1
|
Aliyeva D, Amanvermez R, Karabulut K, Gün S. The effects of silymarin plus glutathione on the prevention of liver ischemia-reperfusion injury. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
| | | | | | - Seda Gün
- Ondokuz Mayıs University, Turkey
| |
Collapse
|
2
|
Neri AA, Dontas IA, Iliopoulos DC, Karatzas T. Pathophysiological Changes During Ischemia-reperfusion Injury in Rodent Hepatic Steatosis. In Vivo 2021; 34:953-964. [PMID: 32354880 DOI: 10.21873/invivo.11863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Ischemia and reperfusion injuries may produce deleterious effects on hepatic tissue after liver surgery and transplantation. The impact of ischemia-reperfusion injury (IRI) on the liver depends on its substrate, the percentage of liver ischemic tissue subjected to IRI and the ischemia time. The consequences of IRI are more evident in pathologic liver substrates, such as steatotic livers. This review is the result of an extended bibliographic PubMed search focused on the last 20 years. It highlights basic differences encountered during IRI in lean and steatotic livers based on studies using rodent experimental models. CONCLUSION The main difference in cell death between lean and steatotic livers is the prevalence of apoptosis in the former and necrosis in the latter. There are also major changes in the effect of intracellular mediators, such as TNFα and IL-1β. Further experimental studies are needed in order to increase current knowledge of IRI effects and relevant mechanisms in both lean and steatotic livers, so that new preventive and therapeutic strategies maybe developed.
Collapse
Affiliation(s)
- Anna-Aikaterini Neri
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Theodore Karatzas
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece.,2 Department of Propedeutic Surgery, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Afroz F, Jonkman E, Hua J, Kist A, Zhou Y, Sokoya EM, Padbury R, Nieuwenhuijs V, Barritt G. Evidence that decreased expression of sinusoidal bile acid transporters accounts for the inhibition by rapamycin of bile flow recovery following liver ischemia. Eur J Pharmacol 2018; 838:91-106. [PMID: 30179613 DOI: 10.1016/j.ejphar.2018.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022]
Abstract
Rapamycin is employed as an immunosuppressant following organ transplant and, in patients with hepatocellular carcinoma, to inhibit cancer cell regrowth following liver surgery. Preconditioning the liver with rapamycin to induce the expression of antioxidant enzymes is a potential strategy to reduce ischemia reperfusion (IR) injury. However, pre-treatment with rapamycin inhibits bile flow, especially following ischemia. The aim was to investigate the mechanisms involved in this inhibition. In a rat model of segmental hepatic ischemia and reperfusion, acute administration of rapamycin by intravenous injection did not inhibit the basal rate of bile flow. Pre-treatment of rats with rapamycin for 24 h by intraperitoneal injection inhibited the expression of mRNA encoding the sinusoidal influx transporters Ntcp, Oatp1 and 2 and the canalicular efflux transporter Bsep, and increased expression of canalicular Mrp2. Dose-response curves for the actions of rapamycin on the expression of Bsep and Ntcp in cultured rat hepatocytes were biphasic, and monophasic for effects on Oatp1. In cultured tumorigenic H4IIE liver cells, several bile acid transporters were not expressed, or were expressed at very low levels compared to hepatocytes. In H4IIE cells, rapamycin increased expression of Ntcp, Oatp1 and Mrp2, but decreased expression of Oatp2. It is concluded that the inhibition of bile flow recovery following ischemia observed in rapamycin-treated livers is principally due to inhibition of the expression of sinusoidal bile acid transporters. Moreover, in tumorigenic liver tissue the contribution of tumorigenic hepatocytes to total liver bile flow is likely to be small and is unlikely to be greatly affected by rapamycin.
Collapse
Affiliation(s)
- Farhana Afroz
- Department of Medical Biochemistry, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Els Jonkman
- Department of Medical Biochemistry, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Jin Hua
- Department of Medical Biochemistry, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Alwyn Kist
- Department of Medical Biochemistry, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Yabin Zhou
- Department of Medical Biochemistry, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Elke M Sokoya
- Department of Human Physiology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Robert Padbury
- The HPB and Liver Transplant Unit, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | | | - Greg Barritt
- Department of Medical Biochemistry, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
4
|
Neutrophils: a cornerstone of liver ischemia and reperfusion injury. J Transl Med 2018; 98:51-62. [PMID: 28920945 DOI: 10.1038/labinvest.2017.90] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is the main cause of morbidity and mortality due to graft rejection after liver transplantation. During IRI, an intense inflammatory process occurs in the liver. This hepatic inflammation is initiated by the ischemic period but occurs mainly during the reperfusion phase, and is characterized by a large neutrophil recruitment to the liver. Production of cytokines, chemokines, and danger signals results in activation of resident hepatocytes, leukocytes, and Kupffer cells. The role of neutrophils as the main amplifiers of liver injury in IRI has been recognized in many publications. Several studies have shown that elimination of excessive neutrophils or inhibition of their function leads to reduction of liver injury and inflammation. However, the mechanisms involved in neutrophil recruitment during liver IRI are not well known. In addition, the molecules necessary for this type of migration are poorly defined, as the liver presents an atypical sinusoidal vasculature in which the classical leukocyte migration paradigm only partially applies. This review summarizes recent advances in neutrophil-mediated liver damage, and its application to liver IRI. Basic mechanisms of activation of neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of danger signals, adhesion molecules, chemokines, glycosaminoglycans (GAGs), and metalloproteinases is explored. The precise definition of the molecular events that govern the recruitment of neutrophils and their movement into inflamed tissue may offer new therapeutic alternatives for hepatic injury by IRI and other inflammatory diseases of the liver.
