1
|
Yu H, Deng T, Liu H. Immunotherapy-induced microsatellite instability status shift in recurrent perihilar cholangiocarcinoma: A case report. Hum Vaccin Immunother 2025; 21:2471226. [PMID: 39996476 PMCID: PMC11864312 DOI: 10.1080/21645515.2025.2471226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
Immunotherapy revolutionized the treatment of biliary tract tumors and tumors with high microsatellite instability (MSI-H). This paper reports a 52-year-old woman with recurrent perihilar cholangiocarcinoma. The tumor was initially microsatellite stable (MSS) and proficient mismatch repair (pMMR) but shifted to MSI-H and deficient mismatch repair (dMMR) after combined immunotherapy. Following laparoscopic radical resection for jaundice, stage IV recurrence was diagnosed. Genetic testing revealed the MSS status. Subsequent treatment with camrelizumab and lenvatinib led to a partial response. Ovarian metastases, removed due to abdominal symptoms, exhibited dMMR and MSI-H. The mismatch in MSI status between the primary tumor and metastases suggests tumor heterogeneity and the influence of spatial or temporal factors. This shift can have important clinical significance since MSI-H is associated with significant responses to immune checkpoint inhibitors. MSI-H should be systematically tested in tumors and metastases to personalize treatments. MSI heterogeneity is not only rare but potentially has implications for treatment personalization and prognosis in patients with cholangiocarcinoma. This case highlights the dynamic changes in tumor characteristics during immunotherapy.
Collapse
Affiliation(s)
- Hailing Yu
- Department of Oncology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Tan Deng
- Department of Oncology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Hongbing Liu
- Department of Oncology, Xiangtan First People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
2
|
Ayers M, Monteiro M, Kulkarni A, Reeser JW, Dykhuizen E, Roychowdhury S, Wendt MK. Growth factor receptor plasticity drives therapeutic persistence of metastatic breast cancer. Cell Death Dis 2025; 16:251. [PMID: 40185706 PMCID: PMC11971261 DOI: 10.1038/s41419-025-07591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Metastatic breast cancer (MBC) remains a therapeutic challenge due to the persistence of minimal residual disease (MRD) and tumor recurrence. Herein we utilize a model of MBC that is sensitive to inhibition of fibroblast growth factor receptor (FGFR), resulting in robust regression of pulmonary lesions upon treatment with the FGFR inhibitor pemigatinib. Assessment of the remaining MRD revealed upregulation of platelet-derived growth factor receptor (PDGFR). Functionally, we demonstrate increased response to PDGF ligand stimulation following pemigatinib treatment. Depletion of PDGFR did not alter tumor growth under control conditions but did delay tumor recurrence following a treatment window of pemigatinib. To overcome this therapeutic hurdle, we found that inhibition of DNA methyltransferase 1 (DNMT1) prevents pemigatinib-induced cellular plasticity. Combined targeting of FGFR and DNMT1 prevented induction of PDGFR, enhanced pulmonary tumor regression, slowed tumor recurrence, and prolonged survival. These findings enhance our understanding of cellular plasticity during states of treatment-induced MRD and suggest that inhibition of DNA methylation could augment current approaches being used to treat MBC.
Collapse
Affiliation(s)
- Mitchell Ayers
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Marvis Monteiro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Aneesha Kulkarni
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Julie W Reeser
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Sameek Roychowdhury
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Xu J, Wang X, Jia Z, Sun G. Effectiveness and safety of angiogenesis inhibitors combined with PD-1/PD-L1 blockades in the first-line treatment of patients with advanced hepatocellular carcinoma: A single-center retrospective study. Medicine (Baltimore) 2025; 104:e41814. [PMID: 40101095 PMCID: PMC11922473 DOI: 10.1097/md.0000000000041814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The combination of immune checkpoint inhibitors targeting anti-programmed cell death-1 (anti-PD-1) or anti-programmed death ligand-1 (anti-PD-L1) with antiangiogenic agents has emerged as a revolutionary therapy for advanced hepatocellular carcinoma (aHCC). Key antiangiogenic medications encompass monoclonal antibodies targeting vascular endothelial growth factor (anti-VEGF mAbs) and multiple kinase inhibitors (MKIs). The aim of this study is to assess the difference of efficacy and safety between 2 combination therapies. This study retrospectively examined the outcomes of 57 patients with aHCC who underwent first-line treatment with a combination of immune checkpoint inhibitors and antiangiogenic therapy at the First Affiliated Hospital of Anhui Medical University, from September 2018 to July 2023. The analysis, conducted using SPSS software, focused on patient outcomes such as tumor response (assessed according to modified Response Evaluation Criteria in Solid Tumors criteria), objective response rate, disease control rate, progression-free survival, overall survival, and safety. Comparisons among different groups were also made. The anti-PD-1/anti-PD-L1-anti-VEGF mAbs group showed a trend of higher partial response rate (37.50% vs 22.45%), objective response rate (37.50% vs 24.49%), disease control rate (62.50% vs 59.18%), and seemed to achieve longer median progression-free survival (14.93 vs 14.90 months) and median overall survival (15.80 vs 11.10 months) without higher grade 3 or higher adverse events comparing to anti-PD-1/anti-PD-L1-MKIs group. Subgroup analysis showed that the anti-PD-1-lenvatinib group achieved longer median progression-free survival (23.97 months), while the anti-PD-1-regorafenib group achieved longer median overall survival (37.97 months). The anti-PD-1/anti-PD-L1 combined with anti-VEGF mAbs was effective and tolerable compared to anti-PD-1/anti-PD-L1-MKIs in aHCC. The addition of lenvatinib or regorafenib may provide promising incremental benefit for patients with aHCC.
Collapse
Affiliation(s)
- Jing Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | | | | | | |
Collapse
|
4
|
Chen J, Wang Q, Wu H, Huang X, Cao C. Therapies targeting triple-negative breast cancer: a perspective on anti-FGFR. Front Oncol 2025; 14:1415820. [PMID: 40135140 PMCID: PMC11932845 DOI: 10.3389/fonc.2024.1415820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/02/2024] [Indexed: 03/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the subtypes with the worst prognosis due to tumour heterogeneity and lack of appropriate treatment. This condition is a consequence of the distinctive tumour microenvironment (TME). The TME is associated with factors such as the promotion of proliferation, angiogenesis, inhibition of apoptosis, suppression of the immune system and drug resistance. Therefore, remodelling the TME is critical for the treatment of TNBC. A key role in the formation of the TME is played by the fibroblast growth factor/fibroblast growth factor receptor(FGF/FGFR) signalling pathway. Thus, the FGFRs may be a potential target for treating TNBC. Over-activated FGFRs promote growth, migration and drug resistance in TNBC by influencing the onset of TME events, tumour angiogenesis and immune rejection. A thorough comprehension of the FGF/FGFR signalling pathway's mechanism of action in the development of TNBC could offer valuable insights for discovering new therapeutic strategies and drug targets. Inhibiting the FGF/FGFR axis could potentially hinder the growth of TNBC and its drug resistance by disrupting crucial biological processes in the TME, such as angiogenesis and immune evasion. This review evaluates the potential of inhibiting the FGF/FGFR axis as a strategy for treating TNBC. It explores the prospects for developing related therapeutic approaches. This study explores the research and application prospects of the FGF/FGFR axis in TNBC. The aim is to provide guidance for further therapeutic research and facilitate the development of innovative approaches targeting TNBC.
Collapse
Affiliation(s)
- Jinhao Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Qianru Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Hongyan Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xiaofei Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Chunyu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
5
|
Baretti M, Shekhar S, Sahai V, Shu D, Howe K, Gunchick V, Assarzadegan N, Kartalia E, Zhu Q, Hallab E, Sheth-Shah A, Kondo A, Azad NS, Yarchoan M. Deep immune profiling of intrahepatic cholangiocarcinoma with CODEX multiplexed imaging. Hepatol Commun 2025; 9:e0632. [PMID: 39969434 PMCID: PMC11841852 DOI: 10.1097/hc9.0000000000000632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) may be genomically subclassified by the presence of potentially actionable molecular aberrations, of which pathogenic alterations in isocitrate dehydrogenase (IDH)1 and fibroblast growth factor receptor (FGFR)2 are the most frequently observed. The impact of these molecular alterations on the tumor immune microenvironment remains incompletely understood. METHODS We performed a high-parameter spatial immune phenotyping of iCCA samples with pathogenic FGFR2 or IDH1 alterations and FGFR2/IDH1 wild-type controls at the single-cell level using CO-Detection by indEXing. RESULTS A total of 24 tumors were examined. Tumors with FGFR2 alterations were characterized by fewer CD8+ T cells and "M2-like" macrophages but higher levels of polymorphonuclear myeloid-derived suppressor cells as compared to FGFR2 wild-type tumors. Spatial relationships between polymorphonuclear myeloid-derived suppressor cells and multiple other cell types in the tumor microenvironment (including tumor cells, CD4+, and CD8+ T cells) were enriched in tumors with FGFR2 alterations. Tumors with IDH1 mutations had a trend toward more fibroblasts and were characterized by a closer proximity of tumor cells to CD4+ T cells, and between macrophages and multiple structural tumor microenvironment components as compared to other subtypes. CONCLUSIONS iCCAs with pathogenic FGFR2 fusions/rearrangements and IDH1 mutations have distinct immunophenotypes. Tailoring immunotherapeutic approaches to specific molecular subsets could improve treatment outcomes across the divergent molecularly defined iCCA subtypes.
Collapse
Affiliation(s)
- Marina Baretti
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Soumya Shekhar
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vaibhav Sahai
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Daniel Shu
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathryn Howe
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Valerie Gunchick
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Naziheh Assarzadegan
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Emma Kartalia
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elsa Hallab
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Aya Kondo
- Enable Medicine, Menlo Park, California, USA
| | - Nilofer S. Azad
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Yu Z, Leng B, You R, Wang C, Diao L, Xu Q, Yin G. Lenvatinib plus immunotherapy versus lenvatinib monotherapy in lenvatinib-insensitive patients with unresectable hepatocellular carcinoma: a retrospective study. Invest New Drugs 2025; 43:93-100. [PMID: 39762642 PMCID: PMC11868197 DOI: 10.1007/s10637-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025]
Abstract
PURPOSE The combination therapy of lenvatinib and immunotherapy as first-line treatment remains controversial in unresectable hepatocellular carcinoma (uHCC). This research aimed to compare the efficacy and safety of lenvatinib monotherapy (L) and combination therapy of lenvatinib and immune checkpoint inhibitor (LI) in lenvatinib-insensitive patients with uHCC. METHODS Two hundred fifty-five uHCC patients were enrolled in this study. Patients were classified into two groups: (1) Lenvatinib monotherapy (L); (2) Combination therapy (LI). Patients who remained stable disease (SD) but did not achieve complete response (CR) or partial response (PR) or progression disease (PD) for at least 3 months after receiving lenvatinib monotherapy were defined as lenvatinib-insensitive. Overall survival (OS) and progression-free survival (PFS), baseline characteristics, and safety were compared between groups. RESULTS The LI group had longer OS (15.9 months vs. 11.9 months, P = 0.001) and PFS (12.6 months vs. 7.3 months, P < 0.001) than the L group. ECOG PS was an independent prognostic factor affecting OS and Up-to-seven was an independent prognostic factor affecting PFS. The frequency of grade ≥ 3 treatment-related adverse events (TRAEs) was not significantly different. CONCLUSIONS Our study demonstrated that the combination therapy (LI) had longer OS and PFS than the lenvatinib monotherapy (L) in lenvatinib-insensitive patients with uHCC.
