1
|
Liu H, Hu X, Zhang X, Yao Y, Wu L, Tian Y, Dai H, Chen K, Liu B. Unveiling fatty acid subtypes: immunometabolic interplay and therapeutic opportunities in gastric cancer. Front Oncol 2025; 15:1570873. [PMID: 40492126 PMCID: PMC12146350 DOI: 10.3389/fonc.2025.1570873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/28/2025] [Indexed: 06/11/2025] Open
Abstract
Background The goal of this study was to develop a predictive signature using genes associated with fatty acid metabolism to evaluate the prognosis of individuals with gastric cancer (GC). Method A total of 24 prognostic-related genes were identified by intersecting differentially expressed genes with 525 fatty acid metabolism (FAM) -related genes and applying a univariate Cox proportional hazards model. By performing consensus clustering of 24 genes associated with FAM, two distinct clusters of GC patients were identified. Subsequently, a risk model was constructed using 39 differentially expressed mRNAs from the two clusters through a random forest model and univariate Cox regression. Results An R package, "GCFAMS", was developed to assess GC patients' prognosis based on FAM gene expression. The low-risk group exhibited a more favorable prognosis compared to the high-risk group across various datasets (P < 0.05). The model demonstrated strong predictive performance, with AUC values of 0.86, 0.623, and 0.508 for 5-year survival prediction in the training and two validation datasets. The high-risk group displayed lower IC50 values for embelin and imatinib, suggesting the potential efficacy of these drugs in this subgroup. Conversely, the low-risk group demonstrated an elevated response to immune checkpoints blockade therapy and a higher immunophenoscore, which was further validated in additional cancer cohorts. Public data from single-cell RNA sequencing confirmed that the characterized genes were predominantly expressed in endothelial cells and fibroblasts. Furthermore, the integration of transcriptomics and metabolomics revealed notable variations in fatty acid levels between the clusters, underscoring the clinical relevance of our fatty acid metabolism signature in shaping the metabolic profiles of GC patients. Conclusion This developed FAM signature demonstrated potential as a biomarker for guiding treatment and predicting prognosis in GC.
Collapse
Affiliation(s)
- Huahuan Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangnan Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yanxin Yao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Liuxing Wu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Liu ZZ, Ji FH, Piao Y. Non-coding RNAs participate in interactions between senescence and gastrointestinal cancers. Front Genet 2025; 15:1461404. [PMID: 39831201 PMCID: PMC11739115 DOI: 10.3389/fgene.2024.1461404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Relationships between cellular senescence and gastrointestinal cancers have gained prominence in recent years. The currently accepted theory suggests that cellular senescence and cancer occurrence exhibit "double-edged sword" effects. Cellular senescence is related to cancer via four "meta-hallmarks" i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis, along with two "antagonistic hallmarks" i.e., telomere attrition and stem cell exhaustion. These relationships are characterized by both agonistic and antagonistic elements, but the existence of an intricate dynamic balance remains unknown. Non-coding RNAs (ncRNAs) have vital roles in post-transcriptional regulation, but how they participate in agonistic and antagonistic relationships between cellular senescence and gastrointestinal cancers remains to be fully investigated. In this article, we systematically review how ncRNAs (including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circularRNAs (circRNAs)) participate in interactions between cellular senescence and gastrointestinal cancers. Our aim is to elucidate a triangular relationship between "ncRNAs-senescence-gastrointestinal cancers" which considered these three elements as an equal important standing. We are keen to identify prognostic or therapeutic targets for gastrointestinal cancers from, i.e., aging-related ncRNAs, or discover novel strategies to treat and manage in the elderly. We seek to clarify complex relationships where ncRNAs participate in "senescence-gastrointestinal cancers" interactions.
Collapse
Affiliation(s)
| | | | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
3
|
Zhang X, Wu L, Jia L, Hu X, Yao Y, Liu H, Ma J, Wang W, Li L, Chen K, Liu B. The implication of integrative multiple RNA modification-based subtypes in gastric cancer immunotherapy and prognosis. iScience 2024; 27:108897. [PMID: 38318382 PMCID: PMC10839690 DOI: 10.1016/j.isci.2024.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/28/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Previous studies have focused on the impact of individual RNA modifications on tumor development. This study comprehensively investigated the effects of multiple RNA modifications, including m6A, alternative polyadenylation, pseudouridine, adenosine-to-inosine editing, and uridylation, on gastric cancer (GC). By analyzing 1,946 GC samples from eleven independent cohorts, we identified distinct clusters of RNA modification genes with varying survival rates and immunological characteristics. We assessed the chromatin activity of these RNA modification clusters through regulon enrichment analysis. A prognostic model was developed using Stepwise Regression and Random Survival Forest algorithms and validated in ten independent datasets. Notably, the low-risk group showed a more favorable prognosis and positive response to immune checkpoint blockade therapy. Single-cell RNA sequencing confirmed the abundant expression of signature genes in B cells and plasma cells. Overall, our findings shed light on the potential significance of multiple RNA modifications in GC prognosis, stemness development, and chemotherapy resistance.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Liuxing Wu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liqing Jia
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Yanxin Yao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Huahuan Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Junfu Ma
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| |
Collapse
|
4
|
Xu H, Fu X, Liu B, Weng S, Guo C, Quan L, Liu L, Wang L, Xing Z, Cheng Q, Luo P, Chen K, Liu Z, Han X. Immune perturbation network identifies an EMT subtype with chromosomal instability and tumor immune-desert microenvironment. iScience 2023; 26:107871. [PMID: 37766999 PMCID: PMC10520355 DOI: 10.1016/j.isci.2023.107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Most gastric cancer (GC) subtypes are identified through transcriptional profiling overlooking dynamic changes and interactions in gene expression. Based on the background network of global immune genes, we constructed sample-specific edge-perturbation matrices and identified four molecular network subtypes of GC (MNG). MNG-1 displayed the best prognosis and vigorous cell cycle activity. MNG-2 was enriched by immune-hot phenotype with the potential for immunotherapy response. MNG-3 and MNG-4 were identified with epithelial-mesenchymal transition (EMT) peculiarity and worse prognosis, termed EMT subtypes. MNG-3 was characterized by low mutational burden and stromal cells and considered a replica of previous subtypes associated with poor prognosis. Notably, MNG-4 was considered a previously undefined subtype with a dismal prognosis, characterized by chromosomal instability and immune-desert microenvironment. This subtype tended to metastasize and was resistant to respond to immunotherapy. Pharmacogenomics analysis showed three therapeutic agents (NVP-BEZ235, LY2606368, and rutin) were potential interventions for MNG-4.
