1
|
Shi Q, Geng J, Han L, Ji X, Li J, Mu Y, Zhao T, Wang L, Jia H. Engineered Salmonella carrying siRNA-PD-1 shrinks orthotopically implanted bladder cancer in rats. J Drug Target 2025:1-9. [PMID: 40418584 DOI: 10.1080/1061186x.2025.2512619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/29/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND Currently, the application of engineered bacteria in tumour treatment has received increasing attention. It has been proved that Bacillus Calmette-Guerin (BCG) can effectively treat bladder cancer (BC). In addition, immune checkpoint blockade is an effective method for tumour treatment. Programmed cell death protein 1 (PD-1), an important immunosuppressive molecule, binds to programmed death ligand receptor 1 (PD-L1) and inhibits the anti-tumour effects of T cells. METHODS The plasmid encoding siRNA-PD-1 was constructed, and the rat BC in situ model was established. After the treatment, morphological changes in tumour tissue were detected by HE staining, and the apoptotic cells in tumour tissue were detected by TUNEL. The expression of related proteins was detected by Western blotting, and the proportion of CD4+ and CD8+ T cells in the spleen was detected by flow cytometry. RESULTS We found that the engineered Salmonella significantly inhibited the growth and incidence of tumours and increased the apoptosis of tumours. Importantly, engineered Salmonella carrying siRNA-PD-1 enhanced the anti-tumour immune response by inhibiting PD-1 expression and increased the CD8+ T cell infiltration in tumour tissue, while elevating the ratio of CD8+/CD4+ in spleens. CONCLUSION We demonstrated that engineered Salmonella siRNA-PD-1 exerted significant anti-tumour effects on BC.
Collapse
Affiliation(s)
- Qizhong Shi
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Jiaxin Geng
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Lulu Han
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, P.R. China
| | - Xingchan Ji
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Jiaoran Li
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Yonghui Mu
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Tiesuo Zhao
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Lei Wang
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, P.R. China
| | - Huijie Jia
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| |
Collapse
|
2
|
Moadab A, Khorramdelazad H, Javar MTA, Nejad MSM, Mirzaie S, Hatami S, Mahdavi N, Ghaffari S, Yazdian FA. Unmasking a Paradox: Roles of the PD-1/PD-L1 Axis in Alzheimer's Disease-Associated Neuroinflammation. J Neuroimmune Pharmacol 2025; 20:46. [PMID: 40285967 DOI: 10.1007/s11481-025-10206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Alzheimer's disease (AD) represents the most prevalent form of dementia, characterized by progressive cognitive impairment and chronic neuroinflammation. Immune checkpoint inhibitors (ICIs), including anti-programmed cell death (PD)-1 and anti-PD-L1, signify a revolutionary advancement in cancer treatment by preventing T-cell exhaustion; however, their therapeutic application in AD presents a conundrum. Hypothesis: Recent preclinical studies indicate that PD-1 inhibition in AD mouse models induces an interferon-gamma (IFN-γ)-mediated response, leading to increased recruitment of monocyte-derived macrophages into the brain, enhanced clearance of amyloid-beta (Aβ) plaques, and improved cognitive performance. Nonetheless, this therapeutic effect is counterbalanced by the potential for exacerbated neuroinflammation, as PD-1/PD-L1 blockade may potentiate pro-inflammatory T helper (Th)1 and Th17 responses. In this review, we critically discuss the pertinent pro-inflammatory and neuroprotective facets of T cell biology in the pathogenesis of AD, emphasizing the potential for modulation of the PD-1/PD-L1 axis to influence both Aβ clearance and the dynamics of neuroinflammatory processes. In summary, we determine that ICIs are promising tools for reducing AD pathology and improving cognition. However, it is essential to refine treatment protocols and carefully select patients to optimize neuroprotective effects while adequately considering inflammatory risks.
Collapse
Affiliation(s)
- Ali Moadab
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Taha Akbari Javar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Saber Mohammadian Nejad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shahrzad Mirzaie
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sina Hatami
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nima Mahdavi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Ghaffari
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari Yazdian
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
Zang H, Liu T, Wang X, Cheng S, Zhu X, Huang C, Duan L, Zhao X, Guo F, Wang X, Zhang C, Yang F, Gu Y, Hu H, Gao S. PD-1 IR2 promotes tumor evasion via deregulating CD8 + T cell function. J Immunother Cancer 2025; 13:e010529. [PMID: 40050045 PMCID: PMC11887316 DOI: 10.1136/jitc-2024-010529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/22/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The programmed cell death 1 (PD-1) is an immune checkpoint that mediates immune evasion of tumors. Alternative splicing (AS) such as intron retention (IR) plays a crucial role in the immune-related gene processing and its function. However, it is not clear whether PDCD1 encoding PD-1 exists as an IR splicing isoform and what underlying function of such isoform plays in tumor evasion. METHODS An AS isoform of human PDCD1, characterized by the second IR and named PD-1IR2, was identified by reverse transcription-PCR (RT-PCR) and Sanger sequencing. The expression profile of PD1IR2 was assessed by quantitative RT-PCR and flow cytometry, while its function was evaluated through immune cell proliferation, cytokine interleukin 2 secretion, and tumor cell killing assays. PDCD1IR2 CKI mice which specifically conditional knock-in PDCD1IR2 in T cells and humanized peripheral blood mononuclear cells (PBMC)-NOG (NOD.Cg-PrkdcscidIL2rgtm1Sug/JicCrl) mice were utilized to further confirm the physiological function of PD-1IR2 in vivo. RESULTS PD-1IR2 is expressed in a variety of human leukemia cell lines and tumor-infiltrating lymphocytes. PD-1IR2 expression is induced on T cell activation and regulated by the RNA-binding protein hnRNPLL. PD-1IR2 negatively regulates the immune function of CD8+ T cells, indicated by inhibiting T cell proliferation, cytokine production, and tumor cell killing in vitro. PD-1IR2+ CD8+ T cells show impaired antitumor function, which consequently promote tumor evasion in a conditional knock-in mouse model and a PBMC-engrafted humanized NOG mouse model. PD-1IR2 mice exhibit resistance to anti-PD-L1 therapy compared with wild-type mice. CONCLUSIONS PD-1IR2 is a potential immune checkpoint that may mediate potential resistance to immune checkpoint therapy.
Collapse
Affiliation(s)
- Haojing Zang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi, China
| | - Tongfeng Liu
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical College, Guizhou University, Guiyang, Guizhou, China
| | - Xiaodong Wang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuwen Cheng
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaofeng Zhu
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical College, Guizhou University, Guiyang, Guizhou, China
| | - Chang Huang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical College, Guizhou University, Guiyang, Guizhou, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi, China
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Xujie Zhao
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Fang Guo
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
| | - Xuetong Wang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chang Zhang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Department of oncology, The Key Laboratory of Advanced Interdisciplinary Studies, First Affiliated Hospital of Guangzhou Medical University State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Facai Yang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Yinmin Gu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy and Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Gao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Yao J, Cui Z, Zhang F, Li H, Tian L. Biomaterials enhancing localized cancer therapy activated anti-tumor immunity: a review. J Mater Chem B 2024; 13:117-136. [PMID: 39544081 DOI: 10.1039/d4tb01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Localized cancer therapies such as radiotherapy, phototherapy, and chemotherapy are precise cancer treatment strategies aimed at minimizing systemic side effects. However, cancer metastasis remains the primary cause of mortality among cancer patients in clinical settings, and localized cancer treatments have limited efficacy against metastatic cancer. Therefore, researchers are exploring strategies that combine localized therapy with immunotherapy to activate robust anti-tumor immune responses, thereby eradicating metastatic cancer. Biomaterials, as novel materials, exhibit great potential in biomedical applications and have achieved great progress in clinic translation. This review introduces biomaterials and their applications in research focused on enhancing localized cancer treatment activated anti-tumor immunity. Additionally, the current challenges and future directions of biomaterials are also discussed, providing insights and references for related research.
Collapse
Affiliation(s)
- Jipeng Yao
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhencun Cui
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Feifei Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Haidong Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
5
|
Prabhakar PK, Upadhyay TK, Sahu SK. mRNA-based cancer vaccines: A novel approach to melanoma treatment. Adv Immunol 2024; 165:117-162. [PMID: 40449972 DOI: 10.1016/bs.ai.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2025]
Abstract
Malignant melanoma is one of the most aggressive forms of cancer and a leading cause of death from skin tumors. With the rising incidence of melanoma diagnoses, there is an urgent need to develop effective treatments. Among the most modern approaches are cancer vaccines, which aim to enhance cell-mediated immunity. Recently, mRNA-based cancer vaccines have gained significant attention due to their rapid production, low manufacturing costs, and ability to induce both humoral and cellular immune responses. These vaccines hold great potential in melanoma treatment, yet their application faces several challenges, including mRNA stabilization, delivery methods, and tumor heterogeneity. The recent success of mRNA vaccines in combating COVID-19 has renewed interest in their potential for cancer immunotherapy. In particular, mRNA cancer vaccines offer high specificity and better efficacy compared to traditional treatments. They can target tumor-specific neoantigens, prompting a robust immune response. This chapter reviews the mechanism of action of mRNA vaccines, advancements in adjuvant identification, and innovations in delivery systems such as lipid nanoparticles. It also discusses ongoing clinical trials evaluating the efficacy of mRNA-based vaccines in melanoma, highlighting promising early-phase results. Despite their potential, the development of mRNA cancer vaccines faces significant obstacles. Tumor heterogeneity, immunosuppressive tumor microenvironments, and practical issues like vaccine administration and clinical evaluation methods are major barriers to success. By addressing these challenges and advancing innovations, mRNA cancer vaccines hold promise for transforming melanoma treatment. A careful balance between the opportunities and challenges will be key to unlocking the full potential of mRNA vaccines in cancer immunotherapy.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, Nagaland, India.
| | - Tarun Kumar Upadhyay
- Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Song D, Hou S, Ma N, Yan B, Gao J. Efficacy and safety of PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors in the treatment of advanced colorectal cancer: a systematic review and meta-analysis. Front Immunol 2024; 15:1485303. [PMID: 39555073 PMCID: PMC11563947 DOI: 10.3389/fimmu.2024.1485303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Background The efficacy and safety of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors in the treatment of advanced colorectal cancer is controversial. This meta-analysis aimed to evaluate the efficacy and safety of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors for advanced colorectal cancer. Methods PubMed, Embase, the Cochrane Library, and Web of Science databases were systematically searched for relevant studies. Outcomes including median progression-free survival (mPFS), median overall survival (mOS), overall response rate (ORR), disease control rate (DCR), treatment-related adverse events (TRAEs) and ≥grade 3 TRAEs were extracted for further analysis. The risk of bias was assessed by subgroup analysis. Results 12 articles with 566 patients were identified and subjected to meta-analysis. With regard to survival analysis, the pooled mOS and mPFS were 6.66 months (95%CI 4.85-9.16) and 2.92 months (95%CI 2.23-3.83), respectively. In terms of tumor response, the pooled ORR and DCR were 21% (95%CI 6%-41%) and 49% (95%CI 27%-71%), respectively. The pooled AEs rate and ≥ grade 3 AEs rate were 94% (95%CI 86%-99%) and 44% (95%CI 30%-58%). Conclusion PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors have shown promising clinical responses in the treatment of colorectal cancer (CRC). Although the incidence of adverse reactions is high, they are generally tolerable. Systematic review registration https://inplasy.com/, identifier INPLASY202480030.