Collapse
Affiliation(s)
- Zeyu Yu
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bin Leng
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ran You
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chendong Wang
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingfeng Diao
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qingyu Xu
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Guowen Yin
- Interventional Radiology Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
7
|
Zhang G, Yu Q, Chen X, Zhao X, Xu Y, Yang X. Unraveling the complexities of immunotherapy for thymic epithelial tumors via bioinformatics and experimental analyses. Comput Biol Med 2025; 185:109488. [PMID: 39631109 DOI: 10.1016/j.compbiomed.2024.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Thymic epithelial tumors (TETs) are rare neoplasms typically located in the anterior mediastinum. While immune checkpoint inhibitors (ICIs) show promise for advanced or refractory TETs, their clinical application is hindered by heterogeneous responses across TET subtypes, lack of reliable predictive markers, and the risk of immune-related adverse events (irAEs). METHODS We analyzed TCGA, GEO, and GTEx databases to identify differentially expressed genes (DEGs) among three TET subtypes. Comprehensive enrichment analysis determined gene functions and pathways. CIBERSORT analysis revealed subtype-specific immune infiltration profiles. We assessed immune-related genes using immune/stromal scores, TIDE scores, and immune checkpoint gene correlation analysis. Immunohistochemistry was performed to evaluate FGF17 and PD-L1 protein expression levels and their correlation in TET samples. RESULTS Our findings revealed distinctive molecular and immune infiltration patterns across TET subtypes. Pathway analysis showed upregulation of immune-related pathways in type C. CIBERSORT analysis revealed higher fractions of plasma cells and activated CD4 T cells in type C and increased resting dendritic cells in type A or B3. Furthermore, we identified 1,100 DEGs between responders and non-responders to pembrolizumab. FGF17 emerged as a potential predictive marker for immunotherapy response, showing significantly lower expression in type C and a strong negative correlation with PD-L1 expression (P < 0.001). We identified 115 genes potentially linked to irAEs, with CXCL8, IL17A, and CD40LG among the top hub genes in the protein-protein interaction network. CONCLUSIONS This study provides insights into subtype-specific molecular and immune characteristics of TETs, identifies FGF17 as a potential negative biomarker for immunotherapy response (with lower expression potentially indicating better response), and elucidates mechanisms of irAEs. These findings contribute to the development of targeted immunotherapeutic approaches for managing TETs, particularly in predicting response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Gaowen Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China; Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266000, China.
| | - Qian Yu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaotong Chen
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Xitong Zhao
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Yang Xu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xueying Yang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| |
Collapse
|
8
|
Wladis EJ, Rothschild MI, Bohnak CE, Adam AP. New therapies for unresectable or metastatic cutaneous eyelid and orbital melanoma. Orbit 2025; 44:137-143. [PMID: 38796755 DOI: 10.1080/01676830.2024.2351514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
PURPOSE Newer treatment options offer the promise of improved outcomes for metastatic and unresectable melanoma. This investigation was performed to review these modalities for cutaneous eyelid and orbital disease. METHODS A search for articles that were related to this subject was performed in the PubMed database, and the bibliographies of these manuscripts were reviewed to ensure capture of the appropriate literature. Data was abstracted and analyzed. RESULTS Historically, patients who suffer from melanoma of the ocular adnexa have fared poorly. Approaches that employ BRAF and mitogen-associated protein kinase inhibitors, immunotherapy, and novel cellular therapies improve outcomes and survival rates, although the side effect profiles of these agents are problematic. Most of the existing strategies have not explored ocular adnexal disease specifically, and treatment plans are generally adapted from the general cutaneous oncology literature. CONCLUSIONS Thanks to advances in our comprehension of the cellular biology of the disease, the management of unresectable and metastatic melanoma has evolved considerably over the past several years. Newer modalities will likely continue to improve survival and reduce adverse events.
Collapse
Affiliation(s)
- Edward J Wladis
- Department of Ophthalmology, Lions Eye Institute, Albany Medical College, Albany, New York, USA
- Department of Otolaryngology, Albany Medical College, Albany, New York, USA
| | - Michael I Rothschild
- Department of Ophthalmology, Lions Eye Institute, Albany Medical College, Albany, New York, USA
| | - Carisa E Bohnak
- Department of Ophthalmology, Lions Eye Institute, Albany Medical College, Albany, New York, USA
| | - Alejandro P Adam
- Department of Ophthalmology, Lions Eye Institute, Albany Medical College, Albany, New York, USA
- Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
9
|
Guo C, Du W, Chen Y, Xiao W, Sun K, Shen Y, Zhang M, Wu J, Gao S, Yu J, Que R, Xue X, Bai X, Liang T. Transarterial Chemoembolization With or Without Systemic Therapy for Unresectable Hepatocellular Carcinoma: A Retrospective Comparative Study. Cancer Med 2025; 14:e70633. [PMID: 39907261 DOI: 10.1002/cam4.70633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION Standard treatments provide limited benefits for patients with intermediate- or advanced-stage hepatocellular carcinoma (HCC). This retrospective observational study aimed to assess the potential improvements in outcomes associated with systemic therapies in patients receiving transarterial chemoembolization (TACE) for initially unresectable HCC. METHODS Between February 2019 and March 2023, we reviewed patients diagnosed with intermediate-to-advanced HCC who were treated with either TACE or TACE combined with antiangiogenic agents and immune checkpoint inhibitors (combination therapy) as their initial treatment. To address potential confounding biases, patients were further stratified into surgical and non-surgical cohorts, and separate analyses were conducted. The primary endpoints were progression-free survival (PFS) and overall survival (OS), with safety profiles also evaluated. RESULTS Among 279 patients with initially unresectable intermediate or advanced HCC, 156 successfully underwent curative-intent liver resection after preoperative treatments (TACE group, n = 69; combination group, n = 87), while 123 patients continued with non-surgical treatments (TACE group, n = 31; combination group, n = 92). After propensity score matching, 26 matched patient pairs were generated within the non-surgical cohort. The combination group exhibited significantly improved PFS in non-surgical patients compared with the TACE group (9.4 vs. 7.2 months, p = 0.043). Cox proportional hazards analysis further confirmed that combination therapy was associated with improved PFS (hazard ratio = 0.476, 95% confidence interval: 0.257-0.883, p = 0.019). For surgical patients exceeding the up-to-seven criteria, the combination group demonstrated superior median PFS (18.0 vs. 14.6 months, p = 0.03) and OS (not reached vs. 50.1 months, p = 0.049) compared with the TACE group. Adverse events were manageable, with no treatment-related fatalities reported. CONCLUSION Combination therapy with TACE demonstrated enhanced survival benefits for patients with intermediate to advanced HCC, particularly in surgical patients with higher tumor burdens.
Collapse
Affiliation(s)
- Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Weiran Du
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Sun
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shunliang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Risheng Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Sołek JM, Nowicka Z, Fendler W, Sadej R, Romanska H, Braun M. Prognostic value of FGFR2 in ER-positive breast cancer is influenced by the profile of stromal gene expression: an in silico analysis based on TCGA data. Contemp Oncol (Pozn) 2025; 28:341-349. [PMID: 39935756 PMCID: PMC11809570 DOI: 10.5114/wo.2024.147003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Fibroblast growth factor receptor 2 (FGFR2) activation is associated with endocrine therapy resistance in luminal breast cancer (BC) in vitro, but clinical evidence remains inconsistent. Given the role of FGFRs in mediating tumour microenvironment (TME) interactions, the prognostic value of FGFR2 may depend on the stromal component. This study aimed to validate the association between FGFR-related profile of the stroma and FGFR2 prognostic value in oestrogen receptor-positive invasive ductal carcinoma (IDC). Material and methods An in silico gene expression analysis identified 12 stromal factors (FAP, CXCL12, PDGFRA, COL1A1, HSPG2, CCL2, MMP14, S100A4, MMP9, PDGFA, MCAM, IL6) forming an "FGFR-related profile of the stroma". A cohort of 257 ER+ IDC patients from The Cancer Genome Atlas (TCGA) was analysed. Tumours were clustered using k-means based on stromal gene expression, and Cox proportional hazards regression models were used to assess the association between FGFR2 and overall survival (OS). Results Two clusters of ER+ IDC tumours were identified based on the stromal gene expression profile. While both clusters had similar tumour stages and hormone receptor statuses, multivariable analysis adjusted for clinical factors revealed a significant association between FGFR2 expression and cluster assignment. In Cluster I (high expression of stromal genes), high FGFR2 was linked to poor prognosis, whereas in Cluster II (low expression), high FGFR2 indicated favourable prognosis. FGFR1, FGFR3, and FGFR4 showed no significant prognostic value. Conclusions Stromal profiles modulate the prognostic significance of FGFR2 in luminal breast carcinoma, highlighting the importance of TME profiling for biomarker assessment and explaining inconsistencies in FGFR2 studies.
Collapse
Affiliation(s)
- Julia M. Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafal Sadej
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Hanna Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Chen S, Zhao L, Wu Z, Cai H, Wang F, Wu L, Sun H, Guo W. Identification of prognostic tumor microenvironment in patients with advanced hepatocellular carcinoma treated with hepatic arterial infusion chemotherapy combined with lenvatinib and PD-1 inhibitors. Int Immunopharmacol 2025; 144:113662. [PMID: 39580864 DOI: 10.1016/j.intimp.2024.113662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND In advanced hepatocellular carcinoma (HCC), the triple combination therapy of hepatic arterial infusion chemotherapy (HAIC) with lenvatinib and programmed cell death protein-1 (PD-1) inhibitors has shown promise as a front-line treatment. This study aimed to explore the tumor microenvironment (TME) characteristics of the population benefiting most from this treatment. METHODS The study included 44 patients, with 38 ultimately receiving the HAIC + FOLFOX + lenvatinib + PD-1 inhibitor treatment. Tumor response was evaluated using modified RECIST criteria, classifying patients as responders (complete or partial response) or non-responders (stable or progressive disease). Overall survival (OS), progression-free survival (PFS), and adverse events (AEs) were assessed. Additionally, genetic sequencing and RNA analysis were conducted on biopsy samples to identify TME differences between the two groups. RESULTS Among the 38 patients, 22 responded favorably, showing significantly longer median OS (not-reached vs. 8.6 months) and median PFS (15.3 months vs. 2.0 months) compared to non-responders. Common AEs included AST elevation, stomachache, nausea, and hypertension, with limited severe AEs. Genetic analysis revealed no significant differences in DNA features between the groups. However, RNA analysis indicated that responders had a more robust immune status, better drug sensitivity, and increased immune cell infiltration. Notably, higher levels of tumor-infiltrating T lymphocytes were linked to better responses, longer PFS, and OS. CONCLUSION The differences in the initial TME of patients, especially in tumor-infiltrating T lymphocytes, may be potential biomarkers for predicting response and prognosis. This finding provides clues to search for biomarkers for this triple combination therapy in advanced HCC.
Collapse
Affiliation(s)
- Song Chen
- Department of Minimally Invasive Interventional Therapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Lihua Zhao
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu 214000, PR China.
| | - Zhiqiang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Hongjie Cai
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Fan Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Lijia Wu
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu 214000, PR China
| | - Huaibo Sun
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu 214000, PR China
| | - Wenbo Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
12
|
Benderski K, Schneider P, Kordeves P, Fichter M, Schunke J, De Lorenzi F, Durak F, Schrörs B, Akilli Ö, Kiessling F, Bros M, Diken M, Grabbe S, Schattenberg JM, Lammers T, Sofias AM, Kaps L. A hepatocellular carcinoma model with and without parenchymal liver damage that integrates technical and pathophysiological advantages for therapy testing. Pharmacol Res 2025; 211:107560. [PMID: 39730106 DOI: 10.1016/j.phrs.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the most common form of primary liver cancer, with cirrhosis being its strongest risk factor. Interestingly, an increasing number of HCC cases is also observed without cirrhosis. We developed an HCC model via intrasplenic injection of highly tumorigenic HCC cells, which, due to cellular tropism, invade the liver and allow for a controllable disease progression. Specifically, C57BL/6JRj mice were intrasplenically inoculated with Dt81Hepa1-6 HCC cells, with a subgroup pre-treated with CCl4 to induce cirrhosis (C-HCC). At four weeks post-inoculation, mice were sacrificed, and diseased livers were analyzed via histology, flow cytometry, and RT-qPCR to profile the extracellular matrix (ECM), angiogenesis, and immune cells. In addition, tumor-bearing mice were treated with the first-line therapy, AtezoBev, to assess therapeutic responsiveness of the model. Dt81Hepa1-6 cells displayed similar gene expression as human HCC. After intrasplenic injection, all mice developed multifocal disease. C-HCC mice had a significantly higher tumor load than non-cirrhotic HCC mice. Both HCC and C-HCC models displayed extensive ECM formation, increased levels of vascularization, and immune cell infiltration compared to healthy and non-cancerous cirrhotic livers. AtezoBev treatment produced robust antitumor efficacy, validating the model's suitability for therapy testing. In conclusion, we established a rapidly developing and high-yield HCC model through a simple intrasplenic injection, with or without cirrhotic damage. The model overexpressed key human HCC genes and showed high responsiveness to first-line treatment. Our model uniquely combines all the above-mentioned features, promoting its use towards HCC therapy testing.
