1
|
Liu Y, Chen Y, Fukui K. Oxidative stress induces tau hyperphosphorylation via MARK activation in neuroblastoma N1E-115 cells. J Clin Biochem Nutr 2023; 73:24-33. [PMID: 37534088 PMCID: PMC10390814 DOI: 10.3164/jcbn.22-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/28/2022] [Indexed: 08/04/2023] Open
Abstract
Reactive oxygen species are considered a cause of neuronal cell death in Alzheimer's disease (AD). Abnormal tau phosphorylation is a proven pathological hallmark of AD. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neuronal survival. In this study, we hypothesized that oxidative stress increases the phosphorylation of Ser262 of tau protein through activation of MARKs, which is the main reason for the development of AD. We investigated the relationship between tau hyperphosphorylation on Ser262 and MARKs in N1E-115 cells subjected to oxidative stress by exposure to a low concentration of hydrogen peroxide. This work builds on the observation that hyperphosphorylation of tau is significantly increased by oxidative stress. MARKs activation correlated with tau hyperphosphorylation at Ser262, a site that is essential to maintain microtubule stability and is the initial phosphorylation site in AD. These results indicated that MARKs inhibitors might serve a role as therapeutic tools for the treatment of AD.
Collapse
Affiliation(s)
- Yuhong Liu
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Yunxi Chen
- Molecular Cell Biology Laboratory, Department of Systems Engineering and Science, School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
- Molecular Cell Biology Laboratory, Department of Systems Engineering and Science, School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
2
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Anwar S, Khan S, Anjum F, Shamsi A, Khan P, Fatima H, Shafie A, Islam A, Hassan MI. Myricetin inhibits breast and lung cancer cells proliferation via inhibiting MARK4. J Cell Biochem 2021; 123:359-374. [PMID: 34751461 DOI: 10.1002/jcb.30176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Identifying novel molecules as potential kinase inhibitors are gaining significant attention globally. The present study suggests Myricetin as a potential inhibitor of microtubule-affinity regulating kinase (MARK4), adding another molecule to the existing list of anticancer therapeutics. MARK4 regulates initial cell division steps and is a potent druggable target for various cancers. Structure-based docking with 100 ns molecular dynamics simulation depicted activity of Myricetin in the active site pocket of MARK4 and the formation of a stable complex. The fluorescence-based assay showed excellent affinity of Myricetin to MARK4 guided by static and dynamic quenching. Moreover, the assessment of enthalpy change (∆H) and entropy change (∆S) delineated electrostatic interactions as a dominant force in the MARK4-myricetin interaction. Isothermal titration calorimetric measurements revealed spontaneous binding of Myricetin with MARK4. Further, the kinase assay depicted significant inhibition of MARK4 by Myricetin with IC50 = 3.11 µM. Additionally, cell proliferation studies established that Myricetin significantly inhibited the cancer cells (MCF-7 and A549) proliferation, and inducing apoptosis. This study provides a solid rationale for developing Myricetin as a promising anticancer molecule in the MARK4 mediated malignancies.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hera Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Ahrari S, Mogharrab N, Navapour L. Structure and dynamics of inactive and active MARK4: conformational switching through the activation process. J Biomol Struct Dyn 2019; 38:2468-2481. [DOI: 10.1080/07391102.2019.1655479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sajjad Ahrari
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Navid Mogharrab
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Design and development of Isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis. Eur J Med Chem 2019; 163:840-852. [DOI: 10.1016/j.ejmech.2018.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022]
|
6
|
Ahrari S, Mogharrab N, Navapour L. Interconversion of inactive to active conformation of MARK2: Insights from molecular modeling and molecular dynamics simulation. Arch Biochem Biophys 2017; 630:66-80. [PMID: 28711359 DOI: 10.1016/j.abb.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
Abstract
The Ser/Thr protein kinase MARK2, also known as Par1b, belongs to the highly-conserved family of PAR proteins which regulate cell polarity and partitioning through the animal kingdom. In the current study, inactive and active structures of human MARK2 were constructed by modeling and molecular dynamics simulation, based on available incomplete crystal structures in Protein Data Bank, to investigate local structural changes through which MARK2 switches from inactive to active state. None of the MARK2 wild type inactive crystal structures represent the position of activation segment. So, the contribution of this loop to the formation of inactive state is not clear. In the modeled structure of inactive MARK2, activation segment occludes the enzyme active site and assumes a relatively stable position. We also presented a detailed description of the major structural changes occur through the activation process and proposed a framework on how these deviations might be affected by the phosphorylation of Thr208 or existence of the UBA domain. Inspection of protein active state in the presence of Mg-ATP, demonstrated the precise arrangement of the various parts of enzyme around Mg-ATP and the importance of their stability in localization of the resulting complex. The results also confirmed the alleged mild auto-inhibitory role of the UBA domain and suggested a reason for the necessity of this role, based on structural similarities to other related kinases.