Collapse
Affiliation(s)
- Dandan Song
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shufu Hou
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bing Yan
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Gao
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Xu Z, Wu Y, Hu J, Mei Z, Zhao Y, Yang K, Shi Y, Xu X. Recent advances in nanoadjuvant-triggered STING activation for enhanced cancer immunotherapy. Heliyon 2024; 10:e38900. [PMID: 39640775 PMCID: PMC11620084 DOI: 10.1016/j.heliyon.2024.e38900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
The development of effective cancer treatments is a popular in contemporary medical research. Immunotherapy, the fourth most common cancer treatment method, relies on activating autoimmune function to eradicate tumors and exhibits advantages such as a good curative effect and few side effects. In recent years, tumor vaccines that activate the stimulator of interferon genes (STING) pathway are being actively researched in the field of immunotherapy; however, their application is still limited because of the rapid clearance rate of tumor-related lymph nodes and low efficiency of antigen presentation. The rise of nanomedicine has provided new opportunities for solving these problems. By preparing materials with adjuvant effects nanoparticles, the small size of nanoparticles can be exploited to enable the entry of vaccines into tumor-related lymph nodes to accurately deliver STING agonists and activate the immune response. Based on this, this paper reviews various types of nano-adjuvants based on metals, platinum chemotherapy drugs, camptothecin derivatives, deoxyribonucleic acid, etc. and highlights the transformation prospects of these nano-adjuvants in tumor vaccines to provide a reference for promoting the development of nano-medicine and tumor vaccinology.
Collapse
Affiliation(s)
- Zicong Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yihong Wu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Junjie Hu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Zhaozhao Mei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yutong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, PR China
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| |
Collapse
|
8
|
Cai C, Zhang X, Sun X, Wang H, Chen E, Chen L, Gu B, Wang J, Huang X, Lao W, Wang X, Chen M, Ding S, Du J, Song Z. Node-sparing modified short-course Radiotherapy Combined with CAPOX and Tislelizumab for locally Advanced MSS of Middle and low rectal Cancer (mRCAT): an open-label, single-arm, prospective, multicentre clinical trial. BMC Cancer 2024; 24:1247. [PMID: 39385104 PMCID: PMC11463141 DOI: 10.1186/s12885-024-12994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy followed by total mesorectal excision is a standard treatment for locally advanced rectal cancer. Mismatch repair-deficient locally advanced rectal cancer (LARC) was highly sensitive to PD-1 blockade. However, most rectal cancers are microsatellite stable (MSS) or mismatch repair-proficient (pMMR) subtypes for which PD-1 blockade is ineffective. Radiation can trigger the activation of CD8 + T cells, further enhancing the responses of MSS/pMMR rectal cancer to PD-1 blockade. Radioimmunotherapy offers a promising therapeutic modality for rectal cancer. Progenitor T exhausted cells are abundant in tumour-draining lymph nodes and play an important role in immunotherapy. Conventional irradiation fields include the mesorectum and regional lymph nodes, which might cause considerable damage to T lymphocytes and radiation-induced fibrosis, ultimately leading to a poor response to immunotherapy and rectal fibrosis. This study investigated whether node-sparing modified short-course irradiation combined with chemotherapy and PD-1 blockade could be effective in patients with MSS/ pMMR LARC. METHODS This was a open-label, single-arm, multicentre, prospective phase II trial. 32 LARC patients with MSS/pMMR will receive node-sparing modified short-course radiotherapy (the irradiated planned target volume only included the primary tumour bed but not the tumour-draining lymph nodes, 25 Gy/5f, 5 Gy/f) followed by CAPOX and tislelizumab. CAPOX and tislelizumab will be started two days after the completion of radiotherapy: oxaliplatin 130 mg/m2 intravenous infusion, day 1; capecitabine 1000 mg/m2 oral administration, days 1-14; and tislelizumab 200 mg, intravenous infusion, day 1. There will be four 21-day cycles. TME will be performed at weeks 14-15. We will collect blood, tumour, and lymphoid specimens; perform flow cytometry and in situ multiplexed immunofluorescence detection; and analyse the changes in various lymphocyte subsets. The primary endpoint is the rate of pathological complete response. The organ preservation rate, tumour regression grade, local recurrence rate, disease-free survival, overall survival, adverse effects, and quality of life will also be analysed. DISCUSSION In our research, node-sparing modified radiotherapy combined with immunotherapy probably increased the responsiveness of immunotherapy for MSS/pMMR rectal cancer patients, reduced the occurrence of postoperative rectal fibrosis, and improved survival and quality of life. This is the first clinical trial to utilize a node-sparing radiation strategy combined with chemotherapy and PD-1 blockade in the neoadjuvant treatment of rectal cancer, which may result in a breakthrough in the treatment of MSS/pMMR rectal cancer. TRIAL REGISTRATION This study was registered at www. CLINICALTRIALS gov . TRIAL REGISTRATION NUMBER NCT05972655. Date of registration: 31 July 2023.
Collapse
Affiliation(s)
- Cheng Cai
- Department of Colorectal and Anal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Zhang
- Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaonan Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huogang Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benxing Gu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Wang
- Department of Colorectal and Anal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xuefeng Huang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weifeng Lao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaowei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shubo Ding
- Department of Radiology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinlin Du
- Department of Colorectal and Anal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Phulari RGS, Solanki B. Immune checkpoint inhibitors: Utilizing patient's own immunity to treat oral cancer. J Oral Maxillofac Pathol 2024; 28:641-650. [PMID: 39949682 PMCID: PMC11819625 DOI: 10.4103/jomfp.jomfp_327_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 02/16/2025] Open
Abstract
Head and Neck squamous cell carcinoma is an immunosuppressive state. HNSCC evades immune responses through multiple resistance mechanisms. Because of better understanding of interaction between tumour microenvironment and immune regulators, there is increasing interest in role of immunotherapy as a treatment modality of HNSCC. Many clinical trials have been performed using checkpoint inhibitors, as monotherapies and combination therapies. Immune checkpoint molecule, programmed cell death 1 (PD-1) has shown promising results as a treatment of Recurrent and Metastatic HNSCC. This review discusses immune checkpoint molecules, their functional mechanisms, role of immunotherapy as a monotherapies and combination therapy for better treatment and prognosis of HNSCC patients.
Collapse
Affiliation(s)
- Rashmi GS Phulari
- Department of Oral and Maxillofacial Pathology and Microbiology, Manubhai Patel Dental College and Hospital and Oral Research Institute, Vishwajyoti Ashram, Near Vidyakunj School, Maunjmauda, Vadodara, Gujarat, India
| | - Bharvi Solanki
- Department of Oral and Maxillofacial Pathology and Microbiology, Manubhai Patel Dental College and Hospital and Oral Research Institute, Vishwajyoti Ashram, Near Vidyakunj School, Maunjmauda, Vadodara, Gujarat, India
| |
Collapse
|
10
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
11
|
Do CTP, Prochnau JY, Dominguez A, Wang P, Rao MK. The Road Ahead in Pancreatic Cancer: Emerging Trends and Therapeutic Prospects. Biomedicines 2024; 12:1979. [PMID: 39335494 PMCID: PMC11428787 DOI: 10.3390/biomedicines12091979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the challenges and emerging trends in pancreatic cancer therapy. In particular, we focus on the tumor microenvironment and the potential of immunotherapy for pancreatic cancer. Pancreatic ductal adenocarcinoma, characterized by its dense stromal architecture, presents unique challenges for effective treatment. Recent advancements have emphasized the role of the tumor microenvironment in therapeutic resistance and disease progression. We discuss novel strategies targeting the desmoplastic barrier and immunosuppressive cells to enhance immune cell infiltration and activation. Recent clinical trials, particularly those involving novel immunotherapeutic agents and tumor vaccines, are examined to understand their efficacy and limitations. Our analysis reveals that combining immunotherapy with chemotherapy, radiation therapy, or drugs targeting epigenetic processes shows promise, improving overall survival rates and response to treatment. For instance, trials utilizing checkpoint inhibitors in combination with standard chemotherapies have extended disease-free survival by up to 6 months compared to chemotherapy alone. Importantly, vaccines targeting specific tumor neoantigens have shown the potential to increase patient survival. However, these approaches also face significant challenges, including overcoming the immunosuppressive tumor microenvironment and enhancing the delivery and efficacy of therapeutic agents. By providing an overview of both the promising results and the obstacles encountered, this review aims to highlight ongoing efforts to refine immunotherapy approaches for better patient outcomes.
