1
|
Wu J, Xu S, Li Z, Cong B, Yang Z, Yang Z, Gao W, Liu S, Yu Z, Xu S, Li N, Hou J, Wang G, Cao X, Liu S. SARS-CoV-2 enhances complement-mediated endothelial injury via the suppression of membrane complement regulatory proteins. Emerg Microbes Infect 2025; 14:2467781. [PMID: 39945674 PMCID: PMC11873982 DOI: 10.1080/22221751.2025.2467781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Complement hyperactivation and thrombotic microangiopathy are closely associated with severe COVID-19. Endothelial dysfunction is a key mechanism underlying thrombotic microangiopathy. To address the relationship between endothelial injury, complement activation and thrombotic microangiopathy of severe COVID-19, we wonder whether, and if so, what and how SARS-CoV-2 factors make endothelial cells (ECs) sensitive to complement-mediated cytotoxicity. We revealed that multiple SARS-CoV-2 proteins enhanced complement-mediated cytotoxicity to ECs by inhibiting membrane complement regulatory proteins (CRPs) and enhancing the deposition of complement-recognizing component FCN1. By screening with CRISPR/Cas9-gRNA libraries, we identified that ADAMTS9, SYAP1, and HIGD1A as intrinsic regulators of CD59 on ECs, which were inhibited by the SARS-CoV-2 M, NSP16, and ORF9b proteins. IFN-γ, GM-CSF, and IFN-α upregulated CD55 and CD59, while IFN-γ antagonized the inhibition of CD59 by the three SARS-CoV-2 proteins. So, the deficiency of IFN-γ weakened the protection of ECs by CRPs against complement-mediated injury which may be enhanced during infection. Our findings illustrated the regulation of protection against complement-mediated attack on self-cells by SARS-CoV-2 infection and immune responses, providing insights into endothelial injury, thrombotic microangiopathy, and potential targets for treating severe COVID-19.
Collapse
Affiliation(s)
- Jian Wu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sanpeng Xu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Boyi Cong
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhichao Yang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Wanfeng Gao
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhou Yu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Guoping Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shuxun Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Hachimi A, El-Mansoury B, Merzouki M. Incidence, pathophysiology, risk factors, histopathology, and outcomes of COVID-19-induced acute kidney injury: A narrative review. Microb Pathog 2025; 202:107360. [PMID: 39894232 DOI: 10.1016/j.micpath.2025.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to a significant burden on global healthcare systems. COVID-19-induced acute kidney injury (AKI) is among one of the complications, that has emerged as a critical and frequent condition in COVID-19 patients. This AKI among COVID-19 patients is associated with poor outcomes, and high mortality rates, especially in those with severe AKI or requiring renal replacement therapy. COVID-19-induced AKI represents a significant complication with complex pathophysiology and multifactorial risk factors. Indeed, several pathophysiological mechanisms, including direct viral invasion of renal cells, systemic inflammation, endothelial and thrombotic abnormalities as well as nephrotoxic drugs and rhabdomyolysis are believed to underlie this condition. Moreover, histopathological and immunohistopathological findings commonly observed in postmortem studies include acute tubular necrosis, glomerular injury, and the presence of viral particles within renal tissue and urine. Identified risk factors for developing AKI vary among studies, depending on regions, underlying conditions, and the severity of the disease. Moreover, histopathological and immunohistopathological findings commonly observed in postmortem studies include show acute tubular necrosis, glomerular injury, and viral particles within renal tissue and urine. While, identified risk factors for developing AKI vary among studies, according to regions, underlying conditions, and the gravity of the disease. This narrative review aims to synthesize current knowledge on the incidence, pathophysiology, risk factors, histopathology, and outcomes of AKI induced by COVID-19.
Collapse
Affiliation(s)
- Abdelhamid Hachimi
- Medical ICU, Mohammed VI(th) University Hospital of Marrakech, Marrakech, Morocco; Morpho-Science Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Life Sciences Department, Bioengineering Laboratory, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Bilal El-Mansoury
- Nutritional Physiopathologies, Neuroscience and Toxicology Team, Laboratory of Anthropogenic, Biotechnology and Health, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
| | - Mohamed Merzouki
- Life Sciences Department, Bioengineering Laboratory, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| |
Collapse
|
3
|
Huang X, Gao H, Zhang J, Zhan P, Liu X. A patent review of anti-coronavirus agents targeting the spike-ACE2 interaction (2019-present). Expert Opin Ther Pat 2025:1-12. [PMID: 40259874 DOI: 10.1080/13543776.2025.2494860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION The Angiotensin-converting enzyme 2 (ACE2) receptor, crucial for coronavirus recognition of host cells, is a key target for therapeutic intervention against SARS-CoV-2 and related coronaviruses. Therefore, thoroughly investigating the interaction mechanism between ACE2 and the Spike protein (S protein), as well as developing targeted inhibitors based on this mechanism, is vital for effectively controlling the spread of SARS-CoV-2 and preventing potential future pandemics caused by other coronaviruses. AREAS COVERED This article comprehensively reviews the mechanisms underlying ACE2-S protein interaction that facilitate SARS-CoV-2 entry into host cells. It also analyzes the patent landscape regarding inhibitors targeting the ACE2-S interface since 2019. EXPERT OPINION In the 5 years since the outbreak of SARS-CoV-2, numerous methods and design strategies have been employed to develop innovative therapeutics against coronaviruses. Among these approaches, inhibitors targeting both the ACE2 receptor and the S protein have gained significant interest due to their potential in blocking various coronaviruses. Despite facing challenges similar to other protein-protein interaction inhibitors, progress has been made in developing these inhibitors through virtual screening, covalent protein binding, and peptide modification strategies. However, obstacles persist in clinical translation, necessitating a multidisciplinary strategy that integrates state-of-the-art methodologies to optimize S-ACE2 interface-targeted drug discovery.
Collapse
Affiliation(s)
- Xing Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Heng Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
4
|
Gintoni I, Mastrogeorgiou M, Papakosta V, Vassiliou S, Yapijakis C. Genetic Variations Related to Angiotensin II Production and Risk for Basal Cell Carcinoma. Biochem Genet 2025; 63:917-935. [PMID: 38546913 DOI: 10.1007/s10528-024-10746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2025]
Abstract
Basal cell carcinoma (BCC) is the most prevalent human neoplasm, with constantly increasing annual incidence. Despite its slow growth, BCC is locally invasive and, if left untreated, can cause severe complications, including metastasis and death. The renin-angiotensin system (RAS) plays a key role in electrolyte balance, atrial pressure, tissue development, homeostasis, and inflammation, but also in cancer development. After binding to its type 1 receptor (AT1R), angiotensin II (ANGII), the system's principal hormonal effector, regulates cancer pathways spanning from the formation of the initial cancer cell to the construction and nutrition of the tumor microenvironment, angiogenesis, proliferation, and metastasis. Although the role of RAS in the development of skin pathologies has not been widely researched, RAS-targeting antihypertensive medications have been shown to have a chemoprotective effect against BCC. Based on those findings, our group conducted a series of genetic association studies to investigate the association between common functional variations in key genes related to ANGII production (AGT, ACE, ACE2, AT1R, AT2R, and CMA1) and the risk of BCC occurrence. This review provides a summary of the current understanding of the ANGII involvement in BCC development. The reliable and easily assessed pool of genetic biomarkers may be used for predictive testing and prevention purposes in high-risk individuals.
Collapse
Affiliation(s)
- Iphigenia Gintoni
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory "Hagia Sophia" Children's Hospital, Athens, Greece
- Department of Molecular Genetics, Cephalogenetics Center, Philaretou 88, Kallithea, 17675, Athens, Greece
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Michael Mastrogeorgiou
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory "Hagia Sophia" Children's Hospital, Athens, Greece
| | - Veronica Papakosta
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory "Hagia Sophia" Children's Hospital, Athens, Greece.
- Department of Molecular Genetics, Cephalogenetics Center, Philaretou 88, Kallithea, 17675, Athens, Greece.
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece.
| |
Collapse
|
5
|
Petrine JPC, Jacques LS, da Cruz Santos TM, Pereira FAC, Castelo PM, -Borges BDB. The impact of mental health and psychological stressors on menstrual cycle modulation: exploring the influence of age and hormonal contraceptives. Arch Womens Ment Health 2025; 28:321-327. [PMID: 39120635 DOI: 10.1007/s00737-024-01499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Stress, infections, and psychological and social well-being can affect the reproductive system. Activation of the hypothalamic-pituitary-adrenal axis can disrupt ovarian cyclicity. Estrogens can modulate stress responsiveness and mood. Thus, understanding this interaction and how it modulates the menstrual cycle is crucial for women's reproductive health. PURPOSE The objective of this study was to analyze the influence of a stressor, a period of the Covid-19 pandemic when there were no vaccines available yet, on the psychological state of women aged 18 to 45 years; as well as the influence of mental health on the menstrual cycle, considering the influence of age and hormonal contraceptives. METHOD Online questionnaire using the Google Forms platform was used. RESULTS There is a high prevalence of the onset of new psychosocial symptoms. Moreover, most women reported some type of change in their menstrual cycles. The women who were using hormonal contraceptives demonstrated a higher frequency of spotting and menstrual color alterations, while women without hormonal contraceptives demonstrated a higher frequency of cycle duration and menstrual odor alterations. Women without hormonal contraceptives were more susceptible to the development of psychosocial symptoms. Younger adult women were more affected by menstrual changes and psychosocial symptoms. Close to 90% of women who reported several psychosocial symptoms had changes in their menstrual cycles. CONCLUSION These data suggest the impact of stressors, such as a period of the pandemic, on mental health and menstrual cycles, and younger adult women can be more susceptible. This reflects the relationship between mental and reproductive health.
Collapse
Affiliation(s)
- Jéssica Pereira Castro Petrine
- Department of Food Science, School of Agricultural Sciences, Universidade Federal de Lavras - UFLA, Campus Universitário, Lavras, CP: 3037, 37200-000, Brazil
| | - Larissa Sampaio Jacques
- Department of Medicine, Faculty of Health Science, Universidade Federal de Lavras - UFLA; Campus Universitário, Lavras, CP: 3037, 37200-000, Brazil
| | - Tayná Márcia da Cruz Santos
- Department of Medicine, Faculty of Health Science, Universidade Federal de Lavras - UFLA; Campus Universitário, Lavras, CP: 3037, 37200-000, Brazil
| | - Fernanda Aparecida Castro Pereira
- Department of Biology, Institute of Natural Science, Universidade Federal de Lavras - UFLA; Campus Universitário, Lavras, CP: 3037, 37200-000, Brazil
| | - Paula Midori Castelo
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Bruno Del Bianco -Borges
- Department of Medicine, Faculty of Health Science, Universidade Federal de Lavras - UFLA; Campus Universitário, Lavras, CP: 3037, 37200-000, Brazil.
| |
Collapse
|
6
|
Benaroua C, Pucci F, Rooman M, Picod A, Favory R, Legrand M, Vincent JL, Creteur J, Taccone FS, Annoni F, Garcia B. Alterations in the renin-angiotensin system during septic shock. Ann Intensive Care 2025; 15:40. [PMID: 40126750 PMCID: PMC11933633 DOI: 10.1186/s13613-025-01463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Alterations in the classical Renin-Angiotensin Aldosterone System (RAAS) have been described during septic shock and are associated with patient outcomes. Since the alternative RAAS has also been reported to be altered in critically ill patients, and given that the RAAS can be modulated by specific therapeutics, such as angiotensin II, understanding its pathophysiology is of primary interest. OBJECTIVE To describe the alterations in the classical and alternative RAAS during septic shock in comparison with healthy controls. METHODS This prospective, monocentric, controlled study enrolled 20 patients fulfilling the septic shock diagnosis, as defined by the Sepsis-3 criteria, along with 30 controls. The main exclusion criteria were the use of any prior medication modifying the RAAS, prior liver failure (Child-Pugh score > 9), or chronic kidney disease (estimated glomerular filtration rate < 30 ml/min/1.73 m²). Equilibrium concentrations of RAAS peptides were analyzed using a liquid chromatography-mass spectrometry method from heparinized plasma. Circulating angiotensin-converting enzyme (cACE), cACE type 2 (cACE2) activities, and circulating dipeptidyl peptidase 3 (cDPP3) concentrations were assessed. Values were measured at diagnosis, 6 h after diagnosis and on days 1 and 3. The main timepoint of interest was 6 h after diagnosis. Values 6 h after diagnosis were compared to 30 controls. RESULTS In septic shock patients, increased concentrations of the main peptides of the classical and alternative RAAS were observed compared to controls, particularly angiotensin I (Ang I) and angiotensin-(1-7) (Ang-(1-7)). Additionally, there was a significant increase in the Ang I/Ang II ratio (1.16 [0.74-3.31] vs. 0.34 [0.25-0.43], p < 0.05) and the Ang-(1-7)/Ang II ratio (0.15 [0.08-1.30] vs. 0.03 [0.02-0.04], p < 0.05). We also observed a significant reduction in cACE activity (3.38 [2.29-6.8] vs. 7.89 [6.39-9.05] nmol Ang II/L/h), an increase in cACE2 activity (814 [669-1987] vs. 214 [132-293] pmol Ang-(1-7)/L/h), and increased cDPP3 concentrations (54.6 [35-142.2] ng/mL vs. 13.7 [11.9-15.4] ng/mL, all p < 0.05). CONCLUSIONS Septic shock was associated with increased Ang I/Ang II and Ang-(1-7)/Ang II ratios, along with reduced cACE activity, increased cACE2 activity, and elevated cDPP3 concentrations compared to healthy controls.