Collapse
Affiliation(s)
- Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyu Fu
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ben Liu
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Libo Quan
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kexin Chen
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Zaoqu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
5
|
Yan W, Chen Y, Hu G, Shi T, Liu X, Li J, Sun L, Qian F, Chen W. MiR-200/183 family-mediated module biomarker for gastric cancer progression: an AI-assisted bioinformatics method with experimental functional survey. J Transl Med 2023; 21:163. [PMID: 36864416 PMCID: PMC9983275 DOI: 10.1186/s12967-023-04010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major cancer burden throughout the world with a high mortality rate. The performance of current predictive and prognostic factors is still limited. Integrated analysis is required for accurate cancer progression predictive biomarker and prognostic biomarkers that help to guide therapy. METHODS An AI-assisted bioinformatics method that combines transcriptomic data and microRNA regulations were used to identify a key miRNA-mediated network module in GC progression. To reveal the module's function, we performed the gene expression analysis in 20 clinical samples by qRT-PCR, prognosis analysis by multi-variable Cox regression model, progression prediction by support vector machine, and in vitro studies to elaborate the roles in GC cells migration and invasion. RESULTS A robust microRNA regulated network module was identified to characterize GC progression, which consisted of seven miR-200/183 family members, five mRNAs and two long non-coding RNAs H19 and CLLU1. Their expression patterns and expression correlation patterns were consistent in public dataset and our cohort. Our findings suggest a two-fold biological potential of the module: GC patients with high-risk score exhibited a poor prognosis (p-value < 0.05) and the model achieved AUCs of 0.90 to predict GC progression in our cohort. In vitro cellular analyses shown that the module could influence the invasion and migration of GC cells. CONCLUSIONS Our strategy which combines AI-assisted bioinformatics method with experimental and clinical validation suggested that the miR-200/183 family-mediated network module as a "pluripotent module", which could be potential marker for GC progression.
Collapse
Affiliation(s)
- Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China. .,Center for Systems Biology, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| | - Yuqi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Guang Hu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.,Center for Systems Biology, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215021, China
| | - Xingyi Liu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Linqing Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Fuliang Qian
- Center for Systems Biology, Soochow University, 199 Renai Road, Suzhou, 215123, China. .,Medical Center of Soochow University, Suzhou, 215000, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China. .,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China. .,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China. .,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
6
|
Yao Y, Hu X, Ma J, Wu L, Tian Y, Chen K, Liu B. Comprehensive analysis of autophagy-related clusters and individual risk model for immunotherapy response prediction in gastric cancer. Front Oncol 2023; 13:1105778. [PMID: 36937439 PMCID: PMC10022822 DOI: 10.3389/fonc.2023.1105778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Autophagy can be triggered by oxidative stress and is a double-edged sword involved in the progression of multiple malignancies. However, the precise roles of autophagy on immune response in gastric cancer (GC) remain clarified. Methods We endeavor to explore the novel autophagy-related clusters and develop a multi-gene signature for predicting the prognosis and the response to immunotherapy in GC. A total of 1505 patients from eight GC cohorts were categorized into two subtypes using consensus clustering. We compare the differences between clusters by the multi-omics approach. Cox and LASSO regression models were used to construct the prognostic signature. Results Two distinct clusters were identified. Compared with cluster 2, the patients in cluster 1 have favorable survival outcomes and lower scores for epithelial-mesenchymal transition (EMT). The two subtypes are further characterized by high heterogeneity concerning immune cell infiltration, somatic mutation pattern, and pathway activity by gene set enrichment analysis (GSEA). We obtained 21 autophagy-related differential expression genes (DEGs), in which PTK6 amplification and BCL2/CDKN2A deletion were highly prevalent. The four-gene (PEA15, HSPB8, BNIP3, and GABARAPL1) risk signature was further constructed with good predictive performance and validated in 3 independent datasets including our local Tianjin cohort. The risk score was proved to be independent prognostic factor. A prognostic nomogram showed robust validity of GC survival. The risk score was significantly associated with immune cell infiltration status, tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoint molecules. Furthermore, the model was efficient for predicting the response to tumor-targeted agent and immunotherapy and verified by the IMvigor210 cohort. This model is also capable of discriminating between low and high-risk patients receiving chemotherapy. Conclusion Altogether, our exploratory research on the landscape of autophagy-related patterns may shed light on individualized therapies and prognosis in GC.