Collapse
Affiliation(s)
- Chris T P Do
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jack Y Prochnau
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Angel Dominguez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Jaing TH, Wang YL, Chiu CC. Immune Checkpoint Inhibitors for Pediatric Cancers: Is It Still a Stalemate? Pharmaceuticals (Basel) 2024; 17:991. [PMID: 39204096 PMCID: PMC11357301 DOI: 10.3390/ph17080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The knowledge surrounding the application of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers is continuously expanding and evolving. These therapies work by enhancing the body's natural immune response against tumors, which may have been suppressed by certain pathways. The effectiveness of ICIs in treating adult cancers has been widely acknowledged. However, the results of early phase I/II clinical trials that exclusively targeted the use of ICIs for treating different pediatric cancers have been underwhelming. The response rates to ICIs have generally been modest, except for cases of pediatric classic Hodgkin lymphoma. There seems to be a notable disparity in the immunogenicity of childhood cancers compared to adult cancers, potentially accounting for this phenomenon. On average, childhood cancers tend to have significantly fewer neoantigens. In recent times, there has been a renewed sense of optimism regarding the potential benefits of ICI therapies for specific groups of children with cancer. In initial research, individuals diagnosed with pediatric hypermutated and SMARCB1-deficient cancers have shown remarkable positive outcomes when treated with ICI therapies. This is likely due to the underlying biological factors that promote the expression of neoantigens and inflammation within the tumor. Ongoing trials are diligently assessing the effectiveness of ICIs for pediatric cancer patients in these specific subsets. This review aimed to analyze the safety and effectiveness of ICIs in pediatric patients with different types of highly advanced malignancies.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| |
Collapse
|
13
|
Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in Personalized CAR-T Therapy: Comprehensive Overview of Biomarkers and Therapeutic Targets in Hematological Malignancies. Int J Mol Sci 2024; 25:7743. [PMID: 39062986 PMCID: PMC11276786 DOI: 10.3390/ijms25147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
14
|
Alajmi M, Roy S. An evolutionary differential game for regulating the role of monoclonal antibodies in treating signalling pathways in oesophageal cancer. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240347. [PMID: 39086820 PMCID: PMC11289643 DOI: 10.1098/rsos.240347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
This work presents a new framework for a competitive evolutionary game between monoclonal antibodies and signalling pathways in oesophageal cancer. The framework is based on a novel dynamical model that takes into account the dynamic progression of signalling pathways, resistance mechanisms and monoclonal antibody therapies. This game involves a scenario in which signalling pathways and monoclonal antibodies are the players competing against each other, where monoclonal antibodies use Brentuximab and Pembrolizumab dosages as strategies to counter the evolutionary resistance strategy implemented by the signalling pathways. Their interactions are described by the dynamical model, which serves as the game's playground. The analysis and computation of two game-theoretic strategies, Stackelberg and Nash equilibria, are conducted within this framework to ascertain the most favourable outcome for the patient. By comparing Stackelberg equilibria with Nash equilibria, numerical experiments show that the Stackelberg equilibria are superior for treating signalling pathways and are critical for the success of monoclonal antibodies in improving oesophageal cancer patient outcomes.
Collapse
Affiliation(s)
- Mesfer Alajmi
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX76019-0407, USA
| | - Souvik Roy
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX76019-0407, USA
| |
Collapse
|
15
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Yuan L, Wang Y, Shen X, Ma F, Wang J, Yan F. Soluble form of immune checkpoints in autoimmune diseases. J Autoimmun 2024; 147:103278. [PMID: 38943864 DOI: 10.1016/j.jaut.2024.103278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Immune checkpoints are essential regulators of immune responses, either by activating or suppressing them. Consequently, they are regarded as pivotal elements in the management of infections, cancer, and autoimmune disorders. In recent years, researchers have identified numerous soluble immune checkpoints that are produced through various mechanisms and demonstrated biological activity. These soluble immune checkpoints can be produced and distributed in the bloodstream and various tissues, with their roles in immune response dysregulation and autoimmunity extensively documented. This review aims to provide a thorough overview of the generation of various soluble immune checkpoints, such as sPD-1, sCTLA-4, sTim-3, s4-1BB, sBTLA, sLAG-3, sCD200, and the B7 family, and their importance as indicators for the diagnosis and prediction of autoimmune conditions. Furthermore, the review will investigate the potential pathological mechanisms of soluble immune checkpoints in autoimmune diseases, emphasizing their association with autoimmune diseases development, prognosis, and treatment.
Collapse
Affiliation(s)
- Li Yuan
- Geriatric Diseases Institute of Chengdu, Department of Clinical Laboratory, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China
| | - Yuxia Wang
- Geriatric Intensive Care Unit, Sichuan Geriatric Medical Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xuxia Shen
- Geriatric Diseases Institute of Chengdu, Department of Clinical Laboratory, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China
| | - Fujun Ma
- Department of Training, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China.
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China; Geriatric Diseases Institute of Chengdu, Department of Intensive Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China; Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China.
| |
Collapse
|
17
|
Wang Y, Wang J, Jiang J, Zhang W, Sun L, Ge Q, Li C, Li X, Li X, Shi S. Identification of cuproptosis-related miRNAs in triple-negative breast cancer and analysis of the miRNA-mRNA regulatory network. Heliyon 2024; 10:e28242. [PMID: 38601669 PMCID: PMC11004712 DOI: 10.1016/j.heliyon.2024.e28242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The close association between cuproptosis and tumor immunity in triple-negative breast cancer (TNBC) allows its monitoring for predicting the prognosis of patients with TNBC. Nevertheless, the biological function and prognostic value of cuproptosis-related miRNAs and their target genes have not been reported. Purpose To construct the miRNA and mRNA-based risk models associated with cuproptosis for patients with TNBC. Methods Comparison of expression levels for genes associated with cuproptosis was executed between patients in the normal individuals and the TCGA-TNBC cohort. Conducting differential analysis resulted in the identification of differentially expressed miRNA (DE-miRNAs) and differentially expressed genes (DEGs) between the TNBC and Control samples. Screening for prognostic miRNAs and biomarkers involved employing univariate Cox analysis and least absolute shrinkage and selection operator regression analyses. These methods were utilized to construct risk models aimed at predicting the survival of patients with TNBC. Based on the median value of risk scores, patients were then stratified into low- and high-risk groups. Functional enrichment analysis was employed to explore the potential function and pathways of prognostic genes. Additionally, independent prognostic analysis was performed through univariate and multivariate Cox regression. Immune infiltration analysis was performed to examine disparities in the infiltration of immune cells between the two risk groups. Finally, the prognostic gene expression was mined in key cell types of TNBC. Results We obtained 5213 DEGs and 204 DE-miRNAs related to cuproptosis between TNBC and Control samples. Five prognostic miRNAs (miR-203a-3p, miR-1277-3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were closely associated with TNBC. Significant differences in the functions of prognostic genes between the two risk groups were observed, encompassing adipogenesis, inflammatory response, and hormone metabolic process. The prognostic gene regulatory network revealed that miR200C-3p regulated ZFPM2 and CFL2, and miR-1277-3p regulated BMP2 and RORA. A nomogram was created based on riskScore, cancer status, and pathologic stage to predict 1/3/5-year survival of patients with TNBC. Immune infiltration analysis indicated that the immune microenvironment may be associated with the progression of TNBC. Interestingly, prognostic genes exhibited higher expression levels in T cells, fibroblasts, endothelial cells, and monocytes compared to other cells. Conclusions Five prognostic miRNA (miR-203a-3p, miR-1277-3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were significantly associated with TNBC, it provides new therapeutic targets for the treatment and prognosis of TNBC.
Collapse
Affiliation(s)
- Yitao Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jundan Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jing Jiang
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Wei Zhang
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Long Sun
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Qidong Ge
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Chao Li
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Xinlin Li
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Xujun Li
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Shenghong Shi
- Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, Ningbo No.2 Hospital, Ningbo, 315010, China
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| |
Collapse
|
18
|
Kim DH, Seo J, Lee JH, Jeon ET, Jeong D, Chae HD, Lee E, Kang JH, Choi YH, Kim HJ, Chai JW. Automated Detection and Segmentation of Bone Metastases on Spine MRI Using U-Net: A Multicenter Study. Korean J Radiol 2024; 25:363-373. [PMID: 38528694 PMCID: PMC10973735 DOI: 10.3348/kjr.2023.0671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE To develop and evaluate a deep learning model for automated segmentation and detection of bone metastasis on spinal MRI. MATERIALS AND METHODS We included whole spine MRI scans of adult patients with bone metastasis: 662 MRI series from 302 patients (63.5 ± 11.5 years; male:female, 151:151) from three study centers obtained between January 2015 and August 2021 for training and internal testing (random split into 536 and 126 series, respectively) and 49 MRI series from 20 patients (65.9 ± 11.5 years; male:female, 11:9) from another center obtained between January 2018 and August 2020 for external testing. Three sagittal MRI sequences, including non-contrast T1-weighted image (T1), contrast-enhanced T1-weighted Dixon fat-only image (FO), and contrast-enhanced fat-suppressed T1-weighted image (CE), were used. Seven models trained using the 2D and 3D U-Nets were developed with different combinations (T1, FO, CE, T1 + FO, T1 + CE, FO + CE, and T1 + FO + CE). The segmentation performance was evaluated using Dice coefficient, pixel-wise recall, and pixel-wise precision. The detection performance was analyzed using per-lesion sensitivity and a free-response receiver operating characteristic curve. The performance of the model was compared with that of five radiologists using the external test set. RESULTS The 2D U-Net T1 + CE model exhibited superior segmentation performance in the external test compared to the other models, with a Dice coefficient of 0.699 and pixel-wise recall of 0.653. The T1 + CE model achieved per-lesion sensitivities of 0.828 (497/600) and 0.857 (150/175) for metastases in the internal and external tests, respectively. The radiologists demonstrated a mean per-lesion sensitivity of 0.746 and a mean per-lesion positive predictive value of 0.701 in the external test. CONCLUSION The deep learning models proposed for automated segmentation and detection of bone metastases on spinal MRI demonstrated high diagnostic performance.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jiwoon Seo
- Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- College of Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Ji Hyun Lee
- Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Eun-Tae Jeon
- Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | | | - Hee Dong Chae
- College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eugene Lee
- College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Hee Kang
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Yoon-Hee Choi
- Department of Physical Medicine and Rehabilitation, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hyo Jin Kim
- Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jee Won Chai
- Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Jural LA, Estanho D, Pereira JDSR, Ribeiro-Lages MB, Lima da Silva LS, Cavalcante IL, Maia LC, Andrade BABD, Tenório JR. Lesions in the oral mucosa associated with the use of checkpoint inhibitors: A bibliometric and critical review. SPECIAL CARE IN DENTISTRY 2024; 44:300-313. [PMID: 37287115 DOI: 10.1111/scd.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
AIMS Immune-related adverse events (irAEs) linked to the use of immune checkpoint inhibitors (ICIs) have become increasingly frequent. To perform a bibliometric and critical review of the general panorama of publications on oral mucosal lesions (OML) associated with ICIs. METHODS AND RESULTS Systematized searches were performed in four databases. The included studies were organized and bibliometric and clinical data were extracted and analyzed using VantagePoint and Microsoft Excel. Most of the 35 included studies were reports or case series (n = 33/94.2%). The American authors stood out (n = 17/48.5%), with the majority presenting only one publication. Independent groups carried out most of the publications (n = 31/88.5%). Over the years, publications have increased for users of nivolumab and pembrolizumab. In 21 studies (60%), OML were more common in men, between the 6th and 9th decades of life and who had lung carcinoma (n = 13/37.1%). Pembrolizumab (n = 17/48.5%) was the most used ICI. The patients were affected by one or more OML, including: ulcers (n = 28/80%) and erythema (n = 11/31.4%). Systemic corticosteroids (n = 24/68.5%) and the discontinuation of ICI use (n = 18/51.4%) were the main approaches used. CONCLUSION OML related to the use of ICIs have become increasingly common. More accurate data need to be published.