Collapse
Affiliation(s)
- Camille Benaroua
- Department of Intensive Care, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Fabrizio Pucci
- BIO-Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Marianne Rooman
- BIO-Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Adrien Picod
- Université Paris Cité, UMR-S 942, INSERM, MASCOT, Paris, France
| | - Raphaël Favory
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Bruno Garcia
- Department of Intensive Care, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles (ULB), Brussels, Belgium.
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France.
| |
Collapse
|
7
|
Bustamante M, Quiroga C, Mancilla G, Gomez W, Tapia A, Figueroa R, Mondaca-Ruff D, Oyarzún I, Verdejo HE, Lavandero S, Castro P. Autophagy fine-tuning by angiotensin-(1-9) in cultured rat cardiomyocytes. Front Cardiovasc Med 2025; 12:1408325. [PMID: 40144934 PMCID: PMC11937029 DOI: 10.3389/fcvm.2025.1408325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background The renin-angiotensin system (RAS) plays a pivotal role in regulating blood volume, systemic vascular resistance, and electrolyte balance, serving as a key component of cardiovascular health. Recent findings highlight the role of angiotensin II (Ang II) in inducing autophagy through angiotensin II receptor type 1 (AT1R). Autophagy, a process of self-degradation and turnover of cellular components, is a homeostatic response that eliminates superfluous materials. Abnormal autophagy promotes cardiomyocyte loss and is critical in hypertrophy and heart failure progression. The RAS's non-canonical axis, which includes the angiotensin 1-9 peptide [Ang-(1-9)], has an anti-hypertrophic effect in cardiomyocytes via an unknown mechanism. In the present study, we aimed to elucidate the effect of Ang-(1-9) on cardiomyocyte autophagy. Methods We isolated and cultured neonatal ventricular cardiomyocytes and then co-treated them with Ang-(1-9) in the presence of chloroquine (CQ), Ang-II, and chemical inhibitors of different signaling pathways. After treatment, total RNA and protein extracts were obtained to analyze the abundance of different autophagy markers. Likewise, cells were fixed, and autophagy was analyzed through epifluorescence microscopy. Results Our findings show that CQ leads to a reduction in autophagy markers, such as microtubule-associated protein 1 light chain 3-II (LC3-II) and total LC3, suggesting Ang-(1-9)'s regulatory role in basal autophagy levels. Furthermore, Ang-(1-9) opposes Ang-II-induced autophagy and induces the phosphorylation of the S234 residue of Beclin-1 (BCN1) via an angiotensin II receptor type 2 (AT2R)/Akt-dependent pathway. Conclusions This reduction of Ang-II-induced autophagy by Ang-(1-9) unveils a novel aspect of its action, potentially contributing to its cardioprotective effects.
Collapse
Affiliation(s)
- Mario Bustamante
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georthan Mancilla
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Physiology and Biophysics Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anita Tapia
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Figueroa
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology & Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ingrid Oyarzún
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Transducción de Señales Moleculares, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Castro
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Lin MW, Lin CH, Chang JR, Chiang HH, Wu TH, Lin CS. The influence of PM2.5 exposure on SARS-CoV-2 infection via modulating the expression of angiotensin converting enzyme II. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136887. [PMID: 39700942 DOI: 10.1016/j.jhazmat.2024.136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Particulate matter 2.5 (PM2.5) pollution and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are the greatest environmental health issues worldwide. Several statistics revealed the significant positive correlation between the morbidity of coronavirus disease-19 (COVID-19) and the levels of air pollution. Nevertheless, there is no direct experimental evidence to indicate the effect of PM2.5 exposure on SARS-CoV-2 infection. The objective of this study was to evaluate whether the infection of SARS-CoV-2 affected by PM2.5 through angiotensin-converting enzyme II (ACE2) expression enhances and investigate the function of ACE2 in lung injury induced by PM2.5. An animal model of PM2.5-induced lung injury was established using wild-type (WT, C57BL/6), human ACE2 transgenic (K18-hACE2 TG), and murine ACE2 gene knockout (mACE2 KO) mice. The results indicate that PM2.5 exposure facilitates SARS-CoV-2 infection through inducing ACE2 expression in vitro (10 μg/mL) and in vivo (6.25 mg/kg/day in 50 μL saline). The levels of ACE, inflammatory cytokines, and mitogen-activated protein kinase (MAPK) proteins in WT, K18-hACE TG and mACE2 KO mice were significantly increased after PM2.5 instillation. The severest PM2.5-induced lung damage was observed in mACE2 KO mice. In summary, ACE2 plays a double-edged sword role in lung injury, PM2.5 exposure contributed to SARS-CoV-2 infection through inducing ACE2 expression, but ACE2 also protected pulmonary inflammation from PM2.5 challenge.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Jia-Rong Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Hua-Hsin Chiang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Ting-Hsuan Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| |
Collapse
|
9
|
Andrade Barboza C, Gonçalves LM, Pereira E, Cruz RD, Andrade Louzada R, Boulina M, Almaça J. SARS-CoV-2 Spike S1 Subunit Triggers Pericyte and Microvascular Dysfunction in Human Pancreatic Islets. Diabetes 2025; 74:355-367. [PMID: 39715591 PMCID: PMC11842606 DOI: 10.2337/db24-0816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The COVID-19 pandemic has profoundly affected human health; however, the mechanisms underlying its impact on metabolic and vascular systems remain incompletely understood. Clinical evidence suggests that SARS-CoV-2 directly disrupts vascular homeostasis, with perfusion abnormalities observed in various tissues. The pancreatic islet, a key endocrine miniorgan reliant on its microvasculature for optimal function, may be particularly vulnerable. Studies have proposed a link between SARS-CoV-2 infection and islet dysfunction, but the mechanisms remain unclear. Here, we investigated how SARS-CoV-2 spike S1 protein affects human islet microvascular function. Using confocal microscopy and living pancreas slices from organ donors without diabetes, we show that a SARS-CoV-2 spike S1 recombinant protein activates pericytes, key regulators of islet capillary diameter and β-cell function, and induces capillary constriction. These effects are driven by a loss of ACE2 from pericytes' plasma membrane, impairing ACE2 activity and increasing local angiotensin II levels. Our findings highlight islet pericyte dysfunction as a potential contributor to the diabetogenic effects of SARS-CoV-2 and offer new insights into the mechanisms linking COVID-19, vascular dysfunction, and diabetes. ARTICLE HIGHLIGHTS Different components of the renin-angiotensin system are expressed by vascular cells in human pancreatic islets. The islet microvasculature is responsive to vasoactive angiotensin peptides. This pancreatic renin-angiotensin system is targeted upon incubation with a SARS-CoV-2 spike recombinant protein. SARS-CoV-2 spike activates pericytes and constricts capillaries in human islets. Islet vascular dysfunction could contribute to dysglycemia in some patients with COVID-19.
Collapse
Affiliation(s)
- Catarina Andrade Barboza
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Roxana Diaz Cruz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Ruy Andrade Louzada
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Boulina
- Diabetes Research Institute, University of Miami Health System, Miami, FL
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Health System, Miami, FL
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
10
|
Galipeau Y, Castonguay N, McCluskie PS, Sonoda MT, Keeshan A, Collins E, Arnold C, Pelchat M, Burns K, Cooper C, Langlois M. Autoantibodies targeting angiotensin-converting enzyme 2 are prevalent and not induced by SARS-CoV-2 infection. FASEB J 2025; 39:e70390. [PMID: 39950298 PMCID: PMC11826374 DOI: 10.1096/fj.202402694r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
Clinical outcomes resulting from SARS-CoV-2 infection vary widely, ranging from asymptomatic cases to the development of mild to severe respiratory illness, and in some instances, chronic lingering disease and mortality. The underlying biological mechanisms driving this wide spectrum of pathogenicity among certain individuals and demographics remain elusive. Autoantibodies have emerged as potential contributors to the severity of COVID-19. Although preliminary reports have suggested the induction of antibodies targeting Angiotensin-Converting Enzyme II (ACE2) post-infection, this assertion lacks confirmation in large-scale studies. In this study, our objective is to comprehensively characterize and quantify the prevalence and expression levels of autoantibodies directed against ACE2 in a sizable cohort (n = 464). Our findings reveal that ACE2-reactive IgM antibodies are the most prevalent, with an overall seroprevalence of 18.8%, followed by IgG at 10.3% and IgA at 6.3%. Longitudinal analysis of individuals with multiple blood draws showed stable ACE2 IgG and IgA levels over time. Upon stratifying individuals based on molecular testing for SARS-CoV-2 or serological evidence of past infection, no significant differences were observed between groups. Functional assessment of ACE2 autoantibodies demonstrated that they are non-neutralizing and failed to inhibit spike-ACE2 interaction or affect the enzymatic activity of ACE2. Our results highlight that ACE2 autoantibodies are prevalent in the general population and were not induced by SARS-CoV-2 infection in our cohort. Notably, we found no substantiated evidence supporting a direct role for ACE2 autoantibodies in SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Yannick Galipeau
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Alexa Keeshan
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Clinical EpidemiologyOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Erin Collins
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Clinical EpidemiologyOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Corey Arnold
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Infection, Immunity and Inflammation (CI3)University of OttawaOttawaOntarioCanada
| | - Kevin Burns
- Division of Nephrology, Department of MedicineUniversity of OttawaOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - Curtis Cooper
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
- Division of Infectious Diseases, Department of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Marc‐André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Infection, Immunity and Inflammation (CI3)University of OttawaOttawaOntarioCanada
| |
Collapse
|
11
|
Trivedi DB, Parikh MA, Turitto G, Frishman WH, Peterson SJ. Renal Denervation: A New Therapy for Resistant Hypertension. Cardiol Rev 2025:00045415-990000000-00423. [PMID: 40013809 DOI: 10.1097/crd.0000000000000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The Food and Drug Administration (FDA) recently approved renal denervation to treat resistant hypertension. This procedure is a minimally invasive procedure that starts by placing a catheter in the renal artery. This catheter is used to send either radiofrequency heat or ultrasound waves to burn the superficial nerves surrounding the renal arteries while making certain no damage happens to the renal arteries themselves. This procedure is done after a renal angiogram to ensure patency of the renal artery. Each radiofrequency ablation will take 1-2 minutes, depending on the device used. The radiofrequency balloon generator requires one single application of the radiofrequency pulse. The radiofrequency generator that uses a catheter tube will need more than one pulse. The second approved option uses ultrasound to generate an electrical signal that is converted into ultrasound vibration, that occurs at the distal end of the catheter. This vibration heats the system around the nerves, disrupting the superficial nerves that communicate with the central nervous system. This will result in lowering the blood pressure. We will review the studies that led to FDA approval, and the current guidelines for use. The FDA now approves both devices.