Collapse
|
7
|
Gao H, Chen W, Pan G, Liu H, Qian J, Tang W, Wang W, Qian S. A regulatory circuit of lncRNA NLGN1-AS1 and Wnt signalling controls clear cell renal cell carcinoma phenotypes through FZD4-modulated pathways. Aging (Albany NY) 2022; 15:15624-15639. [PMID: 36170021 PMCID: PMC10781459 DOI: 10.18632/aging.204263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent evidence has indicated that long non-coding RNAs (lncRNAs) were emerged as key molecules in clear cell renal cell carcinoma (ccRCC). TCGA database showed that the expression level of lncRNA NLGN1-AS1 was up-regulated in ccRCC; However, whether NLGN1-AS1 implicated in the malignant progression of ccRCC remained unclear. METHODS Based on TCGA database, candidate lncRNAs were selected and quantitative real-time PCR (qRT-PCR) was utilized to verify the expression levels of candidate lncRNAs in human ccRCC tissues. Loss-of-function experiments were performed to examine the biological functions of NLGN1-AS1 both in vitro and in vivo. According to bioinformatics analysis, fluorescence reporter assays and rescue experiments, the underlying mechanisms of NLGN1-AS1 in ccRCC cell lines were so clearly understood. RESULTS As a novel lncRNA, NLGN1-AS1 was up-regulated in ccRCC cell lines and associated with poor prognosis of and ccRCC patients, which was correlated with the progression of ccRCC. Functionally, the down-regulation of NLGN1-AS1 significantly decreased the proliferation of ccRCC cells both in vitro and in vivo. Bioinformatics analysis and luciferase report assays identified that miR-136-5p was a direct target of NLGN1-AS1. We also determined that FZD4 were inhibitory targets of miR-136-5p, and that Wnt/β-catenin signaling was inhibited by both NLGN1-AS1 knockdown and miR-136-5p over-expression. In addition, we found that the suppression of proliferation and the inhibition of Wnt/β-catenin pathway induced by NLGN1-AS1 knockdown would require the over-expression of FZD4. CONCLUSIONS Our findings suggested that lncRNA NLGN1-AS1 could promote the progression of ccRCC by targeting miR-136-5p/FZD4 and Wnt/β-catenin pathway, and might serve as a novel potential therapeutic target to inhibit the progression of ccRCC.
Collapse
Affiliation(s)
- Haifeng Gao
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| | - Wei Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Gaojian Pan
- Department of Urology, Yancheng Third People’s Hospital, Yancheng 224000, China
| | - Hui Liu
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| | - Jinke Qian
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| | - Weijun Tang
- Department of Oncology, Huaian Hospital of Huaian City, Huai’an 223200, China
| | - Wei Wang
- Department of Oncology, Huaian Hospital of Huaian City, Huai’an 223200, China
| | - Shilei Qian
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| |
Collapse
|
8
|
Xiao J, Lu Y, Lu D, Chen W, Hu W, Zhao Y, Chen S. Co‐delivery of paclitaxel and
CXCL1 shRNA
via cationic polymeric micelles for synergistic therapy against ovarian cancer. POLYM INT 2022. [DOI: 10.1002/pi.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingjing Xiao
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Yingying Lu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Deng Lu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai 200433 PR China
| | - Weiguo Hu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Yuqing Zhao
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Shouzhen Chen
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| |
Collapse
|
9
|
Gerecke C, Egea Rodrigues C, Homann T, Kleuser B. The Role of Ten-Eleven Translocation Proteins in Inflammation. Front Immunol 2022; 13:861351. [PMID: 35386689 PMCID: PMC8977485 DOI: 10.3389/fimmu.2022.861351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Ten-eleven translocation proteins (TET1-3) are dioxygenases that oxidize 5-methyldeoxycytosine, thus taking part in passive and active demethylation. TETs have shown to be involved in immune cell development, affecting from self-renewal of stem cells and lineage commitment to terminal differentiation. In fact, dysfunction of TET proteins have been vastly associated with both myeloid and lymphoid leukemias. Recently, there has been accumulating evidence suggesting that TETs regulate immune cell function during innate and adaptive immune responses, thereby modulating inflammation. In this work, we pursue to review the current and recent evidence on the mechanistic aspects by which TETs regulate immune cell maturation and function. We will also discuss the complex interplay of TET expression and activity by several factors to modulate a multitude of inflammatory processes. Thus, modulating TET enzymes could be a novel pharmacological approach to target inflammation-related diseases and myeloid and lymphoid leukemias, when their activity is dysregulated.
Collapse
Affiliation(s)
- Christian Gerecke
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Caue Egea Rodrigues
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Thomas Homann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
10
|
Ma J, Hu X, Yao Y, Wu L, Sheng C, Chen K, Liu B. Characterization of Two Ferroptosis Subtypes With Distinct Immune Infiltration and Gender Difference in Gastric Cancer. Front Nutr 2022; 8:756193. [PMID: 34977116 PMCID: PMC8716917 DOI: 10.3389/fnut.2021.756193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Iron is an essential nutrient involved in the redox cycle and the formation of free radicals. The reprogramming of iron metabolism is the main link to tumor cell survival. Ferroptosis is an iron-dependent form of regulated cell death associated with cancer; the characteristics of ferroptosis in cancers are still uncertain. This study aimed to explore the application value and gender difference of ferroptosis in prognosis and immune prediction to provide clues for targeted therapy of gastric cancer. Methods: We comprehensively evaluated the ferroptosis levels of 1,404 gastric cancer samples from six independent GC cohorts based on ferroptosis-related specific genes and systematically correlated ferroptosis with immune cell infiltrating and gender characteristics. The ferroptosis score was constructed to quantify the ferroptosis levels of individual tumors using principal component analysis (PCA) algorithms. Results: We identified two distinct ferroptosis subtypes in gastric cancer, namely Subtype-A and Subtype-B. We found that male patients in Subtype-B had the worst prognosis in contrast with the other groups. Three sex hormone receptors (AR, ER, and PR) in Subtype-B tumor patients were higher than in Subtype-A tumor patients in GC, while the HER2 displayed an opposite trend. We developed a risk model termed ferroptosis score to evaluate ferroptosis levels within individual tumors. The low-ferroptosis score group was characterized by activation of immune cells and increased mutation burden, which is also linked to increased neoantigen load and enhanced response to anti-PD-1/L1 immunotherapy. The patients with a low-ferroptosis score showed a high microsatellite instability status (MSI-H) and had a higher response to immunotherapy. Furthermore, the patients with low-ferroptosis scores have a lower estimated IC50 in the several chemotherapy drugs, including paclitaxel, gemcitabine, and methotrexate. Conclusions: We revealed that sex hormone receptors and immune cell infiltration were markedly different between ferroptosis subtypes in GC patients. The results suggested that gender difference may be critical when the ferroptosis-related strategy is applied in GC treatment. Further, ferroptosis levels were identified with an extreme variety of prognosis and tumor immune characteristics, which might benefit GC individualized treatment.