Collapse
Affiliation(s)
- Lucas Alves Jural
- Department of Pediatric Dentistry and Orthodontics, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniella Estanho
- Department of Oral Diagnosis and Pathology, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana da Silva Rangel Pereira
- Department of Oral Diagnosis and Pathology, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Batista Ribeiro-Lages
- Department of Pediatric Dentistry and Orthodontics, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Soares Lima da Silva
- Department of Pediatric Dentistry and Orthodontics, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Israel Leal Cavalcante
- Department of Oral Diagnosis and Pathology, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Augusto Benevenuto de Andrade
- Department of Oral Diagnosis and Pathology, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jefferson R Tenório
- Department of Oral Diagnosis and Pathology, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Bar J, Leibowitz R, Reinmuth N, Ammendola A, Jacob E, Moskovitz M, Levy-Barda A, Lotem M, Katsenelson R, Agbarya A, Abu-Amna M, Gottfried M, Harkovsky T, Wolf I, Tepper E, Loewenthal G, Yellin B, Brody Y, Dahan N, Yanko M, Lahav C, Harel M, Raveh Shoval S, Elon Y, Sela I, Dicker AP, Shaked Y. Biological insights from plasma proteomics of non-small cell lung cancer patients treated with immunotherapy. Front Immunol 2024; 15:1364473. [PMID: 38487531 PMCID: PMC10937428 DOI: 10.3389/fimmu.2024.1364473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Immune checkpoint inhibitors have made a paradigm shift in the treatment of non-small cell lung cancer (NSCLC). However, clinical response varies widely and robust predictive biomarkers for patient stratification are lacking. Here, we characterize early on-treatment proteomic changes in blood plasma to gain a better understanding of treatment response and resistance. Methods Pre-treatment (T0) and on-treatment (T1) plasma samples were collected from 225 NSCLC patients receiving PD-1/PD-L1 inhibitor-based regimens. Plasma was profiled using aptamer-based technology to quantify approximately 7000 plasma proteins per sample. Proteins displaying significant fold changes (T1:T0) were analyzed further to identify associations with clinical outcomes using clinical benefit and overall survival as endpoints. Bioinformatic analyses of upregulated proteins were performed to determine potential cell origins and enriched biological processes. Results The levels of 142 proteins were significantly increased in the plasma of NSCLC patients following ICI-based treatments. Soluble PD-1 exhibited the highest increase, with a positive correlation to tumor PD-L1 status, and, in the ICI monotherapy dataset, an association with improved overall survival. Bioinformatic analysis of the ICI monotherapy dataset revealed a set of 30 upregulated proteins that formed a single, highly interconnected network, including CD8A connected to ten other proteins, suggestive of T cell activation during ICI treatment. Notably, the T cell-related network was detected regardless of clinical benefit. Lastly, circulating proteins of alveolar origin were identified as potential biomarkers of limited clinical benefit, possibly due to a link with cellular stress and lung damage. Conclusions Our study provides insights into the biological processes activated during ICI-based therapy, highlighting the potential of plasma proteomics to identify mechanisms of therapy resistance and biomarkers for outcome.
Collapse
Affiliation(s)
- Jair Bar
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Raya Leibowitz
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Shamir Medical Center, Oncology Institute, Zerifin, Israel
| | - Niels Reinmuth
- German Center for Lung Research (DZL), Munich-Gauting, Germany
- Biobank of lung disease, Asklepios Klinik Gauting GmbH, Gauting, Germany
| | - Astrid Ammendola
- Biobank of lung disease, Asklepios Klinik Gauting GmbH, Gauting, Germany
| | | | - Mor Moskovitz
- Thoracic oncology service, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Adva Levy-Barda
- Biobank, Department of Pathology, Rabin Medical Center, Petah Tikva, Israel
| | - Michal Lotem
- Center for Melanoma and Cancer Immunotherapy, Hadassah Hebrew University Medical Center, Sharett Institute of Oncology, Jerusalem, Israel
| | | | - Abed Agbarya
- Institute of Oncology, Bnai Zion Medical Center, Haifa, Israel
| | - Mahmoud Abu-Amna
- Oncology & Hematology Division, Cancer Center, Emek Medical Center, Afula, Israel
| | - Maya Gottfried
- Department of Oncology, Meir Medical Center, Kfar-Saba, Israel
| | - Tatiana Harkovsky
- Barzilai Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Ashkelon, Israel
| | - Ido Wolf
- Division of Oncology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ella Tepper
- Department of Oncology, Assuta Hospital, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | - Adam P. Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yuval Shaked
- Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
21
|
Reis B, Attig J, Dziadek S, Graefe N, Heller A, Rieder N, Gomes B. Tumor beta2-microglobulin and HLA-A expression is increased by immunotherapy and can predict response to CIT in association with other biomarkers. Front Immunol 2024; 15:1285049. [PMID: 38455061 PMCID: PMC10917949 DOI: 10.3389/fimmu.2024.1285049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Background Downregulation of MHC class I expression and/or defects in the antigen presentation pathways are commonly reported in human cancers. Numerous studies previously have explored extensively the molecular mechanisms that underlie HLA-class I and Beta2-Microglobulin (B2M) downregulation. However, the techniques presently available to detect expression of MHC class I proteins lack the robustness, specificity and sensitivity needed for systematic integration and analysis in clinical trials. Furthermore, the dynamics of HLA-class I and B2M expression have not been comprehensively studied as a potential biomarker for immunotherapy. Methods Using novel, validated, immunohistochemistry (IHC)-based methods for quantifying B2M and HLA-A in tumor samples from diverse cancer types, we have determined loss of B2M and HLA-A proteins in 336 archived, primary specimens and 329 biopsies from metastatic patients collected during Roche-sponsored Phase 1 clinical trials investigating novel immunotherapy candidates as monotherapy or in combination with CPI. Results Up to 56% of cases with B2M or HLA-A loss were noted in the investigated tumor types. The frequency of loss was dependent on indication and stage of disease and revealed heterogeneous expression patterns across patients. B2M and HLA-A loss was increased in metastatic lesions compared to primary tumors, indicating selection of MHC class I low clones in metastatic and refractory tumor cells. High on-treatment B2M expression correlated with successful clinical outcome (RECIST), while high baseline B2M did not. A treatment-induced increase of B2M expression was noted in most of the patients with low B2M levels at baseline. The triple biomarker combination of B2M, CD8 and PDL1 strongly improved response prediction to cancer immunotherapy. Conclusion Our results indicate that B2M and HLA-A loss occurs frequently in tumors and is reversed in most instances following immunotherapy which supports the conclusion that MHC class I loss is not the dominant resistance mechanism to CPI treatment. This investigation reveals a highly dynamic expression of HLA-A and B2M in tumors affected by indication, metastatic status, immunophenotype and immunotherapy treatment. Baseline expression levels of B2M on tumors may be of utility as a constituent of a biomarker panel used for selecting patients for immunotherapy clinical trials.
Collapse
Affiliation(s)
- Bernhard Reis
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Jan Attig
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences - Biomarkers, Bioinformatics and Omics & Pathology, Roche Innovation Center Basel, Basel, Switzerland
| | - Sebastian Dziadek
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Nico Graefe
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Astrid Heller
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Natascha Rieder
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Bruno Gomes
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
22
|
Wojciechowicz K, Kuncewicz K, Lisowska KA, Wardowska A, Spodzieja M. Peptides targeting the BTLA-HVEM complex can modulate T cell immune response. Eur J Pharm Sci 2024; 193:106677. [PMID: 38128840 DOI: 10.1016/j.ejps.2023.106677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Immune checkpoints secure the proper function of the immune system and the maintenance of the BTLA-HVEM complex, an inhibitory immune checkpoint, is one of the pathways vital for T cell responsiveness to various stimuli. The present study reports the immunomodulatory potential of five peptides targeting the BTLA-HVEM complex on the activity of human T cells. Isolated T cells were exposed to the peptides alone or combined with CD3/CD28 mAb for 72 h or 120 h. The flow cytometry was used to evaluate the activation markers (CD69, CD62L, CD25), changes within the T cell memory compartment, proliferation rate, and apoptosis of T cells. The immunomodulatory effect of the peptides was visible as an increase in the percentage of CD4+ and CD8+ T cells expressing CD69 or CD25, a boost in T cell proliferation, and shifts in the T cell memory compartment. Pep(2) and Pep(5) were the most promising compounds, displaying a putative immune-restoring function.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Katarzyna Kuncewicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| | - Katarzyna A Lisowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland.
| |
Collapse
|
23
|
Zhang J, Chen L, Wei W, Mao F. Long non-coding RNA signature for predicting gastric cancer survival based on genomic instability. Aging (Albany NY) 2023; 15:15114-15133. [PMID: 38127056 PMCID: PMC10781445 DOI: 10.18632/aging.205336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Gastric cancer is a prevalent type of tumor with a poor prognosis. Given the high occurrence of genomic instability in gastric cancer, it is essential to investigate the prognostic significance of genes associated with genomic instability in this disease. METHODS We identified genomic instability-related lncRNAs (GInLncRNAs) by analyzing somatic mutation and transcriptome profiles. We evaluated co-expression and enrichment using various analyses, including univariate COX analysis and LASSO regression. Based on these findings, we established an lncRNA signature associated with genomic instability, which we subsequently assessed for prognostic value, immune cell and checkpoint analysis, drug sensitivity, and external validation. Finally, PCR assay was used to verify the expression of key lncRNAs. RESULTS Our study resulted in the establishment of a seven-lncRNA prognostic signature, including PTENP1-AS, LINC00163, RP11-169F17.1, C8ORF87, RP11-389G6.3, LINCO1210, and RP11-115H13.1. This signature exhibited independent prognostic value and was associated with specific immune cells and checkpoints in gastric cancer. Additionally, the model was correlated with somatic mutation and several chemotherapeutic drugs. We further confirmed the prognostic value of LINC00163, which was included in our model, in an independent dataset. Our model demonstrated superior performance compared to other models. PCR showed that LINC00163 was significantly up-regulated in 4 adjacent normal tissues compared with the GC tissues. CONCLUSIONS Our study resulted in the establishment of a seven-lncRNA signature associated with genomic instability, which demonstrated robust prognostic value in predicting the prognosis of gastric cancer. The signature also identified potential chemotherapeutic drugs, making it a valuable tool for clinical decision-making and medication use.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, People’s Republic of China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, P.R. China
| | - Wei Wei
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Fei Mao
- Department of Urology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, People’s Republic of China
| |
Collapse
|
24
|
Olejarz W, Basak G. Emerging Therapeutic Targets and Drug Resistance Mechanisms in Immunotherapy of Hematological Malignancies. Cancers (Basel) 2023; 15:5765. [PMID: 38136311 PMCID: PMC10741639 DOI: 10.3390/cancers15245765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
CAR-T cell therapy has revolutionized the treatment of hematological malignancies with high remission rates in the case of ALL and NHL. This therapy has some limitations such as long manufacturing periods, persistent restricted cell sources and high costs. Moreover, combination regimens increase the risk of immune-related adverse events, so the identification new therapeutic targets is important to minimize the risk of toxicities and to guide more effective approaches. Cancer cells employ several mechanisms to evade immunosurveillance, which causes resistance to immunotherapy; therefore, a very important therapeutic approach is to focus on the development of rational combinations of targeted therapies with non-overlapping toxicities. Recent progress in the development of new inhibitory clusters of differentiation (CDs), signaling pathway molecules, checkpoint inhibitors, and immunosuppressive cell subsets and factors in the tumor microenvironment (TME) has significantly improved anticancer responses. Novel strategies regarding combination immunotherapies with CAR-T cells are the most promising approach to cure cancer.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
25
|
Attieh F, Chartouni A, Boutros M, Mouawad A, Kourie HR. Tackling the immunotherapy conundrum: advances and challenges for operable non-small-cell lung cancer treatment. Immunotherapy 2023; 15:1415-1428. [PMID: 37671552 DOI: 10.2217/imt-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) represents the majority of lung cancer cases, and its standard treatment is primarily surgery. Nonetheless, this type of cancer exhibits an important rate of tumor recurrence. Immune checkpoint inhibitors (ICIs) have demonstrated significant survival benefits in many cancers, especially in early-stage NSCLC. This review considers the latest CheckMate816, IMpower010 and KEYNOTE-091 trials that led to US FDA approvals. The new wave of resectable NSCLC trial results are also summarized. Finally, the latest challenges for these treatment modalities, such as the choice between neoadjuvant and adjuvant use, the accurate identification of biomarkers and the presence of driver mutations such as EGFR, are discussed.