Collapse
|
5
|
Modulation of Glutathione Hemostasis by Inhibition of 12/15-Lipoxygenase Prevents ROS-Mediated Cell Death after Hepatic Ischemia and Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8325754. [PMID: 28811867 PMCID: PMC5546123 DOI: 10.1155/2017/8325754] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/18/2017] [Indexed: 12/26/2022]
Abstract
Background Reactive oxygen species- (ROS-) mediated ischemia-reperfusion injury (IRI) detrimentally impacts liver transplantation and resection. 12/15-Lipoxygenase (12/15-LOX), an antagonistic protein of the glutathione peroxidase 4 (GPX4) signaling cascade, was proven to mediate cell death in postischemic cerebral and myocardial tissue. The aim of this study was to investigate the impact of 12/15-LOX inhibition on hepatic IRI. Methods Livers of C57BL/6 mice were exposed to 60 minutes of partial warm ischemia and 90 minutes of reperfusion after previous Baicalein administration, an inhibitor of 12/15-LOX. Tissue samples were analyzed by TUNEL assay, Western blot, and spectral photometry. Results TUNEL labeling showed a significant reduction of hepatic cell death following baicalein pretreatment. Western Blot analysis revealed a significant downregulation of Jun-amino-terminal-kinase (JNK), caspase-3, and poly-ADP-ribose-polymerase (PARP), besides considerably lowered p44/42-MAP-kinase (ERK1/2) expression after Baicalein administration. A significant elevation of glutathione oxidation was measured in Baicalein pretreated livers. Conclusion Our data show that inhibition of 12/15-lipoxygenase causes significant cell death reduction after hepatic ischemia and reperfusion by enhancing glutathione metabolism. We conclude that GPX4-dependent cell death signaling cascade might play a major role in development of hepatic IRI, in which the investigated proteins JNK, caspase-3, ERK1/2, and PARP might contribute to tissue damage.
Collapse
|
6
|
Effects of reduced glutathione therapy on chronic hepatitis B. Cent Eur J Immunol 2017; 42:97-100. [PMID: 28680337 PMCID: PMC5470607 DOI: 10.5114/ceji.2016.65894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/25/2016] [Indexed: 11/17/2022] Open
Abstract
Developed chronic hepatitis B (CHB) causes death in approximately one million patients every year. Therefore, natural drugs with high therapeutic efficacy and minimal side effects must be developed for CHB treatment. This study aimed to relate the therapeutic effects of glutathione on CHB. A total of 104 CHB patients were randomly divided into two groups: the control group, which received an intravenous drip of 0.4 g of inosine injection with 250 ml of 5% glucose once a day for eight weeks, and the treatment group, which received an intravenous drip of 1200 mg of glutathione on the basis of the treatment of the control group. Glutathione treatment decreased the serum levels of asparaginic acid transaminase, alanine aminotransferase, total bilirubin, total bile acids, haluronic acid, collagen IV, laminin, transforming growth factor-β1, tumour necrosis factor-α, interleukin-6, and interleukin-8, compared with the control group. The results indicate that glutathione treatment can improve liver function and inhibit inflammation and hepatic fibrosis in CHB patients.
Collapse
|
7
|
Prieto-Moure B, Lloris-Carsí JM, Barrios-Pitarque C, Toledo-Pereyra LH, Lajara-Romance JM, Berda-Antolí M, Lloris-Cejalvo JM, Cejalvo-Lapeña D. Pharmacology of Ischemia-Reperfusion. Translational Research Considerations. J INVEST SURG 2016; 29:234-49. [PMID: 27216877 DOI: 10.3109/08941939.2015.1119219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischemia-reperfusion (IRI) is a complex physiopathological mechanism involving a large number of metabolic processes that can eventually lead to cell apoptosis and ultimately tissue necrosis. Treatment approaches intended to reduce or palliate the effects of IRI are varied, and are aimed basically at: inhibiting cell apoptosis and the complement system in the inflammatory process deriving from IRI, modulating calcium levels, maintaining mitochondrial membrane integrity, reducing the oxidative effects of IRI and levels of inflammatory cytokines, or minimizing the action of macrophages, neutrophils, and other cell types. This study involved an extensive, up-to-date review of the bibliography on the currently most widely used active products in the treatment and prevention of IRI, and their mechanisms of action, in an aim to obtain an overview of current and potential future treatments for this pathological process. The importance of IRI is clearly reflected by the large number of studies published year after year, and by the variety of pathophysiological processes involved in this major vascular problem. A quick study of the evolution of IRI-related publications in PubMed shows that in a single month in 2014, 263 articles were published, compared to 806 articles in the entire 1990.