Collapse
Affiliation(s)
- Dhaval B Trivedi
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| | - Manish A Parikh
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
- Weill Department of Medicine, Weill Cornell Medicine, New York City, New York
| | - Gioia Turitto
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
- Weill Department of Medicine, Weill Cornell Medicine, New York City, New York
| | | | - Stephen J Peterson
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
- Weill Department of Medicine, Weill Cornell Medicine, New York City, New York
| |
Collapse
|
12
|
Sheikhi A, Baghaie L, Rahbarizadeh F, Safarzadeh Kozani P, Moradian C, Davidi M, Baharifar N, Kaboli G, Sheikhi M, Li Y, Meghdadi M, Yaish AM, Yu AH, Harless WW, Szewczuk MR. Novel sACE2-Anti-CD16VHH Fusion Protein Surreptitiously Inhibits SARS-CoV-2 Variant Spike Proteins and Macrophage Cytokines, and Activates Natural Killer Cell Cytotoxicity. Vaccines (Basel) 2025; 13:199. [PMID: 40006745 PMCID: PMC11860277 DOI: 10.3390/vaccines13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The SARS-CoV-2's high mutations and replication rates contribute to its high infectivity and resistance to current vaccinations and treatments. The primary cause of resistance to most current treatments aligns within the coding regions for the spike S protein of SARS-CoV-2 that has mutated. As a potential novel immunotherapy, we generated a novel fusion protein composed of a soluble ACE2 (sACE2) linked to llama-derived anti-CD16 that targets different variants of spike proteins and enhances natural killer cells to target infected cells. Methods: Here, we generated a novel sACE2-AntiCD16VHH fusion protein using a Gly4Ser linker, synthesized and cloned into the pLVX-EF1alpha-IRES-Puro vector, and further expressed in ExpiCHO-S cells and purified using Ni+NTA chromatography. Results: The fusion protein significantly blocked SARS-CoV-2 alpha, beta, delta, gamma, and omicron S-proteins binding and activating angiotensin-converting enzyme receptor-2 (ACE2) on ACE2-expressing RAW-Blue macrophage cells and the secretion of several key inflammatory cytokines, G-CSF, MIP-1A, and MCP-1, implicated in the cytokine release storm (CRS). The sACE2-Anti-CD16VHH fusion protein also bridged NK cells to ACE2-expressing human lung carcinoma A549 cells and significantly activated NK-dependent cytotoxicity. Conclusions: The findings show that a VHH directed against CD16 could be an excellent candidate to be linked to soluble ACE2 to generate a bi-specific molecule (sACE2-AntiCD16VHH) suitable for bridging effector cells and infected target cells to inhibit SARS-CoV-2 variant spike proteins binding to the ACE2 receptor in the RAW-Blue cell line and pro-inflammatory cytokines and to activate natural killer cell cytotoxicity.
Collapse
Affiliation(s)
- Abdolkarim Sheikhi
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran; (N.B.); (G.K.)
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran; (F.R.); (P.S.K.); (C.M.)
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran 14115-331, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran; (F.R.); (P.S.K.); (C.M.)
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran 14115-331, Iran
| | - Cobra Moradian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran; (F.R.); (P.S.K.); (C.M.)
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran 14115-331, Iran
| | - Mohammadreza Davidi
- Faculty of Medicine, Kazeroon Azad University, Kazeroon 14778-93855, Iran; (M.D.); (M.S.)
| | - Narges Baharifar
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran; (N.B.); (G.K.)
| | - Golnaz Kaboli
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran; (N.B.); (G.K.)
| | - Mehdi Sheikhi
- Faculty of Medicine, Kazeroon Azad University, Kazeroon 14778-93855, Iran; (M.D.); (M.S.)
| | - Yunfan Li
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Mohammadamin Meghdadi
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (M.M.); (A.M.Y.); (A.H.Y.)
| | - Abdulrahman M. Yaish
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (M.M.); (A.M.Y.); (A.H.Y.)
| | - Aiden H. Yu
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (M.M.); (A.M.Y.); (A.H.Y.)
| | | | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
13
|
Luo YW, Huang AL, Tang KF. Angiotensin-converting enzyme 2 and hepatic SARS-CoV-2 infection: Regulation, association, and therapeutic implications. World J Gastroenterol 2025; 31:100864. [PMID: 39958440 PMCID: PMC11752700 DOI: 10.3748/wjg.v31.i6.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/10/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Mounting evidence has indicated the presence of hepatic SARS-CoV-2 infection and liver injury in patients with coronavirus disease 2019 (COVID-19). Understanding the mechanisms of hepatic SARS-CoV-2 infection is crucial for addressing COVID-19-related liver pathology and developing targeted therapies. This editorial discusses the significance of ACE2 in hepatic SARS-CoV-2 infection, drawing on the research by Jacobs et al. Their findings indicate that hepatic ACE2 expression, frequency of hepatic SARS-CoV-2 infection, and severity of liver injury are elevated in patients with pre-existing chronic liver diseases. These data suggest that hepatic ACE2 could be a promising therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Yu-Wei Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
14
|
Li X, Qu S. Novel insights into the central protective role of ACE2 in diabetic cardiomyopathy: from underlying signaling pathways to therapeutic perspectives. Mol Cell Biochem 2025:10.1007/s11010-024-05196-6. [PMID: 39928210 DOI: 10.1007/s11010-024-05196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac complication specific to individuals with diabetes. It is defined as abnormalities of myocardial structure and function in diabetic patients who do not exhibit any obvious coronary artery disease, hypertensive heart disease, valvular heart disease, or inherited cardiomyopathy. A significant cardiovascular protective factor identified recently is angiotensin-converting enzyme 2 (ACE2), which is a rising star in the renin angiotensin system (RAS) and is responsible for the onset and progression of DCM. Nonetheless, there is not a comprehensive review outlining ACE2's effect on DCM. From the perspective of the pathogenesis of DCM, this review summarizes the myocardial protective role of ACE2 in the aspects of alleviating myocardial structure and dysfunction, correcting energy metabolism disorders, and restoring vascular function. Concurrently, we propose the connections between ACE2 and underlying signaling pathways, including ADAM17, Apelin/APJ, and Nrf2. Additionally, we highlight ACE2-related pharmaceutical treatment options and clinical application prospects for preventing and managing DCM. Further and underlying research is extensively required to completely comprehend the principal pathophysiological mechanism of DCM and the distinctive function of ACE2, switching experimental findings into clinical practice and identifying efficient therapeutic approaches.
Collapse
Affiliation(s)
- Xinyi Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China.
| |
Collapse
|
15
|
Barozi V, Tastan Bishop Ö. Impact of African-Specific ACE2 Polymorphisms on Omicron BA.4/5 RBD Binding and Allosteric Communication Within the ACE2-RBD Protein Complex. Int J Mol Sci 2025; 26:1367. [PMID: 39941135 PMCID: PMC11818624 DOI: 10.3390/ijms26031367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) infection occurs via the attachment of the spike (S) protein's receptor binding domain (RBD) to human ACE2 (hACE2). Natural polymorphisms in hACE2, particularly at the interface, may alter RBD-hACE2 interactions, potentially affecting viral infectivity across populations. This study identified the effects of six naturally occurring hACE2 polymorphisms with high allele frequency in the African population (S19P, K26R, M82I, K341R, N546D and D597Q) on the interaction with the S protein RBD of the BA.4/5 Omicron sub-lineage through post-molecular dynamics (MD), inter-protein interaction and dynamic residue network (DRN) analyses. Inter-protein interaction analysis suggested that the K26R variation, with the highest interactions, aligns with reports of enhanced RBD binding and increased SARS-CoV-2 susceptibility. Conversely, S19P, showing the fewest interactions and largest inter-protein distances, agrees with studies indicating it hinders RBD binding. The hACE2 M82I substitution destabilized RBD-hACE2 interactions, reducing contact frequency from 92 (WT) to 27. The K341R hACE2 variant, located distally, had allosteric effects that increased RBD-hACE2 contacts compared to WThACE2. This polymorphism has been linked to enhanced affinity for Alpha, Beta and Delta lineages. DRN analyses revealed that hACE2 polymorphisms may alter the interaction networks, especially in key residues involved in enzyme activity and RBD binding. Notably, S19P may weaken hACE2-RBD interactions, while M82I showed reduced centrality of zinc and chloride-coordinating residues, hinting at impaired communication pathways. Overall, our findings show that hACE2 polymorphisms affect S BA.4/5 RBD stability and modulate spike RBD-hACE2 interactions, potentially influencing SARS-CoV-2 infectivity-key insights for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
- National Institute for Theoretical and Computational Sciences (NITheCS), Matieland 7602, South Africa
| |
Collapse
|
16
|
Adamopoulos PG, Bartzoka N, Tsiakanikas P, Scorilas A. Characterization of novel ACE2 mRNA transcripts: The potential role of alternative splicing in SARS-CoV-2 infection. Gene 2025; 936:149092. [PMID: 39549777 DOI: 10.1016/j.gene.2024.149092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
The human angiotensin converting enzyme 2 (ACE2) gene encodes a type I transmembrane protein, which is homologous to angiotensin I-converting enzyme (ACE) and belongs to the angiotensin-converting enzyme family of dipeptidyl carboxypeptidases. As highlighted by the COVID-19 pandemic, ACE2 is not only crucial for the renin-angiotensin-aldosterone system (RAAS), but also displays great affinity with the SARS-CoV-2 spike protein, representing the major receptor of the virus. Given the significance of ACE2 in COVID-19, especially among cancer patients, the present study aims to explore the transcriptional landscape of ACE2 in human cancer and non-cancerous cell lines through the design and implementation of a custom targeted long-read sequencing approach. Bioinformatics analysis of the massive parallel sequencing data led to the identification of novel ACE2 mRNA splice variants (ACE2 sv.7-sv.12) that demonstrate previously uncharacterized exon-skipping events as well as 5' and/or 3' alternative splice sites. Demultiplexing of the sequencing data elucidated the differential expression profile of the identified splice variants in multiple human cell types, whereas in silico analysis suggests that some of the novel splice variants could produce truncated ACE2 isoforms with altered functionalities, potentially influencing their interaction with the SARS-CoV-2 spike protein. In summary, our study sheds light on the complex alternative splicing landscape of the ACE2 gene in cancer cell lines, revealing novel splice variants that could have significant implications for SARS-CoV-2 susceptibility in cancer patients. These findings contribute to the increased understanding of ACE2's role in COVID-19 and highlight the importance of considering alternative splicing as a key factor in viral pathogenesis. Undoubtably, further research is needed to explore the functional roles of these variants and their potential as therapeutic targets in the ongoing fight against COVID-19.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natalia Bartzoka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
17
|
Batlle D, Hassler L, Wysocki J. ACE2, From the Kidney to SARS-CoV-2: Donald Seldin Award Lecture 2023. Hypertension 2025; 82:166-180. [PMID: 39624896 DOI: 10.1161/hypertensionaha.124.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ACE2 (angiotensin-converting enzyme 2) is a monocarboxypeptidase that cleaves Ang II (angiotensin II) among other substrates. ACE2 is present in the cell membrane of many organs, most abundantly in epithelial cells of kidney proximal tubules and the small intestine, and also exists in soluble forms in plasma and body fluids. Membrane-bound ACE2 exerts a renoprotective action by metabolizing Ang II and therefore attenuating the undesirable actions of excess Ang II. Therefore, soluble ACE2, by downregulating this peptide, may exert a therapeutic action. Our laboratory has designed ACE2 truncates that pass the glomerular filtration barrier to target the kidney renin-angiotensin system directly and, therefore, compensate for loss of kidney membrane-bound ACE2. Membrane-bound ACE2 is also the essential receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soluble ACE2 proteins have been studied as a way to intercept SARS-CoV-2 from binding to membrane-bound ACE2 and prevent cell entry of SARS-CoV-2 altogether. We bioengineered a soluble ACE2 protein, termed ACE2 618-DDC-ABD, with increased binding affinity for SARS-CoV-2 and prolonged duration of action, which, when administered intranasally, provides near-complete protection from lethality in k18hACE2 mice infected with different SARS-CoV-2 variants. The main advantage of soluble ACE2 proteins for the neutralization of SARS-CoV-2 is their immediate onset of action and universality for current and future emerging SARS-CoV-2 variants. It is notable that ACE2 is critically involved in 2 dissimilar functions: as a receptor for cell entry of many coronaviruses and as an enzyme in the metabolism of Ang II, and yet in both cases, it is a therapeutic target.