Collapse
Affiliation(s)
- Fouad Attieh
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| | - Antoine Chartouni
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| | - Marc Boutros
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| | - Antoine Mouawad
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| |
Collapse
|
26
|
Moon SY, Han M, Ryu G, Shin SA, Lee JH, Lee CS. Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200. Int J Mol Sci 2023; 24:15072. [PMID: 37894750 PMCID: PMC10606340 DOI: 10.3390/ijms242015072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer immunotherapy strategies are based on the utilization of immune checkpoint inhibitors to instigate an antitumor immune response. The efficacy of immune checkpoint blockade, directed at adaptive immune checkpoints, has been demonstrated in select cancer types. However, only a limited subset of patients has exhibited definitive outcomes characterized by a sustained response after discontinuation of therapy. Recent investigations have highlighted the significance of immune checkpoint molecules that are overexpressed in cancer cells and inhibit myeloid lineage immune cells within a tumor microenvironment. These checkpoints are identified as potential targets for anticancer immune responses. Notably, the immune checkpoint molecules CD24 and CD200 have garnered attention owing to their involvement in tumor immune evasion. CD24 and CD200 are overexpressed across diverse cancer types and serve as signaling checkpoints by engaging their respective receptors, Siglec-10 and CD200 receptor, which are expressed on tumor-associated myeloid cells. In this review, we summarized and discussed the latest advancements and insights into CD24 and CD200 as emergent immune checkpoint moieties, further delving into their therapeutic potentials for cancer treatment.
Collapse
Affiliation(s)
- Sun Young Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Minjoo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Gyoungah Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Seong-Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.Y.M.); (M.H.); (G.R.); (S.-A.S.)
| |
Collapse
|
27
|
Boutros M, Attieh F, Chartouni A, Jalbout J, Kourie HR. Beyond the Horizon: A Cutting-Edge Review of the Latest Checkpoint Inhibitors in Cancer Treatment. Cancer Invest 2023; 41:757-773. [PMID: 37795860 DOI: 10.1080/07357907.2023.2267675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as a revolutionary paradigm in oncology, offering a potent arsenal against various malignancies by harnessing the body's own immunological prowess. In a whirlwind of advancement, an abundance of new ICIs have come to light, rendering it a Herculean task for physicians to remain au courant with the rapidly evolving landscape. This comprehensive review meticulously explores the crescendo of clinical investigations and FDA approvals that have come to light during 2022 and 2023, showcasing the metamorphic impact of ICIs in cancer therapeutics. Delving into the pith of pivotal Phase 3 trials across diverse cancer types - including lung, renal, melanoma, and more - the review illuminates the significant strides made in enhancing patient outcomes, alongside the unveiling of novel ICIs that have garnered attention in the oncological community. The analysis extends to the notable presentations at the esteemed ESMO and ASCO conventions, providing a panoramic view of the contemporary advancements in ICI technology. Furthermore, the review underscores the imperative of continuous exploration in overcoming the extant challenges, such as the quest for reliable predictive biomarkers and the optimization of combinatorial strategies to surmount resistance and augment therapeutic efficacy. Through a holistic lens, this article elucidates the monumental impact of ICIs, marking a significant epoch in the odyssey towards rendering cancer a conquerable adversary.
Collapse
Affiliation(s)
- Marc Boutros
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Fouad Attieh
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Antoine Chartouni
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Johnny Jalbout
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
28
|
Wang M, Yu F, Li P. Noncoding RNAs as an emerging resistance mechanism to immunotherapies in cancer: basic evidence and therapeutic implications. Front Immunol 2023; 14:1268745. [PMID: 37767098 PMCID: PMC10520974 DOI: 10.3389/fimmu.2023.1268745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing knowledge in the field of oncoimmunology has led to extensive research into tumor immune landscape and a plethora of clinical immunotherapy trials in cancer patients. Immunotherapy has become a clinically beneficial alternative to traditional treatments by enhancing the power of the host immune system against cancer. However, it only works for a minority of cancers. Drug resistance continues to be a major obstacle to the success of immunotherapy in cancer. A fundamental understanding of the detailed mechanisms underlying immunotherapy resistance in cancer patients will provide new potential directions for further investigations of cancer treatment. Noncoding RNAs (ncRNAs) are tightly linked with cancer initiation and development due to their critical roles in gene expression and epigenetic modulation. The clear appreciation of the role of ncRNAs in tumor immunity has opened new frontiers in cancer research and therapy. Furthermore, ncRNAs are increasingly acknowledged as a key factor influencing immunotherapeutic treatment outcomes. Here, we review the available evidence on the roles of ncRNAs in immunotherapy resistance, with an emphasis on the associated mechanisms behind ncRNA-mediated immune resistance. The clinical implications of immune-related ncRNAs are also discussed, shedding light on the potential ncRNA-based therapies to overcome the resistance to immunotherapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Singh N, McClure EM, Akaike T, Park SY, Huynh ET, Goff PH, Nghiem P. The Evolving Treatment Landscape of Merkel Cell Carcinoma. Curr Treat Options Oncol 2023; 24:1231-1258. [PMID: 37403007 PMCID: PMC11260505 DOI: 10.1007/s11864-023-01118-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
OPINION STATEMENT Merkel cell carcinoma (MCC) has a high risk of recurrence and requires unique treatment relative to other skin cancers. The patient population is generally older, with comorbidities. Multidisciplinary and personalized care is therefore paramount, based on patient preferences regarding risks and benefits. Positron emission tomography and computed tomography (PET-CT) is the most sensitive staging modality and reveals clinically occult disease in ~ 16% of patients. Discovery of occult disease spread markedly alters management. Newly diagnosed, localized disease is often managed with sentinel lymph node biopsy (SLNB), local excision, primary wound closure, and post-operative radiation therapy (PORT). In contrast, metastatic disease is usually treated systemically with an immune checkpoint inhibitor (ICI). However, one or more of these approaches may not be indicated. Criteria for such exceptions and alternative approaches will be discussed. Because MCC recurs in 40% of patients and early detection/treatment of advanced disease is advantageous, close surveillance is recommended. Given that over 90% of initial recurrences arise within 3 years, surveillance frequency can be rapidly decreased after this high-risk period. Patient-specific assessment of risk is important because recurrence risk varies widely (15 to > 80%: Merkelcell.org/recur) depending on baseline patient characteristics and time since treatment. Blood-based surveillance tests are now available (Merkel cell polyomavirus (MCPyV) antibodies and circulating tumor DNA (ctDNA)) with excellent sensitivity that can spare patients from contrast dye, radioactivity, and travel to a cancer imaging facility. If recurrent disease is locoregional, management with surgery and/or RT is typically indicated. ICIs are now the first line for systemic/advanced MCC, with objective response rates (ORRs) exceeding 50%. Cytotoxic chemotherapy is sometimes used for debulking disease or in patients who cannot tolerate ICI. ICI-refractory disease is the major problem faced by this field. Fortunately, numerous promising therapies are on the horizon to address this clinical need.
Collapse
Affiliation(s)
- Neha Singh
- Department of Medicine, Division of Dermatology, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Erin M McClure
- Department of Medicine, Division of Dermatology, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, USA
- University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Tomoko Akaike
- Department of Medicine, Division of Dermatology, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, USA
| | - Song Y Park
- Department of Medicine, Division of Dermatology, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, USA
| | - Emily T Huynh
- Department of Medicine, Division of Dermatology, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, USA
| | - Peter H Goff
- Department of Medicine, Division of Dermatology, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, USA
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, 850 Republican Street, Box 358050, Seattle, WA, USA.
| |
Collapse
|
30
|
Zeriouh M, Raskov H, Kvich L, Gögenur I, Bennedsen ALB. Checkpoint inhibitor responses can be regulated by the gut microbiota - A systematic review. Neoplasia 2023; 43:100923. [PMID: 37603952 PMCID: PMC10465958 DOI: 10.1016/j.neo.2023.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Evidence suggests that the human gut microbiota modulates the treatment response of immune checkpoint inhibitors (ICI) in cancer. Thus, finding predictive biomarkers in the fecal gut microbiota of patients who are less likely to respond to ICI would be valuable. This systematic review aimed to investigate the association between fecal gut microbiota composition and ICI-treatment response in patients with cancer. METHODS EMBASE, Medline, and Cochrane Library databases were searched using the "Participants, Interventions, Comparisons, and Outcomes" (PICO) process to locate studies including participants with solid cancers treated with ICI intervention. The comparator was the gut microbiota, and the outcomes were oncological outcomes such as response rates and progression-free survival. Study data were synthesized qualitatively in a systematic narrative synthesis, and the risk of bias in the studies was assessed. RESULTS Two reviewers screened 2092 abstracts independently, and 140 studies were read as full-text reports and assessed for eligibility. Eighteen studies were included with 775 patients with different types of solid cancers who received anti-PD-1, anti-PD-L1, or anti-CTLA-4 therapy. Distinct patterns were observed in the patients' fecal samples. Some bacterial species were reported to be present in responders and non-responders, while others were present only in one group. The most reported species associated with better prognosis were Faecalibacterium prausnitzii, Streptococcus parasanguinis, Bacteroides caccae, and Prevotella copri. In contrast, the most reported species associated with poor prognosis were Blautia obeum and Bacteroides ovatus. CONCLUSION Distinct microbiota features were associated with good and poor prognoses in ICI-treated patients with cancer.
Collapse
Affiliation(s)
- Mariam Zeriouh
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, Køge 4600, Denmark
| | - Hans Raskov
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, Køge 4600, Denmark
| | - Lasse Kvich
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, Køge 4600, Denmark; Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Ismail Gögenur
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, Køge 4600, Denmark
| | | |
Collapse
|
31
|
Matsumori A. Nuclear Factor-κB is a Prime Candidate for the Diagnosis and Control of Inflammatory Cardiovascular Disease. Eur Cardiol 2023; 18:e40. [PMID: 37456770 PMCID: PMC10345985 DOI: 10.15420/ecr.2023.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 07/18/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of genes involved in inflammation and immune responses. NF-κB may play an important role in cardiovascular diseases (CVDs), atherosclerosis and diabetes. Several therapeutic agents used for the treatment of CVDs and diabetes, such as pimobendan and sodium-glucose cotransporter 2 inhibitors, exert anti-inflammatory effects by inhibiting NF-κB activation; anti-inflammatory therapy may have beneficial effects in CVDs and diabetes. Several pharmacological agents and natural compounds may inhibit NF-κB, and these agents alone or in combination may be used to treat various inflammatory diseases. Immunoglobulin-free light chains could be surrogate biomarkers of NF-κB activation and may be useful for evaluating the efficacy of these agents. This review discusses recent advances in our understanding of how the NF-κB signalling pathway controls inflammation, metabolism and immunity, and how improved knowledge of these pathways may lead to better diagnostics and therapeutics for various human diseases.
Collapse
Affiliation(s)
- Akira Matsumori
- Clinical Research Institute, National Hospital Organization, Kyoto Medical Center Kyoto, Japan
| |
Collapse
|
32
|
Matsumori A. Myocarditis and Autoimmunity. Expert Rev Cardiovasc Ther 2023. [PMID: 37243585 DOI: 10.1080/14779072.2023.2219895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Autoimmune myocarditis may develop due to heterogeneous causes. Myocarditis is often caused by viral infections, but it can also be caused by systemic autoimmune diseases. Immune checkpoint inhibitors and virus vaccines induce immune activation, and they can cause the development of myocarditis, as well as several immune-related adverse events. The development of myocarditis is dependent on the genetic factors of the host, and the major histocompatibility complex (MHC) may be an important determinant of the type and severity of the disease. However, non-MHC immunoregulatory genes may also play a role in determining susceptibility. AREA COVERED This review summarizes the current knowledge of the etiology, pathogenesis, diagnosis and treatment of autoimmune myocarditis with a particular focus on viral infection and autoimmunity, and biomarkers of myocarditis. EXPERT OPINION An endomyocardial biopsy may not be the gold standard for the diagnosis of myocarditis. Cardiac magnetic resonance imaging is useful in diagnosing autoimmune myocarditis. Recently identified biomarkers of inflammation and myocyte injury are promising for the diagnosis of myocarditis when measured simultaneously. Future treatments should focus on the appropriate diagnosis of the etiologic agent, as well as on the specific stage of the evolution of immune and inflammatory processes.
Collapse
Affiliation(s)
- Akira Matsumori
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| |
Collapse
|
33
|
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P, Ahn B. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond) 2023; 43:525-561. [PMID: 37005490 PMCID: PMC10174093 DOI: 10.1002/cac2.12416] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
Tumor development and metastasis are facilitated by the complex interactions between cancer cells and their microenvironment, which comprises stromal cells and extracellular matrix (ECM) components, among other factors. Stromal cells can adopt new phenotypes to promote tumor cell invasion. A deep understanding of the signaling pathways involved in cell-to-cell and cell-to-ECM interactions is needed to design effective intervention strategies that might interrupt these interactions. In this review, we describe the tumor microenvironment (TME) components and associated therapeutics. We discuss the clinical advances in the prevalent and newly discovered signaling pathways in the TME, the immune checkpoints and immunosuppressive chemokines, and currently used inhibitors targeting these pathways. These include both intrinsic and non-autonomous tumor cell signaling pathways in the TME: protein kinase C (PKC) signaling, Notch, and transforming growth factor (TGF-β) signaling, Endoplasmic Reticulum (ER) stress response, lactate signaling, Metabolic reprogramming, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and Siglec signaling pathways. We also discuss the recent advances in Programmed Cell Death Protein 1 (PD-1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte Activating Gene 3 (LAG3) immune checkpoint inhibitors along with the C-C chemokine receptor 4 (CCR4)- C-C class chemokines 22 (CCL22)/ and 17 (CCL17), C-C chemokine receptor type 2 (CCR2)- chemokine (C-C motif) ligand 2 (CCL2), C-C chemokine receptor type 5 (CCR5)- chemokine (C-C motif) ligand 3 (CCL3) chemokine signaling axis in the TME. In addition, this review provides a holistic understanding of the TME as we discuss the three-dimensional and microfluidic models of the TME, which are believed to recapitulate the original characteristics of the patient tumor and hence may be used as a platform to study new mechanisms and screen for various anti-cancer therapies. We further discuss the systemic influences of gut microbiota in TME reprogramming and treatment response. Overall, this review provides a comprehensive analysis of the diverse and most critical signaling pathways in the TME, highlighting the associated newest and critical preclinical and clinical studies along with their underlying biology. We highlight the importance of the most recent technologies of microfluidics and lab-on-chip models for TME research and also present an overview of extrinsic factors, such as the inhabitant human microbiome, which have the potential to modulate TME biology and drug responses.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of NeurologyThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicago, 60611ILUSA
| | - Fatima Khan
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Bhupender Verma
- Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and Ear InfirmaryHarvard Medical SchoolBoston, 02114MAUSA
| | - Priyanka Sinha
- Department of NeurologyMassGeneral Institute for Neurodegenerative DiseaseMassachusetts General Hospital, Harvard Medical SchoolCharlestown, 02129MAUSA
| | - Crismita C. Dmello
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan Francisco, 94143CAUSA
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| | - Byeong‐Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| |
Collapse
|
34
|
Farah C, Neveu MA, Bouzin C, Knezevic Z, Gallez B, Leucci E, Baurain JF, Mignion L, Jordan BF. Hyperpolarized 13C-Pyruvate to Assess Response to Anti-PD1 Immune Checkpoint Inhibition in YUMMER 1.7 Melanoma Xenografts. Int J Mol Sci 2023; 24:ijms24032499. [PMID: 36768822 PMCID: PMC9917169 DOI: 10.3390/ijms24032499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
There is currently no consensus to determine which advanced melanoma patients will benefit from immunotherapy, highlighting the critical need to identify early-response biomarkers to immune checkpoint inhibitors. The aim of this work was to evaluate in vivo metabolic spectroscopy using hyperpolarized (HP) 13C-pyruvate and 13C-glucose to assess early response to anti-PD1 therapy in the YUMMER1.7 syngeneic melanoma model. The xenografts showed a significant tumor growth delay when treated with two cycles of an anti-PD1 antibody compared to an isotype control antibody. 13C-MRS was performed in vivo after the injection of hyperpolarized 13C-pyruvate, at baseline and after one cycle of immunotherapy, to evaluate early dynamic changes in 13C-pyruvate-13C-lactate exchange. Furthermore, ex vivo 13C-MRS metabolic tracing experiments were performed after U-13C-glucose injection following one cycle of immunotherapy. A significant decrease in the ratio of HP 13C-lactate to 13C-pyruvate was observed in vivo in comparison with the isotype control group, while there was a lack of change in the levels of 13C lactate and 13C alanine issued from 13C glucose infusion, following ex vivo assessment on resected tumors. Thus, these results suggest that hyperpolarized 13C-pyruvate could be used to assess early response to immune checkpoint inhibitors in melanoma patients.
Collapse
Affiliation(s)
- Chantale Farah
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Marie-Aline Neveu
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, K.U. Leuven, B-3001 Leuven, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvai, (UCLouvain), B-1200 Brussels, Belgium
| | - Zorica Knezevic
- Laboratory for RNA Cancer Biology, Department of Oncology, K.U. Leuven, B-3001 Leuven, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (U.C. Louvain), B-1200 Brussels, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, K.U. Leuven, B-3001 Leuven, Belgium
| | - Jean-François Baurain
- Molecular Imaging and Radiation Oncology (MIRO) Group, Institute de Recherche Expérimentale et Clinique (IREC), B-1200 Brussels, Belgium
| | - Lionel Mignion
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (U.C. Louvain), B-1200 Brussels, Belgium
| | - Bénédicte F. Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (U.C. Louvain), B-1200 Brussels, Belgium
- Correspondence:
| |
Collapse
|
35
|
High Expression of DLGAP5 Indicates Poor Prognosis and Immunotherapy in Lung Adenocarcinoma and Promotes Proliferation through Regulation of the Cell Cycle. DISEASE MARKERS 2023; 2023:9292536. [PMID: 36712920 PMCID: PMC9879687 DOI: 10.1155/2023/9292536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023]
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common types of cancer in the respiratory system, with a high mortality and recurrence rate. The role of disc large-associated protein 5 (DLGAP5) in LUAD progression and tumor microenvironment (TME) remains unclear. This study is aimed at revealing the functional role of DLGAP5 in LUAD based on bioinformatics analysis and experimental validation. Methods Differential expression analysis, protein-protein interaction (PPI) network, and Cox regression analysis were applied to screen potential prognostic biomarkers. The mRNA and protein levels of DLGAP5 were analyzed using The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) databases. The CCK-8 and colony formation assays were performed to assess the effect of DLGAP5 on cell proliferation. RNA sequencing (RNA-seq) and enrichment analyses were utilized to explore the biological functions of DLGAP5. Furthermore, flow cytometry was used to explore the role of DLGAP5 on the cell cycle. The ssGSEA algorithm in the R package "GSVA" was applied to quantify immune infiltrating cells, and the tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict the efficacy of immunotherapy. Moreover, analyses using the cBioPortal and MethSurv databases were performed to evaluate the mutation and methylation of DLGAP5, respectively. Finally, the prognostic value of DLGAP5 was estimated using the TCGA and the Gene Expression Omnibus (GEO) databases. The nomogram model was constructed using the TCGA-LUAD cohort and evaluated by adopting calibration curves, time-dependent receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). Results DLGAP5 mRNA and protein abundance were significantly elevated in LUAD, and knockdown of DLGAP5 remarkably suppressed lung cancer cell proliferation through induction of cell cycle G1 arrest. In addition, DLGAP5 expression was positively correlated with Th2 cells and negatively correlated with B cells, T follicular helper cells, and mast cells. LUAD patients with high DLGAP5 expression may be resistant to immunotherapy. Hypermethylation levels of the cg23678254 site of DLGAP5 or its enhanced expression were unfavorable for the survival of LUAD patients. Meanwhile, DLGAP5 expression was associated with TNM stages, tumor status, and therapy outcome. Notably, the prognostic model constructed based on DLGAP5 expression exhibited great predictive capability, which was promising for clinical applications. Conclusion DLGAP5 promotes lung cancer cell proliferation through regulation of the cell cycle and is associated with multiple immune infiltrating cells. Furthermore, DLGAP5 predicts poor prognosis and response to immunotherapy in lung adenocarcinoma.