Collapse
Affiliation(s)
| | | | | | - Luis-H Toledo-Pereyra
- c Western Michigan University, Homer Stryker M.D. School of Medicine and Michigan State University , College of Human Medicine , Kalamazoo , MI
| | | | - M Berda-Antolí
- b Experimental Surgery , Catholic University of Valencia , Valencia , Spain
| | - J M Lloris-Cejalvo
- b Experimental Surgery , Catholic University of Valencia , Valencia , Spain
| | | |
Collapse
|
8
|
|
9
|
Tao X, Wan X, Xu Y, Xu L, Qi Y, Yin L, Han X, Lin Y, Peng J. Dioscin attenuates hepatic ischemia-reperfusion injury in rats through inhibition of oxidative-nitrative stress, inflammation and apoptosis. Transplantation 2014; 98:604-611. [PMID: 25083618 DOI: 10.1097/tp.0000000000000262] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dioscin shows potent effects against liver damage in our previous studies; however, the action of it on hepatic ischemia-reperfusion (I/R) injury is still unknown. In the present article, the effects and possible mechanisms of dioscin against hepatic I/R injury were investigated. METHODS Seventy percent partial hepatic warm ischemia was induced in Wistar rats for 60 min followed by succedent reperfusion. In the prophylactic test, dioscin was administered intragastrically to the rats at doses of 20, 40, and 60 mg/kg once daily for seven consecutive days before I/R. In the therapeutic test, the rats received dioscin intragastrically at a dose of 60 mg/kg once 2 hr before I/R. RESULTS We found that dioscin significantly decreased serum alanine aminotransferase and aspartate aminotransferase activities, increased survival rate of rats, and improved I/R-induced hepatocyte abnormality. In addition, dioscin obviously increased the levels of SOD, CAT, GSH-Px, GSH, decreased the levels of MDA, TNOS, iNOS, NO, and prevented DNA fragmentation caused by I/R injury. Further research indicated that dioscin markedly decreased the gene expressions of interleukin-1β, interleukin-6, tumor necrosis factor-α, intercellular adhesion molecule-1, MIP-1α, MIP-2, Fas, FasL, decreased the protein expressions of NF-κB, AP-1, COX-2, HMGB-1, CYP2E1, Bak, caspase-3, p53, PARP, Caspase-9, decreased the levels of JNK, ERK and p38 MAPKs phosphorylation, and upregulated the levels of Bcl-2 and Bcl-x. CONCLUSION Our results suggest that dioscin has potent actions against hepatic I/R injury through suppression of inflammation, oxidative-nitrative stress, and apoptosis, which should be developed as a new drug to treat hepatic I/R injury in the future.
Collapse
Affiliation(s)
- Xufeng Tao
- 1 College of Pharmacy, Dalian Medical University, Liaoning Province, China. 2 Department of Critical Care Medicine of the First Affiliated Hospital of Dalian Medical University, Dalian, China. 3 Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University, Dalian, China. 4 Address correspondence to: Jinyong Peng, M.D., College of Pharmacy, Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 2012; 26:103-14. [PMID: 22459037 DOI: 10.1016/j.trre.2011.10.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion is a major component of injury in vascular occlusion both during liver surgery and during liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms including oxidant stress that contribute to various degrees to the overall organ damage. A large volume of recent research has focused on the use of antioxidants to ameliorate this injury, although results in experimental models have not translated well to the clinic. This review focuses on critical sources and mediators of oxidative stress during hepatic ischemia-reperfusion, the status of current antioxidant interventions, and emerging mechanisms of protection by preconditioning. While recent advances in regulation of antioxidant systems by Nrf2 provide interesting new potential therapeutic targets, an increased focus must be placed on more in-depth mechanistic investigations in hepatic ischemia-reperfusion injury and translational research in order to refine current strategies in disease management.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
11
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
12
|
Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012; 44:88-106. [PMID: 22229890 DOI: 10.3109/03602532.2011.602688] [Citation(s) in RCA: 676] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatotoxicity is a serious problem during drug development and for the use of many established drugs. For example, acetaminophen overdose is currently the most frequent cause of acute liver failure in the United States and Great Britain. Evaluation of the mechanisms of drug-induced liver injury indicates that mitochondria are critical targets for drug toxicity, either directly or indirectly through the formation of reactive metabolites. The consequence of these modifications is generally a mitochondrial oxidant stress and peroxynitrite formation, which leads to structural alterations of proteins and mitochondrial DNA and, eventually, to the opening of mitochondrial membrane permeability transition (MPT) pores. MPT pore formation results in a collapse of mitochondrial membrane potential and cessation of adenosine triphosphate synthesis. In addition, the release of intermembrane proteins, such as apoptosis-inducing factor and endonuclease G, and their translocation to the nucleus, leads to nuclear DNA fragmentation. Together, these events trigger necrotic cell death. Alternatively, the release of cytochrome c and other proapoptotic factors from mitochondria can promote caspase activation and apoptotic cell death. Drug toxicity can also induce an inflammatory response with the formation of reactive oxygen species by Kupffer cells and neutrophils. If not properly detoxified, these extracellularly generated oxidants can diffuse into hepatocytes and trigger mitochondrial dysfunction and oxidant stress, which then induces MPT and necrotic cell death. This review addresses the formation of oxidants and the defense mechanisms available for cells and applies this knowledge to better understand mechanisms of drug hepatotoxicity, especially acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, 66160, USA.
| | | | | |
Collapse
|
13
|
Bruns H, Watanpour I, Gebhard MM, Flechtenmacher C, Galli U, Schulze-Bergkamen H, Zorn M, Büchler MW, Schemmer P. Glycine and taurine equally prevent fatty livers from Kupffer cell-dependent injury: an in vivo microscopy study. Microcirculation 2011; 18:205-213. [PMID: 21175929 DOI: 10.1111/j.1549-8719.2010.00078.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND IRI still is a major problem in liver surgery due to warm ischemia and organ manipulation. Steatosis is not only induced by diabetes, hyperalimentation, alcohol and toxins, but also chemotherapy given before resection. Since steatotic livers are prone to Kupffer cell-dependent IRI, protection of steatotic livers is of special interest. This study was designed to compare the effect of taurine and glycine on IRI in steatotic livers. MATERIALS AND METHODS Steatosis was induced with ethanol (7 g/kg b.w.; p.o.) in female SD rats. Ten minutes after inactivation of Kupffer cells with taurine or glycine (300 mM; i.v.), left liver lobes underwent 60 minutes of warm ischemia. Controls received the same volume of valine (300 mM; i.v.) or normal saline. After reperfusion, white blood cell-endothelial interactions and latex-bead phagocytosis by Kupffer cells were investigated. Liver enzymes were measured to estimate injury. For statistical analysis, ANOVA and Student's t-test were used. RESULTS Glycine and taurine significantly decreased leukocyte- and platelet-endothelium interactions and latex-bead phagocytosis (p < 0.05). Liver enzymes were significantly lower after glycine and taurine (p < 0.05). CONCLUSIONS This study shows that preconditioning with taurine or glycine is equally effective in preventing injury to fatty livers most likely via Kupffer cell-dependent mechanisms.