Collapse
Affiliation(s)
- Sajjad Ahrari
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Navid Mogharrab
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
7
|
Naz F, Islam A, Ahmad F, Hassan MI. Atypical PKC phosphorylates microtubule affinity-regulating kinase 4 in vitro. Mol Cell Biochem 2015; 410:223-8. [PMID: 26346160 DOI: 10.1007/s11010-015-2555-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/03/2015] [Indexed: 01/28/2023]
Abstract
MAP/Microtubule affinity-regulating kinase 4 (MARK4), a Ser/Thr protein kinases, is related to the Par-1 (partitioning-defective) gene products, and is the human ortholog of Par-1. MARK4 shows its role in the cell polarity at the time of embryonic development. It is mostly located at the basal region of cells, providing apico-basal polarity. Here, we made two variants of human Par-1d (MARK4), kinase domain (MARK4-F2), and kinase domain along with 59 N-terminal residues (MARK4-F1) and saw their ATPase hydrolysis in the presence of each other. We observed that the activity of one variant was increased in the presence of other. We also demonstrated that both variants were phosphorylated by atypical PKC and their activities were increased in the presence of increasing concentration of atypical protein kinase c (aPKC). The phosphorylation was observed at the serine and threonine residues of MARK4. The interaction of MARK2 and MARK3 with aPKC and their negative regulation by aPKC is already known. This study confirms a functional link between aPKC and MARK4, two central determinants of cell polarity, and it suggests that aPKC may regulate all four members of Par-1 through phosphorylating them in polarized cells.
Collapse
Affiliation(s)
- Farha Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
8
|
Beltran-Sastre V, Navarro E. Measuring activity of endocytosis-regulating factors in T-lymphocytes by flow cytometry. Cytotechnology 2014; 67:551-8. [PMID: 24504563 DOI: 10.1007/s10616-014-9696-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/24/2014] [Indexed: 11/25/2022] Open
Abstract
Elucidation of the mechanisms regulating membrane traffic of lymphocyte receptors is of great interest to manipulate the immune response, as well as for accurately delivering drugs and nanoprobes to cells. Aiming to detect and characterize regulators of endocytosis and intracellular traffic, we have modified the FACS-based endocytosis assay to measure and quantify the activity of putative endocytic regulators as EGFP chimeras. To study the activity of putative endocytosis regulators, we transfected Jurkat T-lymphocytes with EGFP-tagged constructs of the regulators to be tested. Cells were then incubated with a αCD3(APC) antibody, and were allowed to internalize the label. After acid-washing the cells, APC fluorescence was measured by flow cytometry in cells gated for EGFP(+), as well as in their EGFP(-) (transfection-resistant) counterparts that were taken as internal controls. This approach facilitated intra- and inter-assay normalization of endocytic rates/loads by comparison with the internal control. We have used this assay to test the regulatory activity of polarity kinase EMK1, and here we substantiate a role for EMK1 in the control of receptor internalization in T-lymphocytes. The method here presented gives quantitative measures of internalization, and will facilitate the development of tools to modulate endocytic rates or the intracellular fate of internalized materials.
Collapse
Affiliation(s)
- Violeta Beltran-Sastre
- Laboratori d'Oncologia Molecular (LOM), Bellvitge Research Institute (IDIBELL), Gran Via 199-203 Hospitalet de Llobregat, 08908, Barcelona, Spain
| | | |
Collapse
|
9
|
Cloning, expression, purification and refolding of microtubule affinity-regulating kinase 4 expressed in Escherichia coli. Appl Biochem Biotechnol 2014; 172:2838-48. [PMID: 24446173 DOI: 10.1007/s12010-014-0733-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a member of the family Ser/Thr kinase and involved in numerous biological functions including microtubule bundle formation, nervous system development, positive regulation of programmed cell death, cell cycle control, cell polarity determination, cell shape alterations, cell division etc. For various biophysical and structural studies, we need this protein in adequate quantity. In this paper, we report a novel cloning strategy for MARK4. We have cloned MARK4 catalytic domain including 59 N-terminal extra residues with unknown function and catalytic domain alone in PQE30 vector. The recombinant MARK4 was expressed in the inclusion bodies in M15 cells. The inclusion bodies were solubilized effectively with 1.5% N-lauroylsarcosine in alkaline buffer and subsequently purified using Ni-NTA affinity chromatography in a single step with high purity and good concentration. Purity of protein was checked on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and identified by using mass spectrometry immunoblotting. Refolding of the recombinant protein was validated by ATPase assay. Our purification procedure is quick, simple and produces adequate quantity of proteins with high purity in a limited step.