Collapse
Affiliation(s)
- Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Panayiotis Kordeves
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Feyza Durak
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Özlem Akilli
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Jörn M Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany.
| |
Collapse
|
13
|
Xu Q, Shao D. Leveraging the synergy between anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system cancers. Front Immunol 2024; 15:1487610. [PMID: 39691707 PMCID: PMC11649667 DOI: 10.3389/fimmu.2024.1487610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
The response rates to immunotherapy vary widely depending on the type of cancer and the specific treatment used and can be disappointingly low for many solid tumors. Fortunately, due to their complementary mechanisms of action, immunotherapy and anti-angiogenic therapy have synergistic effects in cancer treatment. By normalizing the tumor vasculature, anti-angiogenic therapy can improve blood flow and oxygenation to facilitate better immune cell infiltration into the tumor and enhance the effectiveness of immunotherapy. It also reduces immunosuppressive factors and enhances immune activation, to create a more favorable environment for immune cells to attack the tumor. Their combination leverages the strengths of both therapies to enhance anti-tumor effects and improve patient outcomes. This review discusses the vasculature-immunity crosstalk in the tumor microenvironment and summarizes the latest advances in combining anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system tumors.
Collapse
Affiliation(s)
| | - Dong Shao
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow
University, Changzhou, Jiangsu, China
| |
Collapse
|
14
|
Fujiwara Y, Kuroda H, Abe T, Kakisaka K, Nakaya I, Ito A, Watanabe T, Yusa K, Nagasawa T, Sato H, Suzuki A, Endo K, Yoshida Y, Oikawa T, Sawara K, Miyasaka A, Matsumoto T. Early Clinical Outcomes of Durvalumab Plus Tremelimumab in Unresectable Hepatocellular Carcinoma: A Real-World Comparison with First-Line or Later-Line Treatment. Drugs Real World Outcomes 2024; 11:701-710. [PMID: 39384684 PMCID: PMC11589085 DOI: 10.1007/s40801-024-00458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Durvalumab plus tremelimumab (Durva/Treme) has recently been approved as a first-line or later-line treatment for patients with unresectable hepatocellular carcinoma (u-HCC) in Japan. We assessed the real-world outcomes of Durva/Treme for u-HCC, with a focus on treatment efficacy and safety. METHODS We retrospectively evaluated 22 patients with u-HCC treated with Durva/Treme at Iwate Medical University during the period from 2023 to 2024, with a comparison of the clinical outcomes between patients who received Durva/Treme as first-line and later-line treatments. We further evaluated changes in the modified albumin-bilirubin (mALBI) grade during treatment. RESULTS There were 10 patients in the first-line group and 12 patients in the later-line treatment group. During the follow-up with a median duration of 7.6 months, the median progression-free survival (first-line versus later-line: 4.7 months versus 2.9 months, p = 0.85), the objective response rate (0.0% versus 16.7%, p = 0.48), the disease control rate (60.0% versus 58.4%, p = 1.00), and the incidence of any adverse event (50.0% versus 75.0%, p = 0.38) were not statistically different between the two groups. The changes in the mALBI scores were not statistically significant (p = 0.75). CONCLUSIONS Durva/Treme may be effective and safe for patients with u-HCC, even in patients who receive Durva/Treme as a later-line treatment.
Collapse
Affiliation(s)
- Yudai Fujiwara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Tamami Abe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Keisuke Kakisaka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Ippeki Nakaya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Asami Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Takuya Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kenji Yusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Tomoaki Nagasawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Hiroki Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Akiko Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kei Endo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Yuichi Yoshida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Takayoshi Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kei Sawara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Akio Miyasaka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| |
Collapse
|
15
|
Zhang Y, Numata K, Imajo K, Uojima H, Funaoka A, Komiyama S, Ogushi K, Chuma M, Irie K, Kokubu S, Yoneda M, Kobayashi T, Hidaka H, Fukushima T, Kobayashi S, Morimoto M, Kagawa T, Hattori N, Watanabe T, Iwase S, Maeda S. Lenvatinib radiofrequency ablation sequential therapy offers survival benefits for patients with unresectable hepatocellular carcinoma at intermediate stage and the liver reserve of Child-Pugh A category: A multicenter study. Hepatol Res 2024; 54:1174-1192. [PMID: 38953838 DOI: 10.1111/hepr.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
AIM This study aims to evaluate the efficacy and safety of lenvatinib radiofrequency ablation (RFA) sequential therapy for certain hepatocellular carcinoma (HCC) patients. METHODS One hundred and nineteen patients with unresectable HCC in the intermediate stage with Child-Pugh A were retrospectively recruited in a multicenter setting. Those in the lenvatinib RFA sequential therapy group received lenvatinib initially, followed by RFA and the retreatment with lenvatinib. The study compared overall survival (OS), progression-free survival (PFS), tumor response, and adverse events (AEs) between patients undergoing sequential therapy and lenvatinib monotherapy. RESULTS After propensity score matching, 25 patients on sequential therapy and 50 on monotherapy were evaluated. Independent factors influencing OS were identified as sequential therapy, modified albumin-bilirubin (mALBI) grade, and relative dose intensity (%) with hazard ratios (HRs) of 0.381 (95% confidence interval [CI], 0.186-0.782), 2.220 (95% CI, 1.410-3.493), and 0.982 (95% CI, 0.966-0.999), respectively. Stratified analysis based on mALBI grades confirmed the independent influence of treatment strategy across all mALBI grades for OS (HR, 0.376; 95% CI, 0.176-0.804). Furthermore, sequential therapy was identified as an independent factor of PFS (HR, 0.382; 95% CI, 0.215-0.678). Sequential therapy significantly outperformed monotherapy on survival benefits (OS: 38.27 vs. 18.96 months for sequential therapy and monotherapy, respectively, p = 0.004; PFS: 13.80 vs. 5.32 months for sequential therapy and monotherapy, respectively, p < 0.001). Sequential therapy was significantly associated with complete response by modified Response Evaluation Criteria in Solid Tumors (odds ratio, 63.089). Ten of 119 patients experienced grade 3 AEs, with no AE beyond grade 3 observed. CONCLUSION Lenvatinib RFA sequential therapy might offer favorable tolerability and potential prognostic improvement compared to lenvatinib monotherapy.
Collapse
Affiliation(s)
- Ying Zhang
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Medical Ultrasound, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
- Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akihiro Funaoka
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Satoshi Komiyama
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Katsuaki Ogushi
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Makoto Chuma
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Kuniyasu Irie
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shigehiro Kokubu
- Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hisashi Hidaka
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Taito Fukushima
- Hepatobiliary and Pancreatic Medical Oncology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Satoshi Kobayashi
- Hepatobiliary and Pancreatic Medical Oncology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Manabu Morimoto
- Hepatobiliary and Pancreatic Medical Oncology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Nobuhiro Hattori
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tsunamasa Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shigeru Iwase
- Department of Gastroenterology, Fujisawa City Hospital, Fujisawa, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
16
|
Han RY, Gan LJ, Lang MR, Ren SH, Liu DM, Li GT, Liu YY, Tian XD, Zhu KW, Sun LY, Chen L, Song TQ. Lenvatinib, sintilimab combined interventional treatment vs bevacizumab, sintilimab combined interventional treatment for intermediate-advanced unresectable hepatocellular carcinoma. World J Gastroenterol 2024; 30:4620-4635. [PMID: 39575400 PMCID: PMC11572639 DOI: 10.3748/wjg.v30.i43.4620] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Bevacizumab and sintilimab combined interventional treatment (BeSiIT) and L envatinib and sintilimab combined interventional treatment (LeSiIT) are two commonly used therapeutic regimens for intermediate-advanced hepatocellular carcinoma (HCC) in clinical practice. AIM To compare the clinical efficacy and safety of BeSiIT and LeSiIT for the treatment of intermediate and advanced HCC. METHODS Patients diagnosed with intermediate-advanced HCC and initially treated with BeSiIT or LeSiIT in the Tianjin Medical University Cancer Institute and Hospital between February 2020 and July 2021 were included. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were overall survival (OS), objective response rate (ORR), disease control rate (DCR), conversion rate, and treatment-related adverse events. RESULTS Total 127 patients met the inclusion criteria and were divided into BeSiIT and LeSiIT groups. Twenty-eight and fifty patients in the BeSiIT and LeSiIT groups, respectively, were assessed after 1:2 propensity score matching. PFS and OS rates were not significantly different between the two groups. No significant variations were noted in ORRs or DCRs according to the Response Evaluation Criteria in Solid Tumors (RECIST), and modified RECIST. BeSiIT group showed a better conversion rate than the LeSiIT group (P = 0.043). Both groups showed manageable toxicity profiles. Multivariate analysis showed that the independent factors associated with PFS were alpha-fetoprotein levels and carcinoembryonic antigen score. CONCLUSION In intermediate-to-advanced HCC, the BeSiIT and LeSiIT groups exhibited acceptable toxicities and comparable PFS, OS, and ORR.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/mortality
- Liver Neoplasms/therapy
- Male
- Middle Aged
- Female
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Bevacizumab/therapeutic use
- Bevacizumab/administration & dosage
- Bevacizumab/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Aged
- Progression-Free Survival
- Quinolines/therapeutic use
- Quinolines/adverse effects
- Quinolines/administration & dosage
- Retrospective Studies
- Phenylurea Compounds/therapeutic use
- Phenylurea Compounds/adverse effects
- Phenylurea Compounds/administration & dosage
- Adult
- Neoplasm Staging
- Treatment Outcome
- Chemoembolization, Therapeutic/methods
- Chemoembolization, Therapeutic/adverse effects
Collapse
Affiliation(s)
- Ru-Yu Han
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Lei-Juan Gan
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Meng-Ran Lang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shao-Hua Ren
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Dong-Ming Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Guang-Tao Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Ya-Yue Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Xin-Di Tian
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Kang-Wei Zhu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Li-Yu Sun
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Lu Chen
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Tian-Qiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| |
Collapse
|
17
|
Lyrarakis G, Liontos M, Anastasopoulou A, Bouros S, Gkoufa A, Diamantopoulos P, Gogas H, Ziogas DC. Immunotherapy after progression to double immunotherapy: pembrolizumab and lenvatinib versus conventional chemotherapy for patients with metastatic melanoma after failure of PD-1/CTLA-4 inhibition. Front Oncol 2024; 14:1420879. [PMID: 39435288 PMCID: PMC11491429 DOI: 10.3389/fonc.2024.1420879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Background Programmed cell death 1 receptor (PD-1) inhibition as monotherapy followed by Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) inhibition in case of progression or as upfront double co-inhibition has drastically improved the survival outcomes of metastatic melanoma. Still, many patients develop primary or acquired resistance to both agents, relapse soon, and survive less. For these patients, the therapeutic options are very limited, and for many years, conventional chemotherapy (CC) was the standard of care. Recently, the phase II LEAP-004 trial supported that pembrolizumab/lenvatinib could potentially overcome anti-PD-1/anti-CTLA-4 immunotherapy refractoriness. Materials and methods In the absence of any prospective comparative study and to evaluate in a real-world context the clinical benefit of re-administering a PD-1 inhibitor (pembrolizumab 200 mg i.v. every 3 weeks, Q3W) with a multi-kinase inhibitor (lenvatinib, but at a reduced dose 10 mg p.o. daily due to its known toxicity) in this frail population of unmet need, we conducted here a retrospective comparison of LEAP-004-proposed combination with CC (carboplatin 4 AUC and dacarbazine 850 mg/m2 i.v. Q3W) in melanoma patients who relapsed to both checkpoint inhibitors, either in combinatorial or in sequential setting, between July 2022 and January 2024. Baseline demographics, disease characteristics, and treatment outcomes (objective response rate (ORR), progression-free survival (PFS), and overall survival (OS)) were recorded. Survival analyses were performed using the Kaplan-Meier method. All patients were also considered for safety analysis. Results A total of 84 patients were included in the effectiveness and safety analysis (pembrolizumab/lenvatinib, n=39 and CC, n=45). The median age was 67 (45-87) years and 64 (34-87) years, and men were 33.3% and 46.7%, respectively. The distribution of their metastatic sites was comparable, including 12.8% and 20% with brain involvement. Most patients had a good PS<2 (69.9% and 56.5%), increased lactate dehydrogenase (LDH) (71.8% and 84.4%), BRAF-wild status (82.1% and 84.8%), and received ≥2 previous systemic therapies (61.5% and 53.3%). The median follow-up was 18 months. The ORR was 23.1% and 11.1% (p<0.0001), the median PFS was 4.8 months and 3.8 months [HR (95%CI), 0.57 (0.36-0.92); p=0.017], and the median OS was 14.2 months and 7.8 months [HR (95%CI), 0.39 (0.22-0.69), p=0.0009] in pembrolizumab/lenvatinib and CC arms, respectively. Grade 3-5 treatment-related adverse events were documented in 48.7% (pembrolizumab/lenvatinib) and 75.6% (CC) of patients (p=0.034), which led to treatment discontinuation in 10.3% and 17.8% of cases, respectively. Conclusions This is the first comparative study in patients with metastatic melanoma refractory to PD-1/CTLA-4 inhibition and showed significantly longer outcomes in cases treated with pembrolizumab/lenvatinib versus CC.
Collapse
Affiliation(s)
- Georgios Lyrarakis
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Michael Liontos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Amalia Anastasopoulou
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Spyridon Bouros
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Aikaterini Gkoufa
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Panagiotis Diamantopoulos
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Dimitrios C. Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| |
Collapse
|
18
|
Rousset P, Nardin C, Maubec E, Heidelberger V, Picard A, Troin L, Gerard E, Kramkimel N, Steff-Naud M, Quéreux G, Gaudy-Marqueste C, Lesage C, Mignard C, Jeudy G, Jouary T, Saint-Jean M, Baroudjian B, Archier E, Mortier L, Lebbe C, Montaudié H. Real-world outcomes of combined lenvatinib and anti-PD-1 in advanced melanoma: the Lenvamel study, a multicenter retrospective study of the French Group of Skin Cancers (Groupe de Cancérologie Cutanée). Oncologist 2024; 29:e1364-e1372. [PMID: 38956747 PMCID: PMC11449033 DOI: 10.1093/oncolo/oyae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/02/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Currently, treatment options for patients with advanced melanoma who experience failed immunotherapy or targeted therapy are lacking. Recent studies suggest the antitumor activity of combined pembrolizumab and lenvatinib in patients with advanced melanoma progressing on immunotherapy. Herein, we report the clinical outcomes of combined lenvatinib and a programmed cell death protein-1 inhibitor (PD-1) in this population. MATERIALS AND METHODS This French multicenter real-world study was conducted between September 2020 and July 2023. The primary endpoint was the objective response rate (ORR) according to the Response Evaluation Criteria in Solid Tumours (version 1.1). Secondary variables were treatment-related adverse events (TRAEs), progression-free survival (PFS), overall survival (OS), and duration of response (DOR). RESULTS Of the 67 patients included (median age, 69 years; median follow-up, 5.0 months), 85% had stage IV-M1c or M1d disease. The overall ORR was 28.4% (95% CI, 18%-41%), including 3 complete (4.5%) and 16 partial (23.9%) responses. Median DOR was 3.1 (interquartile range, 1.3-4.3) months. Median PFS and OS were 3.1 (95% CI, 2.5-3.7) and 9.8 (95% CI, 5.6-13.9) months, respectively. Grades 3-5 TRAEs occurred in 16 (24%) patients; common TRAEs were fatigue (43.3%), nausea/vomiting (26.8%), diarrhea (20.9%), and hypertension (20.9%). No treatment-related deaths occurred. CONCLUSION Our real-world study demonstrates an interesting response rate and acceptable safety profile in a population with poor prognostic factors. Our data support this treatment option for refractory melanoma, as it is not approved by the Food and Drug Administration or European Medicines Agency, and highlight the need for new strategies.
Collapse
Affiliation(s)
- Perrine Rousset
- Dermatology Department, University Hospital of Nice, Nice, France
| | - Charlée Nardin
- Dermatology Department, University Hospital of Besançon, Université de Franche-Comté, Besançon, France
| | - Eve Maubec
- AP-HP, Dermatology Department, Avicenne Hospital, Bobigny, France
| | | | - Alexandra Picard
- Dermatology Department, University Hospital of Nice, Nice, France
| | - Laura Troin
- Dermatology Department, University Hospital of Nice, Nice, France
| | - Emilie Gerard
- Dermatology Department, University Hospital of Bordeaux, Bordeaux, France
| | - Nora Kramkimel
- AP-HP, Dermatology Department, Cochin Hospital, Paris, France
| | - Maud Steff-Naud
- Dermatology Department, CHI Aulnay-Sous-Bois, Aulnay-Sous-Bois, France
| | - Gaëlle Quéreux
- Dermatology Department, University Hospital of Nantes, Nantes, France
| | | | - Candice Lesage
- Dermatology Department, University Hospital of Montpellier, Montpellier, France
| | - Claire Mignard
- Dermatology Department, University Hospital of Rouen, Rouen, France
| | - Géraldine Jeudy
- Dermatology Department, University Hospital of Dijon, Dijon, France
| | - Thomas Jouary
- Dermatology Department, University Hospital of Pau, Pau, France
| | - Mélanie Saint-Jean
- Oncology Department, Institut de Cancérologie de l’Ouest, Saint-Herblain, France
| | - Barouyr Baroudjian
- AP-HP, Oncodermatology Department, Saint-Louis Hospital, Université de Paris, Paris, France
| | - Elodie Archier
- AP-HM, Dermatology Department, Hôpital Saint-Joseph, Marseille, France
| | | | - Céleste Lebbe
- AP-HP, Oncodermatology Department, Saint-Louis Hospital, Université de Paris, Paris, France
| | - Henri Montaudié
- Dermatology Department, University Hospital of Nice, Nice, France
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, Nice, France
| |
Collapse
|
19
|
Huang Z, Chen T, Li W, He W, Liu S, Wu Z, Li B, Yuan Y, Qiu J. Atezolizumab and bevacizumab plus transarterial chemoembolization and hepatic arterial infusion chemotherapy for patients with high tumor burden unresectable hepatocellular carcinoma: A multi-center cohort study. Int Immunopharmacol 2024; 139:112711. [PMID: 39029233 DOI: 10.1016/j.intimp.2024.112711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Though atezolizumab plus bevacizumab (A+B) offer promise for unresectable hepatocellular carcinoma (uHCC) treatment, the response rate remains suboptimal. Our previous studies highlighted the potential of transarterial chemoembolization (TACE) when combined with FOLFOX-based hepatic arterial infusion chemotherapy (HAIC) in HCC treatment. This study aims to evaluate the safety and efficacy of A+B plus TACE-HAIC for high tumor burden uHCC (HTB-uHCC). METHODS This three-center retrospective study involved 82 HTB-uHCC patients administered with TACE-HAIC followed by A+B. We characterized HTB-uHCC patients as those surpassing the up-to-11 criteria, exhibiting VP 3-4, or presenting extrahepatic metastases. The primary outcomes were the objective response rate (ORR) and progression-free survival (PFS). Secondary outcomes encompassed the incidence of treatment-related adverse events (TRAEs) and overall survival (OS). RESULTS Employing the mRECIST criteria, the ORR was 62.2 %, wherein 18 (22.0 %) patients achieved complete response, 33 (40.2 %) demonstrated partial response, 21 (25.6 %) maintained stable disease, and 10 (12.2 %) exhibited disease progression. Impressively, 11 (13.4 %) patients were converted to resectable HCC and underwent curative hepatectomy. The median PFS was 10.1 months (95 % CI, 8.4 to NA), and the median OS was still pending. At the one-year mark, the OS and PFS rates were 92.8 % (95 % CI, 86.1 to 100.0) and 42.9 % (95 % CI, 31.3 to 58.7), respectively. 79 (96.3 %) experienced TRAEs, and 39 (47.6 %) had grade 3-4 TRAEs, though no treatment-related death was recorded. CONCLUSIONS The findings underscore the potential of the A+B and TACE-HAIC combined treatment for HTB-uHCC patients, marking it as a viable therapeutic option, given its potent efficacy and tolerable safety profile.
Collapse
Affiliation(s)
- Zhenkun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tiejun Chen
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Wenbin Li
- Department of Biliopancreatic Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Wei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaoru Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zongfeng Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
20
|
Ghadrdoost Nakhchi B, Kosuru R, Chrzanowska M. Towards Targeting Endothelial Rap1B to Overcome Vascular Immunosuppression in Cancer. Int J Mol Sci 2024; 25:9853. [PMID: 39337337 PMCID: PMC11432579 DOI: 10.3390/ijms25189853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The vascular endothelium, a specialized monolayer of endothelial cells (ECs), is crucial for maintaining vascular homeostasis by controlling the passage of substances and cells. In the tumor microenvironment, Vascular Endothelial Growth Factor A (VEGF-A) drives tumor angiogenesis, leading to endothelial anergy and vascular immunosuppression-a state where ECs resist cytotoxic CD8+ T cell infiltration, hindering immune surveillance. Immunotherapies have shown clinical promise. However, their effectiveness is significantly reduced by tumor EC anergy. Anti-angiogenic treatments aim to normalize tumor vessels and improve immune cell infiltration. Despite their potential, these therapies often cause significant systemic toxicities, necessitating new treatments. The small GTPase Rap1B emerges as a critical regulator of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) signaling in ECs. Our studies using EC-specific Rap1B knockout mice show that the absence of Rap1B impairs tumor growth, alters vessel morphology, and increases CD8+ T cell infiltration and activation. This indicates that Rap1B mediates VEGF-A's immunosuppressive effects, making it a promising target for overcoming vascular immunosuppression in cancer. Rap1B shares structural and functional similarities with RAS oncogenes. We propose that targeting Rap1B could enhance therapies' efficacy while minimizing adverse effects by reversing endothelial anergy. We briefly discuss strategies successfully developed for targeting RAS as a model for developing anti-Rap1 therapies.
Collapse
Affiliation(s)
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
21
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
22
|
Boichuk S, Dunaev P, Galembikova A, Valeeva E. Fibroblast Growth Factor 2 (FGF2) Activates Vascular Endothelial Growth Factor (VEGF) Signaling in Gastrointestinal Stromal Tumors (GIST): An Autocrine Mechanism Contributing to Imatinib Mesylate (IM) Resistance. Cancers (Basel) 2024; 16:3103. [PMID: 39272961 PMCID: PMC11394061 DOI: 10.3390/cancers16173103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 increased the production of VEGF-A by IM-naive and resistant GIST cells. VEGF-A production was also increased in KIT-inhibited GIST, whereas the neutralization of FGF2 by anti-FGF2 mAb attenuated VEGFR signaling. Of note, BGJ 398, pan FGFR inhibitor, effectively and time-dependently inhibited VEGFR signaling in IM-resistant GIST T-1R cells, thereby revealing the regulatory role of the FGFR pathway in VEGFR signaling for this particular GIST cell line. This also resulted in significant synergy between BGJ 398 and VEGFR inhibitors (i.e., sunitinib and regorafenib) by enhancing their pro-apoptotic and anti-proliferative activities. The high potency of the combined use of VEGFR and FGFR inhibitors in IM-resistant GISTs was revealed by the impressive synergy scores observed for regorafenib or sunitinib and BGJ 398. Moreover, FGFR1/2 and VEGFR1/2 were co-localized in IM-resistant GIST T-1R cells, and the direct interaction between the aforementioned RTKs was confirmed by co-immunoprecipitation. In contrast, IM-resistant GIST 430 cells expressed lower basal levels of FGF2 and VEGF-A. Despite the increased expression VEGFR1 and FGFR1/2 in GIST 430 cells, these RTKs were not co-localized and co-immunoprecipitated. Moreover, no synergy between FGFR and VEGFR inhibitors was observed for the IM-resistant GIST 430 cell line. Collectively, the dual targeting of FGFR and VEGFR pathways in IM-resistant GISTs is not limited to the synergistic anti-angiogenic treatment effects. The dual inhibition of FGFR and VEGFR pathways in IM-resistant GISTs potentiates the proapoptotic and anti-proliferative activities of the corresponding RTKi. Mechanistically, the FGF2-induced activation of the FGFR pathway turns on VEGFR signaling via the overproduction of VEGF-A, induces the interaction between FGFR1/2 and VEGFR1, and thereby renders cancer cells highly sensitive to the dual inhibition of the aforementioned RTKs. Thus, our data uncovers the novel mechanism of the cross-talk between the aforementioned RTKs in IM-resistant GISTs lacking secondary KIT mutations and suggests that the dual blockade of FGFR and VEGFR signaling might be an effective treatment strategy for patients with GIST-acquired IM resistance via KIT-independent mechanisms.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
- Department of Radiotherapy and Radiology, Faculty of Surgery, Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
23
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
24
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
25
|
Fan FM, Fleishman JS, Chen J, Chen ZS, Dong HH. New insights into the mechanism of resistance to lenvatinib and strategies for lenvatinib sensitization in hepatocellular carcinoma. Drug Discov Today 2024; 29:104069. [PMID: 38936692 DOI: 10.1016/j.drudis.2024.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Lenvatinib is a multikinase inhibitor that suppresses vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor α (PDGFRα), as well as the proto-oncogenes RET and KIT. Lenvatinib has been approved by the US Food and Drug Administration (FDA) for the first-line treatment of hepatocellular carcinoma (HCC) due to its superior efficacy when compared to sorafenib. Unfortunately, the development of drug resistance to lenvatinib is becoming increasingly common. Thus, there is an urgent need to identify the factors that lead to drug resistance and ways to mitigate it. We summarize the molecular mechanisms that lead to lenvatinib resistance (LR) in HCC, which involve programmed cell death (PCD), translocation processes, and changes in the tumor microenvironment (TME), and provide strategies to reverse resistance.
Collapse
Affiliation(s)
- Fei-Mu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| | - Han-Hua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| |
Collapse
|
26
|
Qin Y, Han S, Yu Y, Qi D, Ran M, Yang M, Liu Y, Li Y, Lu L, Liu Y, Li Y. Lenvatinib in hepatocellular carcinoma: Resistance mechanisms and strategies for improved efficacy. Liver Int 2024; 44:1808-1831. [PMID: 38700443 DOI: 10.1111/liv.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent and destructive causes of cancer-related deaths worldwide, approximately 70% of patients with HCC exhibit advanced disease at diagnosis, limiting the potential for radical treatment. For such patients, lenvatinib, a long-awaited alternative to sorafenib for first-line targeted therapy, has become a key treatment. Unfortunately, despite some progress, the prognosis for advanced HCC remains poor because of drug resistance development. However, the molecular mechanisms underlying lenvatinib resistance and ways to relief drug resistance in HCC are largely unknown and lack of systematic summary; thus, this review not only aims to explore factors contributing to lenvatinib resistance in HCC, but more importantly, summary potential methods to conquer or mitigate the resistance. The results suggest that abnormal activation of pathways, drug transport, epigenetics, tumour microenvironment, cancer stem cells, regulated cell death, epithelial-mesenchymal transition, and other mechanisms are involved in the development of lenvatinib resistance in HCC and subsequent HCC progression. To improve the therapeutic outcomes of lenvatinib, inhibiting acquired resistance, combined therapies, and nano-delivery carriers may be possible approaches.
Collapse
Affiliation(s)
- Yongqing Qin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Shisong Han
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Ding Qi
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Mengnan Ran
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yunyi Li
- Department of Nephrology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| |
Collapse
|
27
|
Chen S, Shuangyan T, Shi F, Cai H, Wu Z, Wang L, Ma P, Zhou Y, Mai Q, Wang F, Lai J, Chen X, Chen H, Guo W. TACE plus lenvatinib and tislelizumab for intermediate-stage hepatocellular carcinoma beyond up-to-11 criteria: a multicenter cohort study. Front Immunol 2024; 15:1430571. [PMID: 39131156 PMCID: PMC11310062 DOI: 10.3389/fimmu.2024.1430571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Background Intermediate-stage (BCLC-B) hepatocellular carcinoma (HCC) beyond the up-to-11 criteria represent a significant therapeutic challenge due to high and heterogeneous tumor burden. This study evaluated the effectiveness and safety of transarterial chemoembolization (TACE) in combination with lenvatinib and tislelizumab for these patients. Methods In this retrospective cohort study, patients with unresectable intermediate-stage HCC beyond the up-to-11 criteria were enrolled and divided into TACE monotherapy (T), TACE combined with lenvatinib (TL), or TACE plus lenvatinib and tislelizumab (TLT) group based on the first-line treatment, respectively. The primary endpoint was overall survival (OS). The secondary outcomes included progression-free survival (PFS), tumor response according to RESIST1.1 and modified RECIST, and adverse events (AEs). Results There were 38, 45, and 66 patients in the T, TL, and TLT groups, respectively. The TLT group exhibited significantly higher ORR and DCR than the other two groups, as assessed by either mRECIST or RECIST 1.1 (all P<0.05). Median PFS and OS were significantly longer in the TLT group compared with the T group (PFS: 8.5 vs. 4.4 months; OS: 31.5 vs. 18.5 months; all P<0.001) and TL group (PFS: 8.5 vs. 5.5 months; OS: 31.5 vs. 20.5 months; all P<0.05). The incidence of TRAEs was slightly higher in the TLT and TL groups than in the T group, while all the toxicities were tolerable. No treatment-related death occurred in all groups. Conclusions TACE combined with lenvatinib and tislelizumab significantly improved the survival benefit compared with TACE monotherapy and TACE plus lenvatinib in patients with intermediate-stage HCC beyond the up-to-11 criteria, with an acceptable safety profile.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/therapy
- Liver Neoplasms/mortality
- Liver Neoplasms/drug therapy
- Quinolines/therapeutic use
- Quinolines/administration & dosage
- Quinolines/adverse effects
- Male
- Female
- Middle Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Chemoembolization, Therapeutic/methods
- Phenylurea Compounds/therapeutic use
- Phenylurea Compounds/administration & dosage
- Phenylurea Compounds/adverse effects
- Retrospective Studies
- Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Adult
- Neoplasm Staging
- Treatment Outcome
Collapse
Affiliation(s)
- Song Chen
- Department of Minimally Invasive Interventional Therapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tang Shuangyan
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng Shi
- Department of Interventional Radiology, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Hongjie Cai
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liguang Wang
- Department of Hepatopancreatic Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Ping Ma
- Department of Oncology, The Twelfth People’s Hospital of Guangzhou, Guangzhou, China
| | - Yuanmin Zhou
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qicong Mai
- Department of Interventional Radiology, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Fan Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaming Lai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Chen
- Department of Interventional Radiology, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Huanwei Chen
- Department of Hepatopancreatic Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Wenbo Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Zhang B, Su L, Lin Y. Efficacy and safety of lenvatinib combined with PD‑1/PD‑L1 inhibitors in the treatment of hepatocellular carcinoma: A meta‑analysis and systematic review. Oncol Lett 2024; 28:312. [PMID: 38803443 PMCID: PMC11129543 DOI: 10.3892/ol.2024.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024] Open
Abstract
A meta-analysis of the clinical survival indicators, adverse reactions and safety of lenvatinib combined with programmed death-1 (PD-1) inhibitors in treating liver cancer was conducted, providing objective and effective evidence for clinical use. The present study is anticipated to guide the clinical application of lenvatinib. In the current meta-analysis, the PubMed, Embase and Cochrane Library databases were searched from inception to September 2023. Randomized controlled trials (RCTs), non-RCTs and single-arm trial studies related to the combined treatment of lenvatinib and PD-1/PD-ligand 1 (L1) inhibitors for hepatocellular carcinoma (HCC) were included, while published and unpublished literature on other study types, literature with incomplete or inadequate information, animal experiments, literature reviews and systematic studies were excluded. Data were processed using STATA 15.1. The pooled results showed that the objective response rate [ORR; odds ratio (OR), 3.36; 95% confidence interval (CI), 2.13-5.30; P<0.001], disease control rate (DCR; OR, 1.62; 95% CI, 1.03-2.57; P=0.038) and partial response (PR; OR, 3.81; 95% CI, 2.17-6.70; P<0.001) of combined lenvatinib and PD-1/PD-L1 inhibitor therapy were significantly higher than those of lenvatinib monotherapy. Additionally, subgroup analysis results showed that the DCR of combination therapy using lenvatinib and nivolumab was significantly higher than that of lenvatinib monotherapy (OR, 2.20; 95% CI; 1.07-4.51; P=0.032). The difference between combination therapy using lenvatinib and camrelizumab, and lenvatinib monotherapy was not significant. However, the complete response, stable disease, progression disease and incidence rate of adverse events between combination therapy and lenvatinib monotherapy were not significantly different. Compared with lenvatinib alone, lenvatinib combined with PD-1/PD-L1 inhibitors significantly improved ORR, mainly PR, and DCR in patients with HCC. At present, lenvatinib is mainly combined with nivolumab to increase the DCR of lenvatinib monotherapy for HCC. In addition, the incidence rate of adverse reactions between combination therapy and lenvatinib monotherapy was not significantly different for HCC.
Collapse
Affiliation(s)
- Baoyan Zhang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Linfeng Su
- Department of Hepatobiliary and Pancreatic Surgery, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yonghua Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
29
|
Huang Z, Chen T, Li W, Qiu J, Liu S, Wu Z, Li B, Yuan Y, He W. PD-L1 inhibitor versus PD-1 inhibitor plus bevacizumab with transvascular intervention in unresectable hepatocellular carcinoma. Clin Exp Med 2024; 24:138. [PMID: 38940944 PMCID: PMC11213731 DOI: 10.1007/s10238-024-01415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Both atezolizumab (a PD-L1 inhibitor) plus bevacizumab (A+B) and sintilimab (a PD-1 inhibitor) plus bevacizumab (S+B) are recommended as the first-line regimen for advanced hepatocellular carcinoma (HCC) in China. Different efficacy between the two regimens combined with transvascular intervention for unresectable HCC (uHCC) remain unknown. We retrospectively analyzed uHCC patients treated in three centers by simultaneous combination of A+B or S+B with transarterial chemoembolization (TACE) and FOLFOX-based hepatic arterial infusion chemotherapy (HAIC). Objective response rate (ORR), progression-free survival (PFS), overall survival (OS) and treatment-related adverse events (TRAEs) were compared. Totally 188 patients were included, with 92 and 96 administered A+B+TACE-HAIC (ABTH) and S+B+TACE-HAIC (SBTH), respectively. ORRs (62.0 vs. 70.8%, respectively; P = 0.257) and disease control rates (88.0 vs. 93.8%, P = 0.267) were similar between groups by the mRECIST criteria. ABTH showed no survival advantage over SBTH, with median PFS times of 11.7 months and 13.0 months, respectively (HR = 0.81, 95% CI, 0.52-1.26, P = 0.35) and similar OS times (HR = 1.19, 95% CI, 0.32-4.39, P = 0.8). No significant differences were observed in grade 3-4 TRAEs between groups. Either PD-L1 or PD-1 inhibitor plus bevacizumab combined with TACE-HAIC have similarly excellent therapeutic efficacy with manageable adverse events, representing promising treatment options for uHCC.