Collapse
Affiliation(s)
- Helge Bruns
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mikalauskas S, Mikalauskiene L, Bruns H, Nickkholgh A, Hoffmann K, Longerich T, Strupas K, Büchler MW, Schemmer P. Dietary glycine protects from chemotherapy-induced hepatotoxicity. Amino Acids 2011; 40:1139-1150. [PMID: 20852907 DOI: 10.1007/s00726-010-0737-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/30/2010] [Indexed: 02/06/2023]
Abstract
Hepatotoxic side effects of neoadjuvant chemotherapy for colorectal liver metastases increase perioperative morbidity and mortality. Glycine protects liver from injury in various animal models. Thus, this study was designed to assess its effect on liver after chemotherapy. Sprague-Dawley rats (200-220 g) were fed a synthetic diet containing 5% glycine for 5 days. Subsequently, chemotherapy (FOLFIRI: irinotecan, folinic acid and fluorouracil, or FOLFOX: oxaliplatin, folinic acid and fluorouracil) was administered at standard doses. Transaminases, histology, immunohistochemistry and in vivo microscopy were used to index liver injury, to monitor intrahepatic microperfusion and activation of Kupffer cells. Glycine significantly decreased transaminases after chemotherapy to 25-50% of control values (p < 0.05). Microvesicular steatosis was significantly reduced from 18.5 ± 3.4 and 57.1 ± 8.6% in controls to 9.5 ± 1.8 and 37.7 ± 4.4% after FOLFIRI and FOLFOX, respectively. Furthermore, phagocytosis of latex beads was reduced by about 50%, while leukocyte adherence in central and midzonal subacinar zones decreased to 60-80% after glycine (p < 0.05). Glycine significantly reduced expression of inducible nitric oxide synthase after chemotherapy, while hepatic microcirculation was increased (p < 0.05). This study shows for the first time that glycine reduces chemotherapy-induced liver injury. The underlying mechanisms most likely include Kupffer cells and an improved intrahepatic microperfusion.
Collapse
Affiliation(s)
- Saulius Mikalauskas
- Department of General and Transplantation Surgery, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Liver cell death induced by stresses such as ischemia-reperfusion, cholestasis and drug toxicity can trigger a sterile inflammatory response with activation of innate immune cells through release of damage-associated molecular patterns (DAMPs). A similar inflammatory response can be induced by pathogen-associated molecular patterns (PAMPs) such as endotoxin. Both DAMPs and PAMPs activate through toll-like receptors the resident macrophages (Kupffer cells) and recruit activated neutrophils and monocytes into the liver. Central to this inflammatory response is promotion of reactive oxygen species (ROS) formation by these phagocytes. ROS are the principal toxic mediators by which inflammatory cells kill their targets, e.g. bacteria during host defense but also hepatocytes and other liver cells. The mechanism of ROS-induced cell killing during inflammation involves the promotion of mitochondrial dysfunction through an intracellular oxidant stress in hepatocytes leading mainly to oncotic necrosis and less apoptosis. The additional release of cell contents amplifies the inflammatory injury. However, an inflammatory oxidant stress insufficient to directly cause cell damage can induce transcription of stress defence genes including antioxidant genes. This preconditioning effect of ROS enhances the resistance against future inflammatory oxidant stress and promotes the initiation of tissue repair processes. Despite the substantial progress in our understanding of mechanisms of inflammatory liver injury during the last decade, more research is necessary to better understand the role of ROS in acute liver inflammation and to develop clinically applicable therapeutic strategies that selectively target the detrimental effects of oxidant stress without compromising the vital function of ROS in host defense.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, 66160, USA.
| |
Collapse
|
16
|
Steib CJ, Hartmann AC, v Hesler C, Benesic A, Hennenberg M, Bilzer M, Gerbes AL. Intraperitoneal LPS amplifies portal hypertension in rat liver fibrosis. J Transl Med 2010; 90:1024-32. [PMID: 20212458 DOI: 10.1038/labinvest.2010.60] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have shown that the risk of variceal bleeding in patients with liver cirrhosis increases with infections such as spontaneous bacterial peritonitis (SBP). In this study, we hypothesized that pretreatment with intraperitoneal LPS may escalate portal hypertension. In fibrotic livers (4 weeks after bile duct ligation, BDL), the activation of Kupffer cells (KCs) by zymosan (150 microg/ml) in the isolated non-recirculating liver perfusion system resulted in a transient increase in portal perfusion pressure. Pretreatment with intraperitoneal LPS (1 mg/kg body weight (b.w.) for 3 h) increased basal portal perfusion pressure, and prolonged the zymosan-induced increase from transient to a long-lasting increase that was sustained until the end of the experiments in BDL but not in sham-operated animals. Pretreatment with gadolinium chloride (10 mg/kg b.w.), MK-886 (0.6 mg/kg b.w.), Ly171883 (20 microM) or BM 13.177 (20 microM) reduced the maximal and long-lasting pressure increase in BDL animals by approximately 50-60%. The change in portal perfusion pressure was paralleled by a long-lasting production of cysteinyl leukotriene (Cys-LT) and thromboxane (TX) after LPS pretreatment. However, the response to vasoconstrictors was not altered by intraperitoneal LPS. Western blot analyses showed an increased Toll-like receptor (TLR)4 and MyD88 expression after LPS pretreatment. In vivo experiments confirmed that intraperitoneal LPS increased basal portal pressure, and extended the portal pressure increase produced by intraportal zymosan or by LPS infusion. In conclusion, upregulation of TLR4 and MyD88 expression in fibrotic livers confers hypersensitivity to LPS. This may lead to escalation of portal hypertension by production of TX and Cys-LT after endotoxin-induced KC activation. Therefore, LT inhibitors may represent a promising treatment option in addition to early administration of antibiotics in SBP.
Collapse
Affiliation(s)
- Christian J Steib
- Department of Medicine II (Gastroenterology and Hepatology), Liver Center Munich, University of Munich-Grosshadern, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009; 89:1269-339. [PMID: 19789382 DOI: 10.1152/physrev.00027.2008] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The complex functions of the liver in biosynthesis, metabolism, clearance, and host defense are tightly dependent on an adequate microcirculation. To guarantee hepatic homeostasis, this requires not only a sufficient nutritive perfusion and oxygen supply, but also a balanced vasomotor control and an appropriate cell-cell communication. Deteriorations of the hepatic homeostasis, as observed in ischemia/reperfusion, cold preservation and transplantation, septic organ failure, and hepatic resection-induced hyperperfusion, are associated with a high morbidity and mortality. During the last two decades, experimental studies have demonstrated that microcirculatory disorders are determinants for organ failure in these disease states. Disorders include 1) a dysregulation of the vasomotor control with a deterioration of the endothelin-nitric oxide balance, an arterial and sinusoidal constriction, and a shutdown of the microcirculation as well as 2) an overwhelming inflammatory response with microvascular leukocyte accumulation, platelet adherence, and Kupffer cell activation. Within the sequelae of events, proinflammatory mediators, such as reactive oxygen species and tumor necrosis factor-alpha, are the key players, causing the microvascular dysfunction and perfusion failure. This review covers the morphological and functional characterization of the hepatic microcirculation, the mechanistic contributions in surgical disease states, and the therapeutic targets to attenuate tissue injury and organ dysfunction. It also indicates future directions to translate the knowledge achieved from experimental studies into clinical practice. By this, the use of the recently introduced techniques to monitor the hepatic microcirculation in humans, such as near-infrared spectroscopy or orthogonal polarized spectral imaging, may allow an early initiation of treatment, which should benefit the final outcome of these critically ill patients.
Collapse
Affiliation(s)
- Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
18
|
Hartkorn A, Hoffmann F, Ajamieh H, Vogel S, Heilmann J, Gerbes AL, Vollmar AM, Zahler S. Antioxidant effects of xanthohumol and functional impact on hepatic ischemia-reperfusion injury. JOURNAL OF NATURAL PRODUCTS 2009; 72:1741-1747. [PMID: 19757857 DOI: 10.1021/np900230p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Therapeutic effects of dietary flavonoids have been attributed mainly to their antioxidant capacity. Xanthohumol (1), a prominent flavonoid of the hop plant, Humulus lupulus, was investigated for its antioxidant potential and for its effect on NF-kappaB activation. To examine the biological relevance of 1, a hepatic ischemia/reperfusion model was chosen as a widely accepted model of oxidative stress generation. The impact of 1 on endogenous antioxidant systems, on the NF-kappaB signal transduction pathway as well as on apoptotic parameters, and on hepatic tissue damage was evaluated. Compound 1 markedly decreased the level of reactive oxygen species in vitro. Furthermore, levels of enzymatic and nonenzymatic antioxidants were restored after pretreatment in postischemic hepatic tissue, and lipid peroxidation was attenuated. NF-kappaB activity was reduced in vitro as well as in hepatic tissue after ischemia/reperfusion upon pretreatment with 1. In addition, the phosphorylation of Akt was markedly inhibited. Surprisingly, 1 decreased the expression of the antiapoptotic protein Bcl-X and increased caspase-3 like-activity, a proapoptotic parameter. Moreover, hepatic tissue damage as well as TNF-alpha levels increased in xanthohumol-pretreated liver tissue after ischemia/reperfusion. In summary, xanthohumol did not protect against ischemia/reperfusion injury in rat liver, despite its antioxidant and NF-kappaB inhibitory properties.
Collapse
Affiliation(s)
- Andreas Hartkorn
- Center of Drug Research, Department of Pharmacy, University of Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Reciprocal Activation Between CD4+ T Cells and Kupffer Cells During Hepatic Ischemia-Reperfusion. Transplantation 2008; 86:710-8. [DOI: 10.1097/tp.0b013e3181821aa7] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Steib CJ, Gerbes AL, Bystron M, Op den Winkel M, Härtl J, Roggel F, Prüfer T, Göke B, Bilzer M. Kupffer cell activation in normal and fibrotic livers increases portal pressure via thromboxane A(2). J Hepatol 2007; 47:228-38. [PMID: 17573142 DOI: 10.1016/j.jhep.2007.03.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 03/07/2007] [Accepted: 03/10/2007] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Cirrhotic patients show an increased risk of variceal bleeding upon bacterial infections. Kupffer cells (KC) constitute the first macrophage population to become activated by bacterial beta-glucans and endotoxins derived from the gut. We therefore investigated whether and how KC activation increases portal pressure. METHODS KC in normal and fibrotic livers from bile duct ligated (BDL) rats were activated by the beta-glucan component of zymosan in vivo and during isolated rat liver perfusion. RESULTS Activation of KC in normal livers resulted in a severalfold increase of portal pressure in vivo as well as in isolated perfused liver preparations. This increase and the accompanying 40-fold stimulation of hepatic prostaglandin F(2alpha)/D(2) and thromboxane A(2) (TxA(2)) production in isolated perfused livers were attenuated by KC blockade. The TxA(2) synthase inhibitor furegrelate and the TxA(2) receptor antagonist BM 13.177 reduced the increase of portal perfusion pressure supporting TxA(2) as pivotal vasoconstrictor released by activated KC. Importantly, a more pronounced vasopressor response in fibrotic livers was related to a raise in KC density and a 10-fold increase of TxA(2) production after KC activation. CONCLUSIONS KC activated by beta-glucans increase portal pressure through the release of TxA(2). This vasopressor response is augmented in BDL induced fibrosis.
Collapse
Affiliation(s)
- Christian J Steib
- Department of Medicine II, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistrasse 15, 81366 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tang L, Tian F, Tao W, Cui J. Hepatocellular Glycogen in Alleviation of Liver Ischemia-Reperfusion Injury During Partial Hepatectomy. World J Surg 2007; 31:2039-43. [PMID: 17665244 DOI: 10.1007/s00268-007-9186-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Temporary occlusion of liver blood supply for complex liver operation is common in liver surgery. However, hepatic vascular occlusion will undoubtedly impair liver function. This study was designed to elucidate the effect of hepatocellular glycogen in alleviation of liver ischemia-reperfusion injury during hepatic vascular occlusion for partial hepatectomy. METHODS Fifty-seven patients were randomly divided into an experimental group (n = 29) and a control group (n = 28). In the experimental group, patients were given high-concentration glucose intravenously during 24 h before the operation. The hepatic lesion was resected after portal triad clamping in the two groups. Noncancer liver tissue was biopsied to measure hepatic tissue ATP content and change of malondialdehyde (MDA) and superoxide dismutase (SOD). Liver function of all patients was assessed by using an automatic biochemical analysis apparatus before the operation and the first and fifth days after operation. RESULTS The mean hepatic vascular occlusion time in the experimental group was 19.21 +/- 4.54 min and in the control group it was 21.04 +/- 5.11 min. Hepatic tissue ATP content of the experimental group was significantly higher than that of the control group at the end of hepatic vascular occlusion (2.15 +/- 0.39 mumol/g wet tissue vs. 1.33 +/- 0.44, p < 0.01) and at the point of 1-h reperfusion (2.19 +/- 0.29 mumol/g wet tissue vs. 1.57 +/- 0.35, p < 0.01). There was significant difference in SOD activity between the two groups at the end of hepatic vascular occlusion (130.69 +/- 30.49 NU/mg pr vs. 97.83 +/- 26.23, p < 0.01) and at the point of 1-h reperfusion (139.55 +/- 39.88 NU/mg pr vs. 114.74 +/- 25.93, p < 0.01). Significant difference was shown in MDA content between the two groups at the end of hepatic vascular occlusion (3.02 +/- 0.30 nmol/mg pr vs. 3.99 +/- 0.49, p < 0.01) and at the point of 1-h reperfusion (3.81 +/- 0.69 nmol/mg pr vs. 5.75 +/- 1.17, p < 0.01). In addition, the liver function of the experimental group was significantly better than that of the control group the first and fifth days after the operation (p < 0.01). CONCLUSIONS Abundant intracellular glycogen may reduce liver ischemia-reperfusion injury caused by hepatic vascular occlusion. It is beneficial to give a large amount of glucose before a complex liver operation during which temporary occlusion of hepatic blood flow is necessary.
Collapse
Affiliation(s)
- Lijun Tang
- The Center of General Surgery, Chengdu General Hospital of PLA Chengdu Command, Chengdu, China.
| | | | | | | |
Collapse
|
22
|
Duenschede F, Erbes K, Kircher A, Westermann S, Schad A, Riegler N, Ewald P, Dutkowski P, Kiemer AK, Kempski O, Junginger T. Protection from hepatic ischemia/reperfusion injury and improvement of liver regeneration by alpha-lipoic acid. Shock 2007; 27:644-51. [PMID: 17505304 DOI: 10.1097/01.shk.0000248582.25647.ee] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study was to characterize the in vivo action of lipoic acid (LA) in hepatic ischemia/reperfusion injury (IRI) and its effects on liver regeneration involving the investigation of mechanisms of action and effects on animal survival. Two groups of rats were compared: one group received 500 micromol alpha-LA injected via the inferior vena cava 15 min before the induction of 90 min of selective ischemia. The untreated group received vehicle. Influence of LA on IRI of the liver was determined in short- and long-term experiments. Cellular damage was decreased under preconditioning conditions with LA. Caspase 3, 8, and 9 activities were significantly lower in the LA group accompanied by a decrease in terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive hepatocytes. Electron micrographs in the untreated group showed massive mitochondrial damage. The survival rate as end point of liver function was markedly increased after pretreatment with LA. Increased levels of tumor necrosis factor alpha was shown by enzyme-linked immunosorbent assay as well as real-time reverse transcription-polymerase chain reaction in the LA group accompanied by increased mitotic index and Ki-67 staining in liver tissue. Attenuation of IRI of the rat liver in vivo by LA is accompanied by reduction of necrosis and apoptosis-related cell death, whereas liver regeneration is increased.
Collapse
Affiliation(s)
- Friedrich Duenschede
- Department of General and Abdominal Surgery, University Hospital Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Duenschede F, Westermann S, Miesner I, Albrecht-Schöck S, Kneist W, Korenkov M, Schad A, Dutkowski P, Kiemer AK, Junginger T. Hepatocellular Injury of Nonischemic Liver Tissue after Selective Clamping in Rats – Protective Action by Pharmacological Pretreatment with Lipoic Acid. Eur Surg Res 2007; 39:325-31. [PMID: 17622730 DOI: 10.1159/000104727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 03/13/2007] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM The aim of the study was to characterize the hepatic injury (HI) of the nonischemic liver lobe after selective portal triad clamping and investigate the influence of pharmacological pretreatment with alpha-lipoic acid (LA). METHODS Brown-Norway rats received 500 micromol LA injected via the inferior vena cava 15 min prior to the induction of 90 min of selective ischemia. Another group of rats received vehicle prior to ischemia. Both groups were compared with sham-operated animals. RESULTS Lipid peroxidation (LPO) was increased in the ischemic as well as in the nonischemic liver tissue (NIL) in the untreated group. Levels of adenosine triphosphate and reduced glutathione content of the nonischemic liver lobe were decreased in the untreated group 1 h after reperfusion. Activity of caspases 3 and 8 was not detectable, whereas expression of the Bax protein was demonstrated in the NIL. We observed areas of necrotic hepatocytes and large gaps of sinusoids in the NIL of the untreated rats. LA attenuated LPO as well as Bax expression in the NIL. Moreover adenosine triphosphate and glutathione content of the NIL was increased 1 h after reperfusion by LA. LA pretreatment reduced release of alpha-glutathione-s-transferase in plasma. Histology of the nonischemic liver lobe did not markedly differ from sham-operated animals after LA pretreatment. CONCLUSION HI of the NIL seems to be mediated by LPO and proapoptotic proteins such as Bax. Besides its described potential to reduce ischemia/reperfusion injury of the ischemic lobe, LA attenuates HI of the nonischemic tissue after selective portal triad clamping.
Collapse
Affiliation(s)
- F Duenschede
- Department of General and Abdominal Surgery, University Hospital Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stadler M, Nuyens V, Boogaerts JG. Intralipid minimizes hepatocytes injury after anoxia-reoxygenation in an ex vivo rat liver model. Nutrition 2007; 23:53-61. [PMID: 17084595 DOI: 10.1016/j.nut.2006.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 08/17/2006] [Accepted: 08/21/2006] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Ischemia-reperfusion injury is a determinant in liver injury occurring during surgical procedures, ischemic states, and multiple organ failure. The pre-existing nutritional status of the liver, i.e., fasting, might contribute to the extent of tissue injury. This study investigated whether Intralipid, a solution containing soybean oil, egg phospholipids, and glycerol, could protect ex vivo perfused livers of fasting rats from anoxia-reoxygenation injury. METHODS The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Isolated livers were perfused with glucose 5.5 and 15 mM, and two different concentrations of Intralipid, i.e., 0.5:100 and 1:100 (v/v) Intralipid 10%:medium (n = 5 in each group). The experiment consisted of perfusion for 15 min, warm anoxia for 60 min, and reoxygenation during 60 min. Hepatic enzymes, potassium, glucose, lactate, bilirubin, dienes, trienes, and cytochrome-c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in biopsies. RESULTS Intralipid attenuated transaminases, lactate dehydrogenase, potassium, diene, and triene release in the perfusate (dose-dependant) during the reoxygenation phase when compared with glucose-treated groups. The concentration of cytochrome-c in the medium was the highest in the 5.5-mM glucose group. The glycogen content was low in all livers at the start of the experiment. CONCLUSION Intralipid presents, under the present experimental conditions, a better protective effect than glucose in anoxia-reoxygenation injury of the rat liver.
Collapse
Affiliation(s)
- Michaela Stadler
- Department of Anesthesiology, University Hospital Center, Charleroi, Belgium.
| | | | | |
Collapse
|
25
|
Abstract
Kupffer cells (KC) constitute 80-90% of the tissue macrophages present in the body. They reside within the lumen of the liver sinusoids, and are therefore constantly exposed to gut-derived bacteria, microbial debris and bacterial endotoxins, known to activate macrophages. Upon activation KC release various products, including cytokines, prostanoides, nitric oxide and reactive oxygen species. These factors regulate the phenotype of KC themselves, and the phenotypes of neighboring cells, such as hepatocytes, stellate cells, endothelial cells and other immune cells that traffic through the liver. Therefore, KC are intimately involved in the liver's response to infection, toxins, ischemia, resection and other stresses. This review summarizes established basic concepts of KC function as well as their role in the pathogenesis of various liver diseases.
Collapse
Affiliation(s)
- Manfred Bilzer
- Department of Medicine II, University of Munich, Klinikum Grosshadern, Munich, Germany.
| | | | | |
Collapse
|
26
|
Dünschede F, Erbes K, Kircher A, Westermann S, Seifert J, Schad A, Oliver K, Kiemer AK, Theodor J. Reduction of ischemia reperfusion injury after liver resection and hepatic inflow occlusion by α-lipoic acid in humans. World J Gastroenterol 2006; 12:6812-7. [PMID: 17106930 PMCID: PMC4087436 DOI: 10.3748/wjg.v12.i42.6812] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the protective effects of preconditioning by α-lipoic acid (LA) in patients undergoing hepatic resection under inflow occlusion of the liver.
METHODS: Twenty-four patients undergoing liver resection for various reasons either received 600 mg LA or NaCl 15 min before transection performed under inflow occlusion of the liver. Blood samples and liver wedge biopsy samples were obtained after opening of the abdomen immediately after inflow occlusion of the liver, and 30 min after the end of inflow occlusion of the liver.
RESULTS: Serum levels of aspartate transferase and alanine transferase were reduced at all time points in patients who received LA in comparison to those who received NaCL. This was accompanied by reduced histomorphological features of oncosis. We observed TUNEL-positive hepatocytes in the livers of the untreated patients, especially after 30 min of ischemia. LA attenuated this increase of TUNEL-positive hepatocytes. Under preconditioning with LA, ATP content was significantly enhanced after 30 min of ischemia and after 30 min of reperfusion.
CONCLUSION: This is the first report on the potential for LA reducing ischemia/reperfusion injury (IRI) of the liver in humans who were undergoing liver surgery. Beside its simple and rapid application, side effects did not occur. LA might therefore represent a new strategy against hepatic IRI in humans.
Collapse
Affiliation(s)
- Fritz Dünschede
- Department of General and Abdominal Surgery, University Hospital Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Westman B, Johansson G, Söderlund K, Wernerman J, Hammarqvist F. Muscle glutathione metabolism during ischemia and reperfusion in patients undergoing aorto-bifemoral bypass surgery. Acta Anaesthesiol Scand 2006; 50:699-705. [PMID: 17004330 DOI: 10.1111/j.1399-6576.2006.01021.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND After an ischemia time of 1 h during aortic aneurysm surgery, muscle glutathione redox-status is not altered, indicating that this ischemic insult is well within the scavenging capacity of muscle glutathione, the most important endogenous scavenger. In the present study, the impact of elective aorto-bifemoral bypass surgery, involving a longer ischemia time, on muscle glutathione and its redox-status was investigated. METHODS Leg muscle biopsies were obtained pre-operatively, at maximal ischemia, after 10 min and 24 h of reperfusion from 12 patients undergoing aorto-bifemoral bypass surgery. Muscle glutathione, free amino acids and energy-rich compounds were determined. RESULTS Clamping times were 113 (99-120 min); median (quartiles). At maximal ischemia, muscle lactate increased by 7.5 (4.0-10.7) mmol/kg dry weight (dw) (P < 0.001) and phosphocreatine (PCr) decreased by 14.6 (8.9-23.3) mmol/kg dw (P < 0.001). At maximal ischemia, reduced glutathione (GSH) was unaltered but muscle glutamate decreased by 0.51 (0.30-0.85) mmol/kg wet weight (ww) (P < 0.001). At 24 h post-operatively, the reduced glutathione decreased by 0.47 (0.34-0.65) mmol/kg (ww) (P < 0.001) without changes in oxidized glutathione (GSSG) or in glutathione redox-status. Cysteine and glycine, the two other constituent amino acids to glutathione, did not change during the study period. CONCLUSION Ischemia of 2 h during aorto-bifemoral bypass was associated with changes in muscle energy-rich compounds but without any changes in glutathione redox-status. A decreased antioxidative capacity, as reflected by a decrease in muscle glutathione concentrations, was seen 24 h post-operatively, still without changes in glutathione redox-status. This is not different from the changes seen after abdominal surgery not involving ischemia-reperfusion.
Collapse
Affiliation(s)
- B Westman
- Gastrocentrum, Department of Surgery, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
28
|
Schauer RJ, Gerbes AL, Vonier D, op den Winkel M, Fraunberger P, Bilzer M. Induction of cellular resistance against Kupffer cell-derived oxidant stress: a novel concept of hepatoprotection by ischemic preconditioning. Hepatology 2003; 37:286-95. [PMID: 12540778 DOI: 10.1053/jhep.2003.50064] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ischemic preconditioning (IP) triggers protection of the liver from prolonged subsequent ischemia. However, the underlying protective mechanisms are largely unknown. We investigated whether and how IP protects the liver against reperfusion injury caused by Kupffer cell (KC)-derived oxidants. IP before 90 minutes of warm ischemia of rat livers in vivo significantly reduced serum alanine aminotransferase (AST) levels and leukocyte adherence to sinusoids and postsinusoidal venules during reperfusion. This protective effect was mimicked by postischemic intravenous infusion of glutathione (GSH), an antioxidative strategy against KC-derived H(2)O(2). Interestingly, no additional protection was achieved by infusion of GSH to preconditioned animals. These findings and several additional experiments strongly suggest IP mediated antioxidative effects: IP prevented oxidant cell injury in isolated perfused rat livers after selective KC activation by zymosan. Moreover, IP prevented cell injury and pertubations of the intracellular GSH/GSSG redox system caused by direct infusion of H(2)O(2) (0.5 mmol/L). IP-mediated resistance against H(2)O(2) could neither be blocked by the adenosine A2a antagonist DMPX nor mimicked by A2a agonist CGS21680. In contrast, H(2)O(2) resistance was abolished by the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, but induced when p38 MAPK was directly activated by anisomycin. In conclusion, we propose a novel concept of hepatoprotection by IP: protection of liver cells by enhancing their resistance against KC-derived H(2)O(2). Activation of p38 MAPK and preservation of the intracellular GSH/oxidized glutathione (GSSG) redox system, but not adenosine A2a receptor stimulation, seems to be pivotal for the development of H(2)O(2) resistance in preconditioned livers.
Collapse
Affiliation(s)
- Rolf J Schauer
- Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Germany
| | | | | | | | | | | |
Collapse
|