Collapse
Affiliation(s)
- Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
18
|
Li Y, Xiao Z. Analysis of angiotensin-converting enzyme (ACE), ACE2, and their genetic polymorphisms in patients with acute aortic dissection and coronary heart disease. J Int Med Res 2025; 53:3000605251322355. [PMID: 40019111 PMCID: PMC11869269 DOI: 10.1177/03000605251322355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND This study aimed to elucidate the distinctions between the expression levels of angiotensin-converting enzyme (ACE) and ACE2, as well as their genetic polymorphisms, in patients with acute aortic dissection (AD) and coronary heart disease (CHD). METHODS A cohort of 86 patients was enrolled, comprising 34 individuals with acute AD (encompassing Stanford types A and B), 18 with ascending aortic aneurysm, 21 with CHD, and 13 healthy controls. Aortic tissue samples were procured from 44 patients during surgical interventions. RESULTS Statistically significant differences were observed in ACE and ACE2 expression levels among the ascending aortic aneurysm, CHD, and control groups (p < 0.05). However, the expression of ACE messenger ribonucleic acid (mRNA) in the aortic wall was significantly higher in the AD group than in the ascending aortic aneurysm and CHD groups (p < 0.05). Additionally, the expression of ACE2 mRNA and the ACE/ACE2 ratio in the aortic wall were significantly different in the AD group compared with the ascending aortic aneurysm and CHD groups (p < 0.05). CONCLUSION Plasma ACE levels, and the gene expressions of ACE and ACE2, are markedly reduced in patients with acute AD. The observed imbalance in ACE and ACE2 expressions may play a pivotal role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Yang Li
- Department of Cardiothoracic Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Zongwei Xiao
- Department of Cardiothoracic Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Maison DP, Tasissa H, Deitchman A, Peluso MJ, Deng Y, Miller FD, Henrich TJ, Gerschenson M. COVID-19 clinical presentation, management, and epidemiology: a concise compendium. Front Public Health 2025; 13:1498445. [PMID: 39957982 PMCID: PMC11826932 DOI: 10.3389/fpubh.2025.1498445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Coronavirus Disease 2019, caused by severe acute respiratory coronavirus 2, has been an ever-evolving disease and pandemic, profoundly impacting clinical care, drug treatments, and understanding. In response to this global health crisis, there has been an unprecedented increase in research exploring new and repurposed drugs and advancing available clinical interventions and treatments. Given the widespread interest in this topic, this review aims to provide a current summary-for interested professionals not specializing in COVID-19-of the clinical characteristics, recommended treatments, vaccines, prevention strategies, and epidemiology of COVID-19. The review also offers a historical perspective on the pandemic to enhance understanding.
Collapse
Affiliation(s)
- David P. Maison
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Hawi Tasissa
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Amelia Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - F. DeWolfe Miller
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Timothy J. Henrich
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
20
|
Kochi M, Yokoyama Y. [Posterior reversible encephalopathy syndrome after COVID-19 in a patient with chronic renal failure]. Rinsho Shinkeigaku 2025; 65:32-38. [PMID: 39710393 DOI: 10.5692/clinicalneurol.cn-002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A 61-year-old man with chronic renal failure had an embolic stroke of undetermined source that was treated with warfarin. Five weeks later, the patient contracted coronavirus disease (COVID-19). Six days after the onset of COVID-19, high blood pressure (>200 mmHg) and consciousness disturbance were reported. CT demonstrated symmetrical hypodensity areas in the bilateral cerebellar hemispheres. MRI revealed hyperintensity lesions in the bilateral cerebellar hemispheres and pons on the T2-weighted and fluid-attenuated inversion recovery images. Moreover, cerebellar lesions appeared as hyperintensity areas on apparent diffusion coefficient mapping. Based on these findings, a diagnosis of posterior reversible encephalopathy syndrome (PRES) was made. The patient was treated with antihypertensive drugs, and the consciousness level improved gradually. MRI after one month showed that the lesions had disappeared. PRES should be considered if the brain CT of patients with COVID-19 shows a low-density lesion, especially in patients with risk factors for PRES such as chronic renal failure or hypertension.
Collapse
|
21
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2025; 31:21-47. [PMID: 39331957 PMCID: PMC11696709 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
22
|
Bach ML, Laftih S, Andresen JK, Pedersen RM, Andersen TE, Madsen LW, Madsen K, Hinrichs GR, Zachar R, Svenningsen P, Lund L, Johansen IS, Hansen LF, Palarasah Y, Jensen BL. ACE2 and TMPRSS2 in human kidney tissue and urine extracellular vesicles with age, sex, and COVID-19. Pflugers Arch 2025; 477:83-98. [PMID: 39382598 PMCID: PMC11711140 DOI: 10.1007/s00424-024-03022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
SARS-CoV-2 virus infects cells by engaging with ACE2 requiring protease TMPRSS2. ACE2 is highly expressed in kidneys. Predictors for severe disease are high age and male sex. We hypothesized that ACE2 and TMPRSS2 proteins are more abundant (1) in males and with increasing age in kidney and (2) in urine and extracellular vesicles (EVs) from male patients with COVID-19 and (3) SARS-CoV-2 is present in urine and EVs during infection. Kidney cortex samples from patients subjected to cancer nephrectomy (male/female; < 50 years/˃75 years, n = 24; ˃80 years, n = 15) were analyzed for ACE2 and TMPRSS2 protein levels. Urine from patients hospitalized with SARS-CoV-2 infection was analyzed for ACE2 and TMPRSS2. uEVs were used for immunoblotting and SARS-CoV-2 mRNA and antigen detection. Tissue ACE2 and TMPRSS2 protein levels did not change with age. ACE2 was not more abundant in male kidneys in any age group. ACE2 protein was associated with proximal tubule apical membranes in cortex. TMPRSS2 was observed predominantly in the medulla. ACE2 was elevated significantly in uEVs and urine from patients with COVID-19 with no sex difference compared with urine from controls w/wo albuminuria. TMPRSS2 was elevated in uEVs from males compared to female. ACE2 and TMPRSS2 did not co-localize in uEVs/apical membranes. SARS-CoV-2 nucleoprotein and mRNA were not detected in urine. Higher kidney ACE2 protein abundance is unlikely to explain higher susceptibility to SARS-CoV-2 infection in males. Kidney tubular cells appear not highly susceptible to SARS-CoV-2 infection. Loss of ACE2 into urine in COVID could impact susceptibility and angiotensin metabolism.
Collapse
Affiliation(s)
- Marie Lykke Bach
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sara Laftih
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper K Andresen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rune M Pedersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Lone W Madsen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
- Unit for Infectious Diseases, Department of Medicine, Sygehus Lillebælt, Kolding, Denmark
| | - Kirsten Madsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Gitte R Hinrichs
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Rikke Zachar
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Per Svenningsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | | | - Yaseelan Palarasah
- Unit of Inflammation and Cancer Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Güzel Ö, Kehoe PG. The Contribution of the Renin-Angiotensin System to Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:107-127. [PMID: 39543022 DOI: 10.1007/7854_2024_525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The renin-angiotensin system (RAS) is becoming increasingly recognised as a biochemical pathway relevant to the development and progression of Alzheimer's disease (AD). RAS involvement in AD was initially linked to AD via numerous genetic association studies and more recent Genome-Wide Association Studies (GWAS), and in some cases in relation to classical hallmarks of AD pathology. Since these initial findings, which will be summarised here, several complementary areas of research are converging in support of what has been proposed as the Angiotensin Hypothesis for Alzheimer's disease. This hypothesis proposes how the RAS and disease-associated changes to the normal balance between opposing regulatory pathways within RAS warrant careful consideration in the pathogenesis of AD and its pathology. We discuss some of these in relation to RAS-targeting therapeutics, originally developed for the treatment of cardiovascular conditions, and how they might be repurposed as interventions for AD.
Collapse
Affiliation(s)
- Özge Güzel
- Cerebrovascular and Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK.
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye.
| | - Patrick G Kehoe
- Cerebrovascular and Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
24
|
Benício LFMA, Nascimento ÉCM, Martins JBL. Docking heparan sulfate-based ligands as a promising inhibitor for SARS-CoV-2. J Mol Model 2024; 31:19. [PMID: 39666205 DOI: 10.1007/s00894-024-06236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
CONTEXT Heparan sulfate (HS) linear polysaccharide glycosaminoglycan compound is linked to components from the cell surface and the extracellular matrix. HS mediates SARS-CoV-2 infection through spike protein binding to cell surface receptors and is required to bind ACE2, prompting the need for electronic structure and molecular docking evaluation of this core system to exploit this attachment in developing new derivatives. Therefore, we have studied five molecules based on HS using molecular docking and electronic structure analysis. Non-covalent interaction analysis shows hydrogen bonding and van der Waals interactions in the binding to RBD-ACE2 interface and 3CLpro. SDM3 and SDM1 molecules present the lowest gap, including solvent effect under 154.6 kcal/mol, and exhibit the most reactivity behavior in this group, potentially leading to enhanced interaction in docking studies. METHODS Heparan sulfate and four derivatives were optimized using B3LYP functional with two basis sets 6-31 + G(d,p) and def2SVP. Electronic structure was used to explore the main interactions and the reactivity of these molecules, and these optimized structures were used in the molecular docking study against 3CLpro, RBD, and ACE2.
Collapse
Affiliation(s)
- Luiz F M A Benício
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Érica C M Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - João B L Martins
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
25
|
Zhou P, Ning K, Xue S, Li Q, Li D, Yang H, Liang Z, Li R, Yang J, Li X, Zhang L. An ACE2 PET imaging agent derived from 18F/Cl exchange of MLN-4760 under phase transfer catalysis. EJNMMI Radiopharm Chem 2024; 9:83. [PMID: 39621212 PMCID: PMC11612064 DOI: 10.1186/s41181-024-00316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Angiotensin-converting enzyme-2 (ACE2) acts as a key regulatory molecule and important therapeutic target in the pathological remodeling of numerous organs and diseases. In this study, a rapid, simple, and efficient synthetic route with a catalytic, 18F-for-Cl (18F/Cl) exchange scheme was designed for the preparation of 18F-labeled MLN-4760, and its targeting ability was investigated in a humanized ACE2 mouse model. RESULTS A novel 18F-labeled MLN-4760 radioligand, abbreviated as 18F-MLN-4760, was successfully synthesized by the 18F/Cl exchange-labeling, and was purified by SepPak C18 columns with a radiochemical yield of 30% and a radiochemical purity of 29.89%. Target distribution of 18F-MLN-4760 in several organs with high ACE2 expression was observed by PET imaging with good stability over 120 min. The biodistribution data showed that the uptake of 18F-MLN-4760 in ACE2-overexpressing organs and tissues was highly specific, and immunohistochemistry confirmed the same results of ACE2 expression and biodistribution in the major organs (heart, liver, lungs, and kidneys). There was a good correlation between the uptake in the organs with high ACE2 expression and ACE2 expression levels (r = 0.935). CONCLUSION 18F-MLN-4760 was successfully synthesized via 18F/Cl exchange under phase transfer catalysis, and served as a potential probe for ACE2-targeted PET imaging.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, 200433, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Kai Ning
- Artery Pharmaceuticals, Shanghai, 201413, China
| | - Shuai Xue
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Qingqing Li
- Artery Pharmaceuticals, Shanghai, 201413, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Haijun Yang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zeying Liang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Rou Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Jian Yang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Xiao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, 200433, China.