Collapse
|
10
|
Mark/Par-1 Marking the Polarity of Migrating Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:97-111. [DOI: 10.1007/978-94-007-7687-6_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Lewandowski KT, Piwnica-Worms H. Phosphorylation of the E3 ubiquitin ligase RNF41 by the kinase Par-1b is required for epithelial cell polarity. J Cell Sci 2013; 127:315-27. [PMID: 24259665 DOI: 10.1242/jcs.129148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The establishment and maintenance of cell polarity is an essential property governing organismal homeostasis, and loss of polarity is a common feature of cancer cells. The ability of epithelial cells to establish apical-basal polarity depends on intracellular signals generated from polarity proteins, such as the Par-1 family of proteins, as well as extracellular signals generated through cell contacts with the extracellular matrix (ECM). The Par-1 family has a well-established role in regulating cell-cell contacts in the form of tight junctions by phosphorylating Par-3. In addition, Par-1 has been shown to impact on cell-ECM interactions by regulating laminin receptor localization and laminin deposition on the basal surface of epithelial cells. Laminins are major structural and signaling components of basement membrane (BM), a sheet of specialized ECM underlying epithelia. In this study, we identify RNF41, an E3 ubiquitin ligase, as a novel Par-1b (also known as MARK2) effector in the cell-ECM pathway. Par-1b binds to and phosphorylates RNF41 on serine 254. Phosphorylation of RNF41 by Par-1b is required for epithelial cells to localize laminin-111 receptors to their basolateral surfaces and to properly anchor to laminin-111. In addition, phosphorylation of RNF41 is required for epithelial cells to establish apical-basal polarity. Our data suggests that phosphorylation of RNF41 by Par-1b regulates basolateral membrane targeting of laminin-111 receptors, thereby facilitating cell anchorage to laminin-111 and ultimately forming the cell-ECM contacts required for epithelial cells to establish apical-basal cell polarity.
Collapse
Affiliation(s)
- Katherine T Lewandowski
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
12
|
Naz F, Anjum F, Islam A, Ahmad F, Hassan MI. Microtubule Affinity-Regulating Kinase 4: Structure, Function, and Regulation. Cell Biochem Biophys 2013; 67:485-99. [DOI: 10.1007/s12013-013-9550-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Marx A, Nugoor C, Panneerselvam S, Mandelkow E. Structure and function of polarity‐inducing kinase family MARK/Par‐1 within the branch of AMPK/Snf1‐related kinases. FASEB J 2010; 24:1637-48. [DOI: 10.1096/fj.09-148064] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A. Marx
- Max Planck Unit for Structural Molecular Biology Hamburg Germany
| | - C. Nugoor
- Max Planck Unit for Structural Molecular Biology Hamburg Germany
| | - S. Panneerselvam
- Max Planck Unit for Structural Molecular Biology Hamburg Germany
| | - E. Mandelkow
- Max Planck Unit for Structural Molecular Biology Hamburg Germany
| |
Collapse
|
14
|
Matenia D, Mandelkow EM. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 2009; 34:332-42. [PMID: 19559622 DOI: 10.1016/j.tibs.2009.03.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/12/2009] [Accepted: 03/21/2009] [Indexed: 12/21/2022]
Abstract
Microtubule-affinity regulating kinases (MARKs) were originally discovered by their ability to phosphorylate tau protein and related microtubule-associated proteins (MAPs), and thereby to regulate microtubule dynamics in neurons. Members of the MARK (also known as partition-defective [Par]-1 kinase) family were subsequently found to be highly conserved and to have key roles in cell processes such as determination of polarity, cell-cycle control, intracellular signal transduction, transport and cytoskeleton. This is important for neuronal differentiation, but is also prominent in neurodegenerative 'tauopathies' such as Alzheimer's disease. The identified functions of MARK/Par-1 are diverse and require accurate regulation. Recent discoveries including the x-ray structure of human MARKs contributed to an increased understanding of the mechanisms that control the kinase activity and, thus, the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Dorthe Matenia
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany.
| | | |
Collapse
|
15
|
Reiner O, Sapir T. Polarity regulation in migrating neurons in the cortex. Mol Neurobiol 2009; 40:1-14. [PMID: 19330467 DOI: 10.1007/s12035-009-8065-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/12/2009] [Indexed: 12/25/2022]
Abstract
The formation of the cerebral cortex requires migration of billions of cells from their birth position to their final destination. A motile cell must have internal polarity in order to move in a specified direction. Locomotory polarity requires the coordinated polymerization of cytoskeletal elements such as microtubules and actin combined with regulated activities of the associated molecular motors. This review is focused on migrating neurons in the developing cerebral cortex, which need to attain internal polarity in order to reach their proper target. The position and dynamics of the centrosome plays an important function in this directed motility. We highlight recent interesting findings connecting polarity proteins with neuronal migration events regulated by the microtubule-associated molecular motor, cytoplasmic dynein.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
16
|
Tochio N, Koshiba S, Kobayashi N, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Motoda Y, Kobayashi A, Tanaka A, Hayashizaki Y, Terada T, Shirouzu M, Kigawa T, Yokoyama S. Solution structure of the kinase-associated domain 1 of mouse microtubule-associated protein/microtubule affinity-regulating kinase 3. Protein Sci 2007; 15:2534-43. [PMID: 17075132 PMCID: PMC2242405 DOI: 10.1110/ps.062391106] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Microtubule-associated protein/microtubule affinity-regulating kinases (MARKs)/PAR-1 are common regulators of cell polarity that are conserved from nematode to human. All of these kinases have a highly conserved C-terminal domain, which is termed the kinase-associated domain 1 (KA1), although its function is unknown. In this study, we determined the solution structure of the KA1 domain of mouse MARK3 by NMR spectroscopy. We found that approximately 50 additional residues preceding the previously defined KA1 domain are required for its proper folding. The newly defined KA1 domain adopts a compact alpha+beta structure with a betaalphabetabetabetabetaalpha topology. We also found a characteristic hydrophobic, concave surface surrounded by positively charged residues. This concave surface includes the highly conserved Glu-Leu-Lys-Leu motif at the C terminus, indicating that it is important for the function of the KA1 domain.
Collapse
Affiliation(s)
- Naoya Tochio
- RIKEN Genomic Sciences Center, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Segu L, Pascaud A, Costet P, Darmon M, Buhot MC. Impairment of spatial learning and memory in ELKL Motif Kinase1 (EMK1/MARK2) knockout mice. Neurobiol Aging 2006; 29:231-40. [PMID: 17196307 DOI: 10.1016/j.neurobiolaging.2006.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/22/2006] [Accepted: 10/14/2006] [Indexed: 11/29/2022]
Abstract
The hyperphosphorylation of tau protein is one of the hallmarks of Alzheimer's disease (AD) and of the associated cognitive decline. EMK1 (MARK2) is a serine/threonine kinase which phosphorylates tau and MAP2. An involvement of this kinase in memory functions is not established. We used a behavioral approach to study the phenotype of EMK1-null mice (EMK1-KO) as a possible model of MAP2/tau altered phophorylation. Compared to wild type mice, EMK1-KO mice did not differ in non-cognitive aspects of behavior, such as locomotion in activity cages, or anxiety in the elevated plus maze. However, they exhibited lower performance in the first stage of acquisition of a hippocampal-dependent spatial learning, as assessed in a radial water maze, although, they acquired the task with repeated training. They were again found to be impaired on re-learning a new platform position. In addition, they exhibited poor long-term retention performance. These data underline the importance on both early memory processes and long-term retrieval, of the dynamic instability of microtubules generated by the phosphorylation of MAPs.
Collapse
Affiliation(s)
- Louis Segu
- Laboratoire de Neurosciences Cognitives, CNRS UMR 5106, Université de Bordeaux 1, Avenue des Facultés, 33405 Talence Cedex, France.
| | | | | | | | | |
Collapse
|
18
|
Nikolaou S, Gasser RB. Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes. Parasitology 2006; 134:461-82. [PMID: 17107637 DOI: 10.1017/s0031182006001727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/23/2006] [Accepted: 10/02/2006] [Indexed: 11/05/2022]
Abstract
Signal transduction molecules play key roles in the regulation of developmental processes, such as morphogenesis, organogenesis and cell differentiation in all organisms. They are organized into 'pathways' that represent a coordinated network of cell-surface receptors and intracellular molecules, being involved in sensing environmental stimuli and transducing signals to regulate or modulate cellular processes, such as gene expression and cytoskeletal dynamics. A particularly important group of molecules implicated in the regulation of the cytoskeleton for the establishment and maintenance of cell polarity is the PAR proteins (derived from partition defective in asymmetric cell division). The present article reviews salient aspects of PAR proteins involved in the early embryonic development and morphogenesis of the free-living nematode Caenorhabditis elegans and some other organisms, with an emphasis on the molecule PAR-1. Recent advances in the knowledge and understanding of PAR-1 homologues from the economically important parasitic nematode, Haemonchus contortus, of small ruminants is summarized and discussed in the context of exploring avenues for future research in this area for parasitic nematodes.
Collapse
Affiliation(s)
- S Nikolaou
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | |
Collapse
|
19
|
Moore CA, Zernicka-Goetz M. PAR-1 and the microtubule-associated proteins CLASP2 and dynactin-p50 have specific localisation on mouse meiotic and first mitotic spindles. Reproduction 2005; 130:311-20. [PMID: 16123238 DOI: 10.1530/rep.1.00651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The site of second meiotic division, marked by the second polar body, is an important reference point in the early mouse embryo. To study its formation, we look at the highly asymmetric meiotic divisions. For extrusion of the small polar bodies during meiosis, the spindles must be located cortically. The positioning of meiotic spindles is known to involve the actin cytoskeleton, but whether microtubules are also involved is not clear. In this study we investigated the patterns of localisation of microtubule regulatory proteins in mouse oocytes. PAR-1 is a member of the PAR (partitioning-defective) family with known roles in regulation of microtubule stability and spindle positioning in other model systems. Here we show its specific localisation on mouse meiotic and first mitotic spindles. In addition, the microtubule-associated proteins CLASP2 (a CLIP associating protein) and dynactin-p50 are found on kinetochores and a subset of microtubule-organising centres. Thus we show specific localisation of microtubule regulatory proteins in mouse oocytes, which could indicate roles in meiotic spindle organisation.
Collapse
Affiliation(s)
- Catherine A Moore
- University of Cambridge, The Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
20
|
Shibata W, Hirata Y, Yoshida H, Otsuka M, Hoshida Y, Ogura K, Maeda S, Ohmae T, Yanai A, Mitsuno Y, Seki N, Kawabe T, Omata M. NF-kappaB and ERK-signaling pathways contribute to the gene expression induced by cag PAI-positive-Helicobacter pylori infection. World J Gastroenterol 2005; 11:6134-43. [PMID: 16273640 PMCID: PMC4436630 DOI: 10.3748/wjg.v11.i39.6134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 04/23/2005] [Accepted: 04/26/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the sequential gene expression profile in AGS cells co-cultured with wild-type Helicobacter pylori (H pylori) as a model of H pylori-infected gastric epithelium, and to further examine the contribution of cag-pathogenicity islands (cagPAI)-coding type IV secretion system and the two pathways, nuclear factor kappa B (NF-kappaB) and extracellular signal-regulated kinases (ERK) on wild-type H pylori-induced gene expression. METHODS Gene expression profiles induced by H pylori were evaluated in AGS gastric epithelial cells using cDNA microarray, which were present in the 4 600 independent clones picked up from the human gastric tissue. We also analyzed the contribution of NF-kappaB and ERK signaling on H pylori-induced gene expression by using inhibitors of specific signal pathways. The isogenic mutant with disrupted cagE (Delta cagE) was used to elucidate the role of cagPAI-encoding type IV secretion system in the gene expression profile. RESULTS According to the expression profile, the genes were classified into four clusters. Among them, the clusters characterized by continuous upregulation were most conspicuous, and it contained many signal transducer activity-associated genes. The role of cagPAI on cultured cells was also investigated using isogenic mutant cagE, which carries non-functional cagPAI. Then the upregulation of more than 80% of the induced genes (476/566) was found to depend on cagPAI. Signal transducer pathway through NF-kappaB or ERK are the major pathways which are known to be activated by cagPAI-positive H pylori. The role of these pathways in the whole signal activation by cagPAI-positive H pylori was analyzed. The specific inhibitors against NF-kappaB or ERK pathway blocked the activation of gene expression in 65% (367/566) or 76% (429/566) of the genes whose activation appealed to depend on cagPAI. CONCLUSION These results suggest that more than half of the genes induced by cagPAI-positive H pylori depend on NF-kappaB and ERK signaling activation, and these pathways may play a role in the gene expression induced by host-bacterial interaction which may associate with H pylori-related gastro-duodenal diseases.
Collapse
Affiliation(s)
- Wataru Shibata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nikolaou S, Hartman D, Nisbet AJ, Presidente PJA, Gasser RB. Genomic organization and expression analysis for hcstk, a serine/threonine protein kinase gene of Haemonchus contortus, and comparison with Caenorhabditis elegans par-1. Gene 2005; 343:313-22. [PMID: 15588586 DOI: 10.1016/j.gene.2004.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/02/2004] [Accepted: 09/23/2004] [Indexed: 11/19/2022]
Abstract
The organization and expression of a putative serine/threonine kinase gene (designated hcstk), proposed to relate to a conserved eukaryotic signal transduction pathway, was characterized for the socio-economically important pathogen Haemonchus contortus (Nematoda). The entire hcstk gene is approximately 26.7 kb in size, has 26 exons and is inferred to produce multiple isoforms via alternative splicing in its N-terminal header and spacer domains. Comparison of hcstk with its Caenorhabditis elegans homologue, par-1, revealed major differences in genomic organization, exon number and inferred mRNA processing. The expression of hcstk transcripts was highest in the first- and late-fourth-stage larvae of the parasite compared with other developmental stages, somewhat distinct from par-1 in C. elegans. In spite of a substantial amino acid sequence identity in the functional domains between the predicted proteins HcSTK and PAR-1, overall, the findings suggest a unique functional role for each molecule.
Collapse
Affiliation(s)
- Sia Nikolaou
- Primary Industries Research Victoria (Animal Genetics and Genomics), 475 Mickleham Road, Attwood, Victoria 3049, Australia
| | | | | | | | | |
Collapse
|
22
|
Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, Miwa Y, Ohno S. aPKC Acts Upstream of PAR-1b in Both the Establishment and Maintenance of Mammalian Epithelial Polarity. Curr Biol 2004; 14:1425-35. [PMID: 15324659 DOI: 10.1016/j.cub.2004.08.021] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2004] [Revised: 07/12/2004] [Accepted: 07/12/2004] [Indexed: 11/26/2022]
Abstract
BACKGROUND aPKC and PAR-1 are required for cell polarity in various contexts. In mammalian epithelial cells, aPKC localizes at tight junctions (TJs) and plays an indispensable role in the development of asymmetric intercellular junctions essential for the establishment and maintenance of apicobasal polarity. On the other hand, one of the mammalian PAR-1 kinases, PAR-1b/EMK1/MARK2, localizes to the lateral membrane in a complimentary manner with aPKC, but little is known about its role in apicobasal polarity of epithelial cells as well as its functional relationship with aPKC. RESULTS We demonstrate that PAR-1b is essential for the asymmetric development of membrane domains of polarized MDCK cells. Nonetheless, it is not required for the junctional localization of aPKC nor the formation of TJs, suggesting that PAR-1b works downstream of aPKC during epithelial cell polarization. On the other hand, aPKC phosphorylates threonine 595 of PAR-1b and enhances its binding with 14-3-3/PAR-5. In polarized MDCK cells, T595 phosphorylation and 14-3-3 binding are observed only in the soluble form of PAR-1b, and okadaic acid treatment induces T595-dependent dissociation of PAR-1b from the lateral membrane. Furthermore, T595A mutation induces not only PAR-1b leakage into the apical membrane, but also abnormal development of membrane domains. These results suggest that in polarized epithelial cells, aPKC phosphorylates PAR-1b at TJs, and in cooperation with 14-3-3, promotes the dissociation of PAR-1b from the lateral membrane to regulate PAR-1b activity for the membrane domain development. CONCLUSIONS These results suggest that mammalian aPKC functions upstream of PAR-1b in both the establishment and maintenance of epithelial cell polarity.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hueso M, Beltran V, Moreso F, Ciriero E, Fulladosa X, Grinyó JM, Serón D, Navarro E. Splicing alterations in human renal allografts: detection of a new splice variant of protein kinase Par1/Emk1 whose expression is associated with an increase of inflammation in protocol biopsies of transplanted patients. Biochim Biophys Acta Mol Basis Dis 2004; 1689:58-65. [PMID: 15158914 DOI: 10.1016/j.bbadis.2004.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 01/16/2004] [Accepted: 01/27/2004] [Indexed: 10/26/2022]
Abstract
Protein kinase Emk1/Par1 (GenBank accession no. X97630) has been identified as a regulator of the immune system homeostasis. Since immunological factors are critical for the development of chronic allograft nephropathy (CAN), we reasoned that expression of Par1/Emk1 could be altered in kidney allografts undergoing CAN. In this paper, we have analysed the association among renal allograft lesions and expression of Par1/Emk1, studied by RT-PCR on total RNA from 51 protocol biopsies of transplanted kidneys, five normal kidneys, and five dysfunctional allografts. The most significant result obtained has been the detection of alterations in the normal pattern of alternative splicing of the Par1/Emk1 transcript, alterations that included loss of expression of constitutively expressed isoforms, and the inclusion of a cryptic exon to generate a new Emk1 isoform (Emk1C). Expression of Emk1C was associated with an increase in the extension of the interstitial infiltrate (0.88+/-0.33 in Emk1C([+]) vs. 0.41+/-0.50 in Emk1C([-]); P<0.011), and with a trend to display higher interstitial scarring (0.66+/-0.70 vs. 0.29+/-0.52; P=0.09) in protocol biopsies when evaluated according to the Banff schema. Moreover, a higher mean arterial pressure (MAP) was also observed (110+/-11 vs. 99+/-11 mm Hg; P=0.012). From these results we propose that Par1/Emk1 could have a role in the development of CAN in kidney allografts.
Collapse
Affiliation(s)
- Miguel Hueso
- Centre d'Oncologia Molecular, Institut de Recerca Oncológica (COM-IRO), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona E08907, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hurov JB, Watkins JL, Piwnica-Worms H. Atypical PKC Phosphorylates PAR-1 Kinases to Regulate Localization and Activity. Curr Biol 2004; 14:736-41. [PMID: 15084291 DOI: 10.1016/j.cub.2004.04.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/04/2004] [Accepted: 03/04/2004] [Indexed: 11/29/2022]
Abstract
The establishment and maintenance of cellular polarity are essential biological processes that must be maintained throughout the lifetime of eukaryotic organisms. The Par-1 protein kinases are key polarity determinants that have been conserved throughout evolution. Par-1 directs anterior-posterior asymmetry in the one-cell C. elegans embryo and the Drosophila oocyte. In mammalian cells, Par-1 may regulate epithelial cell polarity. Relevant substrates of Par-1 in these pathways are just being identified, but it is not yet known how Par-1 itself is regulated. Here, we demonstrate that human Par-1b (hPar-1b) interacts with and is negatively regulated by atypical PKC. hPar-1b is phosphorylated by aPKC on threonine 595, a residue conserved in Par-1 orthologs in mammals, worms, and flies. The equivalent site in hPar-1a, T564, is phosphorylated in vivo and by aPKC in vitro. Importantly, phosphorylation of hPar-1b on T595 negatively regulates the kinase activity and plasma membrane localization of hPar-1b in vivo. This study establishes a novel functional link between two central determinants of cellular polarity, aPKC and Par-1, and suggests a model by which aPKC may regulate Par-1 in polarized cells.
Collapse
Affiliation(s)
- Jonathan B Hurov
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
25
|
Ossipova O, He X, Green J. Molecular cloning and developmental expression of Par-1/MARK homologues XPar-1A and XPar-1B from Xenopus laevis. Mech Dev 2002; 119 Suppl 1:S143-8. [PMID: 14516676 DOI: 10.1016/s0925-4773(03)00107-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Par-1 encodes a serine/threonine kinase that is involved in asymmetric segregation of cell fate determinants in Caenorhabditis elegans and Drosophila embryos. Recent biochemical studies indicate an association of PAR-1 with the Dishevelled protein and suggest a role in so-called canonical Wnt signaling (Nat. Cell Biol. 3 (2001) 628). Here we describe two Xenopus laevis cDNAs, which encode PAR-1 homologues designated XPar-1A and XPar-1B. Structurally, XPar-1A and XPar-1B are closely related to rat MARK proteins and human Par-1A and Par-1Balpha, respectively. XPar-1A and XPar-1B are expressed both maternally and zygotically in an indistinguishable pattern. In the egg and cleavage stage embryos their transcripts are enriched in the animal pole of the embryo. During blastula and gastrula stages, cells in the animal and marginal regions continue to express both genes uniformly. Expression progresses vegetally towards and then through the blastopore lip concomitantly with the movements of epiboly and gastrulation. With the onset of neurulation, XPar-1A and XPar-1B transcripts are restricted to the neurectoderm. At tailbud and tadpole stages they are detected in the head region, including brain, eyes, otic vesicles, cement gland, branchial arches as well as spinal cord and somites. Therefore, this analysis suggests that the Xenopus par-1 homologues XPar-1A and XPar-1B are expressed in frog embryos both maternally and zygotically in a restricted pattern and may play a role in establishing polarity in early embryos as well as in organogenesis during later stages of development.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cancer Biology, Dana Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
26
|
Kertesz N, Samson J, Debacker C, Wu H, Labastie MC. Cloning and characterization of human and mouse SNRK sucrose non-fermenting protein (SNF-1)-related kinases. Gene 2002; 294:13-24. [PMID: 12234663 DOI: 10.1016/s0378-1119(02)00829-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously isolated, from the earliest population of CD34+ hematopoietic progenitors that form in the aorta of the human embryo, a partial DNA complementary to RNA (cDNA) sequence that was later identified as the human homologue of rat sucrose non-fermenting protein (SNF-1) related kinase (rSNRK), a novel SNF-1-related kinase previously characterized in the rat. In the present study we report the cloning of the complete human SNF-1 related kinase (hSNRK) cDNA and show that the gene spans 39.8 kb at region 3p21 and contains six exons. Recombinant expression of the hSNRK coding sequence in Escherichia coli led to the production of a functional protein kinase of 85 kDa. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of hSNRK expression in fetal CD34+ hematopoietic progenitors revealed its continuous expression throughout human development with higher levels in highly dividing CD34+ CD38+ cells compared to quiescent CD34+ CD38- cells. This observation, together with the expression of hSNRK in numerous human leukemic cell lines, may reflect an implication of hSNRK protein in hematopoietic cell proliferation or differentiation. In the mouse, the SNRK cDNA is 4.6-kb-long and encodes a protein of 748 amino acids with a predicted molecular mass of 81,930 Da. The proteins from human, rat and mouse are strongly conserved and are characterized by the presence of a serine/threonine kinase catalytic domain, a bipartite nuclear targeting signal and an ubiquitin-associated domain. In situ hybridization and RT-PCR analysis of the pattern of mSNRK expression in the mouse reveals that it is temporally and spatially regulated during embryogenesis, and widespread expressed in adult tissues.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Embryo, Mammalian/enzymology