Collapse
Affiliation(s)
- Zhenkun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tiejun Chen
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Wenbin Li
- Department of Biliopancreatic Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaoru Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zongfeng Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
30
|
Lin YS, Li S, Yang X, Guo RP, Huang YH, Bai KH, Weng J, Yun JP. First-line hepatic arterial infusion chemotherapy plus lenvatinib and PD-(L)1 inhibitors versus systemic chemotherapy alone or with PD-(L)1 inhibitors in unresectable intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2024; 150:309. [PMID: 38890157 PMCID: PMC11189327 DOI: 10.1007/s00432-024-05795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE Limited treatment options exist for unresectable intrahepatic cholangiocarcinoma (ICC), with systemic chemotherapy (SC) serving as the primary approach. This study aimed to assess the effectiveness of first-line hepatic arterial infusion chemotherapy (HAIC) in combination with lenvatinib and PD-(L)1 inhibitors (HLP) compared to SC combined with PD-(L)1 inhibitors (SCP) or SC alone in treating unresectable ICC. METHODS Patient with unresectable ICC who underwent first-line treatment with HLP, SCP or SC from January 2016 to December 2022 were retrospectively analyzed. The study evaluated and compared efficacy and safety outcomes across the three treatment groups. RESULTS The study comprised 42, 49, and 50 patients in the HLP, SCP, and SC groups, respectively. Median progression-free survival (PFS) times were 30.0, 10.2, and 6.5 months for HLP, SCP, and SC groups. While the SC group had a median overall survival (OS) time of 21.8 months, the HLP and SCP groups hadn't reached median OS. The HLP group demonstrated significantly superior PFS (p < 0.001) and OS (p = 0.014) compared to the others. Moreover, the HLP group exhibited the highest objective response rate (ORR) at 50.0% and the highest disease control rate (DCR) at 88.1%, surpassing the SC group (ORR, 6.0%; DCR, 52.0%) and SCP group (ORR, 18.4%; DCR, 73.5%) (p < 0.05). Generally, the HLP group reported fewer grades 3-4 adverse events (AEs) compared with others. CONCLUSION In contrast to systemic chemotherapy with or without PD-(L)1 inhibitors, the triple combination therapy incorporating HAIC, lenvatinib, and PD-(L)1 inhibitors showcased favorable survival benefits and manageable adverse events for unresectable ICC.
Collapse
Affiliation(s)
- Yan-Song Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Rong-Ping Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yu-Hua Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Kun-Hao Bai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Department of Endoscopy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jun Weng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Department of Endoscopy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
31
|
Zhang P, Yue L, Leng Q, Chang C, Gan C, Ye T, Cao D. Targeting FGFR for cancer therapy. J Hematol Oncol 2024; 17:39. [PMID: 38831455 PMCID: PMC11149307 DOI: 10.1186/s13045-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QingQing Leng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
32
|
Xiong W, Deng Y. BSG Isoform 2 (ENST00000353555) Is a Better Component Than Total BSG Expression in Generating Prognostic Signature for Overall Survival of Liver Cancer. Cureus 2024; 16:e62287. [PMID: 39006665 PMCID: PMC11245721 DOI: 10.7759/cureus.62287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND The basigin (BSG) gene, also known as CD147, has been implicated in the progression and prognosis of various cancers, including liver cancer. This study aimed to comprehensively evaluate the prognostic value of total BSG expression and its specific transcript variants, ENST00000353555 and ENST00000545507, in a large cohort of patients with primary liver cancer. MATERIALS AND METHODS The prognostic values of total BSG, ENST00000353555, and ENST00000545507 expression in overall survival (OS) and progression-free interval (PFI) of patients with primary liver cancer were assessed using The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. Survival analysis, receiver operating characteristic (ROC) analysis, and validation of an extracellular matrix (ECM)-related prognostic signature were performed. RESULTS In univariate and multivariate analyses, total BSG, ENST00000353555, and ENST00000545507 expression were associated with poor OS in liver cancer patients. ENST00000353555 showed the highest hazard ratio among the three prognostic indicators. ROC analysis revealed that ENST00000353555 had better prognostic performance than total BSG expression. Replacing total BSG with ENST00000353555 in an existing ECM-related prognostic signature marginally increased the area under the curve values for one year from 0.79 to 0.80, and five-year OS from 0.72 to 0.73. ENST00000353555 showed isoform-specific positive correlations with EDNRB, IL10, C10orf54, and VEGFA. CONCLUSIONS ENST00000353555 serves as a better prognostic biomarker than total BSG expression in liver cancer, either as an individual marker or as a component of an ECM-related gene signature. Additionally, ENST00000353555 exhibited isoform-specific positive correlations with several immunosuppressive genes, suggesting a potential role in regulating the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, Chengdu, CHN
| | - Ying Deng
- Cancer Center, Sichuan Provincial People's Hospital, Chengdu, CHN
| |
Collapse
|
33
|
Li S, Zhang Z, Wang Z, Wang K, Sui M, Liu D, Liang K. Lenvatinib‑based treatment regimens in conversion therapy of unresectable hepatocellular carcinoma: A systematic review and meta‑analysis. Oncol Lett 2024; 27:265. [PMID: 38659422 PMCID: PMC11040543 DOI: 10.3892/ol.2024.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy associated with high morbidity and mortality rates. Conversion therapy provides patients with unresectable HCC (uHCC) the opportunity to undergo radical treatment and achieve long-term survival. Despite accumulating evidence regarding the efficacy of conversion therapy, the optimal treatment approach for such therapy remains uncertain. Lenvatinib (LEN) has shown efficacy and tolerable rates of adverse events (AEs) when applied in combination with immune checkpoint inhibitors (ICIs) or locoregional therapy (LRT) over the past decade. Therefore, the present meta-analysis was performed to systematically assess the safety and efficacy of LEN-based treatment regimens in conversion therapies for uHCC. Data on outcomes, including the conversion rate, objective response rate (ORR), disease control rate (DCR) and AE incidence in patients with uHCC, were collected. A systematic literature search was performed using MEDLINE, Embase, Web of Science and Cochrane Library databases, up to the date of September 1, 2023. In total, 16 studies, encompassing a total of 1,650 cases of uHCC, were included in the final meta-analysis. The pooled conversion rates for LEN alone, LEN + ICI, LEN + LRT and LEN + ICI + LRT were calculated to be 0.04 (95% CI, 0.00-0.07; I2=77%), 0.23 (95% CI, 0.16-0.30; I2=66%), 0.14 (95% CI, 0.10-0.18; I2=0%) and 0.35 (95% CI, 0.23-0.47; I2=88%), respectively. The pooled ORRs for LEN alone, LEN + ICI, LEN + LRT and LEN + ICI + LRT were found to be 0.45 (95% CI, 0.23-0.67; I2=96%), 0.49 (95% CI, 0.39-0.60; I2=78%), 0.43 (95% CI, 0.24-0.62; I2=88%) and 0.69 (95% CI, 0.56-0.82; I2=92%), respectively. The pooled DCRs for LEN alone, LEN + ICI, LEN + LRT and LEN + ICI + LRT were observed to be 0.77 (95% CI, 0.73-0.81; I2=23%), 0.82 (95% CI, 0.69-0.95; I2=90%), 0.67 (95% CI, 0.39-0.94; I2=94%) and 0.87 (95% CI, 0.82-0.93; I2=67%), respectively. The pooled grade ≥3 AEs for LEN alone, LEN + ICI, LEN + LRT and LEN + ICI + LRT were 0.25 (95% CI, 0.14-0.36; I2=89%), 0.43 (95% CI, 0.34-0.53; I2=23%), 0.42 (95% CI, 0.19-0.66; I2=81%) and 0.35 (95% CI, 0.17-0.54; I2=94%), respectively. These findings suggested that LEN-based combination strategies may confer efficacy and acceptable tolerability for patients with uHCC. In particular, LEN + ICI, with or without LRT, appears to represent a highly effective conversion regimen, with an acceptable conversion rate and well-characterized safety profile.
Collapse
Affiliation(s)
- Saixin Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
- Beijing Municipal Geriatric Medical Research Center, Beijing 100053, P.R. China
| | - Zeyu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223001, P.R. China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
- Beijing Municipal Geriatric Medical Research Center, Beijing 100053, P.R. China
| | - Kenan Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Minghao Sui
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Dongbin Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Kuo Liang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
- Beijing Municipal Geriatric Medical Research Center, Beijing 100053, P.R. China
| |
Collapse
|
34
|
Fu S, Xu Y, Mao Y, He M, Chen Z, Huang S, Li D, Lv Y, Wu J. Hepatic arterial infusion chemotherapy, lenvatinib plus programmed cell death protein-1 inhibitors: A promising treatment approach for high-burden hepatocellular carcinoma. Cancer Med 2024; 13:e7105. [PMID: 38686567 PMCID: PMC11058683 DOI: 10.1002/cam4.7105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/18/2023] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Hepatic arterial infusion chemotherapy (HAIC) has demonstrated remarkable local therapeutic efficacy in treating patients with large unresectable hepatocellular carcinoma (HCC). Additionally, the combination of lenvatinib and programmed cell death protein-1 (PD-1) inhibitors has demonstrated promising antitumor effects in unresectable HCC. Therefore, we conducted a retrospective analysis to evaluate the efficacy and safety of combining HAIC with lenvatinib and PD-1 inhibitors as a first-line therapeutic approach in high-burden HCC patients. METHODS We conducted a retrospective analysis on patients diagnosed with high-burden HCC who had major portal vein tumor thrombosis (Vp3 and Vp4) or tumor occupancy exceeding 50% of the liver. These patients received a first-line treatment consisting of HAIC with a combination of 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX), along with lenvatinib and PD-1 inhibitors between November 2020 and June 2023. The primary endpoints of this study included progression-free survival (PFS) and overall survival (OS), while the secondary endpoints were objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events (TRAEs). RESULTS Ninety-one patients were enrolled in this study, with a median PFS of 8.8 months (95% confidence interval [CI]: 5.75-11.78) and a median OS of 14.3 months (95% CI: 11.23-17.31). According to RECIST 1.1 criteria, the ORR was 52.7%, and DCR was 95.6%. According to the mRECIST criteria, the ORR was 72.5%, and the DCR was 96.5%. Among all patients, 86 (94.5%) experienced TRAEs, and there were no instances of treatment-related deaths. CONCLUSION The combination of HAIC-FOLFOX with lenvatinib and PD-1 inhibitors as a first-line therapy has exhibited notable therapeutic efficacy and well-tolerated adverse events among patients with high-burden HCC.