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| |
Collapse
|
26
|
Lu C, Gao C, Wei J, Dong D, Sun M. SIRT1-FOXOs signaling pathway: A potential target for attenuating cardiomyopathy. Cell Signal 2024; 124:111409. [PMID: 39277092 DOI: 10.1016/j.cellsig.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Cardiomyopathy constitutes a global health burden. It refers to myocardial injury that causes alterations in cardiac structure and function, ultimately leading to heart failure. Currently, there is no definitive treatment for cardiomyopathy. This is because existing treatments primarily focus on drug interventions to attenuate symptoms rather than addressing the underlying causes of the disease. Notably, the cardiomyocyte loss is one of the key risk factors for cardiomyopathy. This loss can occur through various mechanisms such as metabolic disturbances, cardiac stress (e.g., oxidative stress), apoptosis as well as cell death resulting from disorders in autophagic flux, etc. Sirtuins (SIRTs) are categorized as class III histone deacetylases, with their enzyme activity primarily reliant on the substrate nicotinamide adenine dinucleotide (NAD (+)). Among them, Sirtuin 1 (SIRT1) is the most intensively studied in the cardiovascular system. Forkhead O transcription factors (FOXOs) are the downstream effectors of SIRT1. Several reports have shown that SIRT1 can form a signaling pathway with FOXOs in myocardial tissue, and this pathway plays a key regulatory role in cell loss. Thus, this review describes the basic mechanism of SIRT1-FOXOs in inhibiting cardiomyocyte loss and its favorable role in cardiomyopathy. Additionally, we summarized the SIRT1-FOXOs related regulation factor and prospects the SIRT1-FOXOs potential clinical application, which provide reference for the development of cardiomyopathy treatment.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
27
|
Galal SM, El Kiki SM, Elgazzar EM. The Potential Therapeutic Approach of Ursodeoxycholic Acid as a Potent Activator of ACE-2 on Cerebral Disorders Induced by γ-irradiation in Rats. Cell Biochem Funct 2024; 42:e70024. [PMID: 39660593 DOI: 10.1002/cbf.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
The present investigation assesses ursodeoxycholic acid's efficacy (UDCA) as an ACE2 activator against gamma irradiation through activating the renin-angiotensin system's (RAS) beneficial axis, ACE2/Ang-(1-7)/Mas1 via its profitable influence on inflammation, oxidative stress, and neuronal damage caused by irradiation (IRR). Four groups of rats were treated as follows: control group, group receiving UDCA (100 mg/kg/day) for 14 days by gavage, group irradiated at 6 Gy, and group receiving UDCA post-irradiation for 14 days. The results revealed that gamma-irradiation (6 Gy) caused a substantial drop in the cerebral ACE2/Ang-(1-7)/Mas1 axis and remarkably increased the expression of cerebral inflammatory mediators: tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6) and interleukin-1β (IL-1β) combined with significant elevation in cyclooxygenase-II (COX-II), (NADPH) oxidases (NOX4), lipooxygenase (LOX) activities and nitric oxide (NO) content. Moreover, it greatly enhanced the reduction in N-methyl-d-aspartate (NMDA) level, while dramatically increasing gamma-aminobutyric acid (GABA) level and neuronal nitric oxide synthases (nNOS) enzyme activity in cerebral tissue homogenate. Irradiated rats' brain sections underwent histological investigation using hematoxylin and eosin staining, which revealed cellular damage and a pathological appearance. The administration of UDCA inverts these unusual alterations. In conclusion, UDCA treatment efficiently normalizes the above-mentioned pathological abnormalities and avoids the development of IRR-associated neurological dysfunction by upregulating the beneficial axis of RAS in the brain. Hence, ursodeoxycholic acid presents a novel option for patient care during radiotherapy.
Collapse
Affiliation(s)
- Shereen Mohamed Galal
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shereen Mohamed El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman Mahmoud Elgazzar
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
28
|
Zheng J, Hao H. Targeting renal damage: The ACE2/Ang-(1-7)/mas axis in chronic kidney disease. Cell Signal 2024; 124:111413. [PMID: 39293746 DOI: 10.1016/j.cellsig.2024.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The renin-angiotensin system (RAS) is a crucial factor in chronic kidney disease (CKD) progression, affecting renal function and contributing significantly to renal tissue inflammation and fibrosis. Activation of the classical ACE/Ang II/AT1 axis exacerbates renal damage, while the ACE2/Ang-(1-7)/Mas axis has shown promise in reducing CKD progression in numerous animal models. Recently, the ACE2/Ang-(1-7)/Mas axis has emerged as a promising target for CKD interventions. This review provides a comprehensive review of the pivotal role of this axis in CKD pathogenesis and systematically examines various molecules and pharmaceutical agents targeting this pathway. This review aims to elucidate potential strategies for delaying or halting CKD progression, offering patients more effective treatment options.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China.
| |
Collapse
|
29
|
Ruan Y, Yu Y, Wu M, Jiang Y, Qiu Y, Ruan S. The renin-angiotensin-aldosterone system: An old tree sprouts new shoots. Cell Signal 2024; 124:111426. [PMID: 39306263 DOI: 10.1016/j.cellsig.2024.111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The intricate physiological and pathological diversity of the Renin-Angiotensin-Aldosterone System (RAAS) underpins its role in maintaining bodily equilibrium. This paper delves into the classical axis (Renin-ACE-Ang II-AT1R axis), the protective arm (ACE2-Ang (1-7)-MasR axis), the prorenin-PRR-MAP kinases ERK1/2 axis, and the Ang IV-AT4R-IRAP cascade of RAAS, examining their functions in both physiological and pathological states. The dysregulation or hyperactivation of RAAS is intricately linked to numerous diseases, including cardiovascular disease (CVD), renal damage, metabolic disease, eye disease, Gastrointestinal disease, nervous system and reproductive system diseases. This paper explores the pathological mechanisms of RAAS in detail, highlighting its significant role in disease progression. Currently, in addition to traditional drugs like ACEI, ARB, and MRA, several novel therapeutics have emerged, such as angiotensin receptor-enkephalinase inhibitors, nonsteroidal mineralocorticoid receptor antagonists, aldosterone synthase inhibitors, aminopeptidase A inhibitors, and angiotensinogen inhibitors. These have shown potential efficacy and application prospects in various clinical trials for related diseases. Through an in-depth analysis of RAAS, this paper aims to provide crucial insights into its complex physiological and pathological mechanisms and offer valuable guidance for developing new therapeutic approaches. This comprehensive discussion is expected to advance the RAAS research field and provide innovative ideas and directions for future clinical treatment strategies.
Collapse
Affiliation(s)
- Yaqing Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiqin Wu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuliang Qiu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| | - Shiwei Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| |
Collapse
|
30
|
Hristova SH, Popov TT, Zhivkov AM. Rabbit and Human Angiotensin-Converting Enzyme-2: Structure and Electric Properties. Int J Mol Sci 2024; 25:12393. [PMID: 39596458 PMCID: PMC11594707 DOI: 10.3390/ijms252212393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The angiotensin-converting enzyme-2 (ACE2) is a transmembrane glycoprotein, consisting of two segments: a large carboxypeptidase catalytic domain and a small transmembrane collectrin-like segment. This protein plays an essential role in blood pressure regulation, transforming the peptides angiotensin-I and angiotensin-II (vasoconstrictors) into angiotensin-1-9 and angiotensin-1-7 (vasodilators). During the COVID-19 pandemic, ACE2 became best known as the receptor of the S-protein of SARS-CoV-2 coronavirus. The purpose of the following research is to reconstruct the 3D structure of the catalytic domain of the rabbit enzyme rACE2 using its primary amino acid sequence, and then to compare it with the human analog hACE2. For this purpose, we have calculated the electric properties and thermodynamic stability of the two protein globules employing computer programs for protein electrostatics. The analysis of the amino acid content and sequence demonstrates an 85% identity between the two polypeptide chains. The 3D alignment of the catalytic domains of the two enzymes shows coincidence of the α-helix segments, and a small difference in two unstructured segments of the chain. The electric charge of the catalytic domain of rACE2, determined by 70 positively chargeable amino acid residues, 114 negatively chargeable ones, and two positive charges of the Zn2+ atom in the active center exceeds that of hACE2 by one positively and four negatively chargeable groups; however, in 3D conformation, their isoelectric points pI 5.21 coincide. The surface electrostatic potential is similarly distributed on the surface of the two catalytic globules, but it strongly depends on the pH of the extracellular medium: it is almost positive at pH 5.0 but strongly negative at pH 7.4. The pH dependence of the electrostatic component of the free energy discloses that the 3D structure of the two enzymes is maximally stable at pH 6.5. The high similarity in the 3D structure, as well as in the electrostatic and thermodynamic properties, suggests that rabbit can be successfully used as an animal model to study blood pressure regulation and coronavirus infection, and the results can be extrapolated to humans.
Collapse
Affiliation(s)
- Svetlana H. Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Trifon T. Popov
- Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Alexandar M. Zhivkov
- Scientific Research Center, “St. Kliment Ohridski” Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
31
|
Chen CC, Lin YA, Liu KT, Huang CY, Shih CM, Lee YT, Pan JL, Lee AW. Navigating SARS-CoV-2-related immunopathology in Crohn's disease: from molecular mechanisms to therapeutic challenges. Virol J 2024; 21:288. [PMID: 39538233 PMCID: PMC11562311 DOI: 10.1186/s12985-024-02529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) not only posed major health and economic burdens to international societies but also threatens patients with comorbidities and underlying autoimmune disorders, including Crohn's disease (CD) patients. As the vaccinated population is gradually relieved from the stress of the latest omicron variant of SARS-CoV-2 due to competent immune responses, the anxiety of CD patients, especially those on immunosuppressive treatment, has not subsided. Whether the use of immunosuppressants for remission of CD outweighs the potential risk of severe coronavirus disease 2019 (COVID-19) has long been discussed. Thus, for the best benefit of CD patients, our primary goal in this study was to navigate the clinical management of CD during the COVID pandemic. Herein, we summarized COVID-19 outcomes of CD patients treated with immunosuppressive agents from multiple cohort studies and also investigated possible mechanisms of how SARS-CoV-2 impacts the host immunity with special consideration of CD patients. We first looked into the SARS-CoV-2-related immunopathology, including lymphocytopenia, T-cell exhaustion, cytokine storms, and their possible molecular interactions, and then focused on mechanistic actions of gastrointestinal systems, including interruption of tryptophan absorption, development of dysbiosis, and consequent local and systemic inflammation. Given challenges in managing CD, we summarized up-to-date clinical and molecular evidence to help physicians adjust therapeutic strategies to achieve the best clinical outcomes for CD patients.
Collapse
Affiliation(s)
- Chang-Cyuan Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-An Lin
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuan-Ting Liu
- Department of General Medicine, Chang Gung Memorial Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chun-Yao Huang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chun-Ming Shih
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yuan-Ti Lee
- School of Medicine, Chung Shan Medical University, Taichung City, 40201, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
| | - Jun-Liang Pan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
32
|
Li X, Li X, Kang B, Eom Y, Kim DH, Song JS. Effect of carbon black and silicon dioxide nanoparticle exposure on corona receptor ACE2 and TMPRSS2 expression in the ocular surface. Sci Rep 2024; 14:27023. [PMID: 39506016 PMCID: PMC11542009 DOI: 10.1038/s41598-024-78518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has led to a global health crisis, including ocular symptoms, primarily targeting the Angiotensin-Converting Enzyme 2 (ACE2) receptor. PM2.5 air pollution may increase infection risk by altering ACE2 expression. Silicon Dioxide (SiO2) and carbon black (CB), major components of PM2.5 from sands and vehicle emissions, were studied for their effects on ACE2 and Transmembrane Protease Serine 2 (TMPRSS2) expression in corneal and conjunctival cells, and ocular tissues. Human corneal epithelial cells (HCECs) and conjunctival epithelial cells (HCjECs) were exposed to nanoparticles (NPs) for 24 hours, assessing viability via WST-8 assay. TNF-α, IL-6, and IL-1β levels in the medium were measured. An in vivo rat study administered NPs via eye drops, with Rose Bengal staining to evaluate damage. ACE2, TMPRSS2, and Angiotensin II (AngII) protein expressions were quantified by Western blot. ACE2 expression in HCjECs increased with NP exposure, while it decreased in HCECs. CB exposure increased TNF-α, IL-6, and IL-1β levels in HCECs. In vivo, corneal exposure to CB decreased ACE2 expression, whereas conjunctival exposure to SiO2 increased ACE2 expression. These changes suggest that SiO2 exposure may increase the risk of COVID-19 through the ocular surface, while CB exposure may decrease it.