Collapse
|
36
|
Zhang Y, Chen J, Liu H, Mi R, Huang R, Li X, Fan F, Xie X, Ding J. The role of histone methylase and demethylase in antitumor immunity: A new direction for immunotherapy. Front Immunol 2023; 13:1099892. [PMID: 36713412 PMCID: PMC9874864 DOI: 10.3389/fimmu.2022.1099892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Epigenetic modifications may alter the proliferation and differentiation of normal cells, leading to malignant transformation. They can also affect normal stimulation, activation, and abnormal function of immune cells in the tissue microenvironment. Histone methylation, coordinated by histone methylase and histone demethylase to stabilize transcription levels in the promoter area, is one of the most common types of epigenetic alteration, which gained increasing interest. It can modify gene transcription through chromatin structure and affect cell fate, at the transcriptome or protein level. According to recent research, histone methylation modification can regulate tumor and immune cells affecting anti-tumor immune response. Consequently, it is critical to have a thorough grasp of the role of methylation function in cancer treatment. In this review, we discussed recent data on the mechanisms of histone methylation on factors associated with immune resistance of tumor cells and regulation of immune cell function.
Collapse
Affiliation(s)
- Yuanling Zhang
- School of Medicine, Guizhou University, Guiyang, China,Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junhao Chen
- Graduate School of Zunyi Medical University, Zunyi, China
| | - Hang Liu
- Department of Medical Cosmetology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rui Mi
- Department of General Surgery, Zhijin County People’s Hospital, Bijie, China
| | - Rui Huang
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xian Li
- Orthopedics Department, Dongguan Songshan Lake Tungwah Hospital, DongGuan, China
| | - Fei Fan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xueqing Xie
- School of Medicine, Guizhou University, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jie Ding,
| |
Collapse
|
37
|
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel) 2023; 15:cancers15020376. [PMID: 36672326 PMCID: PMC9856874 DOI: 10.3390/cancers15020376] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.
Collapse
|
38
|
Li D, Ma L, Bao J, Cao L, Min W. PD-L1 Biomolecules Associated with Clinical Features in Non-Melanoma Skin Cancer. Clin Cosmet Investig Dermatol 2023; 16:1-8. [PMID: 36628329 PMCID: PMC9826606 DOI: 10.2147/ccid.s383481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Background Increasing evidence has indicated that several B7 family members play critical roles in the progress of many cancers. However, the clinical significance of the B7 family in cutaneous squamous cell carcinoma (cSCC) is still elusive. The purpose of this study is to investigate the potential role of B7-H1 biomolecules (PD-L1) in regulating the tumorigenesis and progression of cSCC, the most common non-melanoma skin cancer. Methods We collected transcriptome data of cSCC patients from TCGA databases (n = 496) and subjected the transcription data to bioinformatical analysis. Differential expression of B7-H1 genes with a grade-dependent pattern was identified. We collected paraffin sections of skin squamous carcinoma and analyzed by immunohistochemical staining. We further examined the PD-L1 levels of CD14+ cells in peripheral blood of each cSCC patient and normal subjects by flow cytometry. Results It was found that higher expression of PD-L1 was associated with poor prognosis of cSCC patients and shorter overall survival. These observations were further verified in the clinical paraffin sections and in peripheral blood T cells. Conclusion Our study reveals that PD-L1 is a potential prognostic marker in clinical prognosis for cSCC patients and could be valuable for cSCC treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Dermatology, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Liwen Ma
- Department of Dermatology, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jun Bao
- Department of Dermatology, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Lei Cao
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Wei Min
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China,Correspondence: Wei Min, Email
| |
Collapse
|
39
|
Xiu W, Pang J, Hu Y, Shi H. Immune-related mechanisms and immunotherapy in extragonadal germ cell tumors. Front Immunol 2023; 14:1145788. [PMID: 37138865 PMCID: PMC10149945 DOI: 10.3389/fimmu.2023.1145788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose of review Extragonadal germ cell tumors (EGCTs) are relatively rare tumors, accounting for 1%-5% of all GCTs. In this review, we summarize the current research progress regarding the pathogenesis, diagnosis, and treatment of EGCTs from an immunology perspective. Recent findings The histological origin of EGCTs is related to a gonadal origin, but they are located outside the gonad. They show great variation in morphology and can occur in the cranium, mediastinum, sacrococcygeal bone, and other areas. The pathogenesis of EGCTs is poorly understood, and their differential diagnosis is extensive and challenging. EGCT behavior varies greatly according to patient age, histological subtype, and clinical stage. Summary This review provides ideas for the future application of immunology in the fight against such diseases, which is a hot topic currently.
Collapse
Affiliation(s)
- Weigang Xiu
- 1Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiyun Pang
- 1Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yang Hu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yang Hu, ; Huashan Shi,
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yang Hu, ; Huashan Shi,
| |
Collapse
|
40
|
Qiu S, Zhao Z, Wu M, Xue Q, Yang Y, Ouyang S, Li W, Zhong L, Wang W, Yang R, Wu P, Li JP. Use of intercellular proximity labeling to quantify and decipher cell-cell interactions directed by diversified molecular pairs. SCIENCE ADVANCES 2022; 8:eadd2337. [PMID: 36542702 PMCID: PMC9770995 DOI: 10.1126/sciadv.add2337] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
FucoID is an intercellular proximity labeling technique for studying cell-cell interactions (CCIs) via fucosyltransferase (FT)-meditated fucosyl-biotinylation, which has been applied to probe antigen-specific dendritic cell (DC)-T cell interactions. In this system, bait cells of interest with cell surface-anchored FT are used to capture the interacting prey cells by transferring a biotin-modified substrate to prey cells. Here, we leveraged FucoID to study CCIs directed by different molecular pairs, e.g., programmed cell death protein-1(PD-1)/programmed cell death protein-ligand-1 (PD-L1), and identify unknown or little studied CCIs, e.g., the interaction of DCs and B cells. To expand the application of FucoID to complex systems, we also synthesized site-specific antibody-based FT conjugate, which substantially improves the ability of FucoID to probe molecular signatures of specific CCI when cells of interest (bait cells) cannot be purified, e.g., in clinical samples. Collectively, these studies demonstrate the general applicability of FucoID to study unknown CCIs in complex systems at a molecular resolution.
Collapse
Affiliation(s)
- Shuang Qiu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengyao Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shian Ouyang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wannan Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lingyu Zhong
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wenjian Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rong Yang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie P. Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
41
|
Björnsson ES. Drug induced liver injury by immunotherapy. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS : ORGANO OFICIAL DE LA SOCIEDAD ESPANOLA DE PATOLOGIA DIGESTIVA 2022; 114:705-707. [PMID: 36148680 DOI: 10.17235/reed.2022.9179/2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunotherapy has become the cornerstone of treatment of many malignancies. Check point inhibitors (CPIs) have been shown to be able to halt the progression of several types of advanced malignancies such as malignant melanoma and even keep patients in longstanding clinical remission (1-2). Thus, the use of CPIs has shown a substantial therapeutic benefit marked by signficant improvement in patient survival. However, this efficacy comes with a cost of several immune associated adverse effects due to the corollary reduction of immune self-tolerance. These adverse can be manifested as gastrointestinal symptoms (colitis), dermatological (dermatitis), lung symptoms (pneumonitis), endocrine manifestations (hypophysitis), apart from drug-induced liver injury (DILI), which is the focus of this editorial. Among 100 DILI patients due to CPIs of whom 53% had advanced melanoma, 45% had concomitant immune-mediated adverse effects, with dermatological (14%) and colitis (9%) being the most common (3).
Collapse
Affiliation(s)
- Einar Stefan Björnsson
- Gastroenterology and Hepatology, Landspitali - The National University Hospital of Iceland, Iceland
| |
Collapse
|
42
|
Yu J, Yin Y, Yu Y, Cheng M, Zhang S, Jiang S, Dong M. Effect of concomitant antibiotics use on patient outcomes and adverse effects in patients treated with ICIs. Immunopharmacol Immunotoxicol 2022; 45:386-394. [PMID: 36382735 DOI: 10.1080/08923973.2022.2145966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiuhang Yu
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yichuang Yin
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mei Dong
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
43
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
44
|
Xie Y, Kong W, Zhao X, Zhang H, Luo D, Chen S. Immune checkpoint inhibitors in cervical cancer: Current status and research progress. Front Oncol 2022; 12:984896. [PMID: 36387196 PMCID: PMC9647018 DOI: 10.3389/fonc.2022.984896] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the second most common gynecological malignant tumor endangering the health of women worldwide. Despite advances in the therapeutic strategies available to treat cervical cancer, the long-term prognosis of patients with recurrent and metastatic cervical cancer remains unsatisfactory. In recent years, immune checkpoint inhibitors (ICIs) have shown encouraging efficacy in the treatment of cervical cancer. ICIs have been approved for use in both first- and second-line cervical cancer therapies. This review summarizes the current knowledge of ICIs and the application of ICIs in clinical trials for the treatment of cervical cancer.