Collapse
Affiliation(s)
- Shumin Fu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJixangxiChina
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJixangxiChina
| | - Ye Mao
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJixangxiChina
| | - Mengting He
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJixangxiChina
| | - Zhimeng Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJixangxiChina
| | - Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJixangxiChina
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJixangxiChina
| | - Yaqin Lv
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJixangxiChina
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJixangxiChina
| |
Collapse
|
35
|
Ma Z, Xiao Z, Yin P, Wen K, Wang W, Yan Y, Lin Z, Li Z, Wang H, Zhang J, Mao K. Comparison of survival benefit and safety between surgery following conversion therapy versus surgery alone in patients with surgically resectable hepatocellular carcinoma at CNLC IIb/IIIa stage: a propensity score matching study. Int J Surg 2024; 110:2910-2921. [PMID: 38353702 DOI: 10.1097/js9.0000000000001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/31/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE The objective of this study is to evaluate and compare the survival benefit and safety of surgery following conversion therapy versus surgery alone in patients diagnosed with surgically resectable hepatocellular carcinoma (HCC) at China Liver Cancer Staging (CNLC) IIb/IIIa stage. METHODS A total of 95 patients diagnosed with surgically resectable CNLC IIb/IIIa HCC were retrospectively enrolled in our study from November 2018 to December 2022. Among them, 30 patients underwent conversion therapy followed by hepatectomy, while the remaining 65 received surgery alone. The primary endpoint was recurrence-free survival (RFS). Propensity score matching was employed to minimize bias in the retrospective analysis. RESULTS Compared to the surgery alone group, the conversion therapy group demonstrated a significantly prolonged median RFS (17.1 vs. 7.0 months; P =0.014), a reduced incidence of microvascular invasion (MVI, 23.3 vs. 81.5%; P <0.001), and a comparable rate of achieving Textbook Outcome in Liver Surgery (TOLS, 83.3 vs. 76.9%; P =0.476). Multivariate analysis indicated that conversion therapy was independently associated with improved RFS after hepatectomy (HR=0.511, P =0.027). The same conclusions were obtained after propensity score matching. CONCLUSIONS The findings of our study offer preliminary evidence that preoperative conversion therapy significantly prolongs RFS in patients with surgically resectable HCC at CNLC IIb/IIIa stage. Furthermore, combining conversion therapy and hepatectomy represents a relatively safe treatment strategy.
Collapse
Affiliation(s)
- Zifeng Ma
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Pengfei Yin
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Zijian Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Zonglin Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Haikuo Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| |
Collapse
|
36
|
Kang Y, Li H, Liu Y, Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol 2024; 150:221. [PMID: 38687357 PMCID: PMC11061008 DOI: 10.1007/s00432-024-05714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Vascular endothelial growth factor A (VEGF-A), a highly conserved dimeric glycoprotein, is a key regulatory gene and a marker molecule of angiogenesis. The upregulation of VEGF-A facilitates the process of tumor vascularization, thereby fostering the initiation and progression of malignant neoplasms. Many genes can adjust the angiogenesis of tumors by changing the expression of VEGF-A. In addition, VEGF-A also exhibits immune regulatory properties, which directly or indirectly suppresses the antitumor activity of immune cells. The emergence of VEGF-A-targeted therapy alone or in rational combinations has revolutionized the treatment of various cancers. This review discusses how diverse mechanisms in various tumors regulate VEGF-A expression to promote tumor angiogenesis and the role of VEGF-A in tumor immune microenvironment. The application of drugs targeting VEGF-A in tumor therapy is also summarized including antibody molecule drugs and traditional Chinese medicine.
Collapse
Affiliation(s)
- Yan Kang
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Huiting Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiping Liu
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Guo H, Li X, Mao D, Wang H, Wei L, Qu D, Qin X, Li X, Liu Y, Chen Y. Homologous-magnetic dual-targeted metal-organic framework to improve the Anti-hepatocellular carcinoma efficacy of PD-1 inhibitor. J Nanobiotechnology 2024; 22:206. [PMID: 38658950 PMCID: PMC11044376 DOI: 10.1186/s12951-024-02469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
The insufficient abundance and weak activity of tumour-infiltrating lymphocytes (TILs) are two important reasons for the poor efficacy of PD-1 inhibitors in hepatocellular carcinoma (HCC) treatment. The combined administration of tanshinone IIA (TSA) and astragaloside IV (As) can up-regulate the abundance and activity of TILs by normalising tumour blood vessels and reducing the levels of immunosuppressive factors respectively. For enhancing the efficacy of PD-1 antibody, a magnetic metal-organic framework (MOF) with a homologous tumour cell membrane (Hm) coating (Hm@TSA/As-MOF) is established to co-deliver TSA&As into the HCC microenvironment. Hm@TSA/As-MOF is a spherical nanoparticle and has a high total drug-loading capacity of 16.13 wt%. The Hm coating and magnetic responsiveness of Hm@TSA/As-MOF provide a homologous-magnetic dual-targeting, which enable Hm@TSA/As-MOF to counteract the interference posed by ascites tumour cells and enhance the precision of targeting solid tumours. Hm coating also enable Hm@TSA/As-MOF to evade immune clearance by macrophages. The release of TSA&As from Hm@TSA/As-MOF can be accelerated by HCC microenvironment, thereby up-regulating the abundance and activity of TILs to synergistic PD-1 antibody against HCC. This study presents a nanoplatform to improve the efficacy of PD-1 inhibitors in HCC, providing a novel approach for anti-tumour immunotherapy in clinical practice.
Collapse
Affiliation(s)
- Hong Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Rd, Qixia Qu, Nanjing, Jiangsu, 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Probince Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Xia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Rd, Qixia Qu, Nanjing, Jiangsu, 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Probince Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Rd, Qixia Qu, Nanjing, Jiangsu, 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Probince Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Rd, Qixia Qu, Nanjing, Jiangsu, 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Probince Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Liangyin Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Rd, Qixia Qu, Nanjing, Jiangsu, 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Probince Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Rd, Qixia Qu, Nanjing, Jiangsu, 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Probince Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Xiaoying Qin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Rd, Qixia Qu, Nanjing, Jiangsu, 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Probince Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Rd, Qixia Qu, Nanjing, Jiangsu, 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Probince Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Yuping Liu
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China.
| | - Yan Chen
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Nanjing, Jiangsu, 210028, China.
| |
Collapse
|
38
|
Yu X, Du Z, Zhu P, Liao B. Diagnostic, prognostic, and therapeutic potential of exosomal microRNAs in renal cancer. Pharmacol Rep 2024; 76:273-286. [PMID: 38388810 DOI: 10.1007/s43440-024-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Renal cell carcinoma (RCC) arises from the tubular epithelial cells of the nephron. It has the highest mortality rate among urological cancers. There are no effective therapeutic approaches and no non-invasive biomarkers for diagnosis and follow-up. Thus, suitable novel biomarkers and therapeutic targets are essential for improving RCC diagnosis/prognosis and treatment. Circulating exosomes such as exosomal microRNAs (Exo-miRs) provide non-invasive prognostic/diagnostic biomarkers and valuable therapeutic targets, as they can be easily isolated and quantified and show high sensitivity and specificity. Exosomes secreted by an RCC can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a ''signature'' or ''fingerprint'' of the donor cell. It has been shown that the transportation of renal-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in RCC. The present review highlights the studies reporting tumor microenvironment-derived Exo-miRs with therapeutic potential as well as circulating Exo-miRs as potential diagnostic/prognostic biomarkers in patients with RCC.
Collapse
Affiliation(s)
- Xiaodong Yu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Zhongbo Du
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Pingyu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Bo Liao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
39
|
Wang H, Gao C, Li X, Chen F, Li G. Camptothecin enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. Sci Rep 2024; 14:7140. [PMID: 38532022 PMCID: PMC10966085 DOI: 10.1038/s41598-024-57874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Apatinib has been shown to apply to a variety of solid tumors, including advanced hepatocellular carcinoma. Preclinical and preliminary clinical results confirmed the synergistic antitumor effects of apatinib in combination with anti-programmed death-1 (PD-1) inhibitors. In this study, we investigated camptothecin (CPT) enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. CPT combined with a PD-1 inhibitor enhances the anti-tumor effects of low-dose apatinib in hepatocellular carcinoma which was evaluated in making use of the H22 mouse model (n = 32), which was divided into four groups. Immunohistochemical staining and western blotting were used to detect nuclear factor erythroid 2-related factor 2 (Nrf2) as well as sequestosome 1 (p62), vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), PD-1, and programmed cell death ligand 1 (PD-L1). The results showed that the average size of the tumor of the combination group (Group D) was significantly less than that of the apatinib + PD-1 inhibitor group (Group C). The expression levels of Nrf2, p62, VEGFA, VEGFR2, PD-1, and PD-L1 in the apatinib + PD-1 inhibitor group(Group C) were lower than those in the control group (Group A) (P < 0.05). The expression levels of these genes in the apatinib + PD-1 inhibitor group (Group C) were significantly lower in the combination group (Group D) (P < 0.05). There was no obvious difference in body weight and liver and kidney functions between the four groups of mice. In conclusion, CPT improves the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hankang Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Congcong Gao
- Jinan Center for Disease Control and Prevention, Jinan, Shandong, 250000, People's Republic of China
| | - Xiaodong Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China.
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| | - Guijie Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
40
|
Zhang T, Zhu C, Zhang N, Zhang L, Wang S, Xun Z, Xu Y, Yang X, Lu X, Zhao H. Lenvatinib combined with PD-1 inhibitor plus Gemox chemotherapy versus plus HAIC for advanced biliary tract cancer. Int Immunopharmacol 2024; 129:111642. [PMID: 38325044 DOI: 10.1016/j.intimp.2024.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE To compare the treatment efficacy and safety of lenvatinib and programmed cell death 1 (PD-1) inhibitor combined with oxaliplatin plus gemcitabine (Gemox) chemotherapy or hepatic arterial infusion chemotherapy (HAIC) for patients with advanced biliary tract cancer (BTC). METHOD This study involved 86 patients with advanced BTC receiving PD-1 inhibitor and lenvatinib combined with HAIC (P-L-H group) or Gemox chemothrapy (P-L-G group). Propensity score matching (PSM) (1:1) analysis was used to balance potential bias. The primary endpoints were overall survival (OS) and progression-free survival (PFS), whereas the secondary endpoints were objective response rate (ORR), disease control rate (DCR), and safety. RESULT After PSM, a total of 60 patients were enrolled with 30 in the P-L-G group and 30 in the P-L-H group. The median PFS was significantly longer with P-L-G group (13.7 versus 6.0 months, p < 0.0001) than with the P-L-H group. The median OS was 23.8 months in the P-L-G group versus 11.6 months in the P-L-H group (p < 0.0001). Patients in the P-L-G group exhibited a better ORR (73.3 % vs 30 %, p = 0.002) compared to the P-L-H group. The DCR was the same in both groups, 96.7 %, respectively. The P-L-G group had a higher incidence of grade 3-4 AEs than the P-L-H group. However, there was no significant difference in the any grade or grade 3-4 of AEs between the two groups. CONCLUSION PD-1 inhibitor plus lenvatinib and Gemox are promising first-line regimens for the treatment of advanced BTC in the multicenter retrospective real-world study.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Chengpei Zhu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Department of General Surgery Center, Beijing Youan Hospital, Clinical Center for Liver Cancer, Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Longhao Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shanshan Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yiyao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
41
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
42
|
Cai H, Chen S, Wu Z, Wang F, Tang S, Chen L, Guo W. Atezolizumab Plus Bevacizumab Combined with Transarterial Embolization Plus Hepatic Arterial Infusion Chemotherapy for Unresectable Hepatocellular Carcinoma with a Diameter >8 Cm: A Retrospective Study. J Hepatocell Carcinoma 2024; 11:399-409. [PMID: 38435682 PMCID: PMC10906278 DOI: 10.2147/jhc.s439001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Local in combination with systemic therapy might be an option for patients with advanced unresectable hepatocellular carcinoma (uHCC). This study examined the clinical benefits and adverse events (AEs) of first-line transarterial embolization (TAE) and hepatic arterial infusion chemotherapy (HAIC) combined with atezolizumab (Atezo) and bevacizumab (Bev) in patients with uHCC of a diameter larger than 8 cm. Patients and methods This retrospective study included patients with uHCC of a diameter larger than 8 cm who were treated with first-line Atezo-Bev and TAE+HAIC at the First Affiliated Hospital of Sun Yat-Sen University between September 30, 2019, and September 30, 2022. Progression-free survival (PFS), overall survival (OS), tumor response according to mRECIST, and AEs were analyzed. Multivariable Cox analyses were performed to examine the factors associated with PFS. Results Thirty patients were included. The objective response rate (ORR) was 74.4% (95% confidence interval [CI], 59.3%-89.5%), and the disease control rate (DCR) was 93.3% (95% CI, 85.4%-98.6%). The median follow-up was 11.4 (inter-quartile range [IQR], 5.5-17.9) months. The median PFS was 6.8 (95% CI, 2.6-11.1) months. The 3-, 6-, 9-, and 12-month survival rates were 86.2%, 82.5%, 68.6%, and 60%, respectively. The median OS was not estimated. Extrahepatic metastasis was independently associated with PFS (hazard ratio [HR]=3.468, 95% CI, 1.001-12.023). The most common AEs were fever (46.7%). Grade 4 AEs occurred one time as hematemesis but no 5 AEs were observed. Conclusion Atezo-Bev combined with TAE and HAIC might benefit patients with uHCC of a diameter larger than 8 cm, with manageable AEs.