- Embryo, Mammalian/metabolism
- Exons
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Genes/genetics
- HL-60 Cells
- Hematopoietic Stem Cells/enzymology
- Hematopoietic Stem Cells/metabolism
- Humans
- In Situ Hybridization
- Introns
- Jurkat Cells
- K562 Cells
- Male
- Molecular Sequence Data
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Rats
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Nathalie Kertesz
- Howard Hughes Medical Institute and Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA 90095-1735, USA
| | | | | | | | | |
Collapse
|
27
|
Nikolaou S, Hartman D, Presidente PJA, Newton SE, Gasser RB. HcSTK, a Caenorhabditis elegans PAR-1 homologue from the parasitic nematode, Haemonchus contortus. Int J Parasitol 2002; 32:749-58. [PMID: 12062493 DOI: 10.1016/s0020-7519(02)00008-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A putative serine/threonine protein kinase (HcSTK) from the parasitic nematode Haemonchus contortus was characterised at the mRNA and amino acid levels. HcSTK displays a high level of identity (85-93% in the catalytic domain) with proteins of the PAR-1/MARK serine/threonine protein kinase (STK) subfamily, which represent signal transduction molecules involved in establishing and maintaining polarity in proliferating and differentiating cells. The transcript of hcstk is expressed in different developmental stages (second-, third-, fourth-stage larvae and adults) and various organs (muscle, intestine and reproductive) of H. contortus. In addition, there are several isoforms which appear to relate to a single gene. The expression profile of hcstk is similar to that of Caenorhabditis elegans PAR-1, and the level of sequence identity among members of the PAR-1/MARK STK subfamily, representing a range of species of vertebrates (e.g. humans and rodents), invertebrates (e.g. insects and C. elegans) and yeast, suggests that HcSTK may be involved in a conserved signal transduction pathway.
Collapse
Affiliation(s)
- Sia Nikolaou
- Victorian Institute of Animal Science, Agriculture Victoria, 475 Mickleham Road, Attwood, Victoria 3049, Australia
| | | | | | | | | |
Collapse
|
28
|
Sun TQ, Lu B, Feng JJ, Reinhard C, Jan YN, Fantl WJ, Williams LT. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nat Cell Biol 2001; 3:628-36. [PMID: 11433294 DOI: 10.1038/35083016] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Wnt signalling regulates beta-catenin-dependent developmental processes through the Dishevelled protein (Dsh). Dsh regulates two distinct pathways, one mediated by beta-catenin and the other by Jun kinase (JNK). We have purified a Dsh-associated kinase from Drosophila that encodes a homologue of Caenorhabditis elegans PAR-1, a known determinant of polarity during asymmetric cell divisions. Treating cells with Wnt increases endogenous PAR-1 activity coincident with Dsh phosphorylation. PAR-1 potentiates Wnt activation of the beta-catenin pathway but blocks the JNK pathway. Suppressing endogenous PAR-1 function inhibits Wnt signalling through beta-catenin in mammalian cells, and Xenopus and Drosophila embryos. PAR-1 seems to be a positive regulator of the beta-catenin pathway and an inhibitor of the JNK pathway. These findings show that PAR-1, a regulator of polarity, is also a modulator of Wnt-beta-catenin signalling, indicating a link between two important developmental pathways.
Collapse
Affiliation(s)
- T Q Sun
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Hurov JB, Stappenbeck TS, Zmasek CM, White LS, Ranganath SH, Russell JH, Chan AC, Murphy KM, Piwnica-Worms H. Immune system dysfunction and autoimmune disease in mice lacking Emk (Par-1) protein kinase. Mol Cell Biol 2001; 21:3206-19. [PMID: 11287624 PMCID: PMC86958 DOI: 10.1128/mcb.21.9.3206-3219.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emk is a serine/threonine protein kinase implicated in regulating polarity, cell cycle progression, and microtubule dynamics. To delineate the role of Emk in development and adult tissues, mice lacking Emk were generated by targeted gene disruption. Emk(-/-) mice displayed growth retardation and immune cell dysfunction. Although B- and T-cell development were normal, CD4(+)T cells lacking Emk exhibited a marked upregulation of the memory marker CD44/pgp-1 and produced more gamma interferon and interleukin-4 on stimulation through the T-cell receptor in vitro. In addition, B-cell responses to T-cell-dependent and -independent antigen challenge were altered in vivo. As Emk(-/-) animals aged, they developed splenomegaly, lymphadenopathy, membranoproliferative glomerulonephritis, and lymphocytic infiltrates in the lungs, parotid glands and kidneys. Taken together, these results demonstrate that the Emk protein kinase is essential for maintaining immune system homeostasis and that loss of Emk may contribute to autoimmune disease in mammals.
Collapse
Affiliation(s)
- J B Hurov
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|