Collapse
|
45
|
Ren J, Jo Y, Picton LK, Su LL, Raulet DH, Garcia KC. Induced CD45 Proximity Potentiates Natural Killer Cell Receptor Antagonism. ACS Synth Biol 2022; 11:3426-3439. [PMID: 36169352 PMCID: PMC9594326 DOI: 10.1021/acssynbio.2c00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/24/2023]
Abstract
Natural killer (NK) cells are a major subset of innate immune cells that are essential for host defense against pathogens and cancer. Two main classes of inhibitory NK receptors (NKR), KIR and CD94/NKG2A, play a key role in suppressing NK activity upon engagement with tumor cells or virus-infected cells, limiting their antitumor and antiviral activities. Here, we find that single-chain NKR antagonists linked to a VHH that binds the cell surface phosphatase CD45 potentiate NK and T activities to a greater extent than NKR blocking antibodies alone in vitro. We also uncovered crosstalk between NKG2A and Ly49 that collectively inhibit NK cell activation, such that CD45-NKG2A and CD45-Ly49 bispecific molecules show synergistic effects in their ability to enhance NK cell activation. The basis of the activity enhancement by CD45 ligation may reflect greater antagonism of inhibitory signaling from engagement of MHC I on target cells, combined with other mechanisms, including avidity effects, tonic signaling, antagonism of weak inhibition from engagement of MHC I on non-target cells, and possible CD45 segregation within the NK cell-target cell synapse. These results uncover a strategy for enhancing the activity of NK and T cells that may improve cancer immunotherapies.
Collapse
Affiliation(s)
- Junming Ren
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Yeara Jo
- Division
of Immunology and Molecular Medicine, Department of Molecular and
Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Lora K. Picton
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Leon L. Su
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - David H. Raulet
- Division
of Immunology and Molecular Medicine, Department of Molecular and
Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - K. Christopher Garcia
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
46
|
Ma S, Chen F. Common strategies for effective immunotherapy of gastroesophageal cancers using immune checkpoint inhibitors. Pathol Res Pract 2022; 238:154110. [PMID: 36155325 DOI: 10.1016/j.prp.2022.154110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022]
Abstract
Gastroesophageal cancers (GECs) are very prevalent around the world and rank as the second cause of all cancer-related deaths in men and women and demonstrate a very poor prognosis. Currently, the treatment options for these malignancies are very limited and the response rates are also very low. Recently, immune checkpoint inhibitors (ICIs) have been proposed for immunotherapy of GECs; although preliminary results obtained from the clinical trials of ICIs in GECs were promising, they have shown to be effective only in a few subsets of patients who had a previous immune response to the tumor. In order to maximize the efficacy of ICIs in GECs, as well as identify the patients who will likely benefit from ICIs, several predictive biomarkers, such as Programmed death-ligand 1 (PD-L1) have been developed and evaluated. Since the single ICI therapies resulted in poor treatment response, several clinical studies began to explore various combinations of one or two ICIs with other anti-cancer treatment approaches, including chemotherapy, radiotherapy, and anti-angiogenesis therapy. These combinations demonstrated a more effective response among the ICIs-responsive patients and even in some instances sensitized the non-responsive individuals. This review is aimed to summarize the efforts made so far for improving the effectiveness of ICIs in the treatment of patients with GECs. Furthermore, multiple aspects of translational medicine such as available biomarkers and interactions between tumor and the immune system, as well as clinical aspects regarding the combination therapies and results of clinical trials will be discussed.
Collapse
Affiliation(s)
- Shuang Ma
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.
| | - Fei Chen
- Department of Gastroenterology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, China.
| |
Collapse
|
47
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
48
|
Immune Infiltration-Related ceRNA Network Revealing Potential Biomarkers for Prognosis of Head and Neck Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:1014347. [PMID: 36097539 PMCID: PMC9463596 DOI: 10.1155/2022/1014347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a frequently lethal malignancy, and the mortality is considerably high. The tumor microenvironment (TME) has been identified as a critical participation in cancer development, treatment, and prognosis. However, competing endogenous RNA (ceRNA) networks grouping with immune/stromal scores of HNSCC patients need to be further illustrated. Therefore, our study aimed to provide clues for searching promising prognostic markers of TME in HNSCC. Materials and Methods ESTIMATE algorithm was used to calculate immune scores and stromal scores of the enrolled HNSCC patients. Differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified by comparing the expression difference between high and low immune/stromal scores. Then, a ceRNA network and protein-protein interaction (PPI) network were constructed for selecting hub regulators. In addition, survival analysis was performed to access the association between immune scores, stromal scores, and differentially expressed RNAs in the ceRNA network and the overall survival (OS) of HNSCC patients. Then, the GSE65858 datasets from Gene Expression Omnibus (GEO) database was used for verification. At last, the difference between the clinical characteristics and immune cell infiltration in different expression groups of IL10RA, PRF1, and IL2RA was analyzed. Results Survival analysis showed a better OS in the high immune score group, and then we constructed a ceRNA network composed of 97 DEGs, 79 DELs and 22 DEMs. Within the ceRNA network, FOXP3, IL10RA, STAT5A, PRF1, IL2RA, miR-148a-3p, miR-3065-3p, and lncRNAs, including CXCR2P1, HNRNPA1P21, CTA-384D8.36, and IGHV1OR15-2, were closely correlated with the OS of HNSCC patients. Especially, using the data from GSE65858, we successfully verified that IL10RA, PRF1, and IL2RA were not only significantly upregulated in patients high immune scores, but also their high expressions were associated with longer survival time. In addition, stratified analysis showed that PRF1 and IL2RA might be involved in the mechanism of tumor progress. Conclusion In conclusion, we constructed a ceRNA network related to the TME of HNSCC, which provides candidates for therapeutic intervention and prognosis evaluation.
Collapse
|
49
|
Bessone F, Bjornsson ES. Checkpoint inhibitor-induced hepatotoxicity: Role of liver biopsy and management approach. World J Hepatol 2022; 14:1269-1276. [PMID: 36158917 PMCID: PMC9376772 DOI: 10.4254/wjh.v14.i7.1269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Immunological checkpoint inhibitors (ICIs) have revolutionized therapy of many different malignanices. Concomitant immune-mediated adverse effects are common and can affect many organs such as the skin, lungs, gastrointestinal and endocrine organs as well as the liver. Liver injury has been reported in 3%-8% of patients with grade III-IV hepatitis in retrospective studies. The liver injury is characterized by hepatocellular injury resembling autoimmune hepatitis biochemically but not immunologically as patients with ICI induced hepatoxicity rarely have auto-antibodies or IgG elevation. The role for liver biopsy (LB) in patients with suspected liver injury due to ICIs is controversial and it is not clear whether results of a LB will change clinical management. LB can be helpful when there is diagnostic uncertainty and pre-existing liver disease is suspected. Although there are no distinctive histological features, the finding of granulomas and endothelitis may suggest a specific type of hepatitis induced by ICIs. The natural history of hepatotoxicity of ICI therapy is not well known. Recent studies have demonstrated that 33%-50% of patients improve spontaneously with discontinuation of ICIs. In patients with jaundice and/or coagulopathy corticosteroids are used. The high doses of corticosteroids with 1-2 mg/kg/d of methylprednisolone recommended by the oncological societies are controversial. Recently it has shown that initial treatment with 1 mg/kg/d provided similar liver tests improvement which was also associated with a reduced risk of steroid-induced adverse effects in comparison with higher-dose regimens. Secondary immunosuppression mostly with mycophenolate mofetil has been reported to be helpful.
Collapse
Affiliation(s)
- Fernando Bessone
- Department of Gastroenterology and Hepatology, Facultad de Ciencias Médicas, Hospital Provincial del Centenario, University of Rosario School of Medicine, Rosario 2000, Santa Fe, Argentina.
| | - Einar Stefan Bjornsson
- Department of Gastroenterology, Natl Univ Hosp Iceland, Sect Gastroenterol & Hepatol, Dept Internal Med, Hringbraut 11D, IS-101 Reykjavik, Iceland
- Landspitali University Hospital and Faculty of Medicine, University of Iceland, Reykjavik Postal code 101, State of Reykjavik, Iceland
| |
Collapse
|
50
|
Montera MW, Marcondes-Braga FG, Simões MV, Moura LAZ, Fernandes F, Mangine S, Oliveira Júnior ACD, Souza ALADAGD, Ianni BM, Rochitte CE, Mesquita CT, de Azevedo Filho CF, Freitas DCDA, Melo DTPD, Bocchi EA, Horowitz ESK, Mesquita ET, Oliveira GH, Villacorta H, Rossi Neto JM, Barbosa JMB, Figueiredo Neto JAD, Luiz LF, Hajjar LA, Beck-da-Silva L, Campos LADA, Danzmann LC, Bittencourt MI, Garcia MI, Avila MS, Clausell NO, Oliveira NAD, Silvestre OM, Souza OFD, Mourilhe-Rocha R, Kalil Filho R, Al-Kindi SG, Rassi S, Alves SMM, Ferreira SMA, Rizk SI, Mattos TAC, Barzilai V, Martins WDA, Schultheiss HP. Brazilian Society of Cardiology Guideline on Myocarditis - 2022. Arq Bras Cardiol 2022; 119:143-211. [PMID: 35830116 PMCID: PMC9352123 DOI: 10.36660/abc.20220412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Fabiana G Marcondes-Braga
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Marcus Vinícius Simões
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, São Paulo, SP - Brasil
| | | | - Fabio Fernandes
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Sandrigo Mangine
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Bárbara Maria Ianni
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Carlos Eduardo Rochitte
- Instituto do Coração (InCor) - Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
| | - Claudio Tinoco Mesquita
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Universidade Federal Fluminense,Rio de Janeiro, RJ - Brasil
- Hospital Vitória, Rio de Janeiro, RJ - Brasil
| | | | | | | | - Edimar Alcides Bocchi
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Evandro Tinoco Mesquita
- Universidade Federal Fluminense,Rio de Janeiro, RJ - Brasil
- Centro de Ensino e Treinamento Edson de Godoy Bueno / UHG, Rio de Janeiro, RJ - Brasil
| | | | | | | | | | | | | | - Ludhmila Abrahão Hajjar
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Instituto do Câncer do Estado de São Paulo da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Luis Beck-da-Silva
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS - Brasil
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | | | - Marcelo Imbroise Bittencourt
- Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ - Brasil
- Hospital Universitário Pedro Ernesto, Rio de Janeiro, RJ - Brasil
| | - Marcelo Iorio Garcia
- Hospital Universitário Clementino Fraga Filho (HUCFF) da Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | - Monica Samuel Avila
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | | | | | | | - Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals and Case Western Reserve University,Cleveland, Ohio - EUA
| | | | - Silvia Marinho Martins Alves
- Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE - Brasil
- Universidade de Pernambuco (UPE), Recife, PE - Brasil
| | - Silvia Moreira Ayub Ferreira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Stéphanie Itala Rizk
- Instituto do Câncer do Estado de São Paulo da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
- Hospital Sírio Libanês, São Paulo, SP - Brasil
| | | | - Vitor Barzilai
- Instituto de Cardiologia do Distrito Federal, Brasília, DF - Brasil
| | - Wolney de Andrade Martins
- Universidade Federal Fluminense,Rio de Janeiro, RJ - Brasil
- DASA Complexo Hospitalar de Niterói, Niterói, RJ - Brasil
| | | |
Collapse
|