Collapse
Affiliation(s)
- Hongjie Cai
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, People’s Republic of China
| | - Song Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center and Sun Yat-Sen University State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People’s Republic of China
| | - Zhiqiang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, People’s Republic of China
| | - Fan Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, People’s Republic of China
| | - Shuangyan Tang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, People’s Republic of China
| | - Ludan Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, People’s Republic of China
| | - Wenbo Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, People’s Republic of China
| |
Collapse
|
43
|
You Q, Li R, Yao J, Zhang YC, Sui X, Xiao CC, Zhang JB, Xiao JQ, Chen HT, Li H, Zhang J, Zheng J, Yang Y. Insights into lenvatinib resistance: mechanisms, potential biomarkers, and strategies to enhance sensitivity. Med Oncol 2024; 41:75. [PMID: 38381181 DOI: 10.1007/s12032-023-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024]
Abstract
Lenvatinib is a multitargeted tyrosine kinase inhibitor capable of promoting apoptosis, suppressing angiogenesis, inhibiting tumor cell proliferation, and modulating the immune response. In multiple cancer types, lenvatinib has presented manageable safety and is currently approved as an effective first-line therapy. However, with the gradual increase in lenvatinib application, the inevitable progression of resistance to lenvatinib is becoming more prevalent. A series of recent researches have reported the mechanisms underlying the development of lenvatinib resistance in tumor therapy, which are related to the regulation of cell death or proliferation, histological transformation, metabolism, transport processes, and epigenetics. In this review, we aim to outline recent discoveries achieved in terms of the mechanisms and potential predictive biomarkers of lenvatinib resistance as well as to summarize untapped approaches available for improving the therapeutic efficacy of lenvatinib in patients with various types of cancers.
Collapse
Affiliation(s)
- Qiang You
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying-Cai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU of the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cui-Cui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jie-Bin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia-Qi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hai-Tian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
44
|
Shan KS, Dalal S, Thaw Dar NN, McLish O, Salzberg M, Pico BA. Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. Int J Mol Sci 2024; 25:849. [PMID: 38255923 PMCID: PMC10815772 DOI: 10.3390/ijms25020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (S.D.); (N.N.T.D.); (O.M.); (M.S.)
| | | | | | | | | | | |
Collapse
|
45
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
47
|
Buttell A, Qiu W. The action and resistance mechanisms of Lenvatinib in liver cancer. Mol Carcinog 2023; 62:1918-1934. [PMID: 37671815 PMCID: PMC10840925 DOI: 10.1002/mc.23625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
Lenvatinib is a tyrosine kinase inhibitor that prevents the formation of new blood vessels namely by inhibiting tyrosine kinase enzymes as the name suggests. Specifically, Lenvatinib acts on vascular endothelial growth factor receptors 1-3 (VEGFR1-3), fibroblast growth factor receptors 1-4 (FGFR1-4), platelet-derived growth factor receptor-alpha (PDGFRα), tyrosine-kinase receptor (KIT), and rearranged during transfection receptor (RET). Inhibition of these receptors works to inhibit tumor proliferation. It is through these inhibition mechanisms that Lenvatinib was tested to be noninferior to Sorafenib. However, resistance to Lenvatinib is common, making the positive effects of Lenvatinib on a patient's survival null after resistance is acquired. Therefore, it is crucial to understand mechanisms related to Lenvatinib resistance. This review aims to piece together various mechanisms involved in Lenvatinib resistance and summarizes the research done so far investigating it.
Collapse
Affiliation(s)
- Anna Buttell
- Departments of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Departments of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Wei Qiu
- Departments of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Departments of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| |
Collapse
|
48
|
Zheng X, Shi Y, Tang D, Xiao H, Shang K, Zhou X, Tan G. Near-Infrared-II Nanoparticles for Vascular Normalization Combined with Immune Checkpoint Blockade via Photodynamic Immunotherapy Inhibit Uveal Melanoma Growth and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206932. [PMID: 37939284 PMCID: PMC10724444 DOI: 10.1002/advs.202206932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 09/05/2023] [Indexed: 11/10/2023]
Abstract
Photodynamic therapy (PDT) has been widely employed in tumor treatment due to its effectiveness. However, the tumor hypoxic microenvironment which is caused by abnormal vasculature severely limits the efficacy of PDT. Furthermore, the abnormal vasculature has been implicated in the failure of immunotherapy. In this study, a novel nanoparticle denoted as Combo-NP is introduced, composed of a biodegradable NIR II fluorescent pseudo-conjugate polymer featuring disulfide bonds within its main chain, designated as TPA-BD, and the vascular inhibitor Lenvatinib. Combo-NP exhibits dual functionality by not only inducing cytotoxic reactive oxygen species (ROS) to directly eliminate tumor cells but also eliciting immunogenic cell death (ICD). This ICD response, in turn, initiates a robust cascade of immune reactions, thereby augmenting the generation of cytotoxic T lymphocytes (CTLs). In addition, Combo-NP addresses the issue of tumor hypoxia by normalizing the tumor vasculature. This normalization process enhances the efficacy of PDT while concurrently fostering increased CTLs infiltration within the tumor microenvironment. These synergistic effects synergize to potentiate the photodynamic-immunotherapeutic properties of the nanoparticles. Furthermore, when combined with anti-programmed death-ligand 1 (PD-L1), they showcase notable inhibitory effects on tumor metastasis. The findings in this study introduce an innovative nanomedicine strategy aimed at triggering systemic anti-tumor immune responses for the treatment of Uveal melanoma.
Collapse
Affiliation(s)
- Xiaoqin Zheng
- Department of OphthalmologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Yunyi Shi
- Department of OphthalmologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Kun Shang
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100190P. R. China
| | - Xuezhi Zhou
- Eye Center of Xiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Gang Tan
- Department of OphthalmologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| |
Collapse
|
49
|
Zhang R, Wang J, Du Y, Yu Z, Wang Y, Jiang Y, Wu Y, Le T, Li Z, Zhang G, Lv L, Ma H. CDK5 destabilizes PD-L1 via chaperon-mediated autophagy to control cancer immune surveillance in hepatocellular carcinoma. J Immunother Cancer 2023; 11:e007529. [PMID: 38007240 PMCID: PMC10679996 DOI: 10.1136/jitc-2023-007529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND In the past few years, immunotherapies of hepatocellular carcinoma (HCC) targeting programmed cell death protein 1 (PD-1) and its ligand programmed cell death ligand 1 (PD-L1), have achieved durable clinical benefits. However, only a fraction of HCC patients showed objective clinical response to PD-1/PD-L1 blockade alone. Despite the impact on post-translational modifications of PD-L1 being substantial, its significance in resistance to HCC immunotherapy remains poorly defined. METHODS Cyclin-dependent kinase 5 (CDK5) expression was knocked down in HCC cells, CDK5 and PD-L1 protein levels were examined by Western blot. Coimmunoprecipitation was conducted to evaluate the interaction between proteins. Preclinical HCC mice model was constructed to evaluate the effect of CDK5 inhibitor alone or in combination with PD-1 antibody. Clinical HCC samples were used to elucidate the clinical relevance of CDK5, PD-L1, and PD-L1 T290 phosphorylation in HCC. RESULTS We find that CDK5 deficiency upregulates PD-L1 protein expression in HCC cells and decipher a novel molecular mechanism under which PD-L1 is downregulated by CDK5, that is, CDK5 mediated PD-L1 phosphorylation at T290 promotes its binding with chaperon protein heat-shock cognate protein 70 (HSC70) and degradation through chaperon-mediated autophagy. Notably, treatment of CDK5 inhibitor, PNU112455A, effectively upregulates the tumorous PD-L1 level, promotes the response to anti-PD-1 immunotherapy,and prolongs the survival time of mice bearing HCC tumors. What is more, the T290 phosphorylation status of PD-L1 correlates with the prognosis of HCC. CONCLUSIONS Targeting CDK5 can synergize with PD-1 blockade to suppress HCC growth, which may have clinical benefits. Our study reveals a unique regulation of the degradation of PD-L1 in HCC, and provides an attractive therapeutic target, a potential drug, and a new prognostic marker for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Ruonan Zhang
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Yu Du
- Nourse Centre for Pet Nutrition, Wuhu, Anhui, China
| | - Ze Yu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Yihan Wang
- School of Management, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yixiao Jiang
- Department of General Surgery, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Yixin Wu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Ting Le
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Ziqi Li
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Guoqiang Zhang
- Department of General Surgery, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Lei Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haijie Ma
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
50
|
Yu W, Liu W, Zhang K, Chen S, Wang X. Transarterial interventional therapy combined with tyrosine kinase inhibitors with or without anti-PD-1 antibodies as initial treatment for hepatocellular carcinoma with major portal vein tumor thrombosis: a single-center retrospective study. Cancer Immunol Immunother 2023; 72:3609-3619. [PMID: 37566127 PMCID: PMC10991362 DOI: 10.1007/s00262-023-03511-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Transarterial interventional therapy combined with tyrosine kinase inhibitors (TKIs) and anti-Pd-1 antibodies (triplet regimen) has shown promising results in advanced HCC. However, the clinical utility of the triplet regimen in patients with HCC and major portal vein tumor thrombosis (PVTT) remains unclear. This study compared the efficacy and safety of the triplet regimen versus transarterial interventional therapy combined with TKIs (double regimen) for such patients. Thirty-nine patients treated with the triplet regimen were retrospectively compared with 37 patients treated with the double regimen. The objective response rate (ORR), the response rate of PVTT treatment, and safety were observed; progression-free survival (PFS) and overall survival (OS) were assessed using the Kaplan‒Meier method and log-rank test. Predictors of survival were identified using multivariate analysis. Median OS and median PFS were significantly improved in the Triplet Group compared with the Double Group (482 vs. 310 days; 208 vs. 85 days). The ORR and the response rate of PVTT were significantly higher in the Triplet Group than in the Double Group (59% vs. 35%; 62% vs. 35%). There was no significant difference in the incidence of grade 3/4 adverse events between the two groups (33% vs. 21%). The most frequent grade 3/4 adverse events were thrombocytopenia (10%) in the Triplet Group and hand-foot syndrome (14%) in the Double Group. Multivariable analysis showed that treatment method and PVTT treatment response were significant predictors of OS. The triplet regimen showed superiority over the doublet regimen in improving OS and PFS and had acceptable safety in patients with HCC and major PVTT.
Collapse
Affiliation(s)
- Wenchang Yu
- Department of Interventional Oncology, Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| | - Weifu Liu
- Department of Interventional Oncology, Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Kongzhi Zhang
- Department of Interventional Oncology, Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Shiguang Chen
- Department of Interventional Oncology, Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xiaolong Wang
- Department of Interventional Oncology, Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| |
Collapse
|