1
|
Novel gene similar to nitrite reductase (NO forming) plays potentially important role in the latency of tuberculosis. Sci Rep 2021; 11:19813. [PMID: 34615967 PMCID: PMC8494734 DOI: 10.1038/s41598-021-99346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
The development of the latent phenotype of Mycobacterium tuberculosis (Mtb) in the human lungs is the major hurdle to eradicate Tuberculosis. We recently reported that exposure to nitrite (10 mM) for six days under in vitro aerobic conditions completely transforms the bacilli into a viable but non-cultivable phenotype. Herein, we show that nitrite (beyond 5 mM) treated Mtb produces nitric oxide (NO) within the cell in a dose-dependent manner. Our search for the conserved sequence of NO synthesizing enzyme in the bacterial system identified MRA2164 and MRA0854 genes, of which the former was found to be significantly up regulated after nitrite exposure. In addition, the purified recombinant MRA2164 protein shows significant nitrite dependent NO synthesizing activity. The knockdown of the MRA2164 gene at mRNA level expression resulted in a significantly reduced NO level compared to the wild type bacilli with a simultaneous return of its replicative capability. Therefore, this study first time reports that nitrite induces dormancy in Mtb cells through induced expression of the MRA2164 gene and productions of NO as a mechanism for maintaining non-replicative stage in Mtb. This observation could help to control the Tuberculosis disease, especially the latent phenotype of the bacilli.
Collapse
|
2
|
An R, Grewal PS. Comparative Analysis of Xenorhabdus koppenhoeferi Gene Expression during Symbiotic Persistence in the Host Nematode. PLoS One 2016; 11:e0145739. [PMID: 26745883 PMCID: PMC4706420 DOI: 10.1371/journal.pone.0145739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/08/2015] [Indexed: 01/24/2023] Open
Abstract
Species of Xenorhabdus and Photorhabdus bacteria form mutualistic associations with Steinernema and Heterorhabditis nematodes, respectively and serve as model systems for studying microbe-animal symbioses. Here, we profiled gene expression of Xenorhabdus koppenhoeferi during their symbiotic persistence in the newly formed infective juveniles of the host nematode Steinernema scarabaei through the selective capture of transcribed sequences (SCOTS). The obtained gene expression profile was then compared with other nematode-bacteria partnerships represented by Steinernema carpocapsae-Xenorhabdus nematophila and Heterorhabditis bacteriophora-Photorhabdus temperata. A total of 29 distinct genes were identified to be up-regulated and 53 were down-regulated in X. koppenhoeferi while in S. scarabaei infective juveniles. Of the identified genes, 8 of the up-regulated and 14 of the down-regulated genes were similarly expressed in X. nematophila during persistence in its host nematode S. carpocapsae. However, only one from each of these up- and down-regulated genes was common to the mutualistic partnership between the bacterium P. temperata and the nematode H. bacteriophora. Interactive network analysis of the shared genes between X. koppenhoeferi and X. nematophila demonstrated that the up-regulated genes were mainly involved in bacterial survival and the down-regulated genes were more related to bacterial virulence and active growth. Disruption of two selected genes pta (coding phosphotransacetylase) and acnB (coding aconitate hydratase) in X. nematophila with shared expression signature with X. koppenhoeferi confirmed that these genes are important for bacterial persistence in the nematode host. The results of our comparative analyses show that the two Xenorhabdus species share a little more than a quarter of the transcriptional mechanisms during persistence in their nematode hosts but these features are quite different from those used by P. temperata bacteria in their nematode host H. bacteriophora.
Collapse
Affiliation(s)
- Ruisheng An
- Department of Entomology and Plant Pathology, University of Tennessee, 2505 E. J. Chapman Drive, Knoxville, TN, 37996, United States of America
| | - Parwinder S. Grewal
- Department of Entomology and Plant Pathology, University of Tennessee, 2505 E. J. Chapman Drive, Knoxville, TN, 37996, United States of America
| |
Collapse
|
3
|
Wang J, Chen G, Gong H, Huang W, Long D, Tang W. Amelioration of experimental acute pancreatitis with Dachengqi Decoction via regulation of necrosis-apoptosis switch in the pancreatic acinar cell. PLoS One 2012; 7:e40160. [PMID: 22768339 PMCID: PMC3388070 DOI: 10.1371/journal.pone.0040160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/01/2012] [Indexed: 02/05/2023] Open
Abstract
Severity of acute pancreatitis contributes to the modality of cell death. Pervious studies have demonstrated that the herb medicine formula “Dachengqi Decoction” (DCQD) could ameliorate the severity of acute pancreatitis. However, the biological mechanisms governing its action of most remain unclear. The role of apoptosis/necrosis switch within acute pancreatitis has attracted much interest, because the induction of apoptosis within injured cells might suppress inflammation and ameliorate the disease. In this study, we used cerulein (10−8 M)-stimulated AR42J cells as an in vitro model of acute pancreatitis and retrograde perfusion into the biliopancreatic duct of 3.5% sodium taurocholate as an in vivo rat model. After the treatment of DCQD, cell viability, levels of apoptosis and necrosis, reactive oxygen species positive cells, serum amylase, concentration of nitric oxide and inducible nitric oxide syntheses, pancreatic tissue pathological score and inflammatory cell infiltration were tested. Pretreatment with DCQD increased cell viability, induced apoptosis, decreased necrosis and reduced the severity of pancreatitis tissue. Moreover, treatment with DCQD reduced the generation of reactive oxygen species in AR42J cells but increased the concentration of nitric oxide of pancreatitis tissues. Therefore, the regulation of apoptosis/necrosis switch by DCQD might contribute to ameliorating the pancreatic inflammation and pathological damage. Further, the different effect on reactive oxygen species and nitric oxide may play an important role in DCQD-regulated apoptosis/necrosis switch in acute pancreatitis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Guangyuan Chen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wei Huang
- Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | - Dan Long
- Department of Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
- * E-mail:
| |
Collapse
|
4
|
Batcioglu K, Gul M, Uyumlu AB, Esrefoglu M. Liver lipid peroxidation and antioxidant capacity in cerulein-induced acute pancreatitis. Braz J Med Biol Res 2010; 42:776-82. [PMID: 19738983 DOI: 10.1590/s0100-879x2009000900001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 06/15/2009] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to evaluate the role of oxidative damage in pancreatitis-induced hepatic injury. Thirty-five rats were divided into five groups (each of 7 rats): control, cerulein (100 microg/kg body weight), cerulein and pentoxifylline (12 mg/kg body weight), cerulein plus L-NAME (10 mg/kg body weight) and cerulein plus L-arginine (160 mg/kg body weight). The degree of hepatic cell degeneration differed significantly between groups. Mean malondialdehyde levels were 7.00 +/- 2.29, 20.89 +/- 10.13, 11.52 +/- 4.60, 18.69 +/- 8.56, and 8.58 +/- 3.68 nmol/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Mean catalase activity was 3.20 +/- 0.83, 1.09 +/- 0.35, 2.05 +/- 0.91, 1.70 +/- 0.60, and 2.85 +/- 0.47 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively, and mean glutathione peroxidase activity was 0.72 +/- 0.25, 0.33 +/- 0.09, 0.37 +/- 0.04, 0.34 +/- 0.07 and 0.42 +/- 0.1 U/mg protein for the control, cerulein, pentoxifylline, L-NAME, and L-arginine groups, respectively. Cerulein-induced liver damage was accompanied by a significant increase in tissue malondialdehyde levels (P < 0.05) and a significant decrease in catalase (P < 0.05) and GPx activities (P < 0.05). L-arginine and pentoxifylline, but not L-NAME, protected against this damage. Oxidative injury plays an important role not only in the pathogenesis of AP but also in pancreatitis-induced hepatic damage.
Collapse
Affiliation(s)
- K Batcioglu
- Department of Biochemistry, Inonu University, Malatya, Turkey.
| | | | | | | |
Collapse
|
5
|
Ang AD, Adhikari S, Ng SW, Bhatia M. Expression of nitric oxide synthase isoforms and nitric oxide production in acute pancreatitis and associated lung injury. Pancreatology 2008; 9:150-159. [PMID: 19077466 DOI: 10.1159/000178886] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 03/21/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS The role of nitric oxide (NO) has been increasingly implicated in the pathophysiology of acute pancreatitis (AP). Studies have shown increased NO production in AP although not all are agreeable on whether NO is beneficial or detrimental in AP. This study aims to profile NO production and NO synthase (NOS) expression in the pancreas and lungs in the progression of AP in mice to gain insights to the role played by different NOS isoforms. METHODS AP was induced in mice by hourly administration of cerulein. NO production was determined by measuring the total nitrite and nitrate (NOx) content while NOS expression was measured by Western blot. RESULTS Pancreatic NO production increased sharply and was sustained throughout AP. iNOS expression was greatly increased while eNOS was downregulated at the later stages. In the lungs, there was an unexpected early increase in the constitutive NOS expression; however iNOS was also significantly overexpressed at the later time point along with a significant increase in NO. Acinar cells were found to overproduce NO in response to cerulein hyperstimulation with iNOS again being the major contributor. CONCLUSION These data show that NO production and NOS expression are differentially regulated temporally and in magnitude in the pancreas and lungs in response to cerulein hyperstimulation which suggests differing roles for each NOS isoform. and IAP.
Collapse
Affiliation(s)
- Abel Damien Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
6
|
Abstract
Acute pancreatitis is a frequent acute abdomen in clinic, causes damages not only to pancreas, but also to distant organs. Liver is one of the mainly involved organs. The development of liver injury may aggravate pancreatitis. The pathogenesis of acute pancreatitis with liver injury is mainly related to cytokines, pancreatic enzyme, oxidative stress, microcirculation disturbance, apoptosis and pancreatitis-associated ascitic fluid, etc. Its treatment is also to eradicate these factors. However, more methods are still under animal studies. Their clinical application requires further study.
Collapse
|
7
|
Abstract
Acute pancreatitis (AP) is characterized by edema, acinar cell necrosis, hemorrhage, and severe inflammation of the pancreas. Patients with AP present with elevated blood and urine levels of pancreatic digestive enzymes, such as amylase and lipase. Severe AP may lead to systemic inflammatory response syndrome and multiorgan dysfunction syndrome, which account for the high mortality rate of AP. Although most (>80%) cases of AP are associated with gallstones and alcoholism, some are idiopathic. Although the pathogenesis of AP has not yet been elucidated, a common feature is the premature activation of trypsinogen within pancreatic tissues, which triggers autodigestion of the gland. Recent advances in basic research suggest that etiologic factors including cyclooxygenase-2, substance P, and angiotensin II may have novel roles in this disease. Basic research data obtained thus far have been based on animal models of AP ranging from mild edematous pancreatitis to severe necrotizing pancreatitis. In view of this, an adequate selection of experimental animal models is of paramount importance. Notwithstanding these animal models, it should be emphasized that none of these models mimic the clinical situation where varying degrees of severity usually occur. In this review, commonly used animal models of AP will be critically evaluated. A discussion of recent advances in our knowledge about AP risk factors is also included.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | |
Collapse
|
8
|
Shields CJ, Delaney CP, Winter DC, Young L, Gorey TF, Fitzpatrick JM. Induction of Nitric Oxide Synthase is a Key Determinant of Progression to Pulmonary Injury in Experimental Pancreatitis. Surg Infect (Larchmt) 2006; 7:501-11. [PMID: 17233567 DOI: 10.1089/sur.2006.7.501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The immunomodulatory potential of nitric oxide provides prospective strategies to attenuate inappropriate inflammatory reactions. This study tested the hypothesis that inhibition of nitric oxide synthase (NOS) reduces end-organ injury in pancreatitis. METHODS Pancreatitis was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injection of 20% L-arginine (500 mg/100 g of body weight). Animals were randomized into four groups of 45: Pancreatitis without intervention; pre-treatment with i.p. aminoguanidine (AMG) (50 mg/kg), an isoform-specific inhibitor of inducible NOS; post-treatment with AMG (50 mg/kg); and controls. Pancreatic and pulmonary pathology, neutrophil infiltration (myeloperoxidase activity), endothelial permeability (bronchoalveolar lavage, wet:dry weight ratio), NOS expression, and concentrations of pro-inflammatory cytokines (tumor necrosis factor-alpha; interleukin-6) were assessed. RESULTS Inhibition of iNOS significantly reduced end-organ injury. Pancreatic and pulmonary injury scores were markedly attenuated in the AMG treatment groups compared with no intervention (p < 0.05). Increased endothelial permeability (2,411.1 +/- 47.9) and neutrophil sequestration (1.99 +/- 0.01) were manifest in the untreated animals compared with AMG pretreatment (1,286.8 +/- 35.1 and 1,548.0 +/- 0.1; p < 0.05). In addition, a significant reduction in inflammatory cytokine concentrations was observed (p < 0.05). CONCLUSIONS Inhibition of inducible NOS encourages a more benign immunologic profile, minimizing the deleterious effects of unrestrained neutrophil sequestration subsequent to pancreatitis.
Collapse
Affiliation(s)
- Conor J Shields
- Department of Surgery, Mater Misericordiae Hospital, and University College, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
9
|
Lozano FS, Cascajo C, García-Sánchez E, Barros MB, García-Criado FJ, Parreño F, García-Sánchez JE, Gómez-Alonso A. Bacterial translocation as a source of Dacron-graft contamination in experimental aortic operation: the importance of controlling SIRS. Surgery 2006; 140:83-92. [PMID: 16857446 DOI: 10.1016/j.surg.2006.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 12/29/2005] [Accepted: 12/29/2005] [Indexed: 01/22/2023]
Abstract
BACKGROUND Several experimental studies have shown the beneficial effects of nitric oxide (NO) in the modulation of the systemic inflammatory response syndrome (SIRS). Nitric oxide is involved in and affects almost all stages in the development of inflammation. We have attempted to ascertain whether the nitric oxide donor molsidomine prevents aortic graft contamination through control of the SIRS and a decrease in bacterial translocation (BT). METHODS Twenty-four mini-pigs were divided into 4 groups. The animals were subjected to suprarenal aortic/iliac cross-clamping (for 30 minutes) and by-pass with a Dacron-collagen prosthetic graft impregnated in rifampicin. Groups: 1) sham (aortic dissection alone); 2) cross-clamping and bypass; 3) hemorrhage of 40% of total blood volume before cross-clamping and by-pass; and 4) the same as in group 3 but also including the administration of the NO donor molsidomine (4 mg/kg) 5 minutes before cross-clamping. VARIABLES 1) bacteriology of mesenteric lymph nodes (MLN), kidney, blood, and prosthesis; 2) serum TNF-alpha (ELISA); and 3) iNOS expression in kidney and liver (Western blot). RESULTS Aortic cross-clamping with or without hemorrhage was associated with BT in 80% and 100% of the animals, respectively. About 86% of the bacteria isolated in the graft were also present in MLN. This contamination coincided with an increase in TNF-alpha and with a greater expression of iNOS. Molsidomine administration decreased TNF-alpha and iNOS, decreased BT (from 100% to 20% of the animals), and decreased graft contamination (from 83% to 20%). CONCLUSIONS The present model induces high levels of BT and SIRS, both acted as sources of contamination for the implanted Dacron graft. Molsidomine administration decreased the presence of bacteria in the graft by controlling BT and modulating SIRS.
Collapse
Affiliation(s)
- Francisco S Lozano
- Service of Vascular Surgery, Salamanca, Spain; Experimental Surgery Unit, Medical School, University of Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kim Y, Koyutürk M, Topkara U, Grama A, Subramaniam S. Inferring functional information from domain co-evolution. Bioinformatics 2005; 22:40-9. [PMID: 16301205 DOI: 10.1093/bioinformatics/bti723] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Co-evolution is a powerful mechanism for understanding protein function. Prior work in this area has shown that co-evolving proteins are more likely to share the same function than those that do not because of functional constraints. Many of the efforts founded on this observation, however, are at the level of entire sequences, implicitly assuming that the complete protein sequence follows a single evolutionary trajectory. Since it is well known that a domain can exist in various contexts, this assumption is not valid for numerous multi-domain proteins. Motivated by these observations, we introduce a novel technique called Coevolutionary-Matrix that captures co-evolution between regions of two proteins. Instead of using existing domain information, the method exploits residue-level conservation to identify co-evolving regions that might correspond to domains. RESULTS We show that the Coevolutionary-Matrix method can detect greater number of known functional associations for the Escherichia coli proteins when compared with earlier implementations of phylogenetic profiles. Furthermore, co-evolving regions of proteins detected by our method enable us to make hypotheses about their specific functions, many of which are supported by existing biochemical studies.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
11
|
Kirschenbaum L, Astiz M. Acute pancreatitis: a possible role for activated protein C? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2005; 9:243-4. [PMID: 15987410 PMCID: PMC1175889 DOI: 10.1186/cc3515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute pancreatitis results from a sequence of events that involve the systemic inflammatory response. Activated C has multiple anti-inflammatory activities and may attenuate the degree of pancreatic injury and systemic organ dysfunction when infused early in pancreatitis
Collapse
Affiliation(s)
| | - Mark Astiz
- Saint Vincents Hospital, New York, New York, USA
| |
Collapse
|
12
|
Kawamoto H, Morita T, Shimizu A, Inada T, Aiba H. Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli. Genes Dev 2005; 19:328-38. [PMID: 15650111 PMCID: PMC546511 DOI: 10.1101/gad.1270605] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Accumulation of phosphosugars such as glucose-6-phosphate causes a rapid degradation of ptsG mRNA encoding the major glucose transporter IICB(Glc) in an RNase E/degradosome-dependent manner. The destabilization of ptsG mRNA is caused by a small antisense RNA (SgrS) that is induced by phosphosugar stress. In this study, we analyzed a series of ptsG-crp translational fusions to identify the mRNA region required for the rapid degradation of ptsG mRNA. We found that the ptsG-crp mRNA is destabilized in response to phosphosugar stress when it contains the 5' portion of ptsG mRNA corresponding up to the first two transmembrane domains (TM1 and TM2) of IICB(Glc). The destabilization of ptsG-crp mRNA was largely eliminated by frameshift mutations in the transmembrane region. The IICB(Glc)-CRP fusion proteins containing more than two transmembrane domains were localized at the membrane. The efficient destabilization of ptsG-crp mRNA was restored when TM1 and TM2 of IICB(Glc) were replaced by part of the LacY transmembrane region. We conclude that the membrane-targeting property of IICB(Glc) protein rather than the particular nucleotide or amino acid sequence is required for the efficient degradation of ptsG mRNA in response to metabolic stress. The stimulation of ptsG-crp mRNA degradation was completely eliminated when either the hfq or sgrS gene is inactivated. The efficient mRNA destabilization was observed in the absence of membrane localization when translation was reduced by introducing a mutation in the ribosome-binding site in the cytoplasmic ptsG-crp mRNA. Taken together, we conclude that mRNA localization to the inner membrane coupled with the membrane insertion of nascent peptide mediates the Hfq/SgrS-dependent ptsG mRNA destabilization presumably by reducing second rounds of translation.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
13
|
Wang ZT, Yao YM, Xiao GX, Sheng ZY. Risk factors of development of gut-derived bacterial translocation in thermally injured rats. World J Gastroenterol 2004; 10:1619-24. [PMID: 15162536 PMCID: PMC4572765 DOI: 10.3748/wjg.v10.i11.1619] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: Studies have demonstrated that gut-derived bacterial translocation (BT) might play a role in the occurrence of sepsis and multiple organ dysfunction syndrome (MODS). Yet, no convincing overall analysis of risk factors for BT has been reported. The purpose of this study was to evaluate the related factors for the development of BT in burned rats.
METHODS: Wistar rats were subjected to 30% third-degree burns. Then samples were taken on postburn d 1, 3, and 5. Incidence of BT and counts of mucosal bifidobacteria, fungi and E. coli, mucus sIgA, degree of injury to ileal mucosa, and plasma interleukin-6 were observed. Univariate analysis and multivariate logistic regression analysis were performed.
RESULTS: The overall BT rate was 53.9% (69 in 128). The result of univariate analysis showed that the levels of plasma endotoxin and interleukin-6, the counts of mucosal fungi and E. coli, and the scores of ileum lesion were markedly increased in animals with BT compared with those without (P = 0.000-0.005), while the levels of mucus sIgA and the counts of mucosal bifidobacteria were significantly reduced in animals with translocation compared with those without (P = 0.000). There was a significant positive correlation between mucus sIgA and the counts of mucosal bifidobacteria (r = 0.74, P = 0.001). Moreover, there were strong negative correlations between scores of ileum-lesion and counts of bifidobacteria (r = -0.67, P = 0.001). Multivariate logistic regression revealed that ileum lesion score (odds ratio [OR] 45.52, 95% confidence interval [CI] 5.25-394.80), and counts of mucosal bifidobacteria (OR 0.039, 95% CI 0.0032-0.48) were independent predictors of BT secondary to severe burns.
CONCLUSION: Ileal lesion score and counts of mucosal bifidobacteria can be chosen as independent prognosis factors of the development of BT. Specific interventions targeting these high-risk factors might be implemented to attenuate BT, including strategies for repair of damaged intestinal mucosae and restoration of the balance of gastrointestinal flora.
Collapse
Affiliation(s)
- Zhong-Tang Wang
- Department of Microbiology and Immunology, Burns Institute, 304th Hospital of PLA, Beijing 100037, China
| | | | | | | |
Collapse
|