Collapse
Affiliation(s)
- Xuemin Li
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Xiangzhe Li
- Department of Ophthalmology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Boram Kang
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Dong Hyun Kim
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea.
| |
Collapse
|
33
|
Zhang L, Huang T, He H, Xu F, Yang C, Lu L, Tian G, Wang L, Mi J. Unraveling the molecular mechanisms of Ace2-mediated post-COVID-19 cognitive dysfunction through systems genetics approach. Exp Neurol 2024; 381:114921. [PMID: 39142369 DOI: 10.1016/j.expneurol.2024.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The dysregulation of Angiotensin-converting enzyme 2 (ACE2) in central nervous system is believed associates with COVID-19 induced cognitive dysfunction. However, the detailed mechanism remains largely unknown. In this study, we performed a comprehensive system genetics analysis on hippocampal ACE2 based on BXD mice panel. Expression quantitative trait loci (eQTLs) mapping showed that Ace2 was strongly trans-regulated, and the elevation of Ace2 expression level was significantly correlated with impaired cognitive functions. Further Gene co-expression analysis showed that Ace2 may be correlated with the membrane proteins in Calcium signaling pathway. Further, qRT-PCR confirmed that SARS-CoV-2 spike S1 protein upregulated ACE2 expression together with eight membrane proteins in Calcium Signaling pathway. Moreover, such elevation can be attenuated by recombinant ACE2. Collectively, our findings revealed a potential mechanism of Ace2 in cognitive dysfunction, which could be beneficial for COVID-19-induced cognitive dysfunction prevention and potential treatment.
Collapse
Affiliation(s)
- Liyuan Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai 264003, China
| | - Tingting Huang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai 264003, China
| | - Hongjie He
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai 264003, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai 264003, China
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai 264003, China
| | - Lu Lu
- University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai 264003, China
| | - Lei Wang
- Harbin Medical University, Harbin 150086, Heilongjiang Province, China.
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai 264003, China.
| |
Collapse
|
34
|
Oliveira BR, Nehlmeier I, Kempf AM, Venugopalan V, Rehders M, Ceniza MEP, Cavalcanti PADTPV, Hoffmann M, Pöhlmann S, Brix K. Cytoskeletal β-tubulin and cysteine cathepsin L deregulation by SARS-CoV-2 spike protein interaction with the neuronal model cell line SH-SY5Y. Biochimie 2024; 226:49-61. [PMID: 38432290 DOI: 10.1016/j.biochi.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
SARS-CoV-2 mainly infects the respiratory tract but can also target other organs, including the central nervous system. While it was recently shown that cells of the blood-brain-barrier are permissive to SARS-CoV-2 infection in vitro, it remains debated whether neurons can be infected. In this study, we demonstrate that vesicular stomatitis virus particles pseudotyped with the spike protein of SARS-CoV-2 variants WT, Alpha, Delta and Omicron enter the neuronal model cell line SH-SY5Y. Cell biological analyses of the pseudo-virus treated cultures showed marked alterations in microtubules of SH-SY5Y cells. Because the changes in β-tubulin occurred in most cells, but only few were infected, we further asked whether interaction of the cells with spike protein might be sufficient to cause molecular and structural changes. For this, SH-SY5Y cells were incubated with trimeric spike proteins for time intervals of up to 24 h. CellProfiler™-based image analyses revealed changes in the intensities of microtubule staining in spike protein-incubated cells. Furthermore, expression of the spike protein-processing protease cathepsin L was found to be up-regulated by wild type, Alpha and Delta spike protein pseudotypes and cathepsin L was found to be secreted from spike protein-treated cells. We conclude that the mere interaction of the SARS-CoV-2 with neuronal cells can affect cellular architecture and proteolytic capacities. The molecular mechanisms underlying SARS-CoV-2 spike protein induced cytoskeletal changes in neuronal cells remain elusive and require future studies.
Collapse
Affiliation(s)
- Bernardo R Oliveira
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany
| | - Inga Nehlmeier
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany.
| | - Amy Madeleine Kempf
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | | | - Maren Rehders
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| | - Marianne E P Ceniza
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| | | | - Markus Hoffmann
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | - Stefan Pöhlmann
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | - Klaudia Brix
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| |
Collapse
|
35
|
Lu J, Zuo X, Cai A, Xiao F, Xu Z, Wang R, Miao C, Yang C, Zheng X, Wang J, Ding X, Xiong W. Cerebral small vessel injury in mice with damage to ACE2-expressing cerebral vascular endothelial cells and post COVID-19 patients. Alzheimers Dement 2024; 20:7971-7988. [PMID: 39352003 PMCID: PMC11567838 DOI: 10.1002/alz.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION The angiotensin-converting enzyme 2 (ACE2), which is expressed in cerebral vascular endothelial cells (CVECs), has been currently identified as a functional receptor for SARS-CoV-2. METHODS We specifically induced injury to ACE2-expressing CVECs in mice and evaluated the effects of such targeted damage through magnetic resonance imaging (MRI) and cognitive behavioral tests. In parallel, we recruited a single-center cohort of COVID-19 survivors and further assessed their brain microvascular injury based on cognition and emotional scales, cranial MRI scans, and blood proteomic measurements. RESULTS Here, we show an array of pathological and behavioral alterations characteristic of cerebral small vessel disease (CSVD) in mice that targeted damage to ACE2-expressing CVECs, and COVID-19 survivors. These CSVD-like manifestations persist for at least 7 months post-recovery from COVID-19. DISCUSSION Our findings suggest that SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae, underscoring the imperative for heightened clinical vigilance in mitigating or treating SARS-CoV-2-mediated cerebral endothelial injury throughout infection and convalescence. HIGHLIGHTS Cerebral small vessel disease-associated changes were observed after targeted damage to angiotensin-converting enzyme 2-expressing cerebral vascular endothelial cells. SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae. Clinical vigilance is needed in preventing SARS-CoV-2-induced cerebral endothelial damage during infection and recovery.
Collapse
Affiliation(s)
- Jieping Lu
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xin Zuo
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences‐Wuhan National Laboratory for OptoelectronicsWuhanChina
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical UniversityChangzhou Second People's HospitalChangzhou Medical CenterNanjing Medical UniversityChangzhouChina
| | - Fang Xiao
- Department of RadiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhenyu Xu
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Rui Wang
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chenjian Miao
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chen Yang
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xingxing Zheng
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences‐Wuhan National Laboratory for OptoelectronicsWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoling Ding
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Wei Xiong
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
- Anhui Province Key Laboratory of Biomedical Aging ResearchHefeiChina
- CAS Key Laboratory of Brain Function and DiseaseHefeiChina
| |
Collapse
|
36
|
Simioni C, Sanz JM, Gafà R, Tagliatti V, Greco P, Passaro A, Neri LM. Effects of SARS-COV-2 on molecules involved in vascularization and autophagy in placenta tissues. J Mol Histol 2024; 55:753-764. [PMID: 39088116 PMCID: PMC11464539 DOI: 10.1007/s10735-024-10228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
SARS-CoV-2 infection is considered as a multi-organ disease, and several studies highlighted the relevance of the virus infection in the induction of vascular injury and tissue morphological alterations, including placenta. In this study, immunohistochemical analyses were carried out on placenta samples derived from women with COVID-19 infection at delivery (SARS-CoV-2 PCR+) or women healed from a COVID-19 infection (SARS-CoV-2 negative at delivery, SARS-CoV-2 PCR-) or women who gave birth before 2019 (Control). Angiotensin Converting Enzyme 2 (ACE2) receptor, Cluster of differentiation 147 (CD147), endothelial CD34 marker, Vascular Endothelial Growth Factor (VEGF) and total Microtubule-associated protein 1 Light Chain 3B marker (LC3B) were investigated in parallel with SPIKE protein by standard IHC. Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS) was used to examine antigen co-expression in the same specimen. SPIKE protein was detected in villi and decidua from women with ongoing infection, with no significant differences in SPIKE staining between both biopsy sites. VEGF was significantly increased in SARS-CoV-2 PCR + biopsies compared to control and SARS-CoV-2 PCR- samples, and MICSSS method showed the co-localization of SPIKE with VEGF and CD34. The induction of autophagy, as suggested by the LC3B increase in SARS-CoV-2 PCR + biopsies and the co-expression of LC3B with SPIKE protein, may explain one of the different mechanisms by which placenta may react to infection. These data could provide important information on the impact that SARS-CoV-2 may have on the placenta and mother-to-fetus transmission.
Collapse
Affiliation(s)
- C Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - J M Sanz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - R Gafà
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Oncohematology Department, University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Italy
| | - V Tagliatti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Oncohematology Department, University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Italy
| | - P Greco
- Department of Medical Sciences, Obstetric and Gynecological Clinic, University of Ferrara, Ferrara, Italy
| | - A Passaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - L M Neri
- Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy.
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
37
|
Lu T, Zhang C, Li Z, Wei Y, Sadewasser A, Yan Y, Sun L, Li J, Wen Y, Lai S, Chen C, Zhong H, Jiménez MR, Klar R, Schell M, Raith S, Michel S, Ke B, Zheng H, Jaschinski F, Zhang N, Xiao H, Bachert C, Wen W. Human angiotensin-converting enzyme 2-specific antisense oligonucleotides reduce infection with SARS-CoV-2 variants. J Allergy Clin Immunol 2024; 154:1044-1059. [PMID: 38909634 DOI: 10.1016/j.jaci.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/16/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The Spike protein mutation severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to decreased protective effect of various vaccines and mAbs, suggesting that blocking SARS-CoV-2 infection by targeting host factors would make the therapy more resilient against virus mutations. Angiotensin-converting enzyme 2 (ACE2) is the host receptor of SARS-CoV-2 and its variants, as well as many other coronaviruses. Downregulation of ACE2 expression in the respiratory tract may prevent viral infection. Antisense oligonucleotides (ASOs) can be rationally designed on the basis of sequence data, require no delivery system, and can be administered locally. OBJECTIVE We sought to design ASOs that can block SARS-CoV-2 by downregulating ACE2 in human airway. METHODS ACE2-targeting ASOs were designed using a bioinformatic method and screened in cell lines. Human primary nasal epithelial cells cultured at the air-liquid interface and humanized ACE2 mice were used to detect the ACE2 reduction levels and the safety of ASOs. ASO-pretreated nasal epithelial cells and mice were infected and then used to detect the viral infection levels. RESULTS ASOs reduced ACE2 expression on mRNA and protein level in cell lines and in human nasal epithelial cells. Furthermore, they efficiently suppressed virus replication of 3 different SARS-CoV-2 variants in human nasal epithelial cells. In vivo, ASOs also downregulated human ACE2 in humanized ACE2 mice and thereby reduced viral load, histopathologic changes in lungs, and increased survival of mice. CONCLUSIONS ACE2-targeting ASOs can effectively block SARS-CoV-2 infection. Our study provides a new approach for blocking SARS-CoV-2 and other ACE2-targeting virus in high-risk populations.