Collapse
Affiliation(s)
- Junfu Ma
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xin Hu
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanxin Yao
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liuxing Wu
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chao Sheng
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kexin Chen
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ben Liu
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
11
|
Li R, Hu Z, Wang Z, Zhu T, Wang G, Gao B, Wang J, Deng X. miR-125a-5p promotes gastric cancer growth and invasion by regulating the Hippo pathway. J Clin Lab Anal 2021; 35:e24078. [PMID: 34708891 PMCID: PMC8649339 DOI: 10.1002/jcla.24078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/22/2021] [Accepted: 10/16/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This study was carried out to explore the potential involvement of miR-125a-5p in the oncogenic effects of EphA2, TAZ, and TEAD2 and the activity of the Hippo signaling pathway in gastric cancer progression. METHODS In vitro transfection of miR-125a-5p mimics or inhibitors, qRT-PCR, colony formation assays, and cell invasion assays were used to assess the effect of miR-125a-5p on the growth and invasion in gastric cancer (GC). Male nude mice bearing tumors derived from human GC cells were used for evaluating the effects of miR-125a-5p on tumor growth. Luciferase reporter assay, immunofluorescence, immunohistochemistry, qRT-PCR, and immunoblotting were performed to explore the role of miR-125a-5p in the epithelial-mesenchymal transition (EMT) and association among miR-125a-5p, EphA2, TAZ, and TEAD2 in GC cells. RESULTS MiR-125a-5p enhanced GC cell viability and invasion in vitro, whereas inhibition of miR-125a-5p using a specific inhibitor and antagomir suppressed cancer cell invasion and tumor growth. Moreover, inhibition of miR-125a-5p reversed EMT in vitro. miR-125a-5p upregulated the expression of EphA2, TAZ, and TEAD2, promoted TAZ nuclear translocation, and induced changes in the activity of the Hippo pathway by enhancing the expression of TAZ target genes. Finally, miR-125a-5p was overexpressed in late-stage GCs, and positive correlations were observed with its targets EphA2, TAZ, and TEAD2. CONCLUSION miR-125a-5p can promote GC growth and invasion by upregulating the expression of EphA2, TAZ, and TEAD2.
Collapse
Affiliation(s)
- Ruixin Li
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhihao Hu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhuoyin Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tianyu Zhu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guojun Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bulang Gao
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jingtao Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiumei Deng
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
12
|
Jiang L, Chen Y, Min G, Wang J, Chen W, Wang H, Wang X, Yao N. Bcl2-associated athanogene 4 promotes the invasion and metastasis of gastric cancer cells by activating the PI3K/AKT/NF-κB/ZEB1 axis. Cancer Lett 2021; 520:409-421. [PMID: 34419501 DOI: 10.1016/j.canlet.2021.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
Bcl2-associated athanogene 4 (BAG4) has been found to be aberrantly expressed in several types of human cancers. However, little is known about its expression, role, and clinical significance in gastric cancer (GC). In this study, we aimed to address these issues and to explore the underlying mechanisms. The expression level of BAG4, measured by immunohistochemistry, was significantly higher in GC tissues than in paired normal tissues. Elevated BAG4 expression was positively correlated with T stage, lymph node metastasis, and tumor size of GC and was associated with unfavorable outcomes of the patients. The overexpression of BAG4 promoted the in vitro invasion and in vivo metastasis of GC cells, and opposite results were observed after silencing of BAG4. Silencing of BAG4 significantly reduced the phosphorylation of PI3K, AKT, and p65, whereas overexpression of BAG4 markedly enhanced the phosphorylation of these molecules. At the same time, manipulating BAG4 expression resulted in the corresponding changes in p65 nuclear translocation and ZEB1 expression. Luciferase reporter and chromatin immunoprecipitation assays verified that p65 binds to the promoter of ZEB1 to upregulate its transcription. Our results demonstrate that BAG4 plays an oncogenic role in the invasion and metastasis of GC cells by activating the PI3K/AKT/NF-κB/ZEB1 axis to induce epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Lei Jiang
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yan Chen
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Guangtao Min
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jun Wang
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Wei Chen
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Hongpeng Wang
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiangwen Wang
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Nan Yao
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Complete loss of miR-200 family induces EMT associated cellular senescence in gastric cancer. Oncogene 2021; 41:26-36. [PMID: 34667277 PMCID: PMC8724006 DOI: 10.1038/s41388-021-02067-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023]
Abstract
The EMT (epithelial-to-mesenchymal-transition) subtype of gastric cancer (GC) is associated with poor treatment responses and unfavorable clinical outcomes. Despite the broad physiological roles of the micro-RNA (miR)-200 family, they largely serve to maintain the overall epithelial phenotype. However, during late-stage gastric tumorigenesis, members of the miR-200 family are markedly suppressed, resulting in the transition to the mesenchymal state and the acquisition of invasive properties. As such, the miR-200 family represents a robust molecular marker of EMT, and subsequently, disease severity and prognosis. Most reports have studied the effect of single miR-200 family member knockdown. Here, we employ a multiplex CRISPR/Cas9 system to generate a complete miR-200 family knockout (FKO) to investigate their collective and summative role in regulating key cellular processes during GC pathogenesis. Genetic deletion of all miR-200s in the human GC cell lines induced potent morphological alterations, G1/S cell cycle arrest, increased senescence-associated β-galactosidase (SA-β−Gal) activity, and aberrant metabolism, collectively resembling the senescent phenotype. Coupling RNA-seq data with publicly available datasets, we revealed a clear separation of senescent and non-senescent states amongst FKO cells and control cells, respectively. Further analysis identified key senescence-associated secretory phenotype (SASP) components in FKO cells and a positive feedback loop for maintenance of the senescent state controlled by activation of TGF-β and TNF-α pathways. Finally, we showed that miR-200 FKO associated senescence in cancer epithelial cells significantly recruited stromal cells in the tumor microenvironment. Our work has identified a new role of miR-200 family members which function as an integrated unit serving to link senescence with EMT, two major conserved biological processes.
