, Chacra D, Saliba Y, Assaad S, Chelala D, Fares N. Intradialytic hypotension: beyond hemodynamics. Physiol Res 2019;68:793-805. [PMID: 31424249 DOI: 10.33549/physiolres.934080] [Reference Citation Analysis]
53 Chapman FA, Nyimanu D, Maguire JJ, Davenport AP, Newby DE, Dhaun N. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol 2021. [PMID: 34389827 DOI: 10.1038/s41581-021-00461-z] [Reference Citation Analysis]
54 Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2014;4:1201-28. [PMID: 24944035 DOI: 10.1002/cphy.c130040] [Cited by in Crossref: 229] [Cited by in F6Publishing: 208] [Article Influence: 32.7] [Reference Citation Analysis]
55 Muhanna D, Arnipalli SR, Kumar SB, Ziouzenkova O. Osmotic Adaptation by Na+-Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID-19. Biomedicines 2020;8:E460. [PMID: 33142989 DOI: 10.3390/biomedicines8110460] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
56 Savić D, Alsheikh TM, Alhaj AK, Lazovic L, Alsarraf L, Bosnjakovic P, Yousef W. Ruptured cerebral pseudoaneurysm in an adolescent as an early onset of COVID-19 infection: case report. Acta Neurochir (Wien) 2020;162:2725-9. [PMID: 32720013 DOI: 10.1007/s00701-020-04510-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
57 Wang L, Jiang M, Qu J, Zhou N, Zhang X. Clinical management of lung cancer patients during the outbreak of COVID-19 epidemic. Infect Agent Cancer 2020;15:56. [PMID: 32983254 DOI: 10.1186/s13027-020-00322-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
58 Shirbhate E, Pandey J, Patel VK, Kamal M, Jawaid T, Gorain B, Kesharwani P, Rajak H. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: a potential approach for therapeutic intervention. Pharmacol Rep 2021. [PMID: 34176080 DOI: 10.1007/s43440-021-00303-6] [Reference Citation Analysis]
59 Xie F, Su P, Pan T, Zhou X, Li H, Huang H, Wang A, Wang F, Huang J, Yan H, Zeng L, Zhang L, Zhou F. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Adv Mater 2021;:e2103471. [PMID: 34665481 DOI: 10.1002/adma.202103471] [Reference Citation Analysis]
60 Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol 2011;300:R804-17. [PMID: 21178125 DOI: 10.1152/ajpregu.00222.2010] [Cited by in Crossref: 177] [Cited by in F6Publishing: 170] [Article Influence: 14.8] [Reference Citation Analysis]
61 Rodríguez-Lara SQ, García-Benavides L, Miranda-Díaz AG. The Renin-Angiotensin-Aldosterone System as a Therapeutic Target in Late Injury Caused by Ischemia-Reperfusion. Int J Endocrinol 2018;2018:3614303. [PMID: 29849615 DOI: 10.1155/2018/3614303] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
62 De Mello WC. Chemical Communication between Heart Cells is Disrupted by Intracellular Renin and Angiotensin II: Implications for Heart Development and Disease. Front Endocrinol (Lausanne) 2015;6:72. [PMID: 26042086 DOI: 10.3389/fendo.2015.00072] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
63 Koley T, Madaan S, Chowdhury SR, Kumar M, Kaur P, Singh TP, Ethayathulla AS. Structural analysis of COVID-19 spike protein in recognizing the ACE2 receptor of different mammalian species and its susceptibility to viral infection. 3 Biotech 2021;11:109. [PMID: 33552834 DOI: 10.1007/s13205-020-02599-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
64 Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14-20. [PMID: 32336612 DOI: 10.1016/j.ejim.2020.04.037] [Cited by in Crossref: 450] [Cited by in F6Publishing: 407] [Article Influence: 225.0] [Reference Citation Analysis]
65 Zhang Q, Chen F, Wang F, Di X, Li W, Zhang H. A Novel Modulator of the Renin–Angiotensin System, Benzoylaconitine, Attenuates Hypertension by Targeting ACE/ACE2 in Enhancing Vasodilation and Alleviating Vascular Inflammation. Front Pharmacol 2022;13:841435. [DOI: 10.3389/fphar.2022.841435] [Reference Citation Analysis]
66 Salem ES, Grobe N, Elased KM. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am J Physiol Renal Physiol. 2014;306:F629-F639. [PMID: 24452639 DOI: 10.1152/ajprenal.00516] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
67 Li G, He X, Zhang L, Ran Q, Wang J, Xiong A, Wu D, Chen F, Sun J, Chang C. Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19. J Autoimmun. 2020;112:102463. [PMID: 32303424 DOI: 10.1016/j.jaut.2020.102463] [Cited by in Crossref: 133] [Cited by in F6Publishing: 120] [Article Influence: 66.5] [Reference Citation Analysis]
68 Khodaei F, Ahsan A, Chamanifard M, Zamiri MJ, Ommati MM. Updated information on new coronavirus disease 2019 occurrence, drugs, and prediction of a potential receptor. J Biochem Mol Toxicol 2020;34:e22594. [PMID: 32770858 DOI: 10.1002/jbt.22594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
69 Augustine R, S A, Nayeem A, Salam SA, Augustine P, Dan P, Maureira P, Mraiche F, Gentile C, Hansbro PM, McClements L, Hasan A. Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin-angiotensin-aldosterone system (RAAS) dysregulation. Chem Biol Interact 2021;351:109738. [PMID: 34740598 DOI: 10.1016/j.cbi.2021.109738] [Reference Citation Analysis]
70 Gutierrez-Villagomez JM, Campos-García T, Molina-Torres J, López MG, Vázquez-Martínez J. Alkamides and Piperamides as Potential Antivirals against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Phys Chem Lett 2020;11:8008-16. [PMID: 32840378 DOI: 10.1021/acs.jpclett.0c01685] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
71 Oguz SH, Koca M, Yildiz BO. Aging versus youth: Endocrine aspects of vulnerability for COVID-19. Rev Endocr Metab Disord 2021. [PMID: 33860905 DOI: 10.1007/s11154-021-09656-y] [Reference Citation Analysis]
72 Chou CF, Shen S, Tan YJ, Fielding BC, Tan TH, Fu J, Xu Q, Lim SG, Hong W. A novel cell-based binding assay system reconstituting interaction between SARS-CoV S protein and its cellular receptor. J Virol Methods 2005;123:41-8. [PMID: 15582697 DOI: 10.1016/j.jviromet.2004.09.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
73 Wangler NJ, Santos KL, Schadock I, Hagen FK, Escher E, Bader M, Speth RC, Karamyan VT. Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site. J Biol Chem 2012;287:114-22. [PMID: 22039052 DOI: 10.1074/jbc.M111.273052] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
74 Klein SL, Dhakal S, Ursin RL, Deshpande S, Sandberg K, Mauvais-Jarvis F. Biological sex impacts COVID-19 outcomes. PLoS Pathog 2020;16:e1008570. [PMID: 32569293 DOI: 10.1371/journal.ppat.1008570] [Cited by in Crossref: 100] [Cited by in F6Publishing: 83] [Article Influence: 50.0] [Reference Citation Analysis]
75 Zhang M, Bai X, Cao W, Ji J, Wang L, Yang Y, Yang H. The Influence of Corticosteroids, Immunosuppressants and Biologics on Patients With Inflammatory Bowel Diseases, Psoriasis and Rheumatic Diseases in the Era of COVID-19: A Review of Current Evidence. Front Immunol 2021;12:677957. [PMID: 34335579 DOI: 10.3389/fimmu.2021.677957] [Reference Citation Analysis]
76 Shenoy V, Kwon KC, Rathinasabapathy A, Lin S, Jin G, Song C, Shil P, Nair A, Qi Y, Li Q, Francis J, Katovich MJ, Daniell H, Raizada MK. Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension 2014;64:1248-59. [PMID: 25225206 DOI: 10.1161/HYPERTENSIONAHA.114.03871] [Cited by in Crossref: 91] [Cited by in F6Publishing: 57] [Article Influence: 11.4] [Reference Citation Analysis]
77 Koitka A, Cooper ME, Thomas MC, Tikellis C. Angiotensin converting enzyme 2 in the kidney. Clin Exp Pharmacol Physiol 2008;35:420-5. [PMID: 18307733 DOI: 10.1111/j.1440-1681.2008.04889.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.1] [Reference Citation Analysis]
78 Almengló C, Couselo-Seijas M, Agra RM, Varela-Román A, García-Acuña JM, González-Peteiro M, González-Juanatey JR, Eiras S, Álvarez E. Soluble angiotensin-converting enzyme levels in heart failure or acute coronary syndrome: revisiting its modulation and prognosis value. J Mol Med (Berl) 2021;99:1741-53. [PMID: 34529122 DOI: 10.1007/s00109-021-02129-4] [Reference Citation Analysis]
79 Lami F, Elfadul M, Rashak HA, Al Nsour M, Akhtar H, Khader YS, Hussein AM, Naciri M, Samy S, Ghaleb Y, Taha HA, Aljanabe AH, Ali NA, Zayer RH, Ikram A, Rahman FU, Khan MM, Adam R, Ahmed AY, Afifi S. Risk Factors of COVID-19 Critical Outcomes in the Eastern Mediterranean Region: A Multicountry Retrospective Study . JMIR Public Health Surveill 2021. [PMID: 34736222 DOI: 10.2196/32831] [Reference Citation Analysis]
80 Lingappan K, Karmouty-Quintana H, Davies J, Akkanti B, Harting MT. Understanding the age divide in COVID-19: why are children overwhelmingly spared? Am J Physiol Lung Cell Mol Physiol. 2020;319:L39-L44. [PMID: 32491949 DOI: 10.1152/ajplung.00183.2020] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 17.5] [Reference Citation Analysis]
81 Azinheira Nobrega Cruz N, Gonçalves de Oliveira LC, Tedesco Silva Junior H, Osmar Medina Pestana J, Casarini DE. Angiotensin-Converting Enzyme 2 in the Pathogenesis of Renal Abnormalities Observed in COVID-19 Patients. Front Physiol 2021;12:700220. [PMID: 34497535 DOI: 10.3389/fphys.2021.700220] [Reference Citation Analysis]
82 Rathi H, Burman V, Datta SK, Rana SV, Mirza AA, Saha S, Kumar R, Naithani M. Review on COVID-19 Etiopathogenesis, Clinical Presentation and Treatment Available with Emphasis on ACE2.Indian J Clin Biochem. 2021;1-20. [PMID: 33424145 DOI: 10.1007/s12291-020-00953-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
83 Gomes-Santos IL, Fernandes T, Couto GK, Ferreira-Filho JC, Salemi VM, Fernandes FB, Casarini DE, Brum PC, Rossoni LV, de Oliveira EM, Negrao CE. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats. PLoS One 2014;9:e98012. [PMID: 24859374 DOI: 10.1371/journal.pone.0098012] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
84 Kehinde IA, Egbeyemi A, Kaur M, Onyenaka C, Adebusuyi T, Olaleye OA. Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike. J Biomol Struct Dyn 2022;:1-10. [PMID: 35220925 DOI: 10.1080/07391102.2022.2043938] [Reference Citation Analysis]
85 Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631-7. [PMID: 15141377 DOI: 10.1002/path.1570] [Reference Citation Analysis]
86 Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The Immune Response and Immunopathology of COVID-19. Front Immunol 2020;11:2037. [PMID: 32983152 DOI: 10.3389/fimmu.2020.02037] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 15.5] [Reference Citation Analysis]
87 Aragão DS, Cunha TS, Arita DY, Andrade MC, Fernandes AB, Watanabe IK, Mortara RA, Casarini DE. Purification and characterization of angiotensin converting enzyme 2 (ACE2) from murine model of mesangial cell in culture. Int J Biol Macromol 2011;49:79-84. [PMID: 21470562 DOI: 10.1016/j.ijbiomac.2011.03.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
88 Warner FJ, Guy JL, Lambert DW, Hooper NM, Turner AJ. Angiotensin converting enzyme-2 (ACE2) and its possible roles in hypertension, diabetes and cardiac function. Lett Pept Sci 2003;10:377-85. [PMID: 32214680 DOI: 10.1007/BF02442567] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.2] [Reference Citation Analysis]
89 Singh S, Chakravarty T, Chen P, Akhmerov A, Falk J, Friedman O, Zaman T, Ebinger JE, Gheorghiu M, Marbán L, Marbán E, Makkar RR. Allogeneic cardiosphere-derived cells (CAP-1002) in critically ill COVID-19 patients: compassionate-use case series. Basic Res Cardiol 2020;115:36. [PMID: 32399655 DOI: 10.1007/s00395-020-0795-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
90 Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020;477:2509-41. [PMID: 32648930 DOI: 10.1042/BCJ20190462] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
91 Wang S. Role of upstream stimulatory factor 2 in diabetic nephropathy. Front Biol (Beijing) 2015;10:221-9. [PMID: 26494984 DOI: 10.1007/s11515-015-1359-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
92 Sobczuk P, Czerwińska M, Kleibert M, Cudnoch-Jędrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. Heart Fail Rev 2020. [PMID: 32472524 DOI: 10.1007/s10741-020-09977-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
93 Cordeiro A, Ribamar A, Ramalho A. ADIPOSE TISSUE DYSFUNCTION AND MAFLD IN OBESITY ON THE SCENE OF COVID-19. Clin Res Hepatol Gastroenterol 2021;:101807. [PMID: 34543756 DOI: 10.1016/j.clinre.2021.101807] [Reference Citation Analysis]
94 Gelman R, Bayatra A, Kessler A, Schwartz A, Ilan Y. Targeting SARS-CoV-2 receptors as a means for reducing infectivity and improving antiviral and immune response: an algorithm-based method for overcoming resistance to antiviral agents. Emerg Microbes Infect 2020;9:1397-406. [PMID: 32490731 DOI: 10.1080/22221751.2020.1776161] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
95 Zisman LS. ACE and ACE2: a tale of two enzymes. Eur Heart J 2005;26:322-4. [PMID: 15671047 DOI: 10.1093/eurheartj/ehi043] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 1.6] [Reference Citation Analysis]
96 Alfaleh MA, Zawawi A, Al-Amri SS, Hashem AM. David versus goliath: ACE2-Fc receptor traps as potential SARS-CoV-2 inhibitors. MAbs 2022;14:2057832. [PMID: 35380919 DOI: 10.1080/19420862.2022.2057832] [Reference Citation Analysis]
97 Bhattarai A, Pawnikar S, Miao Y. Mechanism of ligand recognition by human ACE2 receptor. bioRxiv 2020:2020. [PMID: 33140043 DOI: 10.1101/2020.10.30.362749] [Reference Citation Analysis]
98 Wang HB, Yang J. The role of renin-angiotensin aldosterone system related micro-ribonucleic acids in hypertension. Saudi Med J 2015;36:1151-5. [PMID: 26446323 DOI: 10.15537/smj.2015.10.12458] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
99 Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse. Int J Mol Sci 2017;18:E563. [PMID: 28273875 DOI: 10.3390/ijms18030563] [Cited by in Crossref: 122] [Cited by in F6Publishing: 112] [Article Influence: 24.4] [Reference Citation Analysis]
100 Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112-116. [PMID: 16001071 DOI: 10.1038/nature03712] [Cited by in Crossref: 1473] [Cited by in F6Publishing: 1350] [Article Influence: 86.6] [Reference Citation Analysis]
101 Wysocki J, Ye M, Batlle D. Plasma and Kidney Angiotensin Peptides: Importance of the Aminopeptidase A/Angiotensin III Axis. Am J Hypertens 2015;28:1418-26. [PMID: 25968123 DOI: 10.1093/ajh/hpv054] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
102 Sarzani R, Giulietti F, Di Pentima C, Giordano P, Spannella F. Disequilibrium between the classic renin-angiotensin system and its opposing arm in SARS-CoV-2-related lung injury. Am J Physiol Lung Cell Mol Physiol 2020;319:L325-36. [PMID: 32639866 DOI: 10.1152/ajplung.00189.2020] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
103 Gul R, Kim UH, Alfadda AA. Renin-angiotensin system at the interface of COVID-19 infection. Eur J Pharmacol 2021;890:173656. [PMID: 33086029 DOI: 10.1016/j.ejphar.2020.173656] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
104 Devaux CA, Lagier JC, Raoult D. New Insights Into the Physiopathology of COVID-19: SARS-CoV-2-Associated Gastrointestinal Illness. Front Med (Lausanne) 2021;8:640073. [PMID: 33681266 DOI: 10.3389/fmed.2021.640073] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
105 Büyüksünetçi YT, Çitil BE, Tapan U, Anık Ü. Development and application of a SARS-CoV-2 colorimetric biosensor based on the peroxidase-mimic activity of γ-Fe2O3 nanoparticles. Mikrochim Acta 2021;188:335. [PMID: 34505191 DOI: 10.1007/s00604-021-04989-6] [Reference Citation Analysis]
106 Najafi Fard S, Petrone L, Petruccioli E, Alonzi T, Matusali G, Colavita F, Castilletti C, Capobianchi MR, Goletti D. In Vitro Models for Studying Entry, Tissue Tropism, and Therapeutic Approaches of Highly Pathogenic Coronaviruses. Biomed Res Int 2021;2021:8856018. [PMID: 34239932 DOI: 10.1155/2021/8856018] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
107 Soler MJ, Ribera A, Marsal JR, Mendez AB, Andres M, Azancot MA, Oristrell G, Méndez-boo L, Cohen J, Barrabés JA, Ferreira-gonzález I; Vall d’Hebron COVID-19 Working Group. Association of renin–angiotensin system blockers with COVID-19 diagnosis and prognosis in patients with hypertension: a population-based study. Clinical Kidney Journal 2021. [DOI: 10.1093/ckj/sfab161] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
108 Feng F, Chen J, Zhao J, Li Y, Li M, Sun C. Killing Two Birds with One Stone by Administration of Soluble ACE2: A Promising Strategy to Treat Both Cardiovascular Diseases and SARS-CoV-2 Infection. Viruses 2021;13:2243. [PMID: 34835049 DOI: 10.3390/v13112243] [Reference Citation Analysis]
109 Liu LP, Zhang XL, Li J. New perspectives on angiotensin-converting enzyme 2 and its related diseases. World J Diabetes 2021; 12(6): 839-854 [PMID: 34168732 DOI: 10.4239/wjd.v12.i6.839] [Cited by in CrossRef: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron LM, Pagliaro P, Pasqua T, Penna C, Rocca C, Samaja M, Angelone T. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. Geroscience 2020;42:1021-49. [PMID: 32430627 DOI: 10.1007/s11357-020-00198-w] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 25.0] [Reference Citation Analysis]
111 Wang Y, Fu W, Xue Y, Lu Z, Li Y, Yu P, Yu X, Xu H, Sui D. Ginsenoside Rc Ameliorates Endothelial Insulin Resistance via Upregulation of Angiotensin-Converting Enzyme 2. Front Pharmacol 2021;12:620524. [PMID: 33708129 DOI: 10.3389/fphar.2021.620524] [Reference Citation Analysis]
112 Serfozo P, Wysocki J, Gulua G, Schulze A, Ye M, Liu P, Jin J, Bader M, Myöhänen T, García-Horsman JA, Batlle D. Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (Angiotensin-Converting Enzyme 2)-Independent. Hypertension 2020;75:173-82. [PMID: 31786979 DOI: 10.1161/HYPERTENSIONAHA.119.14071] [Cited by in Crossref: 78] [Cited by in F6Publishing: 49] [Article Influence: 26.0] [Reference Citation Analysis]
113 Zebardast A, Hosseini P, Hasanzadeh A, Latifi T. The role of single-domain antibodies (or nanobodies) in SARS-CoV-2 neutralization. Mol Biol Rep 2021. [PMID: 34648139 DOI: 10.1007/s11033-021-06819-7] [Reference Citation Analysis]
114 Sobczuk P, Szczylik C, Porta C, Czarnecka AM. Renin angiotensin system deregulation as renal cancer risk factor. Oncol Lett 2017;14:5059-68. [PMID: 29098020 DOI: 10.3892/ol.2017.6826] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
115 Pang L, Liu Y, Shen M, Ye J, Chen R, Lan Z, Wu Z, Guo Y, Zhang P. Influence of aging on deterioration of patients with COVID-19. Aging (Albany NY) 2020;12:26248-62. [PMID: 33232272 DOI: 10.18632/aging.202136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Ciulla MM. Coronavirus uses as binding site in humans angiotensin-converting enzyme 2 functional receptor that is involved in arterial blood pressure control and fibrotic response to damage and is a drug target in cardiovascular disease. Is this just a phylogenetic coincidence? J Med Virol 2020;92:1713-4. [PMID: 32216172 DOI: 10.1002/jmv.25774] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
117 Barrantes FJ. While We Wait for a Vaccine Against SARS-CoV-2, Why Not Think About Available Drugs? Front Physiol 2020;11:820. [PMID: 32719619 DOI: 10.3389/fphys.2020.00820] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
118 Archie SR, Cucullo L. Cerebrovascular and Neurological Dysfunction under the Threat of COVID-19: Is There a Comorbid Role for Smoking and Vaping? Int J Mol Sci 2020;21:E3916. [PMID: 32486196 DOI: 10.3390/ijms21113916] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
119 Li S, Zhao W, Zhao Z, Cheng B, Li S, Liu C. Levistilide A reverses rat hepatic fibrosis by suppressing angiotensin II‑induced hepatic stellate cells activation. Mol Med Rep 2020;22:2191-8. [PMID: 32705207 DOI: 10.3892/mmr.2020.11326] [Reference Citation Analysis]
120 Holappa M, Vapaatalo H, Vaajanen A. Many Faces of Renin-angiotensin System - Focus on Eye. Open Ophthalmol J 2017;11:122-42. [PMID: 28761566 DOI: 10.2174/1874364101711010122] [Cited by in Crossref: 69] [Cited by in F6Publishing: 59] [Article Influence: 13.8] [Reference Citation Analysis]
121 Norouzi M, Miar P, Norouzi S, Nikpour P. Nervous System Involvement in COVID-19: a Review of the Current Knowledge. Mol Neurobiol 2021;58:3561-74. [PMID: 33765290 DOI: 10.1007/s12035-021-02347-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Zhou T, Han Z, Gu J, Chen S, Fan Y, Zhang H, Yin Y, Zhang J, Wang C. Angiotensin-converting enzyme-2 overexpression improves atrial electrical remodeling through TRPM7 signaling pathway. Oncotarget 2017;8:78726-33. [PMID: 29108260 DOI: 10.18632/oncotarget.20221] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
123 Zheng S, Baak JP, Li S, Xiao W, Ren H, Yang H, Gan Y, Wen C. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW. Phytomedicine 2020;79:153336. [PMID: 32949888 DOI: 10.1016/j.phymed.2020.153336] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
124 Xie X, Chen J, Wang X, Zhang F, Liu Y. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 2006;78:2166-71. [PMID: 16303146 DOI: 10.1016/j.lfs.2005.09.038] [Cited by in Crossref: 230] [Cited by in F6Publishing: 221] [Article Influence: 13.5] [Reference Citation Analysis]
125 Simon CB, Lee-McMullen B, Phelan D, Gilkes J, Carter CS, Buford TW. The renin-angiotensin system and prevention of age-related functional decline: where are we now? Age (Dordr) 2015;37:9753. [PMID: 25663422 DOI: 10.1007/s11357-015-9753-5] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
126 Brintnell E, Gupta M, Anderson DW. Phylogenetic and Ancestral Sequence Reconstruction of SARS-CoV-2 Reveals Latent Capacity to Bind Human ACE2 Receptor. J Mol Evol 2021;89:656-64. [PMID: 34739551 DOI: 10.1007/s00239-021-10034-0] [Reference Citation Analysis]
127 Yang N, Shen HM. Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19. Int J Biol Sci. 2020;16:1724-1731. [PMID: 32226290 DOI: 10.7150/ijbs.45498] [Cited by in Crossref: 216] [Cited by in F6Publishing: 208] [Article Influence: 108.0] [Reference Citation Analysis]
128 Kim K, Ko Y, Ko DS, Kim YH. Prognostic Significance of COVID-19 Receptor ACE2 and Recommendation for Antihypertensive Drug in Renal Cell Carcinoma. Biomed Res Int 2020;2020:2054376. [PMID: 33274196 DOI: 10.1155/2020/2054376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
129 Iorio-Morin C, Hodaie M, Sarica C, Dea N, Westwick HJ, Christie SD, McDonald PJ, Labidi M, Farmer JP, Brisebois S, D'Aragon F, Carignan A, Fortin D. Letter: The Risk of COVID-19 Infection During Neurosurgical Procedures: A Review of Severe Acute Respiratory Distress Syndrome Coronavirus 2 (SARS-CoV-2) Modes of Transmission and Proposed Neurosurgery-Specific Measures for Mitigation. Neurosurgery 2020;87:E178-85. [PMID: 32335684 DOI: 10.1093/neuros/nyaa157] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
130 Thatcher SE, Zhang X, Howatt DA, Yiannikouris F, Gurley SB, Ennis T, Curci JA, Daugherty A, Cassis LA. Angiotensin-converting enzyme 2 decreases formation and severity of angiotensin II-induced abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2014;34:2617-23. [PMID: 25301841 DOI: 10.1161/ATVBAHA.114.304613] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
131 Kopf PG, Campbell WB. Endothelial metabolism of angiotensin II to angiotensin III, not angiotensin (1-7), augments the vasorelaxation response in adrenal cortical arteries. Endocrinology 2013;154:4768-76. [PMID: 24092640 DOI: 10.1210/en.2013-1160] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
132 Birlutiu V, Feiereisz AI, Oprinca G, Dobritoiu S, Rotaru M, Birlutiu RM, Iancu GM. Cutaneous manifestations associated with anosmia, ageusia and enteritis in SARS-CoV-2 infection - A possible pattern? Observational study and review of the literature. Int J Infect Dis 2021;107:72-7. [PMID: 33887455 DOI: 10.1016/j.ijid.2021.04.058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
133 Di Maro M, Cataldi M, Santillo M, Chiurazzi M, Damiano S, De Conno B, Colantuoni A, Guida B. The Cholinergic and ACE-2-Dependent Anti-Inflammatory Systems in the Lung: New Scenarios Emerging From COVID-19. Front Physiol 2021;12:653985. [PMID: 34054572 DOI: 10.3389/fphys.2021.653985] [Reference Citation Analysis]
134 Hassan SM, Jawad MJ, Ahjel SW, Singh RB, Singh J, Awad SM, Hadi NR. The Nrf2 Activator (DMF) and Covid-19: Is there a Possible Role? Med Arch 2020;74:134-8. [PMID: 32577056 DOI: 10.5455/medarh.2020.74.134-138] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
135 Hülsmann S, Khabbazzadeh S, Meissner K, Quintel M. A Potential Role of the Renin-Angiotensin-System for Disturbances of Respiratory Chemosensitivity in Acute Respiratory Distress Syndrome and Severe Acute Respiratory Syndrome. Front Physiol 2020;11:588248. [PMID: 33551831 DOI: 10.3389/fphys.2020.588248] [Reference Citation Analysis]
136 Ramírez-Expósito MJ, Martínez-Martos JM. Anti-Inflammatory and Antitumor Effects of Hydroxytyrosol but Not Oleuropein on Experimental Glioma In Vivo. A Putative Role for the Renin-Angiotensin System. Biomedicines 2018;6:E11. [PMID: 29373553 DOI: 10.3390/biomedicines6010011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
137 Batlle D, Wysocki J, Khan MS. Vascular angiotensin-converting enzyme 2: lord of the ring? Circ Res 2010;107:822-4. [PMID: 20884883 DOI: 10.1161/CIRCRESAHA.110.229831] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
138 Bai B, Cai X, Jiang Y, Karteris E, Chen J. Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK(1/2) and cell proliferation via Gαq-mediated mechanism. J Cell Mol Med 2014;18:2071-81. [PMID: 25164432 DOI: 10.1111/jcmm.12404] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
139 Oudit GY, Imai Y, Kuba K, Scholey JW, Penninger JM. The role of ACE2 in pulmonary diseases--relevance for the nephrologist. Nephrol Dial Transplant 2009;24:1362-5. [PMID: 19228756 DOI: 10.1093/ndt/gfp065] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
140 Ventetuolo CE, Lima JA, Barr RG, Bristow MR, Bagiella E, Chahal H, Kizer JR, Lederer DJ, Bluemke DA, Kawut SM. The renin-angiotensin system and right ventricular structure and function: The MESA-Right Ventricle Study. Pulm Circ 2012;2:379-86. [PMID: 23130107 DOI: 10.4103/2045-8932.101657] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
141 Jia HP, Look DC, Tan P, Shi L, Hickey M, Gakhar L, Chappell MC, Wohlford-Lenane C, McCray PB Jr. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 2009;297:L84-96. [PMID: 19411314 DOI: 10.1152/ajplung.00071.2009] [Cited by in Crossref: 184] [Cited by in F6Publishing: 176] [Article Influence: 14.2] [Reference Citation Analysis]
142 Rivière G, Michaud A, Deloffre L, Vandenbulcke F, Levoye A, Breton C, Corvol P, Salzet M, Vieau D. Characterization of the first non-insect invertebrate functional angiotensin-converting enzyme (ACE): leech TtACE resembles the N-domain of mammalian ACE. Biochem J 2004;382:565-73. [PMID: 15175004 DOI: 10.1042/BJ20040522] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
143 Velkoska E, Dean RG, Griggs K, Burchill L, Burrell LM. Angiotensin-(1-7) infusion is associated with increased blood pressure and adverse cardiac remodelling in rats with subtotal nephrectomy. Clin Sci (Lond) 2011;120:335-45. [PMID: 21091432 DOI: 10.1042/CS20100280] [Cited by in Crossref: 57] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
144 Goulter AB, Goddard MJ, Allen JC, Clark KL. ACE2 gene expression is up-regulated in the human failing heart. BMC Med 2004;2:19. [PMID: 15151696 DOI: 10.1186/1741-7015-2-19] [Cited by in Crossref: 150] [Cited by in F6Publishing: 142] [Article Influence: 8.3] [Reference Citation Analysis]
145 de Kloet AD, Liu M, Rodríguez V, Krause EG, Sumners C. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J Physiol Regul Integr Comp Physiol 2015;309:R444-58. [PMID: 26084692 DOI: 10.1152/ajpregu.00078.2015] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
146 Wysocki J, Ortiz-Melo DI, Mattocks NK, Xu K, Prescott J, Evora K, Ye M, Sparks MA, Haque SK, Batlle D, Gurley SB. ACE2 deficiency increases NADPH-mediated oxidative stress in the kidney. Physiol Rep 2014;2:e00264. [PMID: 24760518 DOI: 10.1002/phy2.264] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
147 Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M, Reibitz F, Schultheiss HP, Siems WE, Walther T. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides 2005;26:1270-7. [PMID: 15949646 DOI: 10.1016/j.peptides.2005.01.009] [Cited by in Crossref: 123] [Cited by in F6Publishing: 123] [Article Influence: 7.2] [Reference Citation Analysis]
148 Cui H, Su S, Cao Y, Ma C, Qiu W. The Altered Anatomical Distribution of ACE2 in the Brain With Alzheimer's Disease Pathology. Front Cell Dev Biol 2021;9:684874. [PMID: 34249938 DOI: 10.3389/fcell.2021.684874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
149 Nalawansha DA, Samarasinghe KTG. Double-Barreled CRISPR Technology as a Novel Treatment Strategy For COVID-19. ACS Pharmacol Transl Sci 2020;3:790-800. [PMID: 33062949 DOI: 10.1021/acsptsci.0c00071] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
150 Guy JL, Jackson RM, Jensen HA, Hooper NM, Turner AJ. Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. FEBS J 2005;272:3512-20. [PMID: 16008552 DOI: 10.1111/j.1742-4658.2005.04756.x] [Cited by in Crossref: 67] [Cited by in F6Publishing: 57] [Article Influence: 3.9] [Reference Citation Analysis]
151 Paraiso IL, Revel JS, Stevens JF. Potential use of polyphenols in the battle against COVID-19.Curr Opin Food Sci. 2020;32:149-155. [PMID: 32923374 DOI: 10.1016/j.cofs.2020.08.004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 13.5] [Reference Citation Analysis]
152 Stein RA. COVID-19: Risk groups, mechanistic insights and challenges. Int J Clin Pract 2020;74:e13512. [PMID: 32266754 DOI: 10.1111/ijcp.13512] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
153 Bundalo MM, Zivkovic MD, Romic SDj, Tepavcevic SN, Koricanac GB, Djuric TM, Stankovic AD. Fructose-rich diet induces gender-specific changes in expression of the renin-angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta. J Renin Angiotensin Aldosterone Syst 2016;17:1470320316642915. [PMID: 27121972 DOI: 10.1177/1470320316642915] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
154 Guy JL, Lambert DW, Warner FJ, Hooper NM, Turner AJ. Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochim Biophys Acta. 2005;1751:2-8. [PMID: 16054014 DOI: 10.1016/j.bbapap.2004.10.010] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 3.1] [Reference Citation Analysis]
155 Braga CL, Silva-Aguiar RP, Battaglini D, Peruchetti DB, Robba C, Pelosi P, Rocco PRM, Caruso-Neves C, Silva PL. The renin-angiotensin-aldosterone system: Role in pathogenesis and potential therapeutic target in COVID-19. Pharmacol Res Perspect 2020;8:e00623. [PMID: 32658389 DOI: 10.1002/prp2.623] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
156 Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology.J Cardiovasc Dev Dis. 2019;6. [PMID: 30934934 DOI: 10.3390/jcdd6020014] [Cited by in Crossref: 68] [Cited by in F6Publishing: 60] [Article Influence: 22.7] [Reference Citation Analysis]
157 Teralı K, Baddal B, Gülcan HO. Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: Insights from a molecular mechanics-assisted structure-based virtual screening experiment. J Mol Graph Model 2020;100:107697. [PMID: 32739642 DOI: 10.1016/j.jmgm.2020.107697] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 10.5] [Reference Citation Analysis]
158 Xiao F, Zimpelmann J, Agaybi S, Gurley SB, Puente L, Burns KD. Characterization of angiotensin-converting enzyme 2 ectodomain shedding from mouse proximal tubular cells. PLoS One 2014;9:e85958. [PMID: 24454948 DOI: 10.1371/journal.pone.0085958] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
159 Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep 2013;15:59-70. [PMID: 23242734 DOI: 10.1007/s11906-012-0323-2] [Cited by in Crossref: 93] [Cited by in F6Publishing: 80] [Article Influence: 10.3] [Reference Citation Analysis]
160 Fan XH, Wang YB, Wang H, Sun K, Zhang WL, Song XD, Cheng JZ, Wu HY, Zhou XL, Hui RT. Polymorphisms of angiotensin-converting enzyme (ACE) and ACE2 are not associated with orthostatic blood pressure dysregulation in hypertensive patients. Acta Pharmacol Sin 2009;30:1237-44. [PMID: 19684612 DOI: 10.1038/aps.2009.110] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
161 Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-454. [PMID: 14647384 DOI: 10.1038/nature02145] [Cited by in Crossref: 3235] [Cited by in F6Publishing: 2976] [Article Influence: 170.3] [Reference Citation Analysis]
162 Hrenak J, Simko F. Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020;21:E8038. [PMID: 33126657 DOI: 10.3390/ijms21218038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
163 Pinheiro DS, Santos RS, Jardim PCBV, Silva EG, Reis AAS, Pedrino GR, Ulhoa CJ. The combination of ACE I/D and ACE2 G8790A polymorphisms revels susceptibility to hypertension: A genetic association study in Brazilian patients. PLoS One 2019;14:e0221248. [PMID: 31430320 DOI: 10.1371/journal.pone.0221248] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 15.0] [Reference Citation Analysis]
164 Deaton DN, Graham KP, Gross JW, Miller AB. Thiol-based angiotensin-converting enzyme 2 inhibitors: P1' modifications for the exploration of the S1' subsite. Bioorg Med Chem Lett 2008;18:1681-7. [PMID: 18243695 DOI: 10.1016/j.bmcl.2008.01.046] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
165 Gan R, Rosoman NP, Henshaw DJE, Noble EP, Georgius P, Sommerfeld N. COVID-19 as a viral functional ACE2 deficiency disorder with ACE2 related multi-organ disease. Med Hypotheses 2020;144:110024. [PMID: 32758871 DOI: 10.1016/j.mehy.2020.110024] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
166 Uma Reddy B, Routhu NK, Kumar A. Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2. Microbial Pathogenesis 2022. [DOI: 10.1016/j.micpath.2022.105512] [Reference Citation Analysis]
167 Zhao X, Jiang Y, Zhao Y, Xi H, Liu C, Qu F, Feng X. Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening. Eur J Clin Microbiol Infect Dis 2020;39:1209-20. [PMID: 32328850 DOI: 10.1007/s10096-020-03897-6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 24.5] [Reference Citation Analysis]
168 Kriszta G, Kriszta Z, Váncsa S, Hegyi PJ, Frim L, Erőss B, Hegyi P, Pethő G, Pintér E. Effects of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers on Angiotensin-Converting Enzyme 2 Levels: A Comprehensive Analysis Based on Animal Studies. Front Pharmacol 2021;12:619524. [PMID: 33762942 DOI: 10.3389/fphar.2021.619524] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
169 Aguiar JA, Tremblay BJ, Mansfield MJ, Woody O, Lobb B, Banerjee A, Chandiramohan A, Tiessen N, Cao Q, Dvorkin-Gheva A, Revill S, Miller MS, Carlsten C, Organ L, Joseph C, John A, Hanson P, Austin RC, McManus BM, Jenkins G, Mossman K, Ask K, Doxey AC, Hirota JA. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J 2020;56:2001123. [PMID: 32675206 DOI: 10.1183/13993003.01123-2020] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 29.5] [Reference Citation Analysis]
170 Xia H, Atoni E, Zhao L, Ren N, Huang D, Pei R, Chen Z, Xiong J, Nyaruaba R, Xiao S, Zhang B, Yuan Z. SARS-CoV-2 Does Not Replicate in Aedes Mosquito Cells nor Present in Field-Caught Mosquitoes from Wuhan. Virol Sin 2020;35:355-8. [PMID: 32602045 DOI: 10.1007/s12250-020-00251-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
171 Vargas-Alarcón G, Posadas-Sánchez R, Ramírez-Bello J. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sci 2020;260:118313. [PMID: 32835700 DOI: 10.1016/j.lfs.2020.118313] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
172 Behl T, Kaur I, Bungau S, Kumar A, Uddin MS, Kumar C, Pal G, Sahil, Shrivastava K, Zengin G, Arora S. The dual impact of ACE2 in COVID-19 and ironical actions in geriatrics and pediatrics with possible therapeutic solutions. Life Sci 2020;257:118075. [PMID: 32653522 DOI: 10.1016/j.lfs.2020.118075] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 20.5] [Reference Citation Analysis]
173 Mueller FB. AI (Artificial Intelligence) and Hypertension Research. Curr Hypertens Rep 2020;22:70. [PMID: 32852654 DOI: 10.1007/s11906-020-01068-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
174 Zhou P, Cheng CP, Li T, Ferrario CM, Cheng HJ. Modulation of cardiac L-type Ca2+ current by angiotensin-(1-7): normal versus heart failure. Ther Adv Cardiovasc Dis 2015;9:342-53. [PMID: 26082338 DOI: 10.1177/1753944715587424] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
175 de Lang A, Osterhaus AD, Haagmans BL. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology 2006;353:474-81. [PMID: 16860835 DOI: 10.1016/j.virol.2006.06.011] [Cited by in Crossref: 82] [Cited by in F6Publishing: 83] [Article Influence: 5.1] [Reference Citation Analysis]
176 Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC Jr, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol Rev 2019;71:539-70. [PMID: 31537750 DOI: 10.1124/pr.118.017129] [Cited by in Crossref: 110] [Cited by in F6Publishing: 97] [Article Influence: 36.7] [Reference Citation Analysis]
177 Shenoy V, Qi Y, Katovich MJ, Raizada MK. ACE2, a promising therapeutic target for pulmonary hypertension. Curr Opin Pharmacol 2011;11:150-5. [PMID: 21215698 DOI: 10.1016/j.coph.2010.12.002] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 6.4] [Reference Citation Analysis]
178 Tenório Hde A, Costa RB, Costa Marques ME, Victor Dos Santos CW, Gomes FS, Vieira Pereira HJ. Angiotensins processing activities in the venom and epidermic mucus of Scorpaena plumieri. Toxicon 2016;119:92-8. [PMID: 27215174 DOI: 10.1016/j.toxicon.2016.05.008] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
179 AbdelMassih AF, Ramzy D, Nathan L, Aziz S, Ashraf M, Youssef NH, Hafez N, Saeed R, Agha H. Possible molecular and paracrine involvement underlying the pathogenesis of COVID-19 cardiovascular complications. Cardiovasc Endocrinol Metab 2020;9:121-4. [PMID: 32803146 DOI: 10.1097/XCE.0000000000000207] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
180 Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021;15:662578. [PMID: 33897376 DOI: 10.3389/fncel.2021.662578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
181 Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2007;292:R373-81. [PMID: 16946085 DOI: 10.1152/ajpregu.00292.2006] [Cited by in Crossref: 240] [Cited by in F6Publishing: 229] [Article Influence: 15.0] [Reference Citation Analysis]
182 Xu X, Cai Y, Yu Y. Effects of a novel curcumin derivative on the functions of kidney in streptozotocin-induced type 2 diabetic rats. Inflammopharmacology 2018;26:1257-64. [PMID: 29582239 DOI: 10.1007/s10787-018-0449-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
183 Liu X, Raghuvanshi R, Ceylan FD, Bolling BW. Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity. J Agric Food Chem 2020;68:13982-9. [PMID: 33179911 DOI: 10.1021/acs.jafc.0c05064] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
184 Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflam. 2014;2014:689360. [PMID: 24804145 DOI: 10.1155/2014/689360] [Cited by in Crossref: 163] [Cited by in F6Publishing: 148] [Article Influence: 20.4] [Reference Citation Analysis]
185 Sandooja R, Vura NVRK, Morocco M. Heightened ACE Activity and Unfavorable Consequences in COVID-19 Diabetic Subjects. Int J Endocrinol 2020;2020:7847526. [PMID: 32724306 DOI: 10.1155/2020/7847526] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
186 Cousin VL, Giraud R, Bendjelid K. Pathophysiology of COVID-19: Everywhere You Look You Will See ACE2! Front Med (Lausanne) 2021;8:694029. [PMID: 34513868 DOI: 10.3389/fmed.2021.694029] [Reference Citation Analysis]
187 Leal MC, Pinheiro SV, Ferreira AJ, Santos RA, Bordoni LS, Alenina N, Bader M, França LR. The role of angiotensin-(1-7) receptor Mas in spermatogenesis in mice and rats. J Anat 2009;214:736-43. [PMID: 19438767 DOI: 10.1111/j.1469-7580.2009.01058.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.3] [Reference Citation Analysis]
188 Huang SW, Wang SF. SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity. Int J Mol Sci 2021;22:3060. [PMID: 33802729 DOI: 10.3390/ijms22063060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
189 Riordan JF. Angiotensin-I-converting enzyme and its relatives. Genome Biol. 2003;4:225. [PMID: 12914653 DOI: 10.1186/gb-2003-4-8-225] [Cited by in Crossref: 147] [Cited by in F6Publishing: 135] [Article Influence: 7.7] [Reference Citation Analysis]
190 Wołkow PP, Bujak-Giżycka B, Jawień J, Olszanecki R, Madej J, Rutowski J, Korbut R. Perindoprilat changes ANG (1-9) production in renal arteries isolated from young spontaneously hypertensive rats after ANG I incubation. Physiol Res 2016;65:561-70. [PMID: 26988149 DOI: 10.33549/physiolres.933015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
191 Verma A, Zhu P, Xu K, Du T, Liao S, Liang Z, Raizada MK, Li Q. Angiotensin-(1-7) Expressed From Lactobacillus Bacteria Protect Diabetic Retina in Mice. Transl Vis Sci Technol 2020;9:20. [PMID: 33344064 DOI: 10.1167/tvst.9.13.20] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
192 Lima Martínez MM, Contreras MA, Marín W, D'Marco L. Statins in COVID-19: is there any foundation? Clin Investig Arterioscler 2020;32:278-81. [PMID: 32718669 DOI: 10.1016/j.arteri.2020.06.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
193 Zambelli V, Bellani G, Borsa R, Pozzi F, Grassi A, Scanziani M, Castiglioni V, Masson S, Decio A, Laffey JG, Latini R, Pesenti A. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Med Exp 2015;3:44. [PMID: 26215809 DOI: 10.1186/s40635-015-0044-3] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 8.4] [Reference Citation Analysis]
194 Thatcher SE, Zhang X, Howatt DA, Lu H, Gurley SB, Daugherty A, Cassis LA. Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 2011;31:758-65. [PMID: 21252069 DOI: 10.1161/ATVBAHA.110.221614] [Cited by in Crossref: 55] [Cited by in F6Publishing: 38] [Article Influence: 5.0] [Reference Citation Analysis]
195 Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell'italia LJ. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond) 2014;126:461-9. [PMID: 24329563 DOI: 10.1042/CS20130400] [Cited by in Crossref: 67] [Cited by in F6Publishing: 47] [Article Influence: 8.4] [Reference Citation Analysis]
196 Koka V, Huang XR, Chung AC, Wang W, Truong LD, Lan HY. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008;172:1174-1183. [PMID: 18403595 DOI: 10.2353/ajpath.2008.070762] [Cited by in Crossref: 186] [Cited by in F6Publishing: 185] [Article Influence: 13.3] [Reference Citation Analysis]
197 Xiang Z, Liu J, Shi D, Chen W, Li J, Yan R, Bi Y, Hu W, Zhu Z, Yu Y, Yang Z. Glucocorticoids improve severe or critical COVID-19 by activating ACE2 and reducing IL-6 levels. Int J Biol Sci 2020;16:2382-91. [PMID: 32760206 DOI: 10.7150/ijbs.47652] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
198 Kobori H, Mori H, Masaki T, Nishiyama A. Angiotensin II blockade and renal protection. Curr Pharm Des 2013;19:3033-42. [PMID: 23176216 DOI: 10.2174/1381612811319170009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
199 Chamata Y, Jackson KG, Watson KA, Jauregi P. Whey-Derived Peptides at the Heart of the COVID-19 Pandemic. Int J Mol Sci 2021;22:11662. [PMID: 34769093 DOI: 10.3390/ijms222111662] [Reference Citation Analysis]
200 Jara A, Benner CM, Sim D, Liu X, List EO, Householder LA, Berryman DE, Kopchick JJ. Elevated systolic blood pressure in male GH transgenic mice is age dependent. Endocrinology 2014;155:975-86. [PMID: 24424040 DOI: 10.1210/en.2013-1899] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
201 Velichkov M, Schulze PC, Otto S. ["Prioritization and triage" in the context of cardiovascular diseases : Rational organization of safe care during and outside the corona pandemic]. Internist (Berl) 2021;62:706-17. [PMID: 34143249 DOI: 10.1007/s00108-021-01079-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
202 Dalan R, Bornstein SR, El-Armouche A, Rodionov RN, Markov A, Wielockx B, Beuschlein F, Boehm BO. The ACE-2 in COVID-19: Foe or Friend? Horm Metab Res 2020;52:257-63. [PMID: 32340044 DOI: 10.1055/a-1155-0501] [Cited by in Crossref: 66] [Cited by in F6Publishing: 56] [Article Influence: 33.0] [Reference Citation Analysis]
203 Lytvyn Y, Bjornstad P, van Raalte DH, Heerspink HL, Cherney DZI. The New Biology of Diabetic Kidney Disease-Mechanisms and Therapeutic Implications. Endocr Rev 2020;41:bnz010. [PMID: 31633153 DOI: 10.1210/endrev/bnz010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 22.0] [Reference Citation Analysis]
204 Giani JF, Miquet JG, Muñoz MC, Burghi V, Toblli JE, Masternak MM, Kopchick JJ, Bartke A, Turyn D, Dominici FP. Upregulation of the angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in the heart and the kidney of growth hormone receptor knock-out mice. Growth Horm IGF Res 2012;22:224-33. [PMID: 22947377 DOI: 10.1016/j.ghir.2012.08.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
205 Kim MA, Yang D, Kida K, Molotkova N, Yeo SJ, Varki N, Iwata M, Dalton ND, Peterson KL, Siems WE. Effects of ACE2 inhibition in the post-myocardial infarction heart. J Card Fail. 2010;16:777-785. [PMID: 20797602 DOI: 10.1016/j.cardfail.2010.04.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
206 Abel T, Moodley J, Naicker T. The Involvement of MicroRNAs in SARS-CoV-2 Infection Comorbid with HIV-Associated Preeclampsia. Curr Hypertens Rep 2021;23:20. [PMID: 33847825 DOI: 10.1007/s11906-021-01138-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
207 Maiuolo J, Mollace R, Gliozzi M, Musolino V, Carresi C, Paone S, Scicchitano M, Macrì R, Nucera S, Bosco F, Scarano F, Zito MC, Ruga S, Tavernese A, Mollace V. The Contribution of Endothelial Dysfunction in Systemic Injury Subsequent to SARS-Cov-2 Infection. Int J Mol Sci 2020;21:E9309. [PMID: 33291346 DOI: 10.3390/ijms21239309] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
208 Srinivasan K, Pandey AK, Livingston A, Venkatesh S. Roles of host mitochondria in the development of COVID-19 pathology: Could mitochondria be a potential therapeutic target? Mol Biomed 2021;2:38. [PMID: 34841263 DOI: 10.1186/s43556-021-00060-1] [Reference Citation Analysis]
209 Ghasemitarei M, Privat-Maldonado A, Yusupov M, Rahnama S, Bogaerts A, Ejtehadi MR. Effect of Cysteine Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its Interaction with Two Cell Receptors: Insights from Atomistic Simulations. J Chem Inf Model 2021. [PMID: 34965734 DOI: 10.1021/acs.jcim.1c00853] [Reference Citation Analysis]
210 Sharma D, Zhao F. Updates on clinical trials evaluating the regenerative potential of allogenic mesenchymal stem cells in COVID-19. NPJ Regen Med 2021;6:37. [PMID: 34193864 DOI: 10.1038/s41536-021-00147-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
211 Zhuo LS, Wang MS, Yang JF, Xu HC, Huang W, Shang LQ, Yang GF. Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Top Curr Chem (Cham) 2021;379:23. [PMID: 33886017 DOI: 10.1007/s41061-021-00335-9] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
212 Magalhaes GS, Rodrigues-Machado MDG, Motta-Santos D, Campagnole-Santos MJ, Santos RAS. Activation of Ang-(1-7)/Mas Receptor Is a Possible Strategy to Treat Coronavirus (SARS-CoV-2) Infection. Front Physiol 2020;11:730. [PMID: 32636762 DOI: 10.3389/fphys.2020.00730] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
213 Polak Y, Speth RC. Metabolism of angiotensin peptides by angiotensin converting enzyme 2 (ACE2) and analysis of the effect of excess zinc on ACE2 enzymatic activity. Peptides 2021;137:170477. [PMID: 33400951 DOI: 10.1016/j.peptides.2020.170477] [Reference Citation Analysis]
214 Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2. Front Cell Infect Microbiol 2020;10:317. [PMID: 32582574 DOI: 10.3389/fcimb.2020.00317] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 37.5] [Reference Citation Analysis]
215 Rivière G, Michaud A, Corradi HR, Sturrock ED, Ravi Acharya K, Cogez V, Bohin JP, Vieau D, Corvol P. Characterization of the first angiotensin-converting like enzyme in bacteria: Ancestor ACE is already active. Gene 2007;399:81-90. [PMID: 17597310 DOI: 10.1016/j.gene.2007.05.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
216 Wiener RS, Cao YX, Hinds A, Ramirez MI, Williams MC. Angiotensin converting enzyme 2 is primarily epithelial and is developmentally regulated in the mouse lung. J Cell Biochem. 2007;101:1278-1291. [PMID: 17340620 DOI: 10.1002/jcb.21248] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 3.5] [Reference Citation Analysis]
217 Kulkarni PG, Sakharkar A, Banerjee T. Understanding the role of nACE2 in neurogenic hypertension among COVID-19 patients. Hypertens Res 2021. [PMID: 34848886 DOI: 10.1038/s41440-021-00800-4] [Reference Citation Analysis]
218 Lambert DW, Clarke NE, Turner AJ. Not just angiotensinases: new roles for the angiotensin-converting enzymes. Cell Mol Life Sci. 2010;67:89-98. [PMID: 19763395 DOI: 10.1007/s00018-009-0152-x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 3.8] [Reference Citation Analysis]
219 Trojanowicz B, Ulrich C, Kohler F, Bode V, Seibert E, Fiedler R, Girndt M. Monocytic angiotensin-converting enzyme 2 relates to atherosclerosis in patients with chronic kidney disease. Nephrol Dial Transplant 2017;32:287-98. [PMID: 28186543 DOI: 10.1093/ndt/gfw206] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
220 Kwaan HC, Lindholm PF. The Central Role of Fibrinolytic Response in COVID-19-A Hematologist's Perspective. Int J Mol Sci 2021;22:1283. [PMID: 33525440 DOI: 10.3390/ijms22031283] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
221 Roca-Ho H, Palau V, Gimeno J, Pascual J, Soler MJ, Riera M. Angiotensin-converting enzyme 2 influences pancreatic and renal function in diabetic mice. Lab Invest 2020;100:1169-83. [PMID: 32472097 DOI: 10.1038/s41374-020-0440-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
222 Xu J, Huang C, Fan G, Liu Z, Shang L, Zhou F, Wang Y, Yu J, Yang L, Xie K, Huang Z, Huang L, Gu X, Li H, Zhang Y, Wang Y, Hayden FG, Horby PW, Cao B, Wang C. Use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in context of COVID-19 outbreak: a retrospective analysis. Front Med 2020;14:601-12. [PMID: 32621202 DOI: 10.1007/s11684-020-0800-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
223 Behl T, Kaur I, Aleya L, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target. Sci Total Environ 2021;808:152072. [PMID: 34863742 DOI: 10.1016/j.scitotenv.2021.152072] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383:45-51. [PMID: 15283675 DOI: 10.1042/bj20040634] [Cited by in Crossref: 384] [Cited by in F6Publishing: 219] [Article Influence: 22.6] [Reference Citation Analysis]
225 Jansen J, Reimer KC, Nagai JS, Varghese FS, Overheul GJ, de Beer M, Roverts R, Daviran D, Fermin LA, Willemsen B, Beukenboom M, Djudjaj S, von Stillfried S, van Eijk LE, Mastik M, Bulthuis M, Dunnen WD, van Goor H, Hillebrands J, Triana SH, Alexandrov T, Timm M, van den Berge BT, van den Broek M, Nlandu Q, Heijnert J, Bindels EM, Hoogenboezem RM, Mooren F, Kuppe C, Miesen P, Grünberg K, Ijzermans T, Steenbergen EJ, Czogalla J, Schreuder MF, Sommerdijk N, Akiva A, Boor P, Puelles VG, Floege J, Huber TB, van Rij RP, Costa IG, Schneider RK, Smeets B, Kramann R, Achdout H, Aimon A, Bar-david E, Barr H, Ben-shmuel A, Bennett J, Boby ML, Borden B, Bowman GR, Brun J, Bvnbs S, Calmiano M, Carbery A, Cattermole E, Chernychenko E, Choder JD, Clyde A, Coffland JE, Cohen G, Cole J, Contini A, Cox L, Cvitkovic M, Dias A, Donckers K, Dotson DL, Douangamath A, Duberstein S, Dudgeon T, Dunnett L, Eastman PK, Erez N, Eyermann CJ, Fairhead M, Fate G, Fearon D, Federov O, Ferla M, Fernandes RS, Ferrins L, Foster R, Foster H, Gabizon R, Garcia-sastre A, Gawriljuk VO, Gehrtz P, Gileadi C, Giroud C, Glass WG, Glen R, Itai glinert, Godoy AS, Gorichko M, Gorrie-stone T, Griffen EJ, Hart SH, Heer J, Henry M, Hill M, Horrell S, Hurley MF, Israely T, Jajack A, Jnoff E, Jochmans D, John T, De Jonghe S, Kantsadi AL, Kenny PW, Kiappes J, Koekemoer L, Kovar B, Krojer T, Lee AA, Lefker BA, Levy H, London N, Lukacik P, Macdonald HB, Maclean B, Malla TR, Matviiuk T, Mccorkindale W, Mcgovern BL, Melamed S, Michurin O, Mikolajek H, Milne BF, Morris A, Morris GM, Morwitzer MJ, Moustakas D, Nakamura AM, Neto JB, Neyts J, Nguyen L, Noske GD, Oleinikovas V, Oliva G, Overheul GJ, Owen D, Psenak V, Pai R, Pan J, Paran N, Perry B, Pingle M, Pinjari J, Politi B, Powell A, Puni R, Rangel VL, Reddi RN, Reid SP, Resnick E, Ripka EG, Robinson MC, Robinson RP, Rodriguez-guerra J, Rosales R, Rufa D, Schofield C, Shafeev M, Shaikh A, Shi J, Shurrush K, Sing S, Sittner A, Skyner R, Smalley A, Smilova MD, Solmesky LJ, Spencer J, Strain-damarell C, Swamy V, Tamir H, Tennant R, Thompson W, Thompson A, Thompson W, Tomasia S, Tumber A, Vakonakis I, van Rij RP, van Geel L, Varghese FS, Vaschetto M, Vitner EB, Voelz V, Volkamer A, von Delft F, von Delft A, Walsh M, Ward W, Weatherall C, Weiss S, White KM, Wild CF, Wittmann M, Wright N, Yahalom-ronen Y, Zaidmann D, Zidane H, Zitzmann N. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell 2021. [DOI: 10.1016/j.stem.2021.12.010] [Reference Citation Analysis]
226 Harrison C, Acharya KR. ACE for all - a molecular perspective. J Cell Commun Signal 2014;8:195-210. [PMID: 25027949 DOI: 10.1007/s12079-014-0236-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
227 Ma Z, Yang KY, Huang Y, Lui KO. Endothelial contribution to COVID-19: an update on mechanisms and therapeutic implications. J Mol Cell Cardiol 2021;164:69-82. [PMID: 34838588 DOI: 10.1016/j.yjmcc.2021.11.010] [Reference Citation Analysis]
228 Xu F, Gao J, Munkhsaikhan U, Li N, Gu Q, Pierre JF, Starlard-Davenport A, Towbin JA, Cui Y, Purevjav E, Lu L. The Genetic Dissection of Ace2 Expression Variation in the Heart of Murine Genetic Reference Population. Front Cardiovasc Med 2020;7:582949. [PMID: 33330645 DOI: 10.3389/fcvm.2020.582949] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
229 Wray S, Arrowsmith S. The Physiological Mechanisms of the Sex-Based Difference in Outcomes of COVID19 Infection. Front Physiol 2021;12:627260. [PMID: 33633588 DOI: 10.3389/fphys.2021.627260] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
230 Paizis G, Tikellis C, Cooper ME, Schembri JM, Lew RA, Smith AI, Shaw T, Warner FJ, Zuilli A, Burrell LM, Angus PW. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut. 2005;54:1790-1796. [PMID: 16166274 DOI: 10.1136/gut.2004.062398] [Cited by in Crossref: 185] [Cited by in F6Publishing: 175] [Article Influence: 10.9] [Reference Citation Analysis]
231 Chawla T, Sharma D, Singh A. Role of the renin angiotensin system in diabetic nephropathy. World J Diabetes 2010; 1(5): 141-145 [PMID: 21537441 DOI: 10.4239/wjd.v1.i5.141] [Cited by in CrossRef: 45] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
232 Nejat R, Sadr AS. Are losartan and imatinib effective against SARS-CoV2 pathogenesis? A pathophysiologic-based in silico study. In Silico Pharmacol 2021;9:1. [PMID: 33294307 DOI: 10.1007/s40203-020-00058-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
233 Dominguez JM 2nd, Hu P, Caballero S, Moldovan L, Verma A, Oudit GY, Li Q, Grant MB. Adeno-Associated Virus Overexpression of Angiotensin-Converting Enzyme-2 Reverses Diabetic Retinopathy in Type 1 Diabetes in Mice. Am J Pathol 2016;186:1688-700. [PMID: 27178803 DOI: 10.1016/j.ajpath.2016.01.023] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
234 Magalhães DM, Nunes-Silva A, Rocha GC, Vaz LN, de Faria MHS, Vieira ELM, Rocha NP, Simões E Silva AC. Two protocols of aerobic exercise modulate the counter-regulatory axis of the renin-angiotensin system. Heliyon 2020;6:e03208. [PMID: 31989052 DOI: 10.1016/j.heliyon.2020.e03208] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
235 Pouladi N, Abdolahi S. Investigating the ACE2 polymorphisms in COVID-19 susceptibility: An in silico analysis. Mol Genet Genomic Med 2021;9:e1672. [PMID: 33818000 DOI: 10.1002/mgg3.1672] [Reference Citation Analysis]
236 Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides. 2011;32:1551-1565. [PMID: 21699940 DOI: 10.1016/j.peptides.2011.05.012] [Cited by in Crossref: 101] [Cited by in F6Publishing: 97] [Article Influence: 9.2] [Reference Citation Analysis]
237 Tizaoui K, Zidi I, Lee KH, Ghayda RA, Hong SH, Li H, Smith L, Koyanagi A, Jacob L, Kronbichler A, Shin JI. Update of the current knowledge on genetics, evolution, immunopathogenesis, and transmission for coronavirus disease 19 (COVID-19). Int J Biol Sci 2020;16:2906-23. [PMID: 33061805 DOI: 10.7150/ijbs.48812] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
238 Chamsi-Pasha MA, Shao Z, Tang WH. Angiotensin-converting enzyme 2 as a therapeutic target for heart failure. Curr Heart Fail Rep 2014;11:58-63. [PMID: 24293035 DOI: 10.1007/s11897-013-0178-0] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 7.5] [Reference Citation Analysis]
239 Bader M, Ganten D. Update on tissue renin-angiotensin systems. J Mol Med (Berl). 2008;86:615-621. [PMID: 18414822 DOI: 10.1007/s00109-008-0336-0] [Cited by in Crossref: 189] [Cited by in F6Publishing: 166] [Article Influence: 13.5] [Reference Citation Analysis]
240 Nadarajah R, Milagres R, Dilauro M, Gutsol A, Xiao F, Zimpelmann J, Kennedy C, Wysocki J, Batlle D, Burns KD. Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice. Kidney Int 2012;82:292-303. [PMID: 22475818 DOI: 10.1038/ki.2012.83] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 7.8] [Reference Citation Analysis]
241 Gumashta J, Gumashta R. Role of the Backbenchers of the Renin-Angiotensin System ACE2 and AT2 Receptors in COVID-19: Lessons From SARS. Cureus 2020;12:e8411. [PMID: 32626626 DOI: 10.7759/cureus.8411] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
242 Soler MJ, Lloveras J, Batlle D. [Angiotensin converting enzyme 2 and its emerging role in the regulation of the renin angiotensin system]. Med Clin (Barc) 2008;131:230-6. [PMID: 18674503 DOI: 10.1157/13124619] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
243 Phillips MI, de Oliveira EM. Brain renin angiotensin in disease. J Mol Med (Berl) 2008;86:715-22. [PMID: 18385968 DOI: 10.1007/s00109-008-0331-5] [Cited by in Crossref: 128] [Cited by in F6Publishing: 125] [Article Influence: 9.1] [Reference Citation Analysis]
244 Rabaan AA, Al-Ahmed SH, Muhammad J, Khan A, Sule AA, Tirupathi R, Mutair AA, Alhumaid S, Al-Omari A, Dhawan M, Tiwari R, Sharun K, Mohapatra RK, Mitra S, Bilal M, Alyami SA, Emran TB, Moni MA, Dhama K. Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Vaccines (Basel) 2021;9:436. [PMID: 33946736 DOI: 10.3390/vaccines9050436] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
245 Thomas M, Johnston C. Valsartan. Journal of Drug Evaluation 2011;2:67-101. [DOI: 10.3109/14791130400002415] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
246 Qu J, Zhu HH, Huang XJ, He GF, Liu JY, Huang JJ, Chen Y, Qu Q, Wu YL, Chen XY, Lu Q. Abnormal Indexes of Liver and Kidney Injury Markers Predict Severity in COVID-19 Patients. Infect Drug Resist 2021;14:3029-40. [PMID: 34408447 DOI: 10.2147/IDR.S321915] [Reference Citation Analysis]
247 Du D, Chen J, Liu M, Zhu M, Jing H, Fang J, Shen L, Zhu D, Yu J, Wang J. The effects of angiotensin II and angiotensin-(1-7) in the rostral ventrolateral medulla of rats on stress-induced hypertension. PLoS One 2013;8:e70976. [PMID: 23967142 DOI: 10.1371/journal.pone.0070976] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
248 Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol 2020;319:H1059-68. [PMID: 33036546 DOI: 10.1152/ajpheart.00681.2020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
249 Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008;93:543-8. [PMID: 18448662 DOI: 10.1113/expphysiol.2007.040048] [Cited by in Crossref: 185] [Cited by in F6Publishing: 173] [Article Influence: 13.2] [Reference Citation Analysis]
250 Gunal O, Sezer O, Ustun GU, Ozturk CE, Sen A, Yigit S, Demirag MD. Angiotensin-converting enzyme-1 gene insertion/deletion polymorphism may be associated with COVID-19 clinical severity: a prospective cohort study. Ann Saudi Med 2021;41:141-6. [PMID: 34085542 DOI: 10.5144/0256-4947.2021.141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
251 Fattah C, Nather K, McCarroll CS, Hortigon-Vinagre MP, Zamora V, Flores-Munoz M, McArthur L, Zentilin L, Giacca M, Touyz RM, Smith GL, Loughrey CM, Nicklin SA. Gene Therapy With Angiotensin-(1-9) Preserves Left Ventricular Systolic Function After Myocardial Infarction. J Am Coll Cardiol 2016;68:2652-66. [PMID: 27978950 DOI: 10.1016/j.jacc.2016.09.946] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
252 Velez JC, Ryan KJ, Harbeson CE, Bland AM, Budisavljevic MN, Arthur JM, Fitzgibbon WR, Raymond JR, Janech MG. Angiotensin I is largely converted to angiotensin (1-7) and angiotensin (2-10) by isolated rat glomeruli. Hypertension 2009;53:790-7. [PMID: 19289651 DOI: 10.1161/HYPERTENSIONAHA.109.128819] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
253 Marhl M, Grubelnik V, Magdič M, Markovič R. Diabetes and metabolic syndrome as risk factors for COVID-19. Diabetes Metab Syndr 2020;14:671-7. [PMID: 32438331 DOI: 10.1016/j.dsx.2020.05.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 17.5] [Reference Citation Analysis]
254 Wen H, Gwathmey JK, Xie LH. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World J Hypertens 2012; 2(4): 34-44 [PMID: 24587981 DOI: 10.5494/wjh.v2.i4.34] [Cited by in CrossRef: 44] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
255 Patel CN, Kumar SP, Pandya HA, Rawal RM. Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Mol Divers 2021;25:421-33. [PMID: 32996011 DOI: 10.1007/s11030-020-10135-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
256 Cappannoli L, Scacciavillani R, Iannaccone G, Anastasia G, DI Giusto F, Crea F. 2019 novel Coronavirus: current knowledge, cardiovascular implications and management. Minerva Cardiol Angiol 2021;69:377-88. [PMID: 32472991 DOI: 10.23736/S2724-5683.20.05311-6] [Reference Citation Analysis]
257 Frank MG, Nguyen KH, Ball JB, Hopkins S, Kelley T, Baratta MV, Fleshner M, Maier SF. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain Behav Immun 2021;100:267-77. [PMID: 34915155 DOI: 10.1016/j.bbi.2021.12.007] [Reference Citation Analysis]
258 Gonzalez A, Orozco-Aguilar J, Achiardi O, Simon F, Cabello-Verrugio C. SARS-CoV-2/Renin-Angiotensin System: Deciphering the Clues for a Couple with Potentially Harmful Effects on Skeletal Muscle. Int J Mol Sci 2020;21:E7904. [PMID: 33114359 DOI: 10.3390/ijms21217904] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
259 Ohukainen P, Ruskoaho H, Rysa J. Cellular Mechanisms of Valvular Thickening in Early and Intermediate Calcific Aortic Valve Disease. Curr Cardiol Rev 2018;14:264-71. [PMID: 30124158 DOI: 10.2174/1573403X14666180820151325] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
260 Ye M, Wysocki J, Gonzalez-Pacheco FR, Salem M, Evora K, Garcia-Halpin L, Poglitsch M, Schuster M, Batlle D. Murine recombinant angiotensin-converting enzyme 2: effect on angiotensin II-dependent hypertension and distinctive angiotensin-converting enzyme 2 inhibitor characteristics on rodent and human angiotensin-converting enzyme 2. Hypertension. 2012;60:730-740. [PMID: 22777933 DOI: 10.1161/hypertensionaha.112.198622] [Cited by in Crossref: 67] [Cited by in F6Publishing: 45] [Article Influence: 6.7] [Reference Citation Analysis]
261 Patel VB, Mori J, McLean BA, Basu R, Das SK, Ramprasath T, Parajuli N, Penninger JM, Grant MB, Lopaschuk GD, Oudit GY. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes. 2016;65:85-95. [PMID: 26224885 DOI: 10.2337/db15-0399] [Cited by in Crossref: 39] [Cited by in F6Publishing: 85] [Article Influence: 5.6] [Reference Citation Analysis]
262 Yang CW, Lu LC, Chang CC, Cho CC, Hsieh WY, Tsai CH, Lin YC, Lin CS. Imbalanced plasma ACE and ACE2 level in the uremic patients with cardiovascular diseases and its change during a single hemodialysis session. Ren Fail 2017;39:719-28. [PMID: 29157100 DOI: 10.1080/0886022X.2017.1398665] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
263 Ryu G, Shin HW. SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Netw 2021;21:e3. [PMID: 33728096 DOI: 10.4110/in.2021.21.e3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
264 Dai W, Cao D, Zhang W, Wei Y, Ding D, Li B, Gao Y, Zhao L, Jiang Y, Kong X. Integrated Bioinformatics Analysis Reveals Key Candidate Genes and Cytokine Pathways Involved in COVID-19 After Rhinovirus Infection in Asthma Patients. Med Sci Monit 2020;26:e928861. [PMID: 33315853 DOI: 10.12659/MSM.928861] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
265 Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, Kwon DH, Singh T, Tilton JC, Tsai EJ, Tucker NR, Barnard J, Loscalzo J. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ Res 2021;128:1214-36. [PMID: 33856918 DOI: 10.1161/CIRCRESAHA.121.317997] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
266 Mihalopoulos M, Dogra N, Mohamed N, Badani K, Kyprianou N. COVID-19 and Kidney Disease: Molecular Determinants and Clinical Implications in Renal Cancer. Eur Urol Focus 2020;6:1086-96. [PMID: 32540268 DOI: 10.1016/j.euf.2020.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
267 Ahmad S, Waheed Y, Abro A, Abbasi SW, Ismail S. Molecular screening of glycyrrhizin-based inhibitors against ACE2 host receptor of SARS-CoV-2. J Mol Model 2021;27:206. [PMID: 34169390 DOI: 10.1007/s00894-021-04816-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
268 Tripathi N, Tripathi N, Goshisht MK. COVID-19: inflammatory responses, structure-based drug design and potential therapeutics. Mol Divers 2021. [PMID: 33400086 DOI: 10.1007/s11030-020-10176-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
269 Xiu S, Dick A, Ju H, Mirzaie S, Abdi F, Cocklin S, Zhan P, Liu X. Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. J Med Chem 2020;63:12256-74. [PMID: 32539378 DOI: 10.1021/acs.jmedchem.0c00502] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 29.5] [Reference Citation Analysis]
270 Bjornstad P, Cherney DZ, Maahs DM, Nadeau KJ. Diabetic Kidney Disease in Adolescents With Type 2 Diabetes: New Insights and Potential Therapies. Curr Diab Rep 2016;16:11. [PMID: 26803647 DOI: 10.1007/s11892-015-0708-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
271 Anguiano L, Riera M, Pascual J, Valdivielso JM, Barrios C, Betriu A, Mojal S, Fernández E, Soler MJ; NEFRONA study. Circulating angiotensin-converting enzyme 2 activity in patients with chronic kidney disease without previous history of cardiovascular disease. Nephrol Dial Transplant 2015;30:1176-85. [PMID: 25813276 DOI: 10.1093/ndt/gfv025] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 7.4] [Reference Citation Analysis]
272 Riera M, Márquez E, Clotet S, Gimeno J, Roca-Ho H, Lloreta J, Juanpere N, Batlle D, Pascual J, Soler MJ. Effect of insulin on ACE2 activity and kidney function in the non-obese diabetic mouse. PLoS One 2014;9:e84683. [PMID: 24400109 DOI: 10.1371/journal.pone.0084683] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 3.0] [Reference Citation Analysis]
273 López-Cortés A, Guevara-Ramírez P, Kyriakidis NC, Barba-Ostria C, León Cáceres Á, Guerrero S, Ortiz-Prado E, Munteanu CR, Tejera E, Cevallos-Robalino D, Gómez-Jaramillo AM, Simbaña-Rivera K, Granizo-Martínez A, Pérez-M G, Moreno S, García-Cárdenas JM, Zambrano AK, Pérez-Castillo Y, Cabrera-Andrade A, Puig San Andrés L, Proaño-Castro C, Bautista J, Quevedo A, Varela N, Quiñones LA, Paz-Y-Miño C. In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19. Front Pharmacol 2021;12:598925. [PMID: 33716737 DOI: 10.3389/fphar.2021.598925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
274 Pulakuntla S, Lokhande KB, Padmavathi P, Pal M, Swamy KV, Sadasivam J, Singh SA, Aramgam SL, Reddy VD. Mutational analysis in international isolates and drug repurposing against SARS-CoV-2 spike protein: molecular docking and simulation approach. Virusdisease 2021;:1-13. [PMID: 34307771 DOI: 10.1007/s13337-021-00720-4] [Reference Citation Analysis]
275 Goodarzi P, Mahdavi F, Mirzaei R, Hasanvand H, Sholeh M, Zamani F, Sohrabi M, Tabibzadeh A, Jeda AS, Niya MHK, Keyvani H, Karampoor S. Coronavirus disease 2019 (COVID-19): Immunological approaches and emerging pharmacologic treatments. Int Immunopharmacol 2020;88:106885. [PMID: 32795893 DOI: 10.1016/j.intimp.2020.106885] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
276 Nardo AE, Suárez S, Quiroga AV, Añón MC. Amaranth as a Source of Antihypertensive Peptides. Front Plant Sci 2020;11:578631. [PMID: 33101347 DOI: 10.3389/fpls.2020.578631] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
277 Barreto-Chaves ML, Senger N, Fevereiro M, Parletta AC, Takano A. Impact of hyperthyroidism on cardiac hypertrophy. Endocr Connect 2020:EC-19-0543. [PMID: 32101527 DOI: 10.1530/EC-19-0543] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
278 Wu YH, Li JY, Wang C, Zhang LM, Qiao H. The ACE2 G8790A Polymorphism: Involvement in Type 2 Diabetes Mellitus Combined with Cerebral Stroke. J Clin Lab Anal 2017;31. [PMID: 27500554 DOI: 10.1002/jcla.22033] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
279 Suleiman A, Rafaa T, Al­rawi A, Dawood M. The impact of ACE2 genetic polymorphisms (rs2106809 and rs2074192) on gender susceptibility to COVID-19 infection and recovery: A systematic review. Baghdad J Biochem Appl Biol Sci 2021;2:167-80. [DOI: 10.47419/bjbabs.v2i03.53] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
280 Gava E, Samad-Zadeh A, Zimpelmann J, Bahramifarid N, Kitten GT, Santos RA, Touyz RM, Burns KD. Angiotensin-(1-7) activates a tyrosine phosphatase and inhibits glucose-induced signalling in proximal tubular cells. Nephrol Dial Transplant 2009;24:1766-73. [PMID: 19144997 DOI: 10.1093/ndt/gfn736] [Cited by in Crossref: 64] [Cited by in F6Publishing: 56] [Article Influence: 4.9] [Reference Citation Analysis]
281 Coutinho DCO, Santos-Miranda A, Joviano-Santos JV, Foureaux G, Santos A, Rodrigues-Ferreira C, Martins-Júnior PA, Resende RR, Medei E, Vieyra A, Santos RAS, Cruz JS, Ferreira AJ. Diminazene aceturate, an angiotensin converting enzyme 2 (ACE2) activator, promotes cardioprotection in ischemia/reperfusion-induced cardiac injury. Peptides 2022;:170746. [PMID: 35033621 DOI: 10.1016/j.peptides.2022.170746] [Reference Citation Analysis]
282 Wang L, Xiang Y. Spike Glycoprotein-Mediated Entry of SARS Coronaviruses. Viruses 2020;12:E1289. [PMID: 33187074 DOI: 10.3390/v12111289] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
283 Bagheri-Hosseinabadi Z, Pirsadeghi A, Rahnama A, Bahrehmand F, Abbasifard M. Is there any relationship between serum zinc levels and angiotensin-converting enzyme 2 gene expression in patients with coronavirus disease 2019? Meta Gene 2022;31:100991. [PMID: 34778004 DOI: 10.1016/j.mgene.2021.100991] [Reference Citation Analysis]
284 Raffai G, Lombard JH. Angiotensin-(1-7) Selectively Induces Relaxation and Modulates Endothelium-Dependent Dilation in Mesenteric Arteries of Salt-Fed Rats. J Vasc Res 2016;53:105-18. [PMID: 27676088 DOI: 10.1159/000448714] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
285 Teuben MPJ, Pfeifer R, Teuber H, De Boer LL, Halvachizadeh S, Shehu A, Pape HC. Lessons learned from the mechanisms of posttraumatic inflammation extrapolated to the inflammatory response in COVID-19: a review. Patient Saf Surg 2020;14:28. [PMID: 32665786 DOI: 10.1186/s13037-020-00253-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
286 Casucci G, Acanfora D, Incalzi RA. The Cross-Talk between Age, Hypertension and Inflammation in COVID-19 Patients: Therapeutic Targets. Drugs Aging 2020;37:779-85. [PMID: 33084001 DOI: 10.1007/s40266-020-00808-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
287 Vallée A. Cannabidiol and SARS-CoV-2 Infection. Front Immunol 2022;13:870787. [DOI: 10.3389/fimmu.2022.870787] [Reference Citation Analysis]
288 Yarmohammadi A, Yarmohammadi M, Fakhri S, Khan H. Targeting pivotal inflammatory pathways in COVID-19: A mechanistic review. Eur J Pharmacol 2021;890:173620. [PMID: 33038418 DOI: 10.1016/j.ejphar.2020.173620] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
289 Manchini MT, Serra AJ, Feliciano Rdos S, Santana ET, Antônio EL, de Tarso Camillo de Carvalho P, Montemor J, Crajoinas RO, Girardi AC, Tucci PJ, Silva JA Jr. Amelioration of cardiac function and activation of anti-inflammatory vasoactive peptides expression in the rat myocardium by low level laser therapy. PLoS One 2014;9:e101270. [PMID: 24991808 DOI: 10.1371/journal.pone.0101270] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
290 Oussalah A, Gleye S, Clerc Urmes I, Laugel E, Callet J, Barbé F, Orlowski S, Malaplate C, Aimone-Gastin I, Caillierez BM, Merten M, Jeannesson E, Kormann R, Olivier JL, Rodriguez-Guéant RM, Namour F, Bevilacqua S, Losser MR, Levy B, Kimmoun A, Gibot S, Thilly N, Frimat L, Schvoerer E, Guéant JL. Long-term ACE Inhibitor/ARB Use Is Associated With Severe Renal Dysfunction and Acute Kidney Injury in Patients With Severe COVID-19: Results From a Referral Center Cohort in the Northeast of France. Clin Infect Dis 2020;71:2447-56. [PMID: 32623470 DOI: 10.1093/cid/ciaa677] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
291 Rushworth CA, Guy JL, Turner AJ. Residues affecting the chloride regulation and substrate selectivity of the angiotensin-converting enzymes (ACE and ACE2) identified by site-directed mutagenesis. FEBS J 2008;275:6033-42. [PMID: 19021774 DOI: 10.1111/j.1742-4658.2008.06733.x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
292 Böhm M, Frey N, Giannitsis E, Sliwa K, Zeiher AM. Coronavirus Disease 2019 (COVID-19) and its implications for cardiovascular care: expert document from the German Cardiac Society and the World Heart Federation. Clin Res Cardiol 2020;109:1446-59. [PMID: 32462267 DOI: 10.1007/s00392-020-01656-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
293 Rella M, Elliot JL, Revett TJ, Lanfear J, Phelan A, Jackson RM, Turner AJ, Hooper NM. Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a novel mammalian homologue of ACE. BMC Genomics 2007;8:194. [PMID: 17597519 DOI: 10.1186/1471-2164-8-194] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
294 Sagar S, Rathinavel AK, Lutz WE, Struble LR, Khurana S, Schnaubelt AT, Mishra NK, Guda C, Broadhurst MJ, Reid SPM, Bayles KW, Borgstahl GEO, Radhakrishnan P. Bromelain Inhibits SARS-CoV-2 Infection in VeroE6 Cells. bioRxiv 2020:2020. [PMID: 32995771 DOI: 10.1101/2020.09.16.297366] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
295 Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol 2014;88:13221-30. [PMID: 25187545 DOI: 10.1128/JVI.02078-14] [Cited by in Crossref: 155] [Cited by in F6Publishing: 110] [Article Influence: 19.4] [Reference Citation Analysis]
296 Tabassum A, Iqbal MS, Sultan S, Alhuthali RA, Alshubaili DI, Sayyam RS, Abyad LM, Qasem AH, Arbaeen AF, Cervellati C. Dysregulated Bradykinin: Mystery in the Pathogenesis of COVID-19. Mediators of Inflammation 2022;2022:1-8. [DOI: 10.1155/2022/7423537] [Reference Citation Analysis]
297 Suh SH, Choi HS, Kim CS, Kim IJ, Ma SK, Scholey JW, Kim SW, Bae EH. Olmesartan Attenuates Kidney Fibrosis in a Murine Model of Alport Syndrome by Suppressing Tubular Expression of TGFβ. Int J Mol Sci 2019;20:E3843. [PMID: 31390839 DOI: 10.3390/ijms20153843] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
298 Kolel-Veetil MK, Kant A, Shenoy VB, Buehler MJ. SARS-CoV-2 Infection-Of Music and Mechanics of Its Spikes! A Perspective. ACS Nano 2022. [PMID: 35512182 DOI: 10.1021/acsnano.1c11491] [Reference Citation Analysis]
299 [DOI: 10.1101/2020.03.24.20042283] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
300 Chen L, Chen H, Dong S, Huang W, Chen L, Wei Y, Shi L, Li J, Zhu F, Zhu Z, Wang Y, Lv X, Yu X, Li H, Wei W, Zhang K, Zhu L, Qu C, Hong J, Hu C, Dong J, Qi R, Lu D, Wang H, Peng S, Hao G. The Effects of Chloroquine and Hydroxychloroquine on ACE2-Related Coronavirus Pathology and the Cardiovascular System: An Evidence-Based Review. Function 2020;1:zqaa012. [DOI: 10.1093/function/zqaa012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
301 Herath CB, Warner FJ, Lubel JS, Dean RG, Jia Z, Lew RA, Smith AI, Burrell LM, Angus PW. Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) levels in experimental biliary fibrosis. J Hepatol. 2007;47:387-395. [PMID: 17532087 DOI: 10.1016/j.jhep.2007.03.008] [Cited by in Crossref: 107] [Cited by in F6Publishing: 99] [Article Influence: 7.1] [Reference Citation Analysis]
302 Bobkova NV. The Balance between Two Branches of RAS Can Protect from Severe COVID-19 Course. Biochem (Mosc) Suppl Ser A Membr Cell Biol 2021;15:36-51. [PMID: 33643542 DOI: 10.1134/S1990747821010037] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
303 Petit L, Vernès L, Cadoret JP. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. J Appl Phycol 2021;:1-24. [PMID: 33776210 DOI: 10.1007/s10811-021-02372-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
304 Hannan RE, Widdop RE. Vascular angiotensin II actions mediated by angiotensin II type 2 receptors. Curr Hypertens Rep 2004;6:117-23. [PMID: 15010015 DOI: 10.1007/s11906-004-0086-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
305 Marik PE, Iglesias J, Varon J, Kory P. A scoping review of the pathophysiology of COVID-19. Int J Immunopathol Pharmacol 2021;35:20587384211048026. [PMID: 34569339 DOI: 10.1177/20587384211048026] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
306 Moon JY. Recent Update of Renin-angiotensin-aldosterone System in the Pathogenesis of Hypertension. Electrolyte Blood Press 2013;11:41-5. [PMID: 24627703 DOI: 10.5049/EBP.2013.11.2.41] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
307 George AJ, Thomas WG, Hannan RD. The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer. 2010;10:745-759. [PMID: 20966920 DOI: 10.1038/nrc2945] [Cited by in Crossref: 286] [Cited by in F6Publishing: 281] [Article Influence: 23.8] [Reference Citation Analysis]
308 Bristow MR, Zisman LS, Altman NL, Gilbert EM, Lowes BD, Minobe WA, Slavov D, Schwisow JA, Rodriguez EM, Carroll IA, Keuer TA, Buttrick PM, Kao DP. Dynamic Regulation of SARS-Cov-2 Binding and Cell Entry Mechanisms in Remodeled Human Ventricular Myocardium. JACC Basic Transl Sci 2020;5:871-83. [PMID: 32838074 DOI: 10.1016/j.jacbts.2020.06.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
309 Moon JY. ACE2 and Angiotensin-(1-7) in Hypertensive Renal Disease. Electrolyte Blood Press 2011;9:41-4. [PMID: 22438854 DOI: 10.5049/EBP.2011.9.2.41] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
310 Reudelhuber TL, Bernstein KE, Delafontaine P. Is angiotensin II a direct mediator of left ventricular hypertrophy? Time for another look. Hypertension 2007;49:1196-201. [PMID: 17452509 DOI: 10.1161/HYPERTENSIONAHA.106.075085] [Cited by in Crossref: 64] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
311 Barros EP, Casalino L, Gaieb Z, Dommer AC, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro RE. The flexibility of ACE2 in the context of SARS-CoV-2 infection. Biophys J 2021;120:1072-84. [PMID: 33189680 DOI: 10.1016/j.bpj.2020.10.036] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 16.0] [Reference Citation Analysis]
312 Li SR, Tang ZJ, Li ZH, Liu X. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. Eur J Clin Microbiol Infect Dis 2020;39:1021-6. [PMID: 32285293 DOI: 10.1007/s10096-020-03883-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 18.0] [Reference Citation Analysis]
313 Elrashdy F, Redwan EM, Uversky VN. Intrinsic disorder perspective of an interplay between the renin-angiotensin-aldosterone system and SARS-CoV-2. Infect Genet Evol 2020;85:104510. [PMID: 32853823 DOI: 10.1016/j.meegid.2020.104510] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
314 Wei CC, Chen Y, Powell LC, Zheng J, Shi K, Bradley WE, Powell PC, Ahmad S, Ferrario CM, Dell'Italia LJ. Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS One 2012;7:e40110. [PMID: 22768235 DOI: 10.1371/journal.pone.0040110] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
315 Malard L, Kakinami L, O'Loughlin J, Roy-Gagnon MH, Labbe A, Pilote L, Hamet P, Tremblay J, Paradis G. The association between the Angiotensin-Converting Enzyme-2 gene and blood pressure in a cohort study of adolescents. BMC Med Genet 2013;14:117. [PMID: 24191856 DOI: 10.1186/1471-2350-14-117] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
316 Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, Muslin C, Jaramillo AMG, Barba-Ostria C, Cevallos-Robalino D, Sanches-SanMiguel H, Unigarro L, Zalakeviciute R, Gadian N, López-Cortés A. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect Dis 2020;98:115094. [PMID: 32623267 DOI: 10.1016/j.diagmicrobio.2020.115094] [Cited by in Crossref: 99] [Cited by in F6Publishing: 89] [Article Influence: 49.5] [Reference Citation Analysis]
317 Festa M, Sansone C, Brunet C, Crocetta F, Di Paola L, Lombardo M, Bruno A, Noonan DM, Albini A. Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection. Int J Mol Sci 2020;21:E8364. [PMID: 33171852 DOI: 10.3390/ijms21218364] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
318 Le Y, Zheng Z, Xue J, Cheng M, Guan M, Xue Y. Effects of exendin-4 on the intrarenal renin-angiotensin system and interstitial fibrosis in unilateral ureteral obstruction mice: Exendin-4 and unilateral ureteral obstruction. J Renin Angiotensin Aldosterone Syst 2016;17:1470320316677918. [PMID: 27913661 DOI: 10.1177/1470320316677918] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
319 Leal CRV, Costa LB, Ferreira GC, Ferreira ADM, Reis FM, Simões e Silva AC. Renin-angiotensin system in normal pregnancy and in preeclampsia: A comprehensive review. Pregnancy Hypertension 2022;28:15-20. [DOI: 10.1016/j.preghy.2022.01.011] [Reference Citation Analysis]
320 Getachew B, Tizabi Y. Vitamin D and COVID-19: Role of ACE2, age, gender, and ethnicity. J Med Virol 2021;93:5285-94. [PMID: 33990955 DOI: 10.1002/jmv.27075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
321 Sharma RK, Stevens BR, Obukhov AG, Grant MB, Oudit GY, Li Q, Richards EM, Pepine CJ, Raizada MK. ACE2 (Angiotensin-Converting Enzyme 2) in Cardiopulmonary Diseases: Ramifications for the Control of SARS-CoV-2. Hypertension 2020;76:651-61. [PMID: 32783758 DOI: 10.1161/HYPERTENSIONAHA.120.15595] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
322 Haghighi MM, Kakhki EG, Sato C, Ghani M, Rogaeva E. The Intersection between COVID-19, the Gene Family of ACE2 and Alzheimer's Disease. Neurosci Insights 2020;15:2633105520975743. [PMID: 33283188 DOI: 10.1177/2633105520975743] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
323 Dick K, Chopra A, Biggar KK, Green JR. Multi-schema computational prediction of the comprehensive SARS-CoV-2 vs. human interactome. PeerJ 2021;9:e11117. [PMID: 33868814 DOI: 10.7717/peerj.11117] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
324 Wysocki J, Schulze A, Batlle D. Novel Variants of Angiotensin Converting Enzyme-2 of Shorter Molecular Size to Target the Kidney Renin Angiotensin System. Biomolecules 2019;9:E886. [PMID: 31861139 DOI: 10.3390/biom9120886] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
325 Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R, Lipinski S, Wild B, Camargo SM, Singer D, Richter A, Kuba K, Fukamizu A, Schreiber S, Clevers H, Verrey F, Rosenstiel P, Penninger JM. ACE2 Links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487:477-481. [PMID: 22837003 DOI: 10.1038/nature11228] [Cited by in Crossref: 605] [Cited by in F6Publishing: 553] [Article Influence: 60.5] [Reference Citation Analysis]
326 Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, Castaldo G, Bianco A. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung 2020;198:867-77. [PMID: 33170317 DOI: 10.1007/s00408-020-00408-4] [Cited by in F6Publishing: 26] [Reference Citation Analysis]
327 Gutiérrez-Chamorro L, Riveira-Muñoz E, Barrios C, Palau V, Nevot M, Pedreño-López S, Senserrich J, Massanella M, Clotet B, Cabrera C, Mitjà O, Crespo M, Pascual J, Riera M, Ballana E. SARS-CoV-2 Infection Modulates ACE2 Function and Subsequent Inflammatory Responses in Swabs and Plasma of COVID-19 Patients. Viruses 2021;13:1715. [PMID: 34578296 DOI: 10.3390/v13091715] [Reference Citation Analysis]
328 Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis. Hypertens Res. 2009;32:533-536. [PMID: 19461648 DOI: 10.1038/hr.2009.74] [Cited by in Crossref: 174] [Cited by in F6Publishing: 170] [Article Influence: 13.4] [Reference Citation Analysis]
329 Herath CB, Warner FJ, Lubel JS, Dean RG, Jia Z, Lew RA, Smith AI, Burrell LM, Angus PW. Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) levels in experimental biliary fibrosis. J Hepatol. 2007;47:387-395. [PMID: 17532087 DOI: 10.1016/j.jhep.2007.03.008]] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
330 Blume C, Jackson CL, Spalluto CM, Legebeke J, Nazlamova L, Conforti F, Perotin JM, Frank M, Butler J, Crispin M, Coles J, Thompson J, Ridley RA, Dean LSN, Loxham M, Reikine S, Azim A, Tariq K, Johnston DA, Skipp PJ, Djukanovic R, Baralle D, McCormick CJ, Davies DE, Lucas JS, Wheway G, Mennella V. A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nat Genet 2021;53:205-14. [PMID: 33432184 DOI: 10.1038/s41588-020-00759-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 23.0] [Reference Citation Analysis]
331 Prestes PR, Maier MC, Woods BA, Charchar FJ. A Guide to the Short, Long and Circular RNAs in Hypertension and Cardiovascular Disease. Int J Mol Sci 2020;21:E3666. [PMID: 32455975 DOI: 10.3390/ijms21103666] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
332 Stewart JM, Taneja I, Raghunath N, Clarke D, Medow MS. Intradermal angiotensin II administration attenuates the local cutaneous vasodilator heating response. Am J Physiol Heart Circ Physiol 2008;295:H327-34. [PMID: 18469148 DOI: 10.1152/ajpheart.00126.2008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
333 Senapati S, Banerjee P, Bhagavatula S, Kushwaha PP, Kumar S. Contributions of human ACE2 and TMPRSS2 in determining host–pathogen interaction of COVID-19. J Genet 2021;100. [DOI: 10.1007/s12041-021-01262-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
334 Stakišaitis D, Kapočius L, Valančiūtė A, Balnytė I, Tamošuitis T, Vaitkevičius A, Sužiedėlis K, Urbonienė D, Tatarūnas V, Kilimaitė E, Gečys D, Lesauskaitė V. SARS-CoV-2 Infection, Sex-Related Differences, and a Possible Personalized Treatment Approach with Valproic Acid: A Review. Biomedicines 2022;10:962. [DOI: 10.3390/biomedicines10050962] [Reference Citation Analysis]
335 Gromotowicz-Poplawska A, Szoka P, Kolodziejczyk P, Kramkowski K, Wojewodzka-Zelezniakowicz M, Chabielska E. New agents modulating the renin-angiotensin-aldosterone system-Will there be a new therapeutic option? Exp Biol Med (Maywood) 2016;241:1888-99. [PMID: 27439538 DOI: 10.1177/1535370216660211] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
336 Ojo AS, Balogun SA, Williams OT, Ojo OS. Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulm Med. 2020;2020:6175964. [PMID: 32850151 DOI: 10.1155/2020/6175964] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 23.5] [Reference Citation Analysis]
337 Liu Q, Du J, Yu X, Xu J, Huang F, Li X, Zhang C, Li X, Chang J, Shang D. miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discov. 2017;3:17021. [PMID: 28690868 DOI: 10.1038/celldisc.2017.21] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 7.8] [Reference Citation Analysis]
338 Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther 2021;6:255. [PMID: 34234112 DOI: 10.1038/s41392-021-00679-0] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
339 Lo CS, Liu F, Shi Y, Maachi H, Chenier I, Godin N, Filep JG, Ingelfinger JR, Zhang SL, Chan JS. Dual RAS blockade normalizes angiotensin-converting enzyme-2 expression and prevents hypertension and tubular apoptosis in Akita angiotensinogen-transgenic mice. Am J Physiol Renal Physiol 2012;302:F840-52. [PMID: 22205225 DOI: 10.1152/ajprenal.00340.2011] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 4.2] [Reference Citation Analysis]
340 Huertas A, Montani D, Savale L, Pichon J, Tu L, Parent F, Guignabert C, Humbert M. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur Respir J 2020;56:2001634. [PMID: 32554538 DOI: 10.1183/13993003.01634-2020] [Cited by in Crossref: 108] [Cited by in F6Publishing: 110] [Article Influence: 54.0] [Reference Citation Analysis]
341 Gunarathne LS, Rajapaksha H, Shackel N, Angus PW, Herath CB. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J Gastroenterol 2020; 26(40): 6111-6140 [PMID: 33177789 DOI: 10.3748/wjg.v26.i40.6111] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
342 Khan A, Sergi C. SAMHD1 as the Potential Link Between SARS-CoV-2 Infection and Neurological Complications. Front Neurol 2020;11:562913. [PMID: 33101175 DOI: 10.3389/fneur.2020.562913] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
343 Payandeh Z, Rahbar MR, Jahangiri A, Hashemi ZS, Zakeri A, Jafarisani M, Rasaee MJ, Khalili S. Design of an engineered ACE2 as a novel therapeutics against COVID-19. J Theor Biol 2020;505:110425. [PMID: 32735992 DOI: 10.1016/j.jtbi.2020.110425] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
344 Kopecky-Bromberg SA, Martinez-Sobrido L, Palese P. 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J Virol 2006;80:785-93. [PMID: 16378980 DOI: 10.1128/JVI.80.2.785-793.2006] [Cited by in Crossref: 89] [Cited by in F6Publishing: 73] [Article Influence: 5.6] [Reference Citation Analysis]
345 Pedreanez A, Mosquera J, Munoz N, Robalino J, Tene D. Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview. Endocr Regul 2022;56:55-65. [PMID: 35180818 DOI: 10.2478/enr-2022-0007] [Reference Citation Analysis]
346 De Lange-Jacobs P, Shaikh-Kader A, Thomas B, Nyakudya TT. An Overview of the Potential Use of Ethno-Medicinal Plants Targeting the Renin-Angiotensin System in the Treatment of Hypertension. Molecules 2020;25:E2114. [PMID: 32366012 DOI: 10.3390/molecules25092114] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
347 Batlle D, Jose Soler M, Ye M. ACE2 and diabetes: ACE of ACEs? Diabetes. 2010;59:2994-2996. [PMID: 21115782 DOI: 10.2337/db10-1205] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 5.1] [Reference Citation Analysis]
348 Pagliaro P, Penna C. Rethinking the renin-angiotensin system and its role in cardiovascular regulation. Cardiovasc Drugs Ther 2005;19:77-87. [PMID: 15883759 DOI: 10.1007/s10557-005-6900-8] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 2.8] [Reference Citation Analysis]
349 Guo J, Wei X, Li Q, Li L, Yang Z, Shi Y, Qin Y, Zhang X, Wang X, Zhi X, Meng D. Single-cell RNA analysis on ACE2 expression provides insights into SARS-CoV-2 potential entry into the bloodstream and heart injury. J Cell Physiol 2020;235:9884-94. [PMID: 32510598 DOI: 10.1002/jcp.29802] [Cited by in Crossref: 23] [Cited by in F6Publishing: 31] [Article Influence: 11.5] [Reference Citation Analysis]
350 Sieńko J, Kotowski M, Bogacz A, Lechowicz K, Drożdżal S, Rosik J, Sietnicki M, Sieńko M, Kotfis K. COVID-19: The Influence of ACE Genotype and ACE-I and ARBs on the Course of SARS-CoV-2 Infection in Elderly Patients. Clin Interv Aging 2020;15:1231-40. [PMID: 32764907 DOI: 10.2147/CIA.S261516] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
351 Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J Mol Med (Berl) 2006;84:814-20. [PMID: 16988814 DOI: 10.1007/s00109-006-0094-9] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 4.8] [Reference Citation Analysis]
352 Stein RA. The 2019 coronavirus: Learning curves, lessons, and the weakest link. Int J Clin Pract 2020;74:e13488. [PMID: 32052918 DOI: 10.1111/ijcp.13488] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
353 Hammer A, Stegbauer J, Linker RA. Macrophages in neuroinflammation: role of the renin-angiotensin-system. Pflugers Arch 2017;469:431-44. [PMID: 28190090 DOI: 10.1007/s00424-017-1942-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
354 Barp CG, Bonaventura D, Assreuy J. NO, ROS, RAS, and PVAT: More Than a Soup of Letters. Front Physiol 2021;12:640021. [PMID: 33643076 DOI: 10.3389/fphys.2021.640021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
355 Somasundaram NP, Ranathunga I, Ratnasamy V, Wijewickrama PSA, Dissanayake HA, Yogendranathan N, Gamage KKK, de Silva NL, Sumanatilleke M, Katulanda P, Grossman AB. The Impact of SARS-Cov-2 Virus Infection on the Endocrine System. J Endocr Soc. 2020;4:bvaa082. [PMID: 32728654 DOI: 10.1210/jendso/bvaa082] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
356 Kawabata Y, Soeki T, Ito H, Matsuura T, Kusunose K, Ise T, Yamaguchi K, Tobiume T, Yagi S, Fukuda D, Yamada H, Wakatsuki T, Kitani M, Kawano K, Taketani Y, Sata M. Effects of L-/N-Type Calcium Channel Blockers on Angiotensin II-Renin Feedback in Hypertensive Patients. Int J Hypertens 2020;2020:6653851. [PMID: 33489354 DOI: 10.1155/2020/6653851] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
357 Revercomb L, Hanmandlu A, Wareing N, Akkanti B, Karmouty-Quintana H. Mechanisms of Pulmonary Hypertension in Acute Respiratory Distress Syndrome (ARDS). Front Mol Biosci 2020;7:624093. [PMID: 33537342 DOI: 10.3389/fmolb.2020.624093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
358 Sefid F, payandeh Z, Khalesi B, Mansoori B, Fotovvat M, Touhidinia M; yazd, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, iran, Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran, Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran; 2Department of Biology, Science and Arts University, Yazd, Iran, Department of Plant Science, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran, Department of Biology, Faculty of Science, Yazd University, Yazd, Iran. Enhancement of SARS-CoV-2 Receptor Binding Domain -CR3022 Human Antibody Binding Affinity via In silico Engineering Approach. JoMMID 2021;9:156-69. [DOI: 10.52547/jommid.9.3.156] [Reference Citation Analysis]
359 Gupta S, Mitra A. Challenge of post-COVID era: management of cardiovascular complications in asymptomatic carriers of SARS-CoV-2. Heart Fail Rev 2021. [PMID: 33426593 DOI: 10.1007/s10741-021-10076-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
360 Kulkarni S, Jenner BL, Wilkinson I. COVID-19 and hypertension. J Renin Angiotensin Aldosterone Syst 2020;21:1470320320927851. [PMID: 32431227 DOI: 10.1177/1470320320927851] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
361 García-escobar A, Vera-vera S, Jurado-román A, Jiménez-valero S, Galeote G, Moreno R. Calcium Signaling Pathway Is Involved in the Shedding of ACE2 Catalytic Ectodomain: New Insights for Clinical and Therapeutic Applications of ACE2 for COVID-19. Biomolecules 2022;12:76. [DOI: 10.3390/biom12010076] [Reference Citation Analysis]
362 Senatore F, Balakumar P, Jagadeesh G. Dysregulation of the renin-angiotensin system in septic shock: Mechanistic insights and application of angiotensin II in clinical management. Pharmacol Res 2021;174:105916. [PMID: 34597810 DOI: 10.1016/j.phrs.2021.105916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
363 Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High Fructose Intake and Adipogenesis. Int J Mol Sci 2019;20:E2787. [PMID: 31181590 DOI: 10.3390/ijms20112787] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
364 Bekassy Z, Lopatko Fagerström I, Bader M, Karpman D. Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021. [PMID: 34759348 DOI: 10.1038/s41577-021-00634-8] [Reference Citation Analysis]
365 Tamanna S, Clifton VL, Rae K, van Helden DF, Lumbers ER, Pringle KG. Angiotensin Converting Enzyme 2 (ACE2) in Pregnancy: Preeclampsia and Small for Gestational Age. Front Physiol 2020;11:590787. [PMID: 33101066 DOI: 10.3389/fphys.2020.590787] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
366 Li XC, Zhu D, Zheng X, Zhang J, Zhuo JL. Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond) 2018;132:1383-401. [PMID: 29986878 DOI: 10.1042/CS20180121] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
367 Lambert DW, Clarke NE, Hooper NM, Turner AJ. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett 2008;582:385-90. [PMID: 18070603 DOI: 10.1016/j.febslet.2007.11.085] [Cited by in Crossref: 81] [Cited by in F6Publishing: 75] [Article Influence: 5.4] [Reference Citation Analysis]
368 Jaiswal G, Kumar V. In-silico design of a potential inhibitor of SARS-CoV-2 S protein. PLoS One 2020;15:e0240004. [PMID: 33002032 DOI: 10.1371/journal.pone.0240004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
369 Hu C, Chen C, Dong XP. Impact of COVID-19 Pandemic on Patients With Neurodegenerative Diseases. Front Aging Neurosci 2021;13:664965. [PMID: 33897410 DOI: 10.3389/fnagi.2021.664965] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
370 Zemlin AE, Wiese OJ. Coronavirus disease 2019 (COVID-19) and the renin-angiotensin system: A closer look at angiotensin-converting enzyme 2 (ACE2). Ann Clin Biochem 2020;57:339-50. [PMID: 32369402 DOI: 10.1177/0004563220928361] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
371 Qiu Y, Shil PK, Zhu P, Yang H, Verma A, Lei B, Li Q. Angiotensin-converting enzyme 2 (ACE2) activator diminazene aceturate ameliorates endotoxin-induced uveitis in mice. Invest Ophthalmol Vis Sci 2014;55:3809-18. [PMID: 24854854 DOI: 10.1167/iovs.14-13883] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 6.0] [Reference Citation Analysis]
372 Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79:14614-14621. [PMID: 16282461 DOI: 10.1128/jvi.79.23.14614-14621.2005] [Cited by in Crossref: 481] [Cited by in F6Publishing: 329] [Article Influence: 30.1] [Reference Citation Analysis]
373 Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 2015;89:1954-64. [PMID: 25428871 DOI: 10.1128/JVI.02615-14] [Cited by in Crossref: 291] [Cited by in F6Publishing: 230] [Article Influence: 36.4] [Reference Citation Analysis]
374 Kim H, Kim S, Baek SH, Kwon SM. Pivotal Cytoprotective Mediators and Promising Therapeutic Strategies for Endothelial Progenitor Cell-Based Cardiovascular Regeneration. Stem Cells Int 2016;2016:8340257. [PMID: 28090210 DOI: 10.1155/2016/8340257] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
375 Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, Duan G. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses. 2020;12. [PMID: 32230900 DOI: 10.3390/v12040372] [Cited by in Crossref: 481] [Cited by in F6Publishing: 418] [Article Influence: 240.5] [Reference Citation Analysis]
376 Badawi S, Ali BR. ACE2 Nascence, trafficking, and SARS-CoV-2 pathogenesis: the saga continues. Hum Genomics 2021;15:8. [PMID: 33514423 DOI: 10.1186/s40246-021-00304-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
377 Patel DM, Bose M, Cooper ME. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int J Mol Sci 2020;21:E2218. [PMID: 32210089 DOI: 10.3390/ijms21062218] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
378 Gallagher PE, Ferrario CM, Tallant EA. MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am J Physiol Cell Physiol 2008;295:C1169-74. [PMID: 18768926 DOI: 10.1152/ajpcell.00145.2008] [Cited by in Crossref: 71] [Cited by in F6Publishing: 75] [Article Influence: 5.1] [Reference Citation Analysis]
379 Lapi D, Cammalleri M, Dal Monte M, Di Maro M, Santillo M, Belfiore A, Nasti G, Damiano S, Trio R, Chiurazzi M, De Conno B, Serao N, Mondola P, Colantuoni A, Guida B. The Effects of Angiotensin II or Angiotensin 1-7 on Rat Pial Microcirculation during Hypoperfusion and Reperfusion Injury: Role of Redox Stress. Biomolecules 2021;11:1861. [PMID: 34944506 DOI: 10.3390/biom11121861] [Reference Citation Analysis]
380 Al-Karmalawy AA, Dahab MA, Metwaly AM, Elhady SS, Elkaeed EB, Eissa IH, Darwish KM. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor. Front Chem 2021;9:661230. [PMID: 34017819 DOI: 10.3389/fchem.2021.661230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
381 Angeli F, Zappa M, Reboldi G, Trapasso M, Cavallini C, Spanevello A, Verdecchia P. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection: One year later. Eur J Intern Med 2021;93:28-34. [PMID: 34588140 DOI: 10.1016/j.ejim.2021.09.007] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
382 Friedrich M, Pfeifer G, Binder S, Aigner A, Vollmer Barbosa P, Makert GR, Fertey J, Ulbert S, Bodem J, König E, Geiger N, Schambach A, Schilling E, Buschmann T, Hauschildt S, Koehl U, Sewald K. Selection and Validation of siRNAs Preventing Uptake and Replication of SARS-CoV-2. Front Bioeng Biotechnol 2022;10:801870. [DOI: 10.3389/fbioe.2022.801870] [Reference Citation Analysis]
383 Bastolla U. Mathematical Model of SARS-Cov-2 Propagation Versus ACE2 Fits COVID-19 Lethality Across Age and Sex and Predicts That of SARS. Front Mol Biosci 2021;8:706122. [PMID: 34322518 DOI: 10.3389/fmolb.2021.706122] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
384 Sahu S, Patil CR, Kumar S, Apparsundaram S, Goyal RK. Role of ACE2-Ang (1-7)-Mas axis in post-COVID-19 complications and its dietary modulation. Mol Cell Biochem 2021. [PMID: 34655418 DOI: 10.1007/s11010-021-04275-2] [Reference Citation Analysis]
385 Geng YJ, Wei ZY, Qian HY, Huang J, Lodato R, Castriotta RJ. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc Pathol. 2020;47:107228. [PMID: 32375085 DOI: 10.1016/j.carpath.2020.107228] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 23.5] [Reference Citation Analysis]
386 Chen L, Hao G. The role of angiotensin-converting enzyme 2 in coronaviruses/influenza viruses and cardiovascular disease. Cardiovasc Res 2020;116:1932-6. [PMID: 32267499 DOI: 10.1093/cvr/cvaa093] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
387 Riquelme C, Acuña MJ, Torrejón J, Rebolledo D, Cabrera D, Santos RA, Brandan E. ACE2 is augmented in dystrophic skeletal muscle and plays a role in decreasing associated fibrosis. PLoS One 2014;9:e93449. [PMID: 24695436 DOI: 10.1371/journal.pone.0093449] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
388 Poglitsch M, Domenig O, Schwager C, Stranner S, Peball B, Janzek E, Wagner B, Jungwirth H, Loibner H, Schuster M. Recombinant Expression and Characterization of Human and Murine ACE2: Species-Specific Activation of the Alternative Renin-Angiotensin-System. Int J Hypertens 2012;2012:428950. [PMID: 22518284 DOI: 10.1155/2012/428950] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
389 Ryan PM, Caplice N. COVID-19 and relative angiotensin-converting enzyme 2 deficiency: role in disease severity and therapeutic response. Open Heart 2020;7:e001302. [PMID: 32532804 DOI: 10.1136/openhrt-2020-001302] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
390 Di Guardo G. Giovanni Di Guardo: Animal Models and Pathogenetic Insights to Covid-19. J Comp Pathol 2020;179:e1. [PMID: 32773086 DOI: 10.1016/j.jcpa.2020.06.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
391 Flores-Muñoz M, Smith NJ, Haggerty C, Milligan G, Nicklin SA. Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor. J Physiol 2011;589:939-51. [PMID: 21173078 DOI: 10.1113/jphysiol.2010.203075] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 5.3] [Reference Citation Analysis]
392 Zhang Y, Tang LV. Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. J Proteome Res 2021;20:49-59. [PMID: 33347311 DOI: 10.1021/acs.jproteome.0c00526] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
393 Dhaundiyal A, Kumari P, Jawalekar SS, Chauhan G, Kalra S, Navik U. Is highly expressed ACE 2 in pregnant women "a curse" in times of COVID-19 pandemic? Life Sci 2021;264:118676. [PMID: 33129880 DOI: 10.1016/j.lfs.2020.118676] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
394 Barros EP, Casalino L, Gaieb Z, Dommer AC, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro RE. The flexibility of ACE2 in the context of SARS-CoV-2 infection. bioRxiv 2020:2020. [PMID: 32995769 DOI: 10.1101/2020.09.16.300459] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
395 Shimoura H, Tanaka H, Matsumoto K, Mochizuki Y, Hatani Y, Hatazawa K, Matsuzoe H, Ooka J, Sano H, Sawa T, Motoji Y, Ryo-koriyama K, Hirata K. Effects of a changeover from other angiotensin II receptor blockers to olmesartan on left ventricular hypertrophy in heart failure patients. Heart Vessels 2017;32:584-90. [DOI: 10.1007/s00380-016-0904-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
396 Alenina N, Bader M. ACE2 in Brain Physiology and Pathophysiology: Evidence from Transgenic Animal Models. Neurochem Res 2019;44:1323-9. [PMID: 30443713 DOI: 10.1007/s11064-018-2679-4] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 12.8] [Reference Citation Analysis]
397 Agolli A, Yukselen Z, Agolli O, Patel MH, Bhatt KP, Concepcion L, Halpern J, Alvi S, Abreu R. SARS-CoV-2 effect on male infertility and its possible pathophysiological mechanisms. Discoveries (Craiova) 2021;9:e131. [PMID: 34816001 DOI: 10.15190/d.2021.10] [Reference Citation Analysis]
398 Yerukala Sathipati S, Shukla SK, Ho SY. Tracking the amino acid changes of spike proteins across diverse host species of severe acute respiratory syndrome coronavirus 2. iScience 2022;25:103560. [PMID: 34877480 DOI: 10.1016/j.isci.2021.103560] [Reference Citation Analysis]
399 Zhang W, Miao J, Li P, Wang Y, Zhang Y. Up-regulation of components of the renin-angiotensin system in liver fibrosis in the rat induced by CCL4. Res Vet Sci. 2013;95:54-58. [PMID: 23433841 DOI: 10.1016/j.rvsc.2013.01.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
400 Yao Y, Wang H, Liu Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin Exp Allergy 2020;50:1313-24. [PMID: 32975865 DOI: 10.1111/cea.13746] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
401 Clarke SA, Phylactou M, Patel B, Mills EG, Muzi B, Izzi-Engbeaya C, Choudhury S, Khoo B, Meeran K, Comninos AN, Abbara A, Tan T, Dhillo WS. Normal Adrenal and Thyroid Function in Patients Who Survive COVID-19 Infection. J Clin Endocrinol Metab 2021;106:2208-20. [PMID: 34008009 DOI: 10.1210/clinem/dgab349] [Reference Citation Analysis]
402 Maldonado V, Loza-Mejía MA, Chávez-Alderete J. Repositioning of pentoxifylline as an immunomodulator and regulator of the renin-angiotensin system in the treatment of COVID-19. Med Hypotheses 2020;144:109988. [PMID: 32540603 DOI: 10.1016/j.mehy.2020.109988] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
403 Wang K, Xu Y, Yang W, Zhang Y. Insufficient hypothalamic angiotensin-converting enzyme 2 is associated with hypertension in SHR rats. Oncotarget 2017;8:20244-51. [PMID: 28423630 DOI: 10.18632/oncotarget.15666] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
404 Qiu Y, Zhao YB, Wang Q, Li JY, Zhou ZJ, Liao CH, Ge XY. Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect 2020;22:221-5. [PMID: 32199943 DOI: 10.1016/j.micinf.2020.03.003] [Cited by in Crossref: 96] [Cited by in F6Publishing: 91] [Article Influence: 48.0] [Reference Citation Analysis]
405 Chappell MC. Nonclassical renin-angiotensin system and renal function. Compr Physiol. 2012;2:2733-2752. [PMID: 23720263 DOI: 10.1002/cphy.c120002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 45] [Article Influence: 1.6] [Reference Citation Analysis]
406 Peng W, Wu H, Tan Y, Li M, Yang D, Li S. Mechanisms and treatments of myocardial injury in patients with corona virus disease 2019. Life Sci 2020;262:118496. [PMID: 32987060 DOI: 10.1016/j.lfs.2020.118496] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
407 Joshi S, Balasubramanian N, Vasam G, Jarajapu YP. Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells. Eur J Pharmacol 2016;774:25-33. [PMID: 26851370 DOI: 10.1016/j.ejphar.2016.01.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
408 Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021;22:12800. [PMID: 34884604 DOI: 10.3390/ijms222312800] [Reference Citation Analysis]
409 Lai ZW, Lew RA, Yarski MA, Mu FT, Andrews RK, Smith AI. The identification of a calmodulin-binding domain within the cytoplasmic tail of angiotensin-converting enzyme-2. Endocrinology 2009;150:2376-81. [PMID: 19164471 DOI: 10.1210/en.2008-1274] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
410 Cai L, Guo X, Cao Y, Ying P, Hong L, Zhang Y, Yi G, Fu M. Determining available strategies for prevention and therapy: Exploring COVID‑19 from the perspective of ACE2 (Review). Int J Mol Med 2021;47:43. [PMID: 33576441 DOI: 10.3892/ijmm.2021.4876] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
411 Lv LL, Liu BC. Role of non-classical renin-angiotensin system axis in renal fibrosis. Front Physiol. 2015;6:117. [PMID: 25954204 DOI: 10.3389/fphys.2015.00117] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
412 Jankowski J, Lee HK, Wilflingseder J, Hennighausen L. Interferon-regulated genetic programs and JAK/STAT pathway activate the intronic promoter of the short ACE2 isoform in renal proximal tubules. bioRxiv 2021:2021. [PMID: 33501441 DOI: 10.1101/2021.01.15.426908] [Reference Citation Analysis]
413 Hu J, Wang Y. The Clinical Characteristics and Risk Factors of Severe COVID-19. Gerontology 2021;67:255-66. [PMID: 33406518 DOI: 10.1159/000513400] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
414 Yeung KS, Yamanaka GA, Meanwell NA. Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention. Med Res Rev 2006;26:414-33. [PMID: 16521129 DOI: 10.1002/med.20055] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.4] [Reference Citation Analysis]
415 Kotsev SV, Miteva D, Krayselska S, Shopova M, Pishmisheva-Peleva M, Stanilova SA, Velikova T. Hypotheses and facts for genetic factors related to severe COVID-19. World J Virol 2021; 10(4): 137-155 [PMID: 34367930 DOI: 10.5501/wjv.v10.i4.137] [Reference Citation Analysis]
416 Simões e Silva AC, Miranda AS, Rocha NP, Teixeira AL. Renin angiotensin system in liver diseases: Friend or foe? World J Gastroenterol 2017; 23(19): 3396-3406 [PMID: 28596676 DOI: 10.3748/wjg.v23.i19.3396] [Cited by in CrossRef: 46] [Cited by in F6Publishing: 37] [Article Influence: 9.2] [Reference Citation Analysis]
417 Ferreira-Duarte M, Estevinho MM, Duarte-Araújo M, Magro F, Morato M. Unraveling the Role of ACE2, the Binding Receptor for SARS-CoV-2, in Inflammatory Bowel Disease. Inflamm Bowel Dis 2020;26:1787-95. [PMID: 33064147 DOI: 10.1093/ibd/izaa249] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
418 Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185-192. [PMID: 32170560 DOI: 10.1007/s11684-020-0754-0] [Cited by in Crossref: 889] [Cited by in F6Publishing: 866] [Article Influence: 444.5] [Reference Citation Analysis]
419 Gül Ş. In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry. Turk J Biol 2021;45:442-58. [PMID: 34803446 DOI: 10.3906/biy-2012-52] [Reference Citation Analysis]
420 Bitker L, Burrell LM. Classic and Nonclassic Renin-Angiotensin Systems in the Critically Ill. Crit Care Clin 2019;35:213-27. [PMID: 30784605 DOI: 10.1016/j.ccc.2018.11.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
421 Liu MY, Zheng B, Zhang Y, Li JP. Role and mechanism of angiotensin-converting enzyme 2 in acute lung injury in coronavirus disease 2019. Chronic Dis Transl Med 2020;6:98-105. [PMID: 32550040 DOI: 10.1016/j.cdtm.2020.05.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
422 Pillai P, Joseph JP, Fadzillah NHM, Mahmod M. COVID-19 and Major Organ Thromboembolism: Manifestations in Neurovascular and Cardiovascular Systems. J Stroke Cerebrovasc Dis 2021;30:105427. [PMID: 33137615 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105427] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
423 Gianzo M, Subirán N. Regulation of Male Fertility by the Renin-Angiotensin System. Int J Mol Sci 2020;21:E7943. [PMID: 33114706 DOI: 10.3390/ijms21217943] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
424 Padda RS, Shi Y, Lo CS, Zhang SL, Chan JS. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes? J Diabetes Metab 2015;6. [PMID: 26793405 DOI: 10.4172/2155-6156.1000615] [Cited by in Crossref: 8] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
425 Hu J, Jolkkonen J, Zhao C. Neurotropism of SARS-CoV-2 and its neuropathological alterations: Similarities with other coronaviruses. Neurosci Biobehav Rev 2020;119:184-93. [PMID: 33091416 DOI: 10.1016/j.neubiorev.2020.10.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
426 Yalcin HC, Sukumaran V, Al-Ruweidi MKAA, Shurbaji S. Do Changes in ACE-2 Expression Affect SARS-CoV-2 Virulence and Related Complications: A Closer Look into Membrane-Bound and Soluble Forms. Int J Mol Sci 2021;22:6703. [PMID: 34201415 DOI: 10.3390/ijms22136703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
427 Wazny V, Siau A, Wu KX, Cheung C. Vascular underpinning of COVID-19. Open Biol 2020;10:200208. [PMID: 32847471 DOI: 10.1098/rsob.200208] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
428 Burrell LM, Gayed D, Griggs K, Patel SK, Velkoska E. Adverse cardiac effects of exogenous angiotensin 1-7 in rats with subtotal nephrectomy are prevented by ACE inhibition. PLoS One 2017;12:e0171975. [PMID: 28192475 DOI: 10.1371/journal.pone.0171975] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
429 Bussard RL, Busse LW. Angiotensin II: a new therapeutic option for vasodilatory shock. Ther Clin Risk Manag 2018;14:1287-98. [PMID: 30100727 DOI: 10.2147/TCRM.S150434] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
430 Battistoni A, Volpe M. Might renin-angiotensin system blockers play a role in the COVID-19 pandemic? Eur Heart J Cardiovasc Pharmacother 2020;6:248-51. [PMID: 32286607 DOI: 10.1093/ehjcvp/pvaa030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
431 Bhullar KS, Drews SJ, Wu J. Translating bioactive peptides for COVID-19 therapy. Eur J Pharmacol 2021;890:173661. [PMID: 33098835 DOI: 10.1016/j.ejphar.2020.173661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
432 Cui J, Yuan B, Li Y, Li Z, Yuan Y. The clinical characters and prognosis of COVID-19 patients with multiple organ dysfunction. Medicine (Baltimore) 2021;100:e27400. [PMID: 34731113 DOI: 10.1097/MD.0000000000027400] [Reference Citation Analysis]
433 Patel VB, Putko B, Wang Z, Zhong JC, Oudit GY. Manipulating angiotensin metabolism with angiotensin converting enzyme 2 (ACE2) in heart failure. Drug Discov Today Ther Strateg 2012;9:e141-8. [PMID: 32362932 DOI: 10.1016/j.ddstr.2013.11.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
434 Perrotta F, Corbi G, Mazzeo G, Boccia M, Aronne L, D'Agnano V, Komici K, Mazzarella G, Parrella R, Bianco A. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res 2020;32:1599-608. [PMID: 32557332 DOI: 10.1007/s40520-020-01631-y] [Cited by in Crossref: 86] [Cited by in F6Publishing: 82] [Article Influence: 43.0] [Reference Citation Analysis]
435 Zhu P, Verma A, Prasad T, Li Q. Expression and Function of Mas-Related G Protein-Coupled Receptor D and Its Ligand Alamandine in Retina. Mol Neurobiol 2020;57:513-27. [PMID: 31392515 DOI: 10.1007/s12035-019-01716-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
436 Liang Y, Wang ML, Chien CS, Yarmishyn AA, Yang YP, Lai WY, Luo YH, Lin YT, Chen YJ, Chang PC, Chiou SH. Highlight of Immune Pathogenic Response and Hematopathologic Effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection. Front Immunol 2020;11:1022. [PMID: 32574260 DOI: 10.3389/fimmu.2020.01022] [Cited by in Crossref: 101] [Cited by in F6Publishing: 58] [Article Influence: 50.5] [Reference Citation Analysis]
437 De A, Dash M, Tiwari A, Sinha A. Malaria, COVID-19 and angiotensin-converting enzyme 2: what does the available population data say? Open Biol 2021;11:210213. [PMID: 34637655 DOI: 10.1098/rsob.210213] [Reference Citation Analysis]
438 Stewart JM, Ocon AJ, Clarke D, Taneja I, Medow MS. Defects in cutaneous angiotensin-converting enzyme 2 and angiotensin-(1-7) production in postural tachycardia syndrome. Hypertension 2009;53:767-74. [PMID: 19289653 DOI: 10.1161/HYPERTENSIONAHA.108.127357] [Cited by in Crossref: 49] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
439 Elshafei A, Khidr EG, El-Husseiny AA, Gomaa MH. RAAS, ACE2 and COVID-19; a mechanistic review. Saudi J Biol Sci 2021. [PMID: 34305426 DOI: 10.1016/j.sjbs.2021.07.003] [Reference Citation Analysis]
440 Fang F, Liu GC, Zhou X, Yang S, Reich HN, Williams V, Hu A, Pan J, Konvalinka A, Oudit GY, Scholey JW, John R. Loss of ACE2 exacerbates murine renal ischemia-reperfusion injury. PLoS One 2013;8:e71433. [PMID: 23951161 DOI: 10.1371/journal.pone.0071433] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
441 Chhabra KH, Chodavarapu H, Lazartigues E. Angiotensin converting enzyme 2: a new important player in the regulation of glycemia. IUBMB Life 2013;65:731-8. [PMID: 23893738 DOI: 10.1002/iub.1190] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
442 Hardenberg JB, Luft FC. Covid-19, ACE2 and the kidney.Acta Physiol (Oxf). 2020;230:e13539. [PMID: 32662161 DOI: 10.1111/apha.13539] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
443 Shirazi J, Donzanti MJ, Nelson KM, Zurakowski R, Fromen CA, Gleghorn JP. Significant Unresolved Questions and Opportunities for Bioengineering in Understanding and Treating COVID-19 Disease Progression. Cell Mol Bioeng 2020;:1-26. [PMID: 32837585 DOI: 10.1007/s12195-020-00637-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
444 Angeli F, Reboldi G, Verdecchia P. Hypertensive urgencies and emergencies: Misconceptions and pitfalls. Eur J Intern Med 2020;71:15-7. [PMID: 31706707 DOI: 10.1016/j.ejim.2019.10.031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
445 Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 2013;169:477-92. [PMID: 23488800 DOI: 10.1111/bph.12159] [Cited by in Crossref: 261] [Cited by in F6Publishing: 252] [Article Influence: 32.6] [Reference Citation Analysis]
446 Naidu SAG, Clemens RA, Pressman P, Zaigham M, Kadkhoda K, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum. J Diet Suppl 2020;:1-28. [PMID: 33164601 DOI: 10.1080/19390211.2020.1834049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
447 Ahmad MF, Ali M, Alsayegh ARA, Ahmad S, Alam N, Wahab S, Ali MS, Athar MT. A current novel perspective approach for coronavirus disease-2019 pandemic outbreak. J Adv Pharm Technol Res 2021;12:311-20. [PMID: 34820303 DOI: 10.4103/japtr.JAPTR_159_21] [Reference Citation Analysis]
448 Dahal A, Sonju JJ, Kousoulas KG, Jois SD. Peptides and peptidomimetics as therapeutic agents for Covid-19. Pept Sci (Hoboken) 2021;:e24245. [PMID: 34901700 DOI: 10.1002/pep2.24245] [Reference Citation Analysis]
449 Lew RA, Warner FJ, Hanchapola I, Yarski MA, Manohar J, Burrell LM, Smith AI. Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor. Exp Physiol. 2008;93:685-693. [PMID: 18223027 DOI: 10.1113/expphysiol.2007.040352] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 5.9] [Reference Citation Analysis]
450 Santos RAS, Oudit GY, Verano-Braga T, Canta G, Steckelings UM, Bader M. The renin-angiotensin system: going beyond the classical paradigms. Am J Physiol Heart Circ Physiol. 2019;316:H958-H970. [PMID: 30707614 DOI: 10.1152/ajpheart.00723.2018] [Cited by in Crossref: 100] [Cited by in F6Publishing: 89] [Article Influence: 33.3] [Reference Citation Analysis]
451 Roberts A, Vogel L, Guarner J, Hayes N, Murphy B, Zaki S, Subbarao K. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol 2005;79:503-11. [PMID: 15596843 DOI: 10.1128/JVI.79.1.503-511.2005] [Cited by in Crossref: 179] [Cited by in F6Publishing: 136] [Article Influence: 10.5] [Reference Citation Analysis]
452 Moin ASM, Sathyapalan T, Atkin SL, Butler AE. Renin-Angiotensin System overactivation in polycystic ovary syndrome, a risk for SARS-CoV-2 infection? Metabol Open 2020;7:100052. [PMID: 32838280 DOI: 10.1016/j.metop.2020.100052] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
453 Alexandre J, Cracowski JL, Richard V, Bouhanick B; French Society of Pharmacology and Therapeutics (SFPT). Drugs acting on renin angiotensin system and use in ill patients with COVID-19. Therapie 2020;75:319-25. [PMID: 32553503 DOI: 10.1016/j.therap.2020.05.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
454 Guang C, Phillips RD, Jiang B, Milani F. Three key proteases--angiotensin-I-converting enzyme (ACE), ACE2 and renin--within and beyond the renin-angiotensin system. Arch Cardiovasc Dis. 2012;105:373-385. [PMID: 22800722 DOI: 10.1016/j.acvd.2012.02.010] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 7.6] [Reference Citation Analysis]
455 Fu Y, Hu L, Ren H, Zuo Y, Chen S, Zhang Q, Shao C, Ma Y, Wu L, Hao J, Wang C, Wang Z, Yanagihara R, Deng Y, Merlotti D. Prognostic Factors for COVID-19 Hospitalized Patients with Preexisting Type 2 Diabetes. International Journal of Endocrinology 2022;2022:1-13. [DOI: 10.1155/2022/9322332] [Reference Citation Analysis]
456 Paz Ocaranza M, Riquelme JA, García L, Jalil JE, Chiong M, Santos RAS, Lavandero S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol 2020;17:116-29. [PMID: 31427727 DOI: 10.1038/s41569-019-0244-8] [Cited by in Crossref: 148] [Cited by in F6Publishing: 138] [Article Influence: 49.3] [Reference Citation Analysis]
457 Parekh RU, Sriramula S. Activation of Kinin B1R Upregulates ADAM17 and Results in ACE2 Shedding in Neurons. Int J Mol Sci 2020;22:E145. [PMID: 33375653 DOI: 10.3390/ijms22010145] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
458 Kopecky-Bromberg SA, Martinez-Sobrido L, Palese P. 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J Virol 2006;80:785-93. [PMID: 16378980 DOI: 10.1128/JVI.80.2.785-793.2006] [Cited by in Crossref: 100] [Article Influence: 5.9] [Reference Citation Analysis]
459 Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, Haystead TA, Donoghue M, Breitbart RE, Acton SL, Rockman HA, Coffman TM. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest. 2006;116:2218-2225. [PMID: 16878172 DOI: 10.1172/jci16980] [Cited by in Crossref: 242] [Cited by in F6Publishing: 128] [Article Influence: 15.1] [Reference Citation Analysis]
460 Qiu Z, Zhao J, Huang F, Bao L, Chen Y, Yang K, Cui W, Jin W. Myocardial fibrosis reversion via rhACE2-electrospun fibrous patch for ventricular remodeling prevention. NPJ Regen Med 2021;6:44. [PMID: 34376690 DOI: 10.1038/s41536-021-00154-y] [Reference Citation Analysis]
461 Zhang H, Shao B, Dang Q, Chen Z, Zhou Q, Luo H, Yuan W, Sun Z. Pathogenesis and Mechanism of Gastrointestinal Infection With COVID-19. Front Immunol 2021;12:674074. [PMID: 34858386 DOI: 10.3389/fimmu.2021.674074] [Reference Citation Analysis]
462 Lieb W, Graf J, Götz A, König IR, Mayer B, Fischer M, Stritzke J, Hengstenberg C, Holmer SR, Döring A, Löwel H, Schunkert H, Erdmann J. Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men. Results of the MONICA Augsburg echocardiographic substudy. J Mol Med (Berl) 2006;84:88-96. [PMID: 16283142 DOI: 10.1007/s00109-005-0718-5] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 4.1] [Reference Citation Analysis]
463 Neo JH, Ager EI, Angus PW, Zhu J, Herath CB, Christophi C. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases. BMC Cancer. 2010;10:134. [PMID: 20380732 DOI: 10.1186/1471-2407-10-134] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 4.3] [Reference Citation Analysis]
464 Gao L, Jiang D, Wen XS, Cheng XC, Sun M, He B, You LN, Lei P, Tan XW, Qin S, Cai GQ, Zhang DY. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res. 2020;21:83. [PMID: 32293449 DOI: 10.1186/s12931-020-01352-w] [Cited by in Crossref: 112] [Cited by in F6Publishing: 108] [Article Influence: 56.0] [Reference Citation Analysis]
465 Nunes AD, Souza AP, Macedo LM, Alves PH, Pedrino GR, Colugnati DB, Mendes EP, Santos RA, Castro CH. Influence of antihypertensive drugs on aortic and coronary effects of Ang-(1-7) in pressure-overloaded rats. Braz J Med Biol Res 2017;50:e5520. [PMID: 28355350 DOI: 10.1590/1414-431X20165520] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
466 Davidson AM, Wysocki J, Batlle D. Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor: Therapeutic Implications. Hypertension 2020;76:1339-49. [PMID: 32851855 DOI: 10.1161/HYPERTENSIONAHA.120.15256] [Cited by in Crossref: 51] [Cited by in F6Publishing: 32] [Article Influence: 25.5] [Reference Citation Analysis]
467 Kuriakose J, Montezano AC, Touyz RM. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021;135:387-407. [PMID: 33511992 DOI: 10.1042/CS20200480] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
468 Yanes Cardozo LL, Rezq S, Pruett JE, Romero DG. Androgens, the kidney, and COVID-19: an opportunity for translational research. Am J Physiol Renal Physiol 2021;320:F243-8. [PMID: 33464168 DOI: 10.1152/ajprenal.00601.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
469 Haghani M, Varamini P. Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature. Scientometrics 2021;:1-46. [PMID: 34188334 DOI: 10.1007/s11192-021-04036-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
470 Choi Y, Jeon H, Brännström M, Akin JW, Curry TE Jr, Jo M. Ovulatory upregulation of angiotensin-converting enzyme 2, a receptor for SARS-CoV-2, in dominant follicles of the human ovary. Fertil Steril 2021:S0015-0282(21)01932-4. [PMID: 34538460 DOI: 10.1016/j.fertnstert.2021.08.009] [Reference Citation Analysis]
471 Wysocki J, González-Pacheco FR, Batlle D. Angiotensin-converting enzyme 2: possible role in hypertension and kidney disease. Curr Hypertens Rep 2008;10:70-7. [PMID: 18367030 DOI: 10.1007/s11906-008-0014-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
472 Bindom SM, Hans CP, Xia H, Boulares AH, Lazartigues E. Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes. 2010;59:2540-2548. [PMID: 20660625 DOI: 10.2337/db09-0782] [Cited by in Crossref: 137] [Cited by in F6Publishing: 130] [Article Influence: 11.4] [Reference Citation Analysis]
473 Amraei R, Rahimi N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells. 2020;9. [PMID: 32660065 DOI: 10.3390/cells9071652] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 34.0] [Reference Citation Analysis]
474 Wondmkun YT, Mohammed OA. A Review on Novel Drug Targets and Future Directions for COVID-19 Treatment. Biologics 2020;14:77-82. [PMID: 32921981 DOI: 10.2147/BTT.S266487] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
475 Wysocki J, Ye M, Hassler L, Gupta AK, Wang Y, Nicoleascu V, Randall G, Wertheim JA, Batlle D. A Novel Soluble ACE2 Variant with Prolonged Duration of Action Neutralizes SARS-CoV-2 Infection in Human Kidney Organoids. J Am Soc Nephrol 2021:ASN. [PMID: 33526471 DOI: 10.1681/ASN.2020101537] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
476 Pennisi M, Lanza G, Falzone L, Fisicaro F, Ferri R, Bella R. SARS-CoV-2 and the Nervous System: From Clinical Features to Molecular Mechanisms. Int J Mol Sci 2020;21:E5475. [PMID: 32751841 DOI: 10.3390/ijms21155475] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 23.0] [Reference Citation Analysis]
477 Smart L, Fawkes N, Goggin P, Pennick G, Rainsford KD, Charlesworth B, Shah N. A narrative review of the potential pharmacological influence and safety of ibuprofen on coronavirus disease 19 (COVID-19), ACE2, and the immune system: a dichotomy of expectation and reality. Inflammopharmacology 2020;28:1141-52. [PMID: 32797326 DOI: 10.1007/s10787-020-00745-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
478 Li W, Choe H, Farzan M. Insights from the association of SARS-CoV S-protein with its receptor, ACE2. Adv Exp Med Biol 2006;581:209-18. [PMID: 17037532 DOI: 10.1007/978-0-387-33012-9_36] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
479 Kwaan HC. Coronavirus Disease 2019: The Role of the Fibrinolytic System from Transmission to Organ Injury and Sequelae. Semin Thromb Hemost 2020;46:841-4. [PMID: 32386428 DOI: 10.1055/s-0040-1709996] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
480 Siddiqa MA, Rao DS, Suvarna G, Chennamachetty VK, Verma MK, Rao MVR. In-Silico Drug Designing of Spike Receptor with Its ACE2 Receptor and Nsp10/Nsp16 MTase Complex Against SARS-CoV-2. Int J Pept Res Ther 2021;:1-8. [PMID: 33746660 DOI: 10.1007/s10989-021-10196-x] [Reference Citation Analysis]
481 Xiao F, Burns KD. Measurement of Angiotensin Converting Enzyme 2 Activity in Biological Fluid (ACE2). Methods Mol Biol 2017;1527:101-15. [PMID: 28116710 DOI: 10.1007/978-1-4939-6625-7_8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
482 Labò N, Ohnuki H, Tosato G. Vasculopathy and Coagulopathy Associated with SARS-CoV-2 Infection. Cells 2020;9:E1583. [PMID: 32629875 DOI: 10.3390/cells9071583] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
483 Sui Y, Li J, Venzon DJ, Berzofsky JA. SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage. Front Immunol 2021;12:658428. [PMID: 34149696 DOI: 10.3389/fimmu.2021.658428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
484 Fang LG, Zhou Q. Remarkable gastrointestinal and liver manifestations of COVID-19: A clinical and radiologic overview. World J Clin Cases 2021; 9(19): 4969-4979 [PMID: 34307547 DOI: 10.12998/wjcc.v9.i19.4969] [Cited by in CrossRef: 1] [Article Influence: 1.0] [Reference Citation Analysis]
485 Suh SH, Choi HS, Kim CS, Kim IJ, Cha H, Cho JM, Ma SK, Kim SW, Bae EH. CG200745, a Novel HDAC Inhibitor, Attenuates Kidney Fibrosis in a Murine Model of Alport Syndrome. Int J Mol Sci 2020;21:E1473. [PMID: 32098220 DOI: 10.3390/ijms21041473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
486 Zhang F, Chen A, Pan Y, Wang X, Xu Y, Desai AA, Tang H, Han Y. Research Progress on Pulmonary Arterial Hypertension and the Role of the Angiotensin Converting Enzyme 2-Angiotensin-(1-7)-Mas Axis in Pulmonary Arterial Hypertension. Cardiovasc Drugs Ther 2021. [PMID: 33394361 DOI: 10.1007/s10557-020-07114-6] [Reference Citation Analysis]
487 Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ Res. 2016;118:1313-1326. [PMID: 27081112 DOI: 10.1161/circresaha.116.307708] [Cited by in Crossref: 366] [Cited by in F6Publishing: 252] [Article Influence: 61.0] [Reference Citation Analysis]
488 Osterreicher CH, Taura K, De Minicis S, Seki E, Penz-Osterreicher M, Kodama Y, Kluwe J, Schuster M, Oudit GY, Penninger JM. Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology. 2009;50:929-938. [PMID: 19650157 DOI: 10.1002/hep.23104] [Cited by in Crossref: 86] [Cited by in F6Publishing: 80] [Article Influence: 6.6] [Reference Citation Analysis]
489 Ma C, Cong Y, Zhang H. COVID-19 and the Digestive System. Am J Gastroenterol. 2020;115:1003-1006. [PMID: 32618648 DOI: 10.14309/ajg.0000000000000691] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 19.0] [Reference Citation Analysis]
490 Bhattarai A, Pawnikar S, Miao Y. Mechanism of Ligand Recognition by Human ACE2 Receptor. J Phys Chem Lett 2021;12:4814-22. [PMID: 33999630 DOI: 10.1021/acs.jpclett.1c01064] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
491 Song P, Li W, Xie J, Hou Y, You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta 2020;509:280-7. [PMID: 32531256 DOI: 10.1016/j.cca.2020.06.017] [Cited by in Crossref: 174] [Cited by in F6Publishing: 155] [Article Influence: 87.0] [Reference Citation Analysis]
492 ElAbd R, AlTarrah D, AlYouha S, Bastaki H, Almazeedi S, Al-Haddad M, Jamal M, AlSabah S. Angiotensin-Converting Enzyme (ACE) Inhibitors and Angiotensin Receptor Blockers (ARB) Are Protective Against ICU Admission and Mortality for Patients With COVID-19 Disease. Front Med (Lausanne) 2021;8:600385. [PMID: 33748156 DOI: 10.3389/fmed.2021.600385] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
493 Gupta I, Rizeq B, Elkord E, Vranic S, Al Moustafa AE. SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers (Basel) 2020;12:E2186. [PMID: 32764454 DOI: 10.3390/cancers12082186] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
494 Patel VB, Basu R, Oudit GY. ACE2/Ang 1-7 axis: A critical regulator of epicardial adipose tissue inflammation and cardiac dysfunction in obesity. Adipocyte 2016;5:306-11. [PMID: 27617176 DOI: 10.1080/21623945.2015.1131881] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 9.5] [Reference Citation Analysis]
495 Oliveira LCG, Cruz NAN, Ricelli B, Tedesco-Silva H Jr, Medina-Pestana JO, Casarini DE. Interactions amongst inflammation, renin-angiotensin-aldosterone and kallikrein-kinin systems: suggestive approaches for COVID-19 therapy. J Venom Anim Toxins Incl Trop Dis 2021;27:e20200181. [PMID: 34925477 DOI: 10.1590/1678-9199-JVATITD-2020-0181] [Reference Citation Analysis]
496 Gembardt F, Grajewski S, Vahl M, Schultheiss HP, Walther T. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol Cell Biochem. 2008;319:115-123. [PMID: 18636314 DOI: 10.1007/s11010-008-9884-4] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 4.3] [Reference Citation Analysis]
497 Michaud V, Deodhar M, Arwood M, Al Rihani SB, Dow P, Turgeon J. ACE2 as a Therapeutic Target for COVID-19; its Role in Infectious Processes and Regulation by Modulators of the RAAS System. J Clin Med 2020;9:E2096. [PMID: 32635289 DOI: 10.3390/jcm9072096] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
498 Wang G, Lai FM, Lai KB, Chow KM, Kwan CH, Li KT, Szeto CC. Urinary mRNA expression of ACE and ACE2 in human type 2 diabetic nephropathy. Diabetologia 2008;51:1062-7. [PMID: 18389211 DOI: 10.1007/s00125-008-0988-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
499 Hu Y, Liu L, Lu X. Regulation of Angiotensin-Converting Enzyme 2: A Potential Target to Prevent COVID-19? Front Endocrinol (Lausanne) 2021;12:725967. [PMID: 34745001 DOI: 10.3389/fendo.2021.725967] [Reference Citation Analysis]
500 Sehirli AO, Sayiner S, Serakinci N. Role of melatonin in the treatment of COVID-19; as an adjuvant through cluster differentiation 147 (CD147). Mol Biol Rep 2020;47:8229-33. [PMID: 32920757 DOI: 10.1007/s11033-020-05830-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
501 Skipworth JR, Nijmeijer RM, van Santvoort HC, Besselink MG, Schulz HU, Kivimaki M, Kumari M, Cooper JA, Acharya J, Shankar A, Malago M, Humphries SE, Olde Damink SW, Montgomery HE. The effect of renin angiotensin system genetic variants in acute pancreatitis. Ann Surg 2015;261:180-8. [PMID: 24743610 DOI: 10.1097/SLA.0000000000000655] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
502 Camargo SM, Singer D, Makrides V, Huggel K, Pos KM, Wagner CA, Kuba K, Danilczyk U, Skovby F, Kleta R, Penninger JM, Verrey F. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology 2009;136:872-82. [PMID: 19185582 DOI: 10.1053/j.gastro.2008.10.055] [Cited by in Crossref: 150] [Cited by in F6Publishing: 137] [Article Influence: 10.7] [Reference Citation Analysis]
503 Pinheiro SV, Simões E Silva AC. Angiotensin converting enzyme 2, Angiotensin-(1-7), and receptor MAS axis in the kidney. Int J Hypertens 2012;2012:414128. [PMID: 22518283 DOI: 10.1155/2012/414128] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
504 Smith JA, Pati D, Wang L, de Kloet AD, Frazier CJ, Krause EG. Hydration and beyond: neuropeptides as mediators of hydromineral balance, anxiety and stress-responsiveness. Front Syst Neurosci 2015;9:46. [PMID: 25873866 DOI: 10.3389/fnsys.2015.00046] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
505 Zhang L, Wang J, Liang J, Feng D, Deng F, Yang Y, Lu Y, Hu Z. Propofol prevents human umbilical vein endothelial cell injury from Ang II-induced apoptosis by activating the ACE2-(1-7)-Mas axis and eNOS phosphorylation. PLoS One 2018;13:e0199373. [PMID: 29995907 DOI: 10.1371/journal.pone.0199373] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
506 Kiylik A, Turkoglu V, Bas Z. Purification of Angiotensin-Converting Enzyme (ACE) from Sheep Kidney and Inhibition Effect of Reduced Nicotinamide Adenine Dinucleotide (NADH) on Purified ACE Activity. Cell Biochem Biophys 2021. [PMID: 34618304 DOI: 10.1007/s12013-021-01036-2] [Reference Citation Analysis]
507 Patel SK, Velkoska E, Freeman M, Wai B, Lancefield TF, Burrell LM. From gene to protein-experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension. Front Physiol 2014;5:227. [PMID: 25009501 DOI: 10.3389/fphys.2014.00227] [Cited by in Crossref: 65] [Cited by in F6Publishing: 74] [Article Influence: 8.1] [Reference Citation Analysis]
508 Lemos VS, Côrtes SF, Silva DM, Campagnole-Santos MJ, Santos RA. Angiotensin-(1-7) is involved in the endothelium-dependent modulation of phenylephrine-induced contraction in the aorta of mRen-2 transgenic rats. Br J Pharmacol 2002;135:1743-8. [PMID: 11934815 DOI: 10.1038/sj.bjp.0704630] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 1.5] [Reference Citation Analysis]
509 Salem ES, Grobe N, Elased KM. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am J Physiol Renal Physiol 2014;306:F629-39. [PMID: 24452639 DOI: 10.1152/ajprenal.00516.2013] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 7.3] [Reference Citation Analysis]
510 Sayeski PP. Hemodynamic regulator and mitogenic growth factor: re-visiting the age old question with ACE2 and Jak2. Regul Pept 2014;189:v-vi. [PMID: 24631470 DOI: 10.1016/j.regpep.2014.03.002] [Reference Citation Analysis]
511 Fraga-Silva RA, Ferreira AJ, Dos Santos RA. Opportunities for targeting the angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor pathway in hypertension. Curr Hypertens Rep. 2013;15:31-38. [PMID: 23212695 DOI: 10.1007/s11906-012-0324-1] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
512 Rezq S, Huffman AM, Basnet J, Yanes Cardozo LL, Romero DG. Cardiac and Renal SARS-CoV-2 Viral Entry Protein Regulation by Androgens and Diet: Implications for Polycystic Ovary Syndrome and COVID-19. Int J Mol Sci 2021;22:9746. [PMID: 34575910 DOI: 10.3390/ijms22189746] [Reference Citation Analysis]
513 AbdelMassih AF, Kamel A, Mishriky F, Ismail HA, El Qadi L, Malak L, El-Husseiny M, Ashraf M, Hafez N, AlShehry N, El-Husseiny N, AbdelRaouf N, Shebl N, Hafez N, Youssef N, Afdal P, Hozaien R, Menshawey R, Saeed R, Fouda R. Is it infection or rather vascular inflammation? Game-changer insights and recommendations from patterns of multi-organ involvement and affected subgroups in COVID-19. Cardiovasc Endocrinol Metab 2020;9:110-20. [PMID: 32803145 DOI: 10.1097/XCE.0000000000000211] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
514 Meiners J, Jansen K, Gorbokon N, Büscheck F, Luebke AM, Kluth M, Hube-magg C, Höflmayer D, Weidemann S, Fraune C, Möller K, Bernreuther C, Lebok P, Menz A, Jacobsen F, Clauditz T, Sauter G, Uhlig R, Wilczak W, Izbicki J, Perez D, Minner S, Burandt E, Krech T, Marx A, Simon R, Steurer S. Angiotensin-Converting Enzyme 2 Protein Is Overexpressed in a Wide Range of Human Tumour Types: A Systematic Tissue Microarray Study on >15,000 Tumours. Biomedicines 2021;9:1831. [DOI: 10.3390/biomedicines9121831] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
515 Américo ALV, Muller CR, Vecchiatto B, Martucci LF, Fonseca-Alaniz MH, Evangelista FS. Aerobic exercise training prevents obesity and insulin resistance independent of the renin angiotensin system modulation in the subcutaneous white adipose tissue. PLoS One 2019;14:e0215896. [PMID: 31022246 DOI: 10.1371/journal.pone.0215896] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
516 Ferrara F, Vitiello A. The renin-angiotensin system and specifically angiotensin-converting enzyme 2 as a potential therapeutic target in SARS-CoV-2 infections. Naunyn Schmiedebergs Arch Pharmacol 2021;394:1589-93. [PMID: 34151392 DOI: 10.1007/s00210-021-02108-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
517 Li Y, Cao Y, Zeng Z, Liang M, Xue Y, Xi C, Zhou M, Jiang W. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-κB pathways. Sci Rep 2015;5:8209. [PMID: 25644821 DOI: 10.1038/srep08209] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 7.7] [Reference Citation Analysis]
518 de Kloet AD, Krause EG, Shi PD, Zubcevic J, Raizada MK, Sumners C. Neuroimmune communication in hypertension and obesity: a new therapeutic angle. Pharmacol Ther. 2013;138:428-440. [PMID: 23458610 DOI: 10.1016/j.pharmthera.2013.02.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
519 Tekos F, Skaperda Z, Goutzourelas N, Phelps DS, Floros J, Kouretas D. The Importance of Redox Status in the Frame of Lifestyle Approaches and the Genetics of the Lung Innate Immune Molecules, SP-A1 and SP-A2, on Differential Outcomes of COVID-19 Infection. Antioxidants (Basel) 2020;9:E784. [PMID: 32854247 DOI: 10.3390/antiox9090784] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
520 Liu A, Raja xavier J, Singh Y, Brucker SY, Salker MS. Molecular and Physiological Aspects of SARS-CoV-2 Infection in Women and Pregnancy. Front Glob Womens Health 2022;3:756362. [DOI: 10.3389/fgwh.2022.756362] [Reference Citation Analysis]
521 Yoon HE, Kim EN, Kim MY, Lim JH, Jang IA, Ban TH, Shin SJ, Park CW, Chang YS, Choi BS. Age-Associated Changes in the Vascular Renin-Angiotensin System in Mice. Oxid Med Cell Longev 2016;2016:6731093. [PMID: 27200147 DOI: 10.1155/2016/6731093] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 9.7] [Reference Citation Analysis]
522 Kurtaiş Aytür Y, Köseoğlu BF, Özyemişçi Taşkıran Ö, Ordu-Gökkaya NK, Ünsal Delialioğlu S, Sonel Tur B, Sarıkaya S, Şirzai H, Tekdemir Tiftik T, Alemdaroğlu E, Ayhan FF, Duyur Çakıt BD, Genç A, Gündoğdu İ, Güzel R, Demirbağ Karayel D, Bilir Kaya B, Öken Ö, Özdemir H, Soyupek F, Tıkız C. Pulmonary rehabilitation principles in SARS-COV-2 infection (COVID-19): A guideline for the acute and subacute rehabilitation. Turk J Phys Med Rehabil 2020;66:104-20. [PMID: 32760887 DOI: 10.5606/tftrd.2020.6444] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
523 Shweiki D. Contemplating on the Etiology of COVID-19 Severity and Mortality Sex Differences. Gender and the Genome 2020;4:247028972097020. [DOI: 10.1177/2470289720970203] [Reference Citation Analysis]
524 Çakır B, Okuyan B, Şener G, Tunali-Akbay T. Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis. Eur J Pharmacol 2021;891:173781. [PMID: 33271151 DOI: 10.1016/j.ejphar.2020.173781] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
525 Sehgal A, Alexander BT, Morrison JL, South AM. Fetal Growth Restriction and Hypertension in the Offspring: Mechanistic Links and Therapeutic Directions. J Pediatr 2020;224:115-123.e2. [PMID: 32450071 DOI: 10.1016/j.jpeds.2020.05.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
526 Tavares CAM, Bailey MA, Girardi ACC. Biological Context Linking Hypertension and Higher Risk for COVID-19 Severity. Front Physiol 2020;11:599729. [PMID: 33329052 DOI: 10.3389/fphys.2020.599729] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
527 Nejati M, Dehghan P, Hashempour-Baltork F, Alizadeh AM, Farshi P, Khosravi-Darani K. Potential Dietary Interventions for COVID-19 Infection Based on the Gut-Immune Axis: An Update Review on Bioactive Component of Macronutrients. Int J Prev Med 2021;12:105. [PMID: 34729139 DOI: 10.4103/ijpvm.IJPVM_493_20] [Reference Citation Analysis]
528 Wysocki J, Ye M, Rodriguez E, González-Pacheco FR, Barrios C, Evora K, Schuster M, Loibner H, Brosnihan KB, Ferrario CM. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension. 2010;55:90-98. [PMID: 19948988 DOI: 10.1161/hypertensionaha.109.138420] [Cited by in Crossref: 198] [Cited by in F6Publishing: 119] [Article Influence: 15.2] [Reference Citation Analysis]
529 Stegbauer J, Thatcher SE, Yang G, Bottermann K, Rump LC, Daugherty A, Cassis LA. Mas receptor deficiency augments angiotensin II-induced atherosclerosis and aortic aneurysm ruptures in hypercholesterolemic male mice. J Vasc Surg 2019;70:1658-1668.e1. [PMID: 30850299 DOI: 10.1016/j.jvs.2018.11.045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
530 Kazemi E, Soldoozi Nejat R, Ashkan F, Sheibani H. The laboratory findings and different COVID-19 severities: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2021;20:17. [PMID: 33726761 DOI: 10.1186/s12941-021-00420-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
531 Foureaux G, Nogueira JC, Nogueira BS, Fulgêncio GO, Menezes GB, Fernandes SO, Cardoso VN, Fernandes RS, Oliveira GP, Franca JR, Faraco AA, Raizada MK, Ferreira AJ. Antiglaucomatous effects of the activation of intrinsic Angiotensin-converting enzyme 2. Invest Ophthalmol Vis Sci 2013;54:4296-306. [PMID: 23702784 DOI: 10.1167/iovs.12-11427] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 5.4] [Reference Citation Analysis]
532 Fernandes FB, Fernandes AB, Febba ACS, Leite APO, Leite CA, Vitalle MSS, Jung FF, Casarini DE. Association of Ang-(1–7) and des-Arg9BK as new biomarkers of obesity and cardiometabolic risk factors in adolescents. Hypertens Res 2021;44:969-77. [DOI: 10.1038/s41440-021-00618-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
533 Bobe J, Montfort J, Nguyen T, Fostier A. Identification of new participants in the rainbow trout (Oncorhynchus mykiss) oocyte maturation and ovulation processes using cDNA microarrays. Reprod Biol Endocrinol 2006;4:39. [PMID: 16872517 DOI: 10.1186/1477-7827-4-39] [Cited by in Crossref: 87] [Cited by in F6Publishing: 75] [Article Influence: 5.4] [Reference Citation Analysis]
534 Xia H, Suda S, Bindom S, Feng Y, Gurley SB, Seth D, Navar LG, Lazartigues E. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. PLoS One 2011;6:e22682. [PMID: 21818366 DOI: 10.1371/journal.pone.0022682] [Cited by in Crossref: 84] [Cited by in F6Publishing: 77] [Article Influence: 7.6] [Reference Citation Analysis]
535 Liu D, Chen Y, Zhang P, Zhong J, Jin L, Zhang C, Lin S, Wu S, Yu H. Association between circulating levels of ACE2-Ang-(1-7)-MAS axis and ACE2 gene polymorphisms in hypertensive patients. Medicine (Baltimore) 2016;95:e3876. [PMID: 27310975 DOI: 10.1097/MD.0000000000003876] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
536 Pan PP, Zhan QT, Le F, Zheng YM, Jin F. Angiotensin-converting enzymes play a dominant role in fertility. Int J Mol Sci 2013;14:21071-86. [PMID: 24152441 DOI: 10.3390/ijms141021071] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
537 Bakhshandeh B, Sorboni SG, Javanmard AR, Mottaghi SS, Mehrabi MR, Sorouri F, Abbasi A, Jahanafrooz Z. Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infect Genet Evol 2021;90:104773. [PMID: 33607284 DOI: 10.1016/j.meegid.2021.104773] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
538 Gupta V. Mineralocorticoid hypertension. Indian J Endocrinol Metab 2011;15 Suppl 4:S298-312. [PMID: 22145132 DOI: 10.4103/2230-8210.86972] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
539 Harky A, Chor CYT, Nixon H, Jeilani M. The controversy of using angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in COVID-19 patients. J Renin Angiotensin Aldosterone Syst 2021;22:1470320320987118. [PMID: 33412991 DOI: 10.1177/1470320320987118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
540 Yamazato M, Ferreira AJ, Yamazato Y, Diez-Freire C, Yuan L, Gillies R, Raizada MK. Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves baroreceptor heart rate reflex in spontaneously hypertensive rats. J Renin Angiotensin Aldosterone Syst 2011;12:456-61. [PMID: 21719524 DOI: 10.1177/1470320311412809] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
541 Barker H, Parkkila S. Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. PLoS One 2020;15:e0240647. [PMID: 33112891 DOI: 10.1371/journal.pone.0240647] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
542 Marčetić D, Samaržija M, Vukić Dugac A, Knežević J. Angiotensin-Converting Enzyme 2 (ACE2) as a Potential Diagnostic and Prognostic Biomarker for Chronic Inflammatory Lung Diseases. Genes (Basel) 2021;12:1054. [PMID: 34356070 DOI: 10.3390/genes12071054] [Reference Citation Analysis]
543 Mehranfard D, Perez G, Rodriguez A, Ladna JM, Neagra CT, Goldstein B, Carroll T, Tran A, Trivedi M, Speth RC. Alterations in Gene Expression of Renin-Angiotensin System Components and Related Proteins in Colorectal Cancer. J Renin Angiotensin Aldosterone Syst 2021;2021:9987115. [PMID: 34285715 DOI: 10.1155/2021/9987115] [Reference Citation Analysis]
544 Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020;92:726-730. [PMID: 32221983 DOI: 10.1002/jmv.25785] [Cited by in Crossref: 214] [Cited by in F6Publishing: 194] [Article Influence: 107.0] [Reference Citation Analysis]
545 Fressatto de Godoy MA, Pernomian L, de Oliveira AM, Rattan S. Biosynthetic pathways and the role of the MAS receptor in the effects of Angiotensin-(1-7) in smooth muscles. Int J Hypertens 2012;2012:121740. [PMID: 22164327 DOI: 10.1155/2012/121740] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
546 ling J, Peng N, luo L. ACE2 maybe serve as a prognostic biomarker in breast invasive carcinoma. Clinical Laboratory Analysis. [DOI: 10.1002/jcla.24362] [Reference Citation Analysis]
547 Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631-7. [PMID: 15141377 DOI: 10.1002/path.1570] [Reference Citation Analysis]
548 Itoyama S, Keicho N, Hijikata M, Quy T, Phi NC, Long HT, Ha LD, Ban VV, Matsushita I, Yanai H, Kirikae F, Kirikae T, Kuratsuji T, Sasazuki T. Identification of an alternative 5'-untranslated exon and new polymorphisms of angiotensin-converting enzyme 2 gene: lack of association with SARS in the Vietnamese population. Am J Med Genet A 2005;136:52-7. [PMID: 15937940 DOI: 10.1002/ajmg.a.30779] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 2.1] [Reference Citation Analysis]
549 Argañaraz GA, Palmeira JDF, Argañaraz ER. Phosphatidylserine inside out: a possible underlying mechanism in the inflammation and coagulation abnormalities of COVID-19. Cell Commun Signal 2020;18:190. [PMID: 33357215 DOI: 10.1186/s12964-020-00687-7] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
550 Drapkina OM, Vasilyeva LE. Debatable points of using angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists in patients with COVID-19. Cardiovasc Ther Prev 2020;19:2580. [DOI: 10.15829/1728-8800-2020-2580] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
551 Rajapaksha IG, Gunarathne LS, Angus PW, Herath CB. Update on New Aspects of the Renin-Angiotensin System in Hepatic Fibrosis and Portal Hypertension: Implications for Novel Therapeutic Options. J Clin Med 2021;10:702. [PMID: 33670126 DOI: 10.3390/jcm10040702] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
552 Yu R, Li P. Screening of potential spike glycoprotein / ACE2 dual antagonists against COVID-19 in silico molecular docking. J Virol Methods 2021;301:114424. [PMID: 34896453 DOI: 10.1016/j.jviromet.2021.114424] [Reference Citation Analysis]
553 Rocha NP, Simões E Silva AC, Teixeira AL. Editorial: The Role of the Renin-Angiotensin System in the Central Nervous System. Front Neurosci 2021;15:733084. [PMID: 34393722 DOI: 10.3389/fnins.2021.733084] [Reference Citation Analysis]
554 Zhang W, Xu YZ, Liu B, Wu R, Yang YY, Xiao XQ, Zhang X. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. ScientificWorldJournal 2014;2014:603409. [PMID: 24558317 DOI: 10.1155/2014/603409] [Cited by in Crossref: 24] [Cited by in F6Publishing: 46] [Article Influence: 3.0] [Reference Citation Analysis]
555 Varagic J, Ahmad S, Nagata S, Ferrario CM. ACE2: angiotensin II/angiotensin-(1-7) balance in cardiac and renal injury. Curr Hypertens Rep. 2014;16:420. [PMID: 24510672 DOI: 10.1007/s11906-014-0420-5] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 9.1] [Reference Citation Analysis]
556 Dubina MV, Gomonova VV, Taraskina AE, Vasilyeva NV, Sayganov SA. Pathogenesis-based preexposure prophylaxis associated with a low risk of SARS-CoV-2 infection in healthcare workers at a designated COVID-19 hospital: a pilot study. BMC Infect Dis 2021;21:536. [PMID: 34098889 DOI: 10.1186/s12879-021-06241-1] [Reference Citation Analysis]
557 Grobe N, Leiva O, Morris M, Elased KM. Loss of prolyl carboxypeptidase in two-kidney, one-clip goldblatt hypertensive mice. PLoS One 2015;10:e0117899. [PMID: 25706121 DOI: 10.1371/journal.pone.0117899] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
558 Riviere G, Fellous A, Franco A, Bernay B, Favrel P. A crucial role in fertility for the oyster angiotensin-converting enzyme orthologue CgACE. PLoS One 2011;6:e27833. [PMID: 22174750 DOI: 10.1371/journal.pone.0027833] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
559 Alimoradi N, Sharqi M, Firouzabadi D, Sadeghi MM, Moezzi MI, Firouzabadi N. SNPs of ACE1 (rs4343) and ACE2 (rs2285666) genes are linked to SARS-CoV-2 infection but not with the severity of disease. Virol J 2022;19. [DOI: 10.1186/s12985-022-01782-6] [Reference Citation Analysis]
560 Weichmann F, Rohdewald P. Projected supportive effects of Pycnogenol in patients suffering from multi-dimensional health impairments after a SARS-CoV2 infection. Int J Antimicrob Agents 2020;56:106191. [PMID: 33045354 DOI: 10.1016/j.ijantimicag.2020.106191] [Reference Citation Analysis]
561 Rojas A, Schneider I, Lindner C, Gonzàlez I, Morales MA. Receptor for advanced glycation end-products axis and coronavirus disease 2019 in inflammatory bowel diseases: A dangerous liaison? World J Gastroenterol 2021;27:2270-80. [PMID: 34040321 DOI: 10.3748/wjg.v27.i19.2270] [Reference Citation Analysis]
562 Liu J, Ji H, Zheng W, Wu X, Zhu JJ, Arnold AP, Sandberg K. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ 2010;1:6. [PMID: 21208466 DOI: 10.1186/2042-6410-1-6] [Cited by in Crossref: 151] [Cited by in F6Publishing: 144] [Article Influence: 12.6] [Reference Citation Analysis]
563 Domingo P, Mur I, Pomar V, Corominas H, Casademont J, de Benito N. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine 2020;58:102887. [PMID: 32736307 DOI: 10.1016/j.ebiom.2020.102887] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 27.0] [Reference Citation Analysis]
564 Liao W, Fan H, Davidge ST, Wu J. Egg White-Derived Antihypertensive Peptide IRW (Ile-Arg-Trp) Reduces Blood Pressure in Spontaneously Hypertensive Rats via the ACE2/Ang (1-7)/Mas Receptor Axis. Mol Nutr Food Res 2019;63:e1900063. [PMID: 30913349 DOI: 10.1002/mnfr.201900063] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
565 Chhabra KH, Xia H, Pedersen KB, Speth RC, Lazartigues E. Pancreatic angiotensin-converting enzyme 2 improves glycemia in angiotensin II-infused mice. Am J Physiol Endocrinol Metab 2013;304:E874-84. [PMID: 23462816 DOI: 10.1152/ajpendo.00490.2012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 4.7] [Reference Citation Analysis]
566 Bannerman BP, Júlvez J, Oarga A, Blundell TL, Moreno P, Floto RA. Integrated human/SARS-CoV-2 metabolic models present novel treatment strategies against COVID-19. Life Sci Alliance 2021;4:e202000954. [PMID: 34353886 DOI: 10.26508/lsa.202000954] [Reference Citation Analysis]
567 Williams TL, Strachan G, Macrae RGC, Kuc RE, Nyimanu D, Paterson AL, Sinha S, Maguire JJ, Davenport AP. Differential expression in humans of the viral entry receptor ACE2 compared with the short deltaACE2 isoform lacking SARS-CoV-2 binding sites. Sci Rep 2021;11. [DOI: 10.1038/s41598-021-03731-9] [Reference Citation Analysis]
568 Brooke GN, Prischi F. Structural and functional modelling of SARS-CoV-2 entry in animal models. Sci Rep 2020;10:15917. [PMID: 32985513 DOI: 10.1038/s41598-020-72528-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
569 Sanchis-Gomar F, Lavie CJ, Perez-Quilis C, Henry BM, Lippi G. Angiotensin-Converting Enzyme 2 and Antihypertensives (Angiotensin Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors) in Coronavirus Disease 2019. Mayo Clin Proc. 2020;95:1222-1230. [PMID: 32376099 DOI: 10.1016/j.mayocp.2020.03.026] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 38.0] [Reference Citation Analysis]
570 Deaton DN, Gao EN, Graham KP, Gross JW, Miller AB, Strelow JM. Thiol-based angiotensin-converting enzyme 2 inhibitors: P1 modifications for the exploration of the S1 subsite. Bioorg Med Chem Lett 2008;18:732-7. [PMID: 18078750 DOI: 10.1016/j.bmcl.2007.11.048] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
571 Cao Y, Sun Y, Tian X, Bai Z, Gong Y, Qi J, Liu D, Liu W, Li J. Analysis of ACE2 Gene-Encoded Proteins Across Mammalian Species. Front Vet Sci 2020;7:457. [PMID: 32719819 DOI: 10.3389/fvets.2020.00457] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
572 Clayton D, Hanchapola I, Thomas WG, Widdop RE, Smith AI, Perlmutter P, Aguilar MI. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2) and angiotensin receptors 1 and 2. Front Pharmacol 2015;6:5. [PMID: 25688208 DOI: 10.3389/fphar.2015.00005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
573 Freitas NL, Azevedo PRG, BrandÃo F. A glance upon Epigenetic and COVID-19. An Acad Bras Cienc 2020;92:e20201451. [PMID: 33295584 DOI: 10.1590/0001-3765202020201451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
574 Lu CY, Huang HY, Yang TH, Chang LY, Lee CY, Huang LM. siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells. Eur J Clin Microbiol Infect Dis 2008;27:709-15. [PMID: 18449585 DOI: 10.1007/s10096-008-0495-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
575 Zhang Y, Li Y, Wang X, Qu R, Li J, Li T, He T, Wang Z, Liu Y, Shao X, Lu T. Herbal plants coordinate COVID-19 in multiple dimensions - An insight analysis for clinically applied remedies. Int J Med Sci 2020;17:3125-45. [PMID: 33173434 DOI: 10.7150/ijms.50260] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
576 Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021;10:302. [PMID: 33540625 DOI: 10.3390/cells10020302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
577 Boby N, Cao X, Williams K, Gadila SKG, Shroyer MN, Didier PJ, Srivastav SK, Das A, Baker K, Sha Q, Pahar B. Simian Immunodeficiency Virus Infection Mediated Changes in Jejunum and Peripheral SARS-CoV-2 Receptor ACE2 and Associated Proteins or Genes in Rhesus Macaques. Front Immunol 2022;13:835686. [DOI: 10.3389/fimmu.2022.835686] [Reference Citation Analysis]
578 Ssentongo AE, Ssentongo P, Heilbrunn ES, Lekoubou A, Du P, Liao D, Oh JS, Chinchilli VM. Renin-angiotensin-aldosterone system inhibitors and the risk of mortality in patients with hypertension hospitalised for COVID-19: systematic review and meta-analysis. Open Heart 2020;7:e001353. [PMID: 33154144 DOI: 10.1136/openhrt-2020-001353] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
579 Jing W, Procko E. ACE2-based decoy receptors for SARS coronavirus 2. Proteins 2021;89:1065-78. [PMID: 33973262 DOI: 10.1002/prot.26140] [Reference Citation Analysis]
580 Patel KP, Schultz HD. Angiotensin peptides and nitric oxide in cardiovascular disease. Antioxid Redox Signal 2013;19:1121-32. [PMID: 22462736 DOI: 10.1089/ars.2012.4614] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
581 Grobe N, Di Fulvio M, Kashkari N, Chodavarapu H, Somineni HK, Singh R, Elased KM. Functional and molecular evidence for expression of the renin angiotensin system and ADAM17-mediated ACE2 shedding in COS7 cells. Am J Physiol Cell Physiol. 2015;308:C767-C777. [PMID: 25740155 DOI: 10.1152/ajpcell.00247.2014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
582 Jarajapu YPR. Targeting Angiotensin-Converting Enzyme-2/Angiotensin-(1-7)/Mas Receptor Axis in the Vascular Progenitor Cells for Cardiovascular Diseases. Mol Pharmacol 2021;99:29-38. [PMID: 32321734 DOI: 10.1124/mol.119.117580] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
583 Soler MJ, Barrios C, Oliva R, Batlle D. Pharmacologic modulation of ACE2 expression. Curr Hypertens Rep 2008;10:410-4. [PMID: 18775121 DOI: 10.1007/s11906-008-0076-0] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 3.5] [Reference Citation Analysis]
584 Wu CY, Lin YS, Yang YH, Shu LH, Cheng YC, Liu HT. GB-2 inhibits ACE2 and TMPRSS2 expression: In vivo and in vitro studies. Biomed Pharmacother 2020;132:110816. [PMID: 33049583 DOI: 10.1016/j.biopha.2020.110816] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
585 Li M, Chen L, Zhang J, Xiong C, Li X. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLoS One 2020;15:e0230295. [PMID: 32298273 DOI: 10.1371/journal.pone.0230295] [Cited by in Crossref: 138] [Cited by in F6Publishing: 145] [Article Influence: 69.0] [Reference Citation Analysis]
586 Nakhleh A, Shehadeh N. Glycemic control of type 2 diabetic patients with coronavirus disease during hospitalization: a proposal for early insulin therapy. Am J Physiol Endocrinol Metab 2020;318:E835-7. [PMID: 32401039 DOI: 10.1152/ajpendo.00163.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
587 Yu HG, Sizemore G, Smoot K, Perrotta P. Detecting SARS-CoV-2 Orf3a and E ion channel activity in COVID-19 blood samples. J Clin Transl Sci 2021;5:e196. [PMID: 34873451 DOI: 10.1017/cts.2021.856] [Reference Citation Analysis]
588 Pereira VM, Reis FM, Santos RA, Cassali GD, Santos SH, Honorato-Sampaio K, dos Reis AM. Gonadotropin stimulation increases the expression of angiotensin-(1--7) and MAS receptor in the rat ovary. Reprod Sci 2009;16:1165-74. [PMID: 19703990 DOI: 10.1177/1933719109343309] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 3.9] [Reference Citation Analysis]
589 Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009;39:618-25. [PMID: 19453650 DOI: 10.1111/j.1365-2362.2009.02153.x] [Cited by in Crossref: 460] [Cited by in F6Publishing: 415] [Article Influence: 35.4] [Reference Citation Analysis]
590 Haffner D, Leifheit-Nestler M. Extrarenal effects of FGF23. Pediatr Nephrol 2017;32:753-65. [PMID: 27704252 DOI: 10.1007/s00467-016-3505-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
591 Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, Hooper NM, Turner AJ. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005;280:30113-9. [PMID: 15983030 DOI: 10.1074/jbc.M505111200] [Cited by in Crossref: 391] [Cited by in F6Publishing: 259] [Article Influence: 23.0] [Reference Citation Analysis]
592 Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020;126:1456-1474. [PMID: 32264791 DOI: 10.1161/circresaha.120.317015] [Cited by in Crossref: 691] [Cited by in F6Publishing: 485] [Article Influence: 345.5] [Reference Citation Analysis]
593 Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S, Albaiu D. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent Sci 2020;6:315-31. [PMID: 32226821 DOI: 10.1021/acscentsci.0c00272] [Cited by in Crossref: 530] [Cited by in F6Publishing: 479] [Article Influence: 265.0] [Reference Citation Analysis]
594 Bibiana S O F, Vargas-Pinilla P, Amorim CEG, Sortica VA, Bortolini MC. ACE2 diversity in placental mammals reveals the evolutionary strategy of SARS-CoV-2. Genet Mol Biol 2020;43:e20200104. [PMID: 32520981 DOI: 10.1590/1678-4685-gmb-2020-0104] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
595 Takai S, Jin D, Aritomi S, Niinuma K, Miyazaki M. Powerful vascular protection by combining cilnidipine with valsartan in stroke-prone, spontaneously hypertensive rats. Hypertens Res 2013;36:342-8. [PMID: 23190689 DOI: 10.1038/hr.2012.187] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
596 Cabezón E, Arechaga I. Drug Weaponry to Fight Against SARS-CoV-2. Front Mol Biosci 2020;7:204. [PMID: 33195397 DOI: 10.3389/fmolb.2020.00204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
597 Ensor CM, AlSiraj Y, Shoemaker R, Sturgill J, Keshavamurthy S, Gordon EM, Dong BE, Waters C, Cassis LA. SARS-CoV-2 Spike Protein Regulation of Angiotensin Converting Enzyme 2 and Tissue Renin-Angiotensin Systems: Influence of Biologic Sex. bioRxiv 2021:2021. [PMID: 34545369 DOI: 10.1101/2021.09.14.460275] [Reference Citation Analysis]
598 Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 2020;53:425-435. [PMID: 32414646 DOI: 10.1016/j.jmii.2020.04.015] [Cited by in Crossref: 184] [Cited by in F6Publishing: 174] [Article Influence: 92.0] [Reference Citation Analysis]
599 Herr D, Sauer C, Holzheu I, Sauter R, Janni W, Wöckel A, Wulff C. Role of Renin-Angiotensin-System in Human Breast Cancer Cells: Is There a Difference in Regulation of Angiogenesis between Hormone-Receptor Positive and Negative Breast Cancer Cells? Geburtshilfe Frauenheilkd 2019;79:626-34. [PMID: 31217631 DOI: 10.1055/a-0887-7313] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
600 de Kloet AD, Krause EG, Woods SC. The renin angiotensin system and the metabolic syndrome. Physiol Behav. 2010;100:525-534. [PMID: 20381510 DOI: 10.1016/j.physbeh.2010.03.018] [Cited by in Crossref: 117] [Cited by in F6Publishing: 112] [Article Influence: 9.8] [Reference Citation Analysis]
601 Saponaro F, Rutigliano G, Sestito S, Bandini L, Storti B, Bizzarri R, Zucchi R. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Front Mol Biosci 2020;7:588618. [PMID: 33195436 DOI: 10.3389/fmolb.2020.588618] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
602 Cafiero C, Rosapepe F, Palmirotta R, Re A, Ottaiano MP, Benincasa G, Perone R, Varriale E, D'Amato G, Cacciamani A, Micera A, Pisconti S. Angiotensin System Polymorphisms' in SARS-CoV-2 Positive Patients: Assessment Between Symptomatic and Asymptomatic Patients: A Pilot Study. Pharmgenomics Pers Med 2021;14:621-9. [PMID: 34079337 DOI: 10.2147/PGPM.S303666] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
603 Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019;39:BSR20181994. [PMID: 31413168 DOI: 10.1042/BSR20181994] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
604 Selek A, Güçlü M, Bolu ŞE. COVID-19 pandemic: what about the gonads? Hormones (Athens) 2021;20:259-68. [PMID: 33730355 DOI: 10.1007/s42000-021-00277-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
605 Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer's disease in association with increasing amyloid-β and tau pathology. Alzheimers Res Ther 2016;8:50. [PMID: 27884212 DOI: 10.1186/s13195-016-0217-7] [Cited by in Crossref: 83] [Cited by in F6Publishing: 79] [Article Influence: 13.8] [Reference Citation Analysis]
606 Zhou X, Zhu J, Xu T. Clinical characteristics of coronavirus disease 2019 (COVID-19) patients with hypertension on renin-angiotensin system inhibitors. Clin Exp Hypertens 2020;42:656-60. [PMID: 32404011 DOI: 10.1080/10641963.2020.1764018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
607 Filice M, Mazza R, Imbrogno S, Mileti O, Baldino N, Barca A, Del Vecchio G, Verri T, Gattuso A, Cerra MC. An ACE2-Alamandine Axis Modulates the Cardiac Performance of the Goldfish Carassius auratus via the NOS/NO System. Antioxidants 2022;11:764. [DOI: 10.3390/antiox11040764] [Reference Citation Analysis]
608 Tu WJ, McCuaig RD, Melino M, Rawle DJ, Le TT, Yan K, Suhrbier A, Johnston RL, Koufariotis LT, Waddell N, Cross EM, Tsimbalyuk S, Bain A, Ahern E, Collinson N, Phipps S, Forwood JK, Seddiki N, Rao S. Targeting novel LSD1-dependent ACE2 demethylation domains inhibits SARS-CoV-2 replication. Cell Discov 2021;7:37. [PMID: 34031383 DOI: 10.1038/s41421-021-00279-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
609 Dubey AK, Singh A, Prakash S, Kumar M, Singh AK. Race to arsenal COVID-19 therapeutics: Current alarming status and future directions. Chem Biol Interact 2020;332:109298. [PMID: 33121920 DOI: 10.1016/j.cbi.2020.109298] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
610 Wu HT, Chuang YW, Huang CP, Chang MH. Loss of angiotensin converting enzyme II (ACE2) accelerates the development of liver injury induced by thioacetamide. Exp Anim 2018;67:41-9. [PMID: 28845018 DOI: 10.1538/expanim.17-0053] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
611 De Mello WC. Beyond the circulating Renin-Angiotensin aldosterone system. Front Endocrinol (Lausanne) 2014;5:104. [PMID: 25071720 DOI: 10.3389/fendo.2014.00104] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
612 Suzaki Y, Prieto-Carrasquero MC, Kobori H. Intratubular Renin-Angiotensin System in Hypertension. Curr Hypertens Rev 2006;2:151-7. [PMID: 19789728 DOI: 10.2174/157340206776877325] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
613 Lu N, Yang Y, Wang Y, Liu Y, Fu G, Chen D, Dai H, Fan X, Hui R, Zheng Y. ACE2 gene polymorphism and essential hypertension: an updated meta-analysis involving 11,051 subjects. Mol Biol Rep 2012;39:6581-9. [PMID: 22297693 DOI: 10.1007/s11033-012-1487-1] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 5.3] [Reference Citation Analysis]
614 Frutos R, Pliez O, Gavotte L, Devaux CA. There is no "origin" to SARS-CoV-2. Environ Res 2021;:112173. [PMID: 34626592 DOI: 10.1016/j.envres.2021.112173] [Reference Citation Analysis]
615 Ahmed Z, Renart EG, Zeeshan S. Investigating underlying human immunity genes, implicated diseases and their relationship to COVID-19. Per Med 2022. [PMID: 35261286 DOI: 10.2217/pme-2021-0132] [Reference Citation Analysis]
616 Ferreira AJ, Santos RA, Raizada MK. Angiotensin-(1-7)/angiotensin-converting enzyme 2/mas receptor axis and related mechanisms. Int J Hypertens 2012;2012:690785. [PMID: 22577520 DOI: 10.1155/2012/690785] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
617 Frantz ED, Crespo-Mascarenhas C, Barreto-Vianna AR, Aguila MB, Mandarim-de-Lacerda CA. Renin-angiotensin system blockers protect pancreatic islets against diet-induced obesity and insulin resistance in mice. PLoS One. 2013;8:e67192. [PMID: 23894285 DOI: 10.1371/journal.pone.0067192] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 5.4] [Reference Citation Analysis]
618 Shi X, Chen M, Zhang Y. The cardiovascular disorders and prognostic cardiac biomarkers in COVID-19. Mol Biol Rep 2021;48:1763-71. [PMID: 33483864 DOI: 10.1007/s11033-021-06148-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
619 Tsukamoto S, Wakui H, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E, Tanaka S, Taguchi S, Yamada T, Kinguchi S, Kamimura D, Yamashita A, Sano D, Nakano M, Hashimoto T, Tamura K. Tissue-specific expression of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2, in mouse models of chronic kidney disease. Sci Rep 2021;11:16843. [PMID: 34413390 DOI: 10.1038/s41598-021-96294-8] [Reference Citation Analysis]
620 Morelli F, Meirelles LEF, de Souza MVF, Mari NL, Mesquita CSS, Dartibale CB, Damke GMZF, Damke E, da Silva VRS, Souza RP, Consolaro MEL. COVID-19 Infection in the Human Reproductive Tract of Men and Nonpregnant Women. Am J Trop Med Hyg 2021:tpmd201098. [PMID: 33534765 DOI: 10.4269/ajtmh.20-1098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
621 [DOI: 10.1101/2020.04.06.028647] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
622 Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 2017;125:57-71. [PMID: 28571891 DOI: 10.1016/j.phrs.2017.05.020] [Cited by in Crossref: 62] [Cited by in F6Publishing: 54] [Article Influence: 12.4] [Reference Citation Analysis]
623 Sparks MA, South AM, Badley AD, Baker-Smith CM, Batlle D, Bozkurt B, Cattaneo R, Crowley SD, Dell'Italia LJ, Ford AL, Griendling K, Gurley SB, Kasner SE, Murray JA, Nath KA, Pfeffer MA, Rangaswami J, Taylor WR, Garovic VD. Severe Acute Respiratory Syndrome Coronavirus 2, COVID-19, and the Renin-Angiotensin System: Pressing Needs and Best Research Practices. Hypertension 2020;76:1350-67. [PMID: 32981369 DOI: 10.1161/HYPERTENSIONAHA.120.15948] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
624 Soler MJ, Wysocki J, Batlle D. ACE2 alterations in kidney disease. Nephrol Dial Transplant. 2013;28:2687-2697. [PMID: 23956234 DOI: 10.1093/ndt/gft320] [Cited by in Crossref: 63] [Cited by in F6Publishing: 61] [Article Influence: 7.0] [Reference Citation Analysis]
625 Lutz C, Maher L, Lee C, Kang W. COVID-19 preclinical models: human angiotensin-converting enzyme 2 transgenic mice. Hum Genomics 2020;14:20. [PMID: 32498696 DOI: 10.1186/s40246-020-00272-6] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 17.0] [Reference Citation Analysis]
626 Galán M, Jiménez-Altayó F. Small Resistance Artery Disease and ACE2 in Hypertension: A New Paradigm in the Context of COVID-19. Front Cardiovasc Med 2020;7:588692. [PMID: 33195477 DOI: 10.3389/fcvm.2020.588692] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
627 Sohag AAM, Hannan MA, Rahman S, Hossain M, Hasan M, Khan MK, Khatun A, Dash R, Uddin MJ. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug Dev Res 2020. [PMID: 32632960 DOI: 10.1002/ddr.21709] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
628 Mas-Coma S, Jones MK, Marty AM. COVID-19 and globalization. One Health 2020;9:100132. [PMID: 32368611 DOI: 10.1016/j.onehlt.2020.100132] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 9.5] [Reference Citation Analysis]
629 Lambert DW, Hooper NM, Turner AJ. Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system. Biochem Pharmacol 2008;75:781-6. [PMID: 17897633 DOI: 10.1016/j.bcp.2007.08.012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 4.1] [Reference Citation Analysis]
630 Ortiz C, Schierwagen R, Schaefer L, Klein S, Trepat X, Trebicka J. Extracellular Matrix Remodeling in Chronic Liver Disease. Curr Tissue Microenviron Rep 2021;:1-12. [PMID: 34337431 DOI: 10.1007/s43152-021-00030-3] [Reference Citation Analysis]
631 Svilenov HL, Sacherl J, Reiter A, Wolff LS, Cheng CC, Stern M, Grass V, Feuerherd M, Wachs FP, Simonavicius N, Pippig S, Wolschin F, Keppler OT, Buchner J, Brockmeyer C, Protzer U. Picomolar inhibition of SARS-CoV-2 variants of concern by an engineered ACE2-IgG4-Fc fusion protein. Antiviral Res 2021;196:105197. [PMID: 34774603 DOI: 10.1016/j.antiviral.2021.105197] [Reference Citation Analysis]
632 Yilin Z, Yandong N, Faguang J. Role of angiotensin-converting enzyme (ACE) and ACE2 in a rat model of smoke inhalation induced acute respiratory distress syndrome. Burns 2015;41:1468-77. [PMID: 25981293 DOI: 10.1016/j.burns.2015.04.010] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 5.6] [Reference Citation Analysis]
633 Shimada K, Furukawa H, Wada K, Wei Y, Tada Y, Kuwabara A, Shikata F, Kanematsu Y, Lawton MT, Kitazato KT, Nagahiro S, Hashimoto T. Angiotensin-(1-7) protects against the development of aneurysmal subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab 2015;35:1163-8. [PMID: 25757758 DOI: 10.1038/jcbfm.2015.30] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
634 Oakes JM, Fuchs RM, Gardner JD, Lazartigues E, Yue X. Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2018;315:R895-R906. [PMID: 30088946 DOI: 10.1152/ajpregu.00099.2018] [Cited by in Crossref: 142] [Cited by in F6Publishing: 127] [Article Influence: 35.5] [Reference Citation Analysis]
635 Sanz B, Rezola-Pardo C, Arrieta H, Fernández-Atutxa A, Lora-Diaz I, Gil-Goikouria J, Rodriguez-Larrad A, Irazusta J. High serum angiotensin-converting enzyme 2 activity as a biomarker of frailty in nursing home residents. Exp Gerontol 2021;158:111655. [PMID: 34915109 DOI: 10.1016/j.exger.2021.111655] [Reference Citation Analysis]
636 Pawar A, Russo M, Rani I, Goswami K, Russo GL, Pal A. A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytother Res 2022. [PMID: 35393674 DOI: 10.1002/ptr.7461] [Reference Citation Analysis]
637 Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, Kastritis E, Pavlakis GN, Dimopoulos MA. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021;28:9. [PMID: 33435929 DOI: 10.1186/s12929-020-00703-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
638 Leowattana W. Angiotensin-converting enzyme 2 receptors, chronic liver diseases, common medications, and clinical outcomes in coronavirus disease 2019 patients. World J Virol 2021; 10(3): 86-96 [PMID: 34079691 DOI: 10.5501/wjv.v10.i3.86] [Reference Citation Analysis]
639 Thakur S, Mayank, Sarkar B, Ansari AJ, Khandelwal A, Arya A, Poduri R, Joshi G. Exploring the magic bullets to identify Achilles' heel in SARS-CoV-2: Delving deeper into the sea of possible therapeutic options in Covid-19 disease: An update. Food Chem Toxicol 2021;147:111887. [PMID: 33253764 DOI: 10.1016/j.fct.2020.111887] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
640 Dariya B, Nagaraju GP. Understanding novel COVID-19: Its impact on organ failure and risk assessment for diabetic and cancer patients. Cytokine Growth Factor Rev. 2020;53:43-52. [PMID: 32409230 DOI: 10.1016/j.cytogfr.2020.05.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 17.5] [Reference Citation Analysis]
641 Mansour E, Bueno FF, de Lima-Júnior JC, Palma A, Monfort-Pires M, Bombassaro B, Araujo EP, Bernardes AF, Ulaf RG, Nunes TA, Ribeiro LC, Falcão ALE, Santos TM, Trabasso P, Dertkigil RP, Dertkigil SS, Maia RP, Benaglia T, Moretti ML, Velloso LA. Evaluation of the efficacy and safety of icatibant and C1 esterase/kallikrein inhibitor in severe COVID-19: study protocol for a three-armed randomized controlled trial. Trials 2021;22:71. [PMID: 33472675 DOI: 10.1186/s13063-021-05027-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
642 Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, Timens W, Turner AJ, Navis G, van Goor H. The emerging role of ACE2 in physiology and disease. J Pathol 2007;212:1-11. [PMID: 17464936 DOI: 10.1002/path.2162] [Cited by in Crossref: 226] [Cited by in F6Publishing: 216] [Article Influence: 15.1] [Reference Citation Analysis]
643 Raghavan S, Gayathri R, Kancharla S, Kolli P, Ranjitha J, Shankar V. Cardiovascular Impacts on COVID-19 Infected Patients. Front Cardiovasc Med 2021;8:670659. [PMID: 34055939 DOI: 10.3389/fcvm.2021.670659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
644 Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther 2021;6:406. [PMID: 34815399 DOI: 10.1038/s41392-021-00818-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
645 Ulmasov B, Xu Z, Talkad V, Oshima K, Neuschwander-Tetri BA. Angiotensin II signaling through the AT1a and AT1b receptors does not have a role in the development of cerulein-induced chronic pancreatitis in the mouse. Am J Physiol Gastrointest Liver Physiol 2010;299:G70-80. [PMID: 20413721 DOI: 10.1152/ajpgi.00006.2010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
646 Kalra RS, Kumar V, Dhanjal JK, Garg S, Li X, Kaul SC, Sundar D, Wadhwa R. COVID19-inhibitory activity of withanolides involves targeting of the host cell surface receptor ACE2: insights from computational and biochemical assays. J Biomol Struct Dyn 2021;:1-14. [PMID: 33797339 DOI: 10.1080/07391102.2021.1902858] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
647 Niehues RV, Wozniak J, Wiersch F, Lilienthal E, Tacken N, Schumertl T, Garbers C, Ludwig A, Düsterhöft S. The collectrin-like part of the SARS-CoV-1 and -2 receptor ACE2 is shed by the metalloproteinases ADAM10 and ADAM17. FASEB J 2022;36:e22234. [PMID: 35199397 DOI: 10.1096/fj.202101521R] [Reference Citation Analysis]
648 Sheikhi A, Hojjat-Farsangi M. An immunotherapeutic method for COVID-19 patients: a soluble ACE2-Anti-CD16 VHH to block SARS-CoV-2 Spike protein. Hum Vaccin Immunother 2021;17:92-7. [PMID: 32663051 DOI: 10.1080/21645515.2020.1787066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
649 Cohoon KP, Mahé G, Tafur AJ, Spyropoulos AC. Emergence of institutional antithrombotic protocols for coronavirus 2019. Res Pract Thromb Haemost 2020;4:510-7. [PMID: 32542211 DOI: 10.1002/rth2.12358] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 13.5] [Reference Citation Analysis]
650 Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875-879. [PMID: 16007097 DOI: 10.1038/nm1267] [Cited by in Crossref: 1930] [Cited by in F6Publishing: 1757] [Article Influence: 113.5] [Reference Citation Analysis]
651 Shao Z, Schuster A, Borowski AG, Thakur A, Li L, Wilson Tang WH. Soluble angiotensin converting enzyme 2 levels in chronic heart failure is associated with decreased exercise capacity and increased oxidative stress-mediated endothelial dysfunction. Transl Res 2019;212:80-8. [PMID: 31323221 DOI: 10.1016/j.trsl.2019.06.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
652 Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21-38. [PMID: 28619367 DOI: 10.1016/j.phrs.2017.06.005] [Cited by in Crossref: 192] [Cited by in F6Publishing: 174] [Article Influence: 38.4] [Reference Citation Analysis]
653 Liu J, Lu F, Chen Y, Plow E, Qin J. Integrin mediates cell entry of the SARS-CoV-2 virus independent of cellular receptor ACE2. J Biol Chem 2022;:101710. [PMID: 35150743 DOI: 10.1016/j.jbc.2022.101710] [Reference Citation Analysis]
654 Dehghani A, Saberi S, Nematbakhsh M. Role of Mas Receptor Antagonist A799 in Renal Blood Flow Response to Ang 1-7 after Bradykinin Administration in Ovariectomized Estradiol-Treated Rats. Adv Pharmacol Sci 2015;2015:801053. [PMID: 26421009 DOI: 10.1155/2015/801053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
655 Mercadier JJ. [A second angiotensin-converting enzyme for the heart?]. Med Sci (Paris) 2003;19:141-3. [PMID: 12836606 DOI: 10.1051/medsci/2003192141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
656 Liu CX, Hu Q, Wang Y, Zhang W, Ma ZY, Feng JB, Wang R, Wang XP, Dong B, Gao F, Zhang MX, Zhang Y. Angiotensin-converting enzyme (ACE) 2 overexpression ameliorates glomerular injury in a rat model of diabetic nephropathy: a comparison with ACE inhibition. Mol Med. 2011;17:59-69. [PMID: 20844835 DOI: 10.2119/molmed.2010.00111] [Cited by in Crossref: 59] [Cited by in F6Publishing: 77] [Article Influence: 4.9] [Reference Citation Analysis]
657 Swindle JD, Santos KL, Speth RC. Pharmacological characterization of a novel non-AT1, non-AT2 angiotensin binding site identified as neurolysin. Endocrine 2013;44:525-31. [PMID: 23412923 DOI: 10.1007/s12020-013-9898-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
658 Everest H, Stevenson-leggett P, Bailey D, Bickerton E, Keep S. Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022;14:351. [DOI: 10.3390/v14020351] [Reference Citation Analysis]
659 Leonardi M, Padovani A, McArthur JC. Neurological manifestations associated with COVID-19: a review and a call for action. J Neurol 2020;267:1573-6. [PMID: 32436101 DOI: 10.1007/s00415-020-09896-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 23.5] [Reference Citation Analysis]
660 Hussein HA, Hassan RYA, Chino M, Febbraio F. Point-of-Care Diagnostics of COVID-19: From Current Work to Future Perspectives. Sensors (Basel) 2020;20:E4289. [PMID: 32752043 DOI: 10.3390/s20154289] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 11.5] [Reference Citation Analysis]
661 Sarangarajan R, Winn R, Kiebish MA, Bountra C, Granger E, Narain NR. Ethnic Prevalence of Angiotensin-Converting Enzyme Deletion (D) Polymorphism and COVID-19 Risk: Rationale for Use of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers. J Racial Ethn Health Disparities 2021;8:973-80. [PMID: 32901433 DOI: 10.1007/s40615-020-00853-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
662 Goldin CJ, Vázquez R, Polack FP, Alvarez-Paggi D. Identifying pathophysiological bases of disease in COVID-19. Transl Med Commun 2020;5:15. [PMID: 32984543 DOI: 10.1186/s41231-020-00067-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
663 Pucci F, Bogaerts P, Rooman M. Modeling the Molecular Impact of SARS-CoV-2 Infection on the Renin-Angiotensin System. Viruses 2020;12:E1367. [PMID: 33265982 DOI: 10.3390/v12121367] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
664 Sakai K, Sigmund CD. Molecular evidence of tissue renin-angiotensin systems: a focus on the brain. Curr Hypertens Rep 2005;7:135-40. [PMID: 15748539 DOI: 10.1007/s11906-005-0088-y] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 2.2] [Reference Citation Analysis]
665 Cook JR, Ausiello J. Functional ACE2 deficiency leading to angiotensin imbalance in the pathophysiology of COVID-19. Rev Endocr Metab Disord 2021. [PMID: 34195965 DOI: 10.1007/s11154-021-09663-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
666 Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 2004;279:17996-8007. [PMID: 14754895 DOI: 10.1074/jbc.M311191200] [Cited by in Crossref: 350] [Cited by in F6Publishing: 212] [Article Influence: 19.4] [Reference Citation Analysis]
667 Dehghanbanadaki H, Seif F, Vahidi Y, Razi F, Hashemi E, Khoshmirsafa M, Aazami H. Bibliometric analysis of global scientific research on Coronavirus (COVID-19). Med J Islam Repub Iran 2020;34:51. [PMID: 32934940 DOI: 10.34171/mjiri.34.51] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
668 Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021;136:111193. [PMID: 33461019 DOI: 10.1016/j.biopha.2020.111193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
669 Liu C, Xiao L, Li F, Zhang H, Li Q, Liu H, Fu S, Li C, Zhang X, Wang J, Staunstrup NH, Li Y, Yang H. Generation of outbred Ace2 knockout mice by RNA transfection of TALENs displaying colitis reminiscent pathophysiology and inflammation. Transgenic Res 2015;24:433-46. [PMID: 25448263 DOI: 10.1007/s11248-014-9855-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
670 Deganutti G, Prischi F, Reynolds CA. Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein. J Comput Aided Mol Des 2021;35:195-207. [PMID: 33103220 DOI: 10.1007/s10822-020-00356-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
671 Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444-1448. [PMID: 32132184 DOI: 10.1126/science.abb2762] [Cited by in Crossref: 2205] [Cited by in F6Publishing: 1983] [Article Influence: 1102.5] [Reference Citation Analysis]
672 Sifat AE, Nozohouri S, Villalba H, Vaidya B, Abbruscato TJ. The Role of Smoking and Nicotine in the Transmission and Pathogenesis of COVID-19. J Pharmacol Exp Ther 2020;375:498-509. [PMID: 33033170 DOI: 10.1124/jpet.120.000170] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
673 Li F. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res 2013;100:246-54. [PMID: 23994189 DOI: 10.1016/j.antiviral.2013.08.014] [Cited by in Crossref: 140] [Cited by in F6Publishing: 121] [Article Influence: 15.6] [Reference Citation Analysis]
674 Garabelli PJ, Modrall JG, Penninger JM, Ferrario CM, Chappell MC. Distinct roles for angiotensin-converting enzyme 2 and carboxypeptidase A in the processing of angiotensins within the murine heart. Exp Physiol. 2008;93:613-621. [PMID: 18356559 DOI: 10.1113/expphysiol.2007.040246] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
675 Oxford AE, Halla F, Robertson EB, Morrison BE. Endothelial Cell Contributions to COVID-19. Pathogens 2020;9:E785. [PMID: 32992810 DOI: 10.3390/pathogens9100785] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
676 South AM, Shaltout HA, Washburn LK, Hendricks AS, Diz DI, Chappell MC. Fetal programming and the angiotensin-(1-7) axis: a review of the experimental and clinical data. Clin Sci (Lond) 2019;133:55-74. [PMID: 30622158 DOI: 10.1042/CS20171550] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 13.7] [Reference Citation Analysis]
677 Georgescu EF, Ionescu R, Niculescu M, Mogoanta L, Vancica L. Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol 2009; 15(8): 942-954 [PMID: 19248193 DOI: 10.3748/wjg.15.942] [Cited by in CrossRef: 123] [Cited by in F6Publishing: 112] [Article Influence: 9.5] [Reference Citation Analysis]
678 Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S, McCray PB Jr, Chappell M, Hackam DJ, Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol. 2018;314:L17-L31. [PMID: 28935640 DOI: 10.1152/ajplung.00498.2016] [Cited by in Crossref: 172] [Cited by in F6Publishing: 155] [Article Influence: 34.4] [Reference Citation Analysis]
679 Kaneko S, Takasawa K, Asada K, Shinkai N, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Komatsu M, Hamamoto R. Epigenetic Mechanisms Underlying COVID-19 Pathogenesis. Biomedicines 2021;9:1142. [PMID: 34572329 DOI: 10.3390/biomedicines9091142] [Reference Citation Analysis]
680 Adamcova M, Kawano I, Simko F. The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021;22:4762. [PMID: 33946230 DOI: 10.3390/ijms22094762] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
681 Malek V, Suryavanshi SV, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope! Rev Physiol Biochem Pharmacol 2021;179:31-71. [PMID: 32979084 DOI: 10.1007/112_2020_50] [Reference Citation Analysis]
682 Cowan BR, Young AA. Left ventricular hypertrophy and renin-angiotensin system blockade. Curr Hypertens Rep 2009;11:167-72. [PMID: 19442324 DOI: 10.1007/s11906-009-0030-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
683 Pandey P, Agarwal S, Rajkumar. Lung Pathology in COVID-19: A Systematic Review. Int J Appl Basic Med Res 2020;10:226-33. [PMID: 33376694 DOI: 10.4103/ijabmr.IJABMR_381_20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
684 E G Müller W, Schröder HC, Neufurth M, Wang X. An unexpected biomaterial against SARS-CoV-2: Bio-polyphosphate blocks binding of the viral spike to the cell receptor. Mater Today (Kidlington) 2021. [PMID: 34366696 DOI: 10.1016/j.mattod.2021.07.029] [Reference Citation Analysis]
685 Jiang Y, Rubin L, Peng T, Liu L, Xing X, Lazarovici P, Zheng W. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci 2022;18:459-72. [PMID: 35002503 DOI: 10.7150/ijbs.59272] [Reference Citation Analysis]
686 [DOI: 10.1101/2020.04.16.20060566] [Cited by in Crossref: 38] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
687 Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep 2021;9:e14726. [PMID: 33523608 DOI: 10.14814/phy2.14726] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
688 Lytvyn Y, Bjornstad P, Pun N, Cherney DZ. New and old agents in the management of diabetic nephropathy. Curr Opin Nephrol Hypertens. 2016;25:232-239. [PMID: 26890303 DOI: 10.1097/mnh.0000000000000214] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
689 Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem 2008;107:1482-94. [PMID: 19014390 DOI: 10.1111/j.1471-4159.2008.05723.x] [Cited by in Crossref: 175] [Cited by in F6Publishing: 172] [Article Influence: 12.5] [Reference Citation Analysis]
690 Mangion K, Morrow A, Bagot C, Bayes H, Blyth KG, Church C, Corcoran D, Delles C, Gillespie L, Grieve D, Ho A, Kean S, Lang NN, Lennie V, Lowe DJ, Kellman P, Macfarlane PW, McConnachie A, Roditi G, Sykes R, Touyz RM, Sattar N, Wereski R, Wright S, Berry C. The Chief Scientist Office Cardiovascular and Pulmonary Imaging in SARS Coronavirus disease-19 (CISCO-19) study. Cardiovasc Res 2020;116:2185-96. [PMID: 32702087 DOI: 10.1093/cvr/cvaa209] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
691 Ahmad S, Wei CC, Tallaj J, Dell'Italia LJ, Moniwa N, Varagic J, Ferrario CM. Chymase mediates angiotensin-(1-12) metabolism in normal human hearts. J Am Soc Hypertens 2013;7:128-36. [PMID: 23312967 DOI: 10.1016/j.jash.2012.12.003] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 5.4] [Reference Citation Analysis]
692 Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 2020;57:389-99. [PMID: 32503382 DOI: 10.1080/10408363.2020.1770685] [Cited by in Crossref: 110] [Cited by in F6Publishing: 128] [Article Influence: 55.0] [Reference Citation Analysis]
693 Gottschalk G, Knox K, Roy A. ACE2: At the crossroad of COVID-19 and lung cancer. Gene Rep 2021;23:101077. [PMID: 33723522 DOI: 10.1016/j.genrep.2021.101077] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
694 Abbas AM, Ahmed L, Salem AS, Elsamman SH, Refai A, Fathy SK, Ahmed OA, Shalotut AS, AbdelWahab RA. COVID-19 and hydatidiform mole. Am J Reprod Immunol 2020;84:e13310. [PMID: 32698238 DOI: 10.1111/aji.13310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
695 Iwata M, Cowling RT, Yeo SJ, Greenberg B. Targeting the ACE2-Ang-(1-7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure. J Mol Cell Cardiol 2011;51:542-7. [PMID: 21147120 DOI: 10.1016/j.yjmcc.2010.12.003] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
696 Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res. 2019;38:173. [PMID: 31023337 DOI: 10.1186/s13046-019-1156-5] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 22.3] [Reference Citation Analysis]
697 Wysocki J, Batlle D. Reduced plasma ACE2 activity in dialysis patients: another piece in the conundrum of factors involved in hypertension and cardiovascular morbidity? Nephrol Dial Transplant. 2013;28:2200-2202. [PMID: 23787547 DOI: 10.1093/ndt/gft240] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
698 Domingues R, Lippi A, Setz C, Outeiro TF, Krisko A. SARS-CoV-2, immunosenescence and inflammaging: partners in the COVID-19 crime. Aging (Albany NY) 2020;12:18778-89. [PMID: 32991323 DOI: 10.18632/aging.103989] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
699 Yamaguchi T, Hoshizaki M, Minato T, Nirasawa S, Asaka MN, Niiyama M, Imai M, Uda A, Chan JF, Takahashi S, An J, Saku A, Nukiwa R, Utsumi D, Kiso M, Yasuhara A, Poon VK, Chan CC, Fujino Y, Motoyama S, Nagata S, Penninger JM, Kamada H, Yuen KY, Kamitani W, Maeda K, Kawaoka Y, Yasutomi Y, Imai Y, Kuba K. ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury. Nat Commun 2021;12:6791. [PMID: 34815389 DOI: 10.1038/s41467-021-27097-8] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
700 Corrêa TD, Takala J, Jakob SM. Angiotensin II in septic shock. Crit Care 2015;19:98. [PMID: 25886853 DOI: 10.1186/s13054-015-0802-3] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 6.7] [Reference Citation Analysis]
701 Jindal D, Rani V. In Silico Studies of Phytoconstituents from Piper longum and Ocimum sanctum as ACE2 and TMRSS2 Inhibitors: Strategies to Combat COVID-19. Appl Biochem Biotechnol 2022. [PMID: 35157239 DOI: 10.1007/s12010-022-03827-6] [Reference Citation Analysis]
702 Mosleh H, Moradi F, Mehdizadeh M, Ajdary M, Moeinzadeh A, Shabani R. Health concerns regarding the effect of the COVID-19 pandemic on male fertility. Clin Exp Reprod Med 2021. [PMID: 34352169 DOI: 10.5653/cerm.2021.04378] [Reference Citation Analysis]
703 Istvan-Adorjan S, Ágoston G, Varga A, Cotoi OS, Frigy A. Pathophysiological background and clinical practice of lung ultrasound in COVID-19 patients: A short review. Anatol J Cardiol 2020;24:76-80. [PMID: 32749247 DOI: 10.14744/AnatolJCardiol.2020.33645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
704 Teng S, Tang Q. ACE2 enhance viral infection or viral infection aggravate the underlying diseases. Comput Struct Biotechnol J 2020;18:2100-6. [PMID: 32832038 DOI: 10.1016/j.csbj.2020.08.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
705 Soldevila B, Puig-Domingo M, Marazuela M. Basic mechanisms of SARS-CoV-2 infection. What endocrine systems could be implicated? Rev Endocr Metab Disord 2021. [PMID: 34333732 DOI: 10.1007/s11154-021-09678-6] [Reference Citation Analysis]
706 Shao Z, Shrestha K, Borowski AG, Kennedy DJ, Epelman S, Thomas JD, Tang WH. Increasing serum soluble angiotensin-converting enzyme 2 activity after intensive medical therapy is associated with better prognosis in acute decompensated heart failure. J Card Fail 2013;19:605-10. [PMID: 24054336 DOI: 10.1016/j.cardfail.2013.06.296] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
707 Peiró C, Vallejo S, Gembardt F, Palacios E, Novella S, Azcutia V, Rodríguez-Mañas L, Hermenegildo C, Sánchez-Ferrer CF, Walther T. Complete blockade of the vasorelaxant effects of angiotensin-(1-7) and bradykinin in murine microvessels by antagonists of the receptor Mas. J Physiol 2013;591:2275-85. [PMID: 23459756 DOI: 10.1113/jphysiol.2013.251413] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
708 Pang XC, Zhang HX, Zhang Z, Rinkiko S, Cui YM, Zhu YZ. The Two-Way Switch Role of ACE2 in the Treatment of Novel Coronavirus Pneumonia and Underlying Comorbidities. Molecules 2020;26:E142. [PMID: 33396184 DOI: 10.3390/molecules26010142] [Reference Citation Analysis]
709 Pedersen KB, Sriramula S, Chhabra KH, Xia H, Lazartigues E. Species-specific inhibitor sensitivity of angiotensin-converting enzyme 2 (ACE2) and its implication for ACE2 activity assays. Am J Physiol Regul Integr Comp Physiol 2011;301:R1293-9. [PMID: 21880865 DOI: 10.1152/ajpregu.00339.2011] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
710 Filha RDS, Pinheiro SVB, Macedo E Cordeiro T, Feracin V, Vieira ÉLM, Miranda AS, Simões E Silva AC. Evidence for a role of angiotensin converting enzyme 2 in proteinuria of idiopathic nephrotic syndrome. Biosci Rep 2019;39:BSR20181361. [PMID: 30514826 DOI: 10.1042/BSR20181361] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
711 Suh JS, Kim HS, Kim TJ. Development of a SARS-CoV-2-derived receptor-binding domain-based ACE2 biosensor. Sens Actuators B Chem 2021;334:129663. [PMID: 33612970 DOI: 10.1016/j.snb.2021.129663] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
712 Ocaranza MP, Jalil JE. Protective Role of the ACE2/Ang-(1-9) Axis in Cardiovascular Remodeling. Int J Hypertens 2012;2012:594361. [PMID: 22315665 DOI: 10.1155/2012/594361] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
713 Tan HW, Xu YM, Lau ATY. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol 2020;30:e2122. [PMID: 32602627 DOI: 10.1002/rmv.2122] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
714 Babajani F, Kakavand A, Mohammadi H, Sharifi A, Zakeri S, Asadi S, Afshar ZM, Rahimi Z, Sayad B. COVID-19 and renin angiotensin aldosterone system: Pathogenesis and therapy. Health Sci Rep 2021;4:e440. [PMID: 34869917 DOI: 10.1002/hsr2.440] [Reference Citation Analysis]
715 Maksimowski N, Williams VR, Scholey JW. Kidney ACE2 expression: Implications for chronic kidney disease. PLoS One 2020;15:e0241534. [PMID: 33125431 DOI: 10.1371/journal.pone.0241534] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
716 Wang CH, Li F, Takahashi N. The renin angiotensin system and the metabolic syndrome. Open Hypertens J 2010;3:1-13. [PMID: 21132096 DOI: 10.2174/1876526203010001] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
717 Diamond B, Volpe BT, VanPatten S, Al Abed Y. SARS-CoV-2 and interferon blockade. Mol Med 2020;26:103. [PMID: 33167852 DOI: 10.1186/s10020-020-00231-w] [Reference Citation Analysis]
718 Javanmard SH, Heshmat-Ghahdarijani K, Vaseghi G. Angiotensin-converting-enzyme inhibitors (ACE inhibitors) and angiotensin II receptor blocker (ARB) use in COVID-19 prevention or treatment: A paradox. Infect Control Hosp Epidemiol 2021;42:118-9. [PMID: 32362297 DOI: 10.1017/ice.2020.195] [Cited by in Crossref: 7]