Collapse
Affiliation(s)
- Tong Lu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Chengcheng Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Zhengqi Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | | | - Yan Yan
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Lin Sun
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Shimin Lai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Changhui Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Hua Zhong
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Richard Klar
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Monika Schell
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Stefanie Raith
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | | | - Nan Zhang
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Claus Bachert
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany; Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Weiping Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Buonfiglio F, Pfeiffer N, Gericke A. Glaucoma and the ocular renin-angiotensin-aldosterone system: Update on molecular signalling and treatment perspectives. Cell Signal 2024; 122:111343. [PMID: 39127136 DOI: 10.1016/j.cellsig.2024.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Glaucoma, a leading cause of blindness worldwide, encompasses a group of pathological conditions affecting the optic nerve and is characterized by progressive retinal ganglion cell loss, cupping of the optic nerve head, and distinct visual field defects. While elevated intraocular pressure (IOP) is the main risk factor for glaucoma, many patients do not have elevated IOP. Consequently, other risk factors, such as ocular blood flow abnormalities and immunological factors, have been implicated in its pathophysiology. Traditional therapeutic strategies primarily aim to reduce IOP, but there is growing interest in developing novel treatment approaches to improve disease management and reduce the high rates of severe visual impairment. In this context, targeting the ocular renin-angiotensin-aldosterone system (RAAS) has been found as a potential curative strategy. The RAAS contributes to glaucoma development through key effectors such as prorenin, angiotensin II, and aldosterone. Recent evidence has highlighted the potential of using RAAS modulators to combat glaucoma, yielding encouraging results. Our study aims to explore the molecular pathways linking the ocular RAAS and glaucoma, summarizing recent advances that elucidate the role of the RAAS in triggering oxidative stress, inflammation, and remodelling in the pathogenesis of glaucoma. Additionally, we will present emerging therapeutic approaches that utilize RAAS modulators and antioxidants to slow the progression of glaucoma.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| | - Norbert Pfeiffer
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| | - Adrian Gericke
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| |
Collapse
|
39
|
Triantafyllis AS, Sfantou D, Karapedi E, Peteinaki K, Kotoulas SC, Saad R, Fountoulakis PN, Tsamakis K, Tsiptsios D, Rallidis L, Tsoporis JN, Varvarousis D, Hamodraka E, Giannakopoulos A, Poulimenos LE, Ikonomidis I. Coronary Implications of COVID-19. Med Princ Pract 2024; 34:1-12. [PMID: 39307131 PMCID: PMC11805551 DOI: 10.1159/000541553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Patients with SARS-CoV-2 infection carry an increased risk of cardiovascular disease encompassing various implications, including acute myocardial injury or infarction, myocarditis, heart failure, and arrhythmias. A growing volume of evidence correlates SARS-CoV-2 infection with myocardial injury, exposing patients to higher mortality risk. SARS-CoV-2 attacks the coronary arterial bed with various mechanisms including thrombosis/rupture of preexisting atherosclerotic plaque, de novo coronary thrombosis, endotheliitis, microvascular dysfunction, vasculitis, vasospasm, and ectasia/aneurysm formation. The angiotensin-converting enzyme 2 receptor plays pivotal role on the cardiovascular homeostasis and the unfolding of COVID-19. The activation of immune system, mediated by proinflammatory cytokines along with the dysregulation of the coagulation system, can pose an insult on the coronary artery, which usually manifests as an acute coronary syndrome (ACS). Electrocardiogram, echocardiography, cardiac biomarkers, and coronary angiography are essential tools to set the diagnosis. Revascularization is the first-line treatment in all patients with ACS and obstructed coronary arteries, whereas in type 2 myocardial infarction treatment of hypoxia, anemia and systemic inflammation are indicated. In patients presenting with coronary vasospasm, nitrates and calcium channel blockers are preferred, while treatment of coronary ectasia/aneurysm mandates the use of antiplatelets/anticoagulants, corticosteroids, immunoglobulin, and biologic agents. It is crucial to untangle the exact mechanisms of coronary involvement in COVID-19 in order to ensure timely diagnosis and appropriate treatment. We have reviewed the current literature and provide a detailed overview of the pathophysiology and clinical spectrum associated with coronary implications of SARS-COV-2 infection. Patients with SARS-CoV-2 infection carry an increased risk of cardiovascular disease encompassing various implications, including acute myocardial injury or infarction, myocarditis, heart failure, and arrhythmias. A growing volume of evidence correlates SARS-CoV-2 infection with myocardial injury, exposing patients to higher mortality risk. SARS-CoV-2 attacks the coronary arterial bed with various mechanisms including thrombosis/rupture of preexisting atherosclerotic plaque, de novo coronary thrombosis, endotheliitis, microvascular dysfunction, vasculitis, vasospasm, and ectasia/aneurysm formation. The angiotensin-converting enzyme 2 receptor plays pivotal role on the cardiovascular homeostasis and the unfolding of COVID-19. The activation of immune system, mediated by proinflammatory cytokines along with the dysregulation of the coagulation system, can pose an insult on the coronary artery, which usually manifests as an acute coronary syndrome (ACS). Electrocardiogram, echocardiography, cardiac biomarkers, and coronary angiography are essential tools to set the diagnosis. Revascularization is the first-line treatment in all patients with ACS and obstructed coronary arteries, whereas in type 2 myocardial infarction treatment of hypoxia, anemia and systemic inflammation are indicated. In patients presenting with coronary vasospasm, nitrates and calcium channel blockers are preferred, while treatment of coronary ectasia/aneurysm mandates the use of antiplatelets/anticoagulants, corticosteroids, immunoglobulin, and biologic agents. It is crucial to untangle the exact mechanisms of coronary involvement in COVID-19 in order to ensure timely diagnosis and appropriate treatment. We have reviewed the current literature and provide a detailed overview of the pathophysiology and clinical spectrum associated with coronary implications of SARS-COV-2 infection.
Collapse
Affiliation(s)
| | - Danai Sfantou
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | - Eleni Karapedi
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | | | | | - Richard Saad
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | | | | | - Dimitrios Tsiptsios
- Department of Neurology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Loukianos Rallidis
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - James N. Tsoporis
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | - Ignatios Ikonomidis
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| |
Collapse
|
40
|
Li J, Kong X, Liu T, Xian M, Wei J. The Role of ACE2 in Neurological Disorders: From Underlying Mechanisms to the Neurological Impact of COVID-19. Int J Mol Sci 2024; 25:9960. [PMID: 39337446 PMCID: PMC11431863 DOI: 10.3390/ijms25189960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has become a hot topic in neuroscience research in recent years, especially in the context of the global COVID-19 pandemic, where its role in neurological diseases has received widespread attention. ACE2, as a multifunctional metalloprotease, not only plays a critical role in the cardiovascular system but also plays an important role in the protection, development, and inflammation regulation of the nervous system. The COVID-19 pandemic further highlights the importance of ACE2 in the nervous system. SARS-CoV-2 enters host cells by binding to ACE2, which may directly or indirectly affect the nervous system, leading to a range of neurological symptoms. This review aims to explore the function of ACE2 in the nervous system as well as its potential impact and therapeutic potential in various neurological diseases, providing a new perspective for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Xiangrui Kong
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| |
Collapse
|
41
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
42
|
Silveira AF, Santos MB, Collange NZ, Hayashi CY, Vilela GHF, Almeida SLSD, Andrade JBCD, Rojas S, Moraes FMD, Veiga VC, Flato UAP, Russo TL, Silva GS. Intracranial compliance in patients with COVID-19: a multicenter observational study. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 39121935 DOI: 10.1055/s-0044-1788669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
BACKGROUND Patients with severe coronavirus disease-19 (COVID-19) may require the use of invasive mechanical ventilation (MV) for prolonged periods. Aggressive MV parameters have been associated with changes in intracranial pressure (ICP) in patients with acute intracranial disorders. Significant ICP elevation could compromise intracranial compliance (ICC) and cerebrovascular hemodynamics (CVH). However, the effects of these parameters in individuals without neurological disorders have not yet been evaluated. OBJECTIVE To evaluate ICC in patients on MV with COVID-19 infection compared to other diagnoses, to better characterize the effects of MV and COVID-19 upon ICC. We also compared between the ICC in patients with COVID-19 who did not require MV and healthy volunteers, to assess the isolated effect of COVID-19 upon ICC. METHODS This was an exploratory, observational study with a convenience sample. The ICC was evaluated with a noninvasive ICP monitoring device. The P2/P1 ratio was calculated by dividing the amplitude of these two points, being defined as "abnormal" when P2 > P1. The statistical analysis was performed using a mixed linear model with random effects to compare the P2/P1 ratio in all four groups on the first monitoring day. RESULTS A convenience sample of 78 subjects (15 MV-COVID-19, 15 MV non-COVID-19, 24 non-MV-COVID-19, and 24 healthy participants) was prospectively enrolled. There was no difference in P2/P1 ratios between MV patients with and without COVID-19, nor between non-MV patients with COVID-19 and healthy volunteers. However, the P2/P1 ratio was higher in COVID-19 patients with MV use than in those without it. CONCLUSION This exploratory analysis suggests that COVID-19 does not impair ICC.
Collapse
Affiliation(s)
- Ana Flávia Silveira
- Universidade Federal de São Carlos, Departamento de Fisioterapia, São Carlos SP, Brazil
| | - Marcella Barreto Santos
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Nelci Zanon Collange
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
- Centro de Neurocirurgia Pediátrica (CENEPE), São Paulo SP, Brazil
| | | | | | | | - João Brainer Clares de Andrade
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
- Centro Universitário São Camilo, São Paulo SP, Brazil
| | - Salómon Rojas
- Beneficência Portuguesa Hospital, Divisão da Unidade de Terapia Intensiva Neurológica, São Paulo SP, Brazil
| | - Fabiano Moulin de Moraes
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Viviane Cordeiro Veiga
- Beneficência Portuguesa Hospital, Divisão da Unidade de Terapia Intensiva Neurológica, São Paulo SP, Brazil
| | - Uri Adrian Prync Flato
- Hospital Samaritano, Américas Serviços Médicos, Unidade de Terapia Intensiva Geral, São Paulo SP, Brazil
| | - Thiago Luiz Russo
- Universidade Federal de São Carlos, Departamento de Fisioterapia, São Carlos SP, Brazil
| | - Gisele Sampaio Silva
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
- Hospital Israelita Albert Einstein, Departamento de Neurologia, São Paulo SP, Brazil
| |
Collapse
|
43
|
Shirazi M, Cianfarini C, Ismail A, Wysocki J, Wang JJ, Ye M, Zhang ZJ, Batlle D. Altered kidney distribution and loss of ACE2 into the urine in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F412-F425. [PMID: 38961845 PMCID: PMC11460339 DOI: 10.1152/ajprenal.00237.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin-angiotensin system (RAS) has been described. Angiotensin-converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of angiotensin II, this study aimed to characterize kidney and urinary ACE2 in a mouse model of AKI. Ischemia-reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 h after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and the presence of ACE2-positive luminal casts in the medulla. In cortical membranes, ACE2 protein and enzymatic activity were both markedly reduced (37 ± 4 vs. 100 ± 6 ACE2/β-actin, P = 0.0004, and 96 ± 14 vs. 152 ± 6 RFU/μg protein/h, P = 0.006). In urine, full-length membrane-bound ACE2 protein (100 kDa) was markedly increased (1,120 ± 405 vs. 100 ± 46 ACE2/µg creatinine, P = 0.04), and casts stained for ACE2 were recovered in the urine sediment. In conclusion, in AKI caused by IRI, there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2-positive material in the medulla and increased urinary excretion of full-length membrane-bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.NEW & NOTEWORTHY This study provides novel insights into the distribution of kidney ACE2 in a model of AKI by IRI showing a striking detachment of apical ACE2 from proximal tubules and its loss in urine and urine sediment. The observed deficiency of kidney ACE2 protein and enzymatic activity in severe AKI suggests that administration of forms of this enzyme may mitigate AKI and that urinary ACE2 may serve as a potential biomarker for tubular injury.
Collapse
Affiliation(s)
- Mina Shirazi
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cosimo Cianfarini
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed Ismail
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jan Wysocki
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jiao-Jing Wang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Minghao Ye
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Zheng Jenny Zhang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Daniel Batlle
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
44
|
Pearson BG, Walker DH, Lea AS, Khalife W, Kislingbury KK, Lick SD, Boor PJ. Early, rapidly progressive vasculopathy in a transplanted heart: A possible complication of COVID-19. Cardiovasc Pathol 2024; 72:107661. [PMID: 38801983 DOI: 10.1016/j.carpath.2024.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
The epidemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has had a significant global impact, especially on immunosuppressed populations such as heart transplant recipients. While SARS-CoV-2 initially infects the respiratory system, cardiovascular complications induced by coronavirus disease 2019 (COVID-19) include cardiac arrest, myocardial infarction, heart failure, myocarditis, arrhythmia, acute myocyte injury, thrombotic events, and cardiogenic shock. Here, we present a case of a 45-year-old African American male who tested positive for COVID-19 infection six months after receiving a heart transplant. The patient was asymptomatic initially, but two weeks later he developed dyspnea, early satiety, and abdominal bloating. The patient was admitted to the hospital for acute renal failure and subsequently diagnosed with moderate acute T cell-mediated allograft rejection (Grade 2R) by endomyocardial biopsy. Three months after testing positive for COVID-19, the patient suffered a sudden cardiac death. At autopsy, the epicardium was diffusely edematous and showed vascular congestion. The coronary arteries showed a striking concentric narrowing of lumens and diffusely thickened arterial walls of all major extramural arteries deemed consistent with a rapidly progressive form of cardiac allograft vasculopathy (CAV). SARS-CoV-2 nucleocapsid protein was localized by immunohistochemistry (IHC) in endothelial cells of venules and capillaries within the epicardium. Our localization of SARS-CoV-2 in coronary vessel endothelial cells by IHC suggests that endothelial cell infection, endotheliitis, and immune-related inflammation may be a primary mechanism of vascular injury. The present case represents an early onset rapidly progressive form of CAV. This case may be the first case of post-transplant arteriopathy occurring in such a short time that includes corresponding autopsy, surgical pathology, and IHC data.
Collapse
Affiliation(s)
- Bryan G Pearson
- John Sealy School of Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA.
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
| | - Alfred S Lea
- Department of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
| | - Wissam Khalife
- Department of Cardiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
| | - Karen K Kislingbury
- Department of Cardiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
| | - Scott D Lick
- Department of Cardiovascular and Thoracic Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
| | - Paul J Boor
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
| |
Collapse
|
45
|
Nunes-Souza V, Alenina N, Qadri F, Mosienko V, Santos RAS, Bader M, Rabelo LA. ACE2 Knockout Mice Are Resistant to High-Fat Diet-Induced Obesity in an Age-Dependent Manner. Int J Mol Sci 2024; 25:9515. [PMID: 39273464 PMCID: PMC11394789 DOI: 10.3390/ijms25179515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) presents pleiotropic actions. It hydrolyzes angiotensin I (AngI) and angiotensin II (AngII) into angiotensin-(1-9) (Ang-(1-9)) and angiotensin-(1-7) (Ang-(1-7)), respectively, as well as participates in tryptophan uptake in the gut and in COVID-19 infection. Our aim was to investigate the metabolic effect of ACE2 deletion in young adults and elderly mice under conditions of high calorie intake. Male C57Bl/6 (WT) and ACE2-deficient (ACE2-/y) mice were analyzed at the age of 6 and 12 months under standard diet (StD) and high-fat diet (HFD). Under StD, ACE2-/y showed lower body weight and fat depots, improved glucose tolerance, enhanced insulin sensitivity, higher adiponectin, and lower leptin levels compared to WT. This difference was even more pronounced after HFD in 6-month-old mice, but, interestingly, it was blunted at the age of 12 months. ACE2-/y presented a decrease in adipocyte diameter and lipolysis, which reflected in the upregulation of lipid metabolism in white adipose tissue through the increased expression of genes involved in lipid regulation. Under HFD, both food intake and total energy expenditure were decreased in 6-month-old ACE2-/y mice, accompanied by an increase in liquid intake, compared to WT mice, fed either StD or HFD. Thus, ACE2-/y mice are less susceptible to HFD-induced obesity in an age-dependent manner, as well as represent an excellent animal model of human lipodystrophy and a tool to investigate new treatments.
Collapse
Affiliation(s)
- Valéria Nunes-Souza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil;
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
| | - Valentina Mosienko
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil;
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 10117 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - Luiza Antas Rabelo
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil;
- Laboratory of Cardiovascular Reactivity, Metabolic Syndrome Center, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57072-900, Brazil
| |
Collapse
|
46
|
Yang G, Khan A, Liang W, Xiong Z, Stegbauer J. Aortic aneurysm: pathophysiology and therapeutic options. MedComm (Beijing) 2024; 5:e703. [PMID: 39247619 PMCID: PMC11380051 DOI: 10.1002/mco2.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Aortic aneurysm (AA) is an aortic disease with a high mortality rate, and other than surgery no effective preventive or therapeutic treatment have been developed. The renin-angiotensin system (RAS) is an important endocrine system that regulates vascular health. The ACE2/Ang-(1-7)/MasR axis can antagonize the adverse effects of the activation of the ACE/Ang II/AT1R axis on vascular dysfunction, atherosclerosis, and the development of aneurysms, thus providing an important therapeutic target for the prevention and treatment of AA. However, products targeting the Ang-(1-7)/MasR pathway still lack clinical validation. This review will outline the epidemiology of AA, including thoracic, abdominal, and thoracoabdominal AA, as well as current diagnostic and treatment strategies. Due to the highest incidence and most extensive research on abdominal AA (AAA), we will focus on AAA to explain the role of the RAS in its development, the protective function of Ang-(1-7)/MasR, and the mechanisms involved. We will also describe the roles of agonists and antagonists, suggest improvements in engineering and drug delivery, and provide evidence for Ang-(1-7)/MasR's clinical potential, discussing risks and solutions for clinical use. This study will enhance our understanding of AA and offer new possibilities and promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Institute of Translational Medicine Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Life Sciences Yuncheng University Yuncheng China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Abbas Khan
- Department of Nutrition and Health Promotion University of Home Economics Lahore Pakistan Lahore Pakistan
| | - Wei Liang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Zibo Xiong
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Johannes Stegbauer
- Department of Nephrology Medical Faculty University Hospital Düsseldorf Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
47
|
Xu W, Langhans SA, Johnson DK, Stauff E, Kandula VVR, Kecskemethy HH, Averill LW, Yue X. Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. Int J Mol Sci 2024; 25:9419. [PMID: 39273366 PMCID: PMC11395405 DOI: 10.3390/ijms25179419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - David K. Johnson
- Computational Chemical Biology Core, Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| |
Collapse
|
48
|
Wang R, Wang R, Zhou S, Liu T, Dang J, Chen Q, Chen J, Wang Z. Ubiquitination of angiotensin-converting enzyme 2 contributes to the development of pulmonary arterial hypertension mediated by neural precursor cell-expressed developmentally down-regulated gene 4-Like. Respir Res 2024; 25:326. [PMID: 39210401 PMCID: PMC11363581 DOI: 10.1186/s12931-024-02953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES In this study, we investigated whether neural precursor cell-expressed developmentally down-regulated gene 4-like (NEDD4L) is the E3 enzyme of angiotensin-converting enzyme 2 (ACE2) and whether NEDD4L degrades ACE2 via ubiquitination, leading to the progression of pulmonary arterial hypertension (PAH). METHODS Bioinformatic analyses were used to explore the E3 ligase that ubiquitinates ACE2. Cultured pulmonary arterial smooth muscle cells (PASMCs) and specimens from patients with PAH were used to investigate the crosstalk between NEDD4L and ACE2 and its ubiquitination in the context of PAH. RESULTS The inhibition of ubiquitination attenuated hypoxia-induced proliferation of PASMCs. The levels of NEDD4L were increased, and those of ACE2 were decreased in lung tissues from patients with PAH and in PASMCs. NEDD4L, the E3 ligase of ACE2, inhibited the expression of ACE2 in PASMCs, possibly through ubiquitination-mediated degradation. PAH was associated with upregulation of NEDD4L expression and downregulation of ACE2 expression. CONCLUSIONS NEDD4L, the E3 ubiquitination enzyme of ACE2, promotes the proliferation of PASMCs, ultimately leading to PAH.
Collapse
Affiliation(s)
- Rui Wang
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Rui Wang
- Department of Orthopedics, Xuzhou Central Hospital, 199 Jiefang South Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, 321 Zhongshan Road, Drum Tower District, Nanjing, Jiangsu, China
| | - Tianya Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Jingjing Dang
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Qianmin Chen
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Jingyu Chen
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
| | - Zhiping Wang
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China.
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
49
|
Olarinoye ZY, Kim CW, Kim JY, Jang S, Kim I. Differential gene expression in the kidneys of SHR and WKY rats after intravenous administration of Akkermansia muciniphila-derived extracellular vesicles. Sci Rep 2024; 14:20056. [PMID: 39209875 PMCID: PMC11362604 DOI: 10.1038/s41598-024-69757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Although Akkermansia muciniphila (Am) plays a beneficial role as a probiotic in the treatment of metabolic syndrome, the mechanisms remain elusive. We tested the hypothesis that Am extracellular vesicles (AmEVs) protect against hypertension through modulation of gene expression in the kidneys of spontaneously hypertensive rats (SHRs). Extracellular vesicles purified from anaerobically cultured Am (1.0 × 108 or 1.0 × 109 particles/kg) or vehicles were injected into the tail veins of Wistar-Kyoto rats (WKYs) and SHRs weekly for 4 weeks. Renal cortical tissues isolated from both rat strains were analyzed by trichrome stain and RT-qPCR. AmEVs protect against the development of hypertension in SHRs without a serious adverse reaction. AmEVs increased the expression of vasocontracting Agt and At1ar as well as vasodilating At2r, Mas1 and Nos2 in the kidneys of both strains. These results indicate that AmEVs have a protective effect against hypertension without a serious adverse reaction. Therefore, it is foreseen that AmEVs may be utilized as a novel therapeutic for the treatment of hypertension.
Collapse
Affiliation(s)
- Zainab Yetunde Olarinoye
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jee Young Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
50
|
Acharya K, Gregory K, Sturrock E. Advances in the structural basis for angiotensin-1 converting enzyme (ACE) inhibitors. Biosci Rep 2024; 44:BSR20240130. [PMID: 39046229 PMCID: PMC11300679 DOI: 10.1042/bsr20240130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024] Open
Abstract
Human somatic angiotensin-converting enzyme (ACE) is a key zinc metallopeptidase that plays a pivotal role in the renin-angiotensin-aldosterone system (RAAS) by regulating blood pressure and electrolyte balance. Inhibition of ACE is a cornerstone in the management of hypertension, cardiovascular diseases, and renal disorders. Recent advances in structural biology techniques have provided invaluable insights into the molecular mechanisms underlying ACE inhibition, facilitating the design and development of more effective therapeutic agents. This review focuses on the latest advancements in elucidating the structural basis for ACE inhibition. High-resolution crystallographic studies of minimally glycosylated individual domains of ACE have revealed intricate molecular details of the ACE catalytic N- and C-domains, and their detailed interactions with clinically relevant and newly designed domain-specific inhibitors. In addition, the recently elucidated structure of the glycosylated form of full-length ACE by cryo-electron microscopy (cryo-EM) has shed light on the mechanism of ACE dimerization and revealed continuous conformational changes which occur prior to ligand binding. In addition to these experimental techniques, computational approaches have also played a pivotal role in elucidating the structural basis for ACE inhibition. Molecular dynamics simulations and computational docking studies have provided atomic details of inhibitor binding kinetics and energetics, facilitating the rational design of novel ACE inhibitors with improved potency and selectivity. Furthermore, computational analysis of the motions observed by cryo-EM allowed the identification of allosteric binding sites on ACE. This affords new opportunities for the development of next-generation allosteric inhibitors with enhanced pharmacological properties. Overall, the insights highlighted in this review could enable the rational design of novel ACE inhibitors with improved efficacy and safety profiles, ultimately leading to better therapeutic outcomes for patients with hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, Republic of South Africa
| |
Collapse
|