Collapse
|
14
|
Zhu Z, Qin J, Dong C, Yang J, Yang M, Tian J, Zhong X. Identification of four gastric cancer subtypes based on genetic analysis of cholesterogenic and glycolytic pathways. Bioengineered 2021; 12:4780-4793. [PMID: 34346836 PMCID: PMC8806458 DOI: 10.1080/21655979.2021.1956247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Warburg phenomenon refers to the development of unique metabolic patterns during the growth of tumor cells. This study stratified gastric cancer into prognostic metabolic subgroups according to changes in gene expressions related to glycolysis and cholesterol synthesis. The RNA-seq expression data, single nucleotide variants (SNV), short insertions and deletions (InDel) mutation data, copy number variation (CNV) data and clinical follow-up information data of gastric cancer tissues were downloaded from The Cancer Genome Atlas (TCGA) database. ConsensusClusterPlus was used to stratify the metabolic subtypes of gastric cancer. Four metabolic subtypes (Cholesterogenic, Glycolytic, Mixed and Quiescent) of gastric cancer were identified, and patients with cholesterogenic tumors had the longest disease-specific survival (DSS). Genome-wide analysis showed that aberrant amplification of TP53 and MYC in gastric cancer was associated with abnormal cholesterol anabolic metabolism. The mRNA levels of mitochondrial pyruvate carriers 1 and 2 (MPC1/2) differed among the four subtypes. Tumors in the glycolytic group showed a higher PDCD1. A genomic signature based on tumor metabolism of different cancer types was established. This study showed that genes related to glucose and lipid metabolism play an important role in gastric cancer and facilitate a personalized treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhou Zhu
- Department of Gastrointestinal Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jian Qin
- Department of Radiation Oncology of Clinical Cancer Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chencheng Dong
- Department of Gastrointestinal Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jin Yang
- Strategic Operations Department, YuceBio Technology Co., Ltd, Guangzhou, China
| | - Maughan Yang
- Strategy DevelopmentDepartment, Meta Health Sector of Yuanzhi Technology Group, Beijing, China
| | - Jana Tian
- Strategy DevelopmentDepartment, Meta Health Sector of Yuanzhi Technology Group, Beijing, China
| | - Xiaogang Zhong
- Department of Gastrointestinal Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
15
|
Adam RS, Blomberg I, Ten Hoorn S, Bijlsma MF, Vermeulen L. The recurring features of molecular subtypes in distinct gastrointestinal malignancies-A systematic review. Crit Rev Oncol Hematol 2021; 164:103428. [PMID: 34284100 DOI: 10.1016/j.critrevonc.2021.103428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
In colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC) and gastric cancer (GC) multiple studies of inter-tumor heterogeneity have identified molecular subtypes, which correlate with clinical features. Our aim was to investigate the attributes of molecular subtypes across three different gastrointestinal cancer types. We performed a systematic search for publications on molecular subtypes or classifications in PDAC and GC and compared the described subtypes with the established consensus molecular subtypes of CRC. Examining the characteristics of subtypes across CRC, PDAC and GC resulted in four categories of subtypes. We describe uniting and distinguishing features within a mesenchymal, an epithelial, an immunogenic and a metabolic and digestive subtype category. We conclude that molecular subtypes of CRC, PDAC and GC display relevant overlap in molecular features and clinical outcomes. This finding encourages quantitative studies on subtypes across different cancer types and could lead to a paradigm shift in future treatment strategies.
Collapse
Affiliation(s)
- Ronja S Adam
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Ilse Blomberg
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Sanne Ten Hoorn
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Liu B, Zhou M, Li X, Zhang X, Wang Q, Liu L, Yang M, Yang D, Guo Y, Zhang Q, Zheng H, Wang Q, Li L, Chu X, Wang W, Li H, Song F, Pan Y, Zhang W, Chen K. Interrogation of gender disparity uncovers androgen receptor as the transcriptional activator for oncogenic miR-125b in gastric cancer. Cell Death Dis 2021; 12:441. [PMID: 33947843 PMCID: PMC8096848 DOI: 10.1038/s41419-021-03727-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
There is a male preponderance in gastric cancer (GC), which suggests a role of androgen and androgen receptor (AR). However, the mechanism of AR signaling in GC especially in female patients remains obscure. We sought to identify the AR signaling pathway that might be related to prognosis and examine the potential clinical utility of the AR antagonist for treatment. Deep learning and gene set enrichment analysis was used to identify potential critical factors associated with gender bias in GC (n = 1390). Gene expression profile analysis was performed to screen differentially expressed genes associated with AR expression in the Tianjin discovery set (n = 90) and TCGA validation set (n = 341). Predictors of survival were identified via lasso regression analyses and validated in the expanded Tianjin cohort (n = 373). In vitro and in vivo experiments were established to determine the drug effect. The GC gender bias was attributable to sex chromosome abnormalities and AR signaling dysregulation. The candidates for AR-related gene sets were screened, and AR combined with miR-125b was associated with poor prognosis, particularly among female patients. AR was confirmed to directly regulate miR-125b expression. AR-miR-125b signaling pathway inhibited apoptosis and promoted proliferation. AR antagonist, bicalutamide, exerted anti-tumor activities and induced apoptosis both in vitro and in vivo, using GC cell lines and female patient-derived xenograft (PDX) model. We have shed light on gender differences by revealing a hormone-regulated oncogenic signaling pathway in GC. Our preclinical studies suggest that AR is a potential therapeutic target for this deadly cancer type, especially in female patients.
Collapse
Affiliation(s)
- Ben Liu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Meng Zhou
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Xiangchun Li
- Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Xining Zhang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,Cancer Institute, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Qinghua Wang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Meng Yang
- Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, Department of Computational and Systems Biology University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yan Guo
- Department of Cancer Biobank, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Qiang Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Qiong Wang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Haixin Li
- Department of Cancer Biobank, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yuan Pan
- Department of Senior Ward, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Wei Zhang
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston- Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.
| |
Collapse
|
17
|
Shi L, Magee P, Fassan M, Sahoo S, Leong HS, Lee D, Sellers R, Brullé-Soumaré L, Cairo S, Monteverde T, Volinia S, Smith DD, Di Leva G, Galuppini F, Paliouras AR, Zeng K, O'Keefe R, Garofalo M. A KRAS-responsive long non-coding RNA controls microRNA processing. Nat Commun 2021; 12:2038. [PMID: 33795683 PMCID: PMC8016872 DOI: 10.1038/s41467-021-22337-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Wild-type KRAS (KRASWT) amplification has been shown to be a secondary means of KRAS activation in cancer and associated with poor survival. Nevertheless, the precise role of KRASWT overexpression in lung cancer progression is largely unexplored. Here, we identify and characterize a KRAS-responsive lncRNA, KIMAT1 (ENSG00000228709) and show that it correlates with KRAS levels both in cell lines and in lung cancer specimens. Mechanistically, KIMAT1 is a MYC target and drives lung tumorigenesis by promoting the processing of oncogenic microRNAs (miRNAs) through DHX9 and NPM1 stabilization while halting the biogenesis of miRNAs with tumor suppressor function via MYC-dependent silencing of p21, a component of the Microprocessor Complex. KIMAT1 knockdown suppresses not only KRAS expression but also KRAS downstream signaling, thereby arresting lung cancer growth in vitro and in vivo. Taken together, this study uncovers a role for KIMAT1 in maintaining a positive feedback loop that sustains KRAS signaling during lung cancer progression and provides a proof of principle that interfering with KIMAT1 could be a strategy to hamper KRAS-induced tumorigenesis.
Collapse
Affiliation(s)
- Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Peter Magee
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Sudhakar Sahoo
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Hui Sun Leong
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Dave Lee
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Robert Sellers
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | | | | | - Tiziana Monteverde
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Duncan D Smith
- Biological Mass Spectrometry Facility, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Gianpiero Di Leva
- School of Pharmacy and Bioengineering, Keele University, Stock-on-Trent, UK
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Athanasios R Paliouras
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Kang Zeng
- Imaging & Cytometry Facility, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Raymond O'Keefe
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK.
| |
Collapse
|
18
|
Na HK, Shon HK, Son HY, Jang E, Joh S, Huh YM, Castner DG, Lee TG. Utilization of chromogenic enzyme substrates for signal amplification in multiplexed detection of biomolecules using surface mass spectrometry. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 332:129452. [PMID: 33519092 PMCID: PMC7845929 DOI: 10.1016/j.snb.2021.129452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional gene regulators and can serve as potential biomarkers for many diseases. Most of the current miRNA detection techniques require purification from biological samples, amplification, labeling, or tagging, which makes quantitative analysis of clinically relevant samples challenging. Here we present a new strategy for the detection of miRNAs with uniformity over a large area based on signal amplification using enzymatic reactions and measurements using time-of-flight secondary ion mass spectrometry (ToF-SIMS), a sensitive surface analysis tool. This technique has high sequence specificity through hybridization with a hairpin DNA probe and allows the identification of single-base mismatches that are difficult to distinguish by conventional mass spectrometry. We successfully detected target miRNAs in biological samples without purification, amplification, or labeling of target molecules. In addition, by adopting a well-known chromogenic enzymatic reaction from the field of biotechnology, we extended the use of enzyme-amplified signal enhancement ToF (EASE-ToF) to protein detection. Our strategy has advantages with respect to scope, quantification, and throughput over the currently available methods, and is amenable to multiplexing based on the outstanding molecular specificity of mass spectrometry (MS). Therefore, our technique not only has the potential for use in clinical diagnosis, but also provides evidence that MS can serve as a useful readout for biosensing to perform multiplexed analysis extending beyond the limitations of existing technology.
Collapse
Affiliation(s)
- Hee-Kyung Na
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Hyun Kyong Shon
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Eunji Jang
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Sunho Joh
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - David G. Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, WA 98195-1653, USA
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
19
|
Shi W, Huang Q, Xie J, Wang H, Yu X, Zhou Y. CKS1B as Drug Resistance-Inducing Gene-A Potential Target to Improve Cancer Therapy. Front Oncol 2020; 10:582451. [PMID: 33102238 PMCID: PMC7545642 DOI: 10.3389/fonc.2020.582451] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is a threat to human health and life. Although previously centered on chemical drug treatments, cancer treatment has entered an era of precision targeted therapy. Targeted therapy entails precise guidance, allowing the selective killing of cancer cells and thereby reducing damage to healthy tissues. Therefore, the need to explore potential targets for tumor treatment is vital. Cyclin-dependent kinase regulatory subunit 1B (CKS1B), a member of the conserved cyclin kinase subunit 1 (CKS1) protein family, plays an essential role in cell cycling. A large number of studies have shown that CKS1B is associated with the pathogenesis of many human cancers and closely related to drug resistance. Here, we describe the current understanding of the cellular functions of CKS1B and its underlying mechanisms, summarize a recent study of CKS1B as a target for cancer treatment and discuss the potential of CKS1B as a therapeutic target.
Collapse
Affiliation(s)
- Wenwen Shi
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Landeros N, Santoro PM, Carrasco-Avino G, Corvalan AH. Competing Endogenous RNA Networks in the Epithelial to Mesenchymal Transition in Diffuse-Type of Gastric Cancer. Cancers (Basel) 2020; 12:cancers12102741. [PMID: 32987716 PMCID: PMC7598708 DOI: 10.3390/cancers12102741] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The diffuse-type of gastric cancer is associated with epithelial to mesenchymal transition. Loss of E-cadherin expression is the hallmark of this process and is largely due to the upregulation of the transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, miRNA and lncRNAs can also participate through these transcription factors which directly target E-cadherin. The competing endogenous RNA (ceRNA) network hypothesis state that lncRNA can sponge the miRNA pool that targets these transcripts. Based on the lack of said networks in the epithelial to mesenchymal transition, we performed a prediction analysis that resulted in novel ceRNA networks which will expand our knowledge of the molecular basis of the diffuse-type of gastric cancer. Abstract The diffuse-type of gastric cancer (DGC), molecularly associated with epithelial to mesenchymal transition (EMT), is increasing in incidence. Loss of E-cadherin expression is the hallmark of the EMT process and is largely due to the upregulation of the EMT-inducing transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, ncRNA, such as miRNA and lncRNAs, can also participate in the EMT process through the direct targeting of E-cadherin and other EMT-inducing transcription factors. Additionally, lncRNA can sponge the miRNA pool that targets these transcripts through competing endogenous RNA (ceRNA) networks. In this review, we focus on the role of ncRNA in the direct deregulation of E-cadherin, as well as EMT-inducing transcription factors. Based on the relevance of the ceRNA network hypothesis, and the lack of said networks in EMT, we performed a prediction analysis for all miRNAs and lncRNAs that target E-cadherin, as well as EMT-inducing transcription factors. This analysis resulted in novel predicted ceRNA networks for E-cadherin and EMT-inducing transcription factors (EMT-TFs), as well as the expansion of the molecular basis of the DGC.
Collapse
Affiliation(s)
- Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Pablo M. Santoro
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Gonzalo Carrasco-Avino
- Department of Pathology, Hospital Clinico Universidad de Chile and Clinica Las Condes, Santiago 7550000, Chile;
| | - Alejandro H. Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-2235-48289
| |
Collapse
|
21
|
Choi JM, Kim SG, Yang HJ, Lim JH, Cho NY, Kim WH, Kim JS, Jung HC. Helicobacter pylori Eradication Can Reverse the Methylation-Associated Regulation of miR-200a/b in Gastric Carcinogenesis. Gut Liver 2020; 14:571-580. [PMID: 31887809 PMCID: PMC7492500 DOI: 10.5009/gnl19299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Background/Aims Epigenetic change is one of the mechanisms that regulates the expression of microRNAs (miRNAs) and is known to play a role in Helicobacter pylori-associated gastric carcinogenesis. We aimed to evaluate the epigenetic changes of miR-200a/b in H. pylori-associated gastric carcinogenesis and restoration after eradication. Methods The expression and methylation levels of miR-200a/b were evaluated in gastric cancer (GC) cell lines, human gastric mucosa of H. pylori-negative and -positive controls, and H. pylori-positive GC patients. Next, the changes in the expression and methylation levels of miR-200a/b were compared between H. pylori-eradication and H. pylori-persistence groups at 6 months. Real-time reverse transcription-polymerase chain reaction was conducted to investigate the miRNA expression levels, and MethyLight was performed to assess the methylation levels. Results In the GC cell lines, the level of miR-200a/b methylation decreased and the level of expression increased after demethylation. In the human gastric mucosa, the miR-200a/b methylation levels increased in the following group order: H. pylori-negative control group, H. pylori-positive control group, and H. pylori-positive GC group. Conversely, the miR-200a/b expression levels decreased in the same order. In the H. pylori-persistence group, no significant changes were observed in the methylation and expression levels of miR-200a/b after 6 months, whereas the level of methylation decreased and the level of expression of miR-200a/b increased significantly 6 months in the H. pylori-eradication group. Conclusions Epigenetic alterations of miR-200a/b may be implicated in H. pylori-induced gastric carcinogenesis. This field defect for cancerization is suggested to be improved by H. pylori eradication.
Collapse
Affiliation(s)
- Ji Min Choi
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Sang Gyun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo-Joon Yang
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Hyun Lim
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Chae Jung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Integrated Analysis Identifies an Immune-Based Prognostic Signature for the Mesenchymal Identity in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9780981. [PMID: 32352015 PMCID: PMC7171688 DOI: 10.1155/2020/9780981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Background Gastric cancer (GC) has been divided into four molecular subtypes, of which the mesenchymal subtype has the poorest survival. Our goal is to develop a prognostic signature by integrating the immune system and molecular modalities involved in the mesenchymal subtype. Methods The gene expression profiles collected from 6 public datasets were applied to this study, including 1,221 samples totally. Network analysis was applied to integrate the mesenchymal modalities and immune signature to establish an immune-based prognostic signature for GC (IPSGC). Results We identified six immune genes as key factors of the mesenchymal subtype and established the IPSGC. The IPSGC can significantly divide patients into high- and low-risk groups in terms of overall survival (OS) and relapse-free survival (RFS) in discovery (OS: P < 0.001) and 5 independent validation sets (OS range: P = 0.05 to P < 0.001; RFS range: P = 0.03 to P < 0.001). Further, in multivariate analysis, the IPSGC remained an independent predictor of prognosis and performed better efficiency compared to clinical characteristics. Moreover, macrophage M2 was significantly enriched in the high-risk group, while plasma cells were enriched in the low-risk group. Conclusions We propose an immune-based signature identified by network analysis, which is a promising prognostic biomarker and help for the selection of GC patients who might benefit from more rigorous therapies. Further prospective studies are warranted to test and validate its efficiency for clinical application.
Collapse
|
23
|
Liu D, Zhou B, Liu R. A transcriptional co-expression network-based approach to identify prognostic biomarkers in gastric carcinoma. PeerJ 2020; 8:e8504. [PMID: 32095347 PMCID: PMC7025707 DOI: 10.7717/peerj.8504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Gastric carcinoma is a very diverse disease. The progression of gastric carcinoma is influenced by complicated gene networks. This study aims to investigate the actual and potential prognostic biomarkers related to survival in gastric carcinoma patients to further our understanding of tumor biology. Methods A weighted gene co-expression network analysis was performed with a transcriptome dataset to identify networks and hub genes relevant to gastric carcinoma prognosis. Data was obtained from 300 primary gastric carcinomas (GSE62254). A validation dataset (GSE34942 and GSE15459) and TCGA dataset confirmed the results. Gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and gene set enrichment analysis (GSEA) were performed to identify the clusters responsible for the biological processes and pathways of this disease. Results A brown transcriptional module enriched in the organizational process of the extracellular matrix was significantly correlated with overall survival (HR = 1.586, p = 0.005, 95% CI [1.149–2.189]) and disease-free survival (HR = 1.544, p = 0.008, 95% CI [1.119–2.131]). These observations were confirmed in the validation dataset (HR = 1.664, p = 0.006, 95% CI [1.155–2.398] in overall survival). Ten hub genes were identified and confirmed in the validation dataset from this brown module; five key biomarkers (COL8A1, FRMD6, TIMP2, CNRIP1 and GPR124 (ADGRA2)) were identified for further research in microsatellite instability (MSI) and epithelial-tomesenchymal transition (MSS/EMT) gastric carcinoma molecular subtypes. A high expression of these genes indicated a poor prognosis. Conclusion A transcriptional co-expression network-based approach was used to identify prognostic biomarkers in gastric carcinoma. This method may have potential for use in personalized therapies, however, large-scale randomized controlled clinical trials and replication experiments are needed before these key biomarkers can be applied clinically.
Collapse
Affiliation(s)
- Danqi Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Boting Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Rangru Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, People's Republic of China
| |
Collapse
|
24
|
Cai H, Hou X, Ding Y, Fu Z, Wang L, Du Y. Prediction of gastric cancer prognosis in the next-generation sequencing era. TRADITIONAL MEDICINE AND MODERN MEDICINE 2019. [DOI: 10.1142/s2575900019300029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed malignancies worldwide, and is caused by complex interactions of multiple risk factors such as environmental (Helicobacter pylori and Epstein–Barr Virus), hereditary (genetic alterations and epigenetic modifications), as well as dietary and lifestyle factors. GC is usually detected at an advanced stage, with a dismal prognosis. Even for patients with similar clinical or pathologic stage receiving similar treatment, the outcomes are still uneven and unpredictable. To better incorporate genetic and epigenetic profiles into GC prognostic predication, gene expression signatures have been developed to predict GC outcomes. More recently, the advancement of high-throughput sequencing technology, also known as next-generation sequencing (NGS) technology, and analysis has provided the basis for accurate molecular classification of GC tumors. Here, we summarized and updated the literature related to NGS studies of GC, including whole-genome sequencing, whole-exome sequencing, RNA sequencing, and targeted sequencing, and discussed current progresses. NGS has facilitated the identification of genetic/epigenetic targets for screening as well as development of targeted agent therapy, thus enabling individualized patient management and treatment.
Collapse
Affiliation(s)
- Hui Cai
- Department of General Surgery, Changhai Hospital, Second Military Medical University Shanghai, 200433, P. R. China
| | - Xiaomei Hou
- PLA Marine Corps Hospital, Chaozhou, Guangdong 521000, P. R. China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, P. R. China
| | - Zhongxing Fu
- Ningguo Bio-Leader Biotechnology Co., Ltd., Anhui, Hefei, P. R. China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-related Diseases, Shanghai, P. R. China
| | - Yan Du
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
25
|
MiR-200 family and cancer: From a meta-analysis view. Mol Aspects Med 2019; 70:57-71. [DOI: 10.1016/j.mam.2019.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
26
|
Zhou X, Hu M, Ge Z. Tumor‑suppressive miR‑299‑3p inhibits gastric cancer cell invasion by targeting heparanase. Mol Med Rep 2019; 20:2151-2158. [PMID: 31257534 PMCID: PMC6691259 DOI: 10.3892/mmr.2019.10436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 05/29/2019] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) remains a leading cause of cancer‑associated mortality globally. Emerging evidence suggests that microRNAs (miRs) function as oncogenes or tumor suppressors, contributing to various aspects of cancer progression, including invasion and metastasis. In the present study, the specific role of miR‑299‑3p in the invasion of GC cells was investigated. The expression level of miR‑299‑3p was measured using reverse transcription‑quantitative PCR and in situ hybridization in human GC tissues. Effects of miR‑299‑3p on GC cell invasion were determined by Transwell assay. Bioinformatics and luciferase reporter assays were performed to identify and verify the downstream effectors of miR‑299‑3p. miR‑299‑3p expression analysis in clinical GC samples revealed a significant downregulation of miR‑299‑3p compared with non‑tumor tissues. Inhibition of miR‑299‑3p promoted the invasive abilities of GC cells, whereas its overexpression significantly suppressed cell invasion. Bioinformatics and luciferase reporter assays identified heparanase (HPSE) as a direct target of miR‑299‑3p, the ectopic expression of which reversed the impairment in cell invasion induced by miR‑299‑3p upregulation. Furthermore, HPSE expression was negatively associated with miR‑299‑3p levels in human GC tissues. Overall, the present study indicated that miR‑299‑3p functions as a tumor suppressor by directly targeting HPSE, highlighting its potential as a target for the treatment of GC.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Gastroenterology, Danyang People's Hospital Affiliated to Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Mengmou Hu
- Department of Clinical Laboratory, Danyang People's Hospital Affiliated to Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Zhenghui Ge
- Department of Gastroenterology, Danyang People's Hospital Affiliated to Nantong University, Danyang, Jiangsu 212300, P.R. China
| |
Collapse
|
27
|
Huang ZS, Guo XW, Zhang G, Liang LX, Nong B. The Diagnostic and Prognostic Value of miR-200c in Gastric Cancer: A Meta-Analysis. DISEASE MARKERS 2019; 2019:8949618. [PMID: 31089400 PMCID: PMC6476052 DOI: 10.1155/2019/8949618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of miR-200c in gastric cancer remains controversial. This study is aimed at clarifying the diagnostic and prognostic value of miR-200c in gastric cancer through a meta-analysis. METHODS A comprehensive literature search of PubMed, Embase, and Ovid library databases was conducted. The studies included were those conducted before December 2017. The sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under curve (AUC) were used to estimate the diagnostic value of miR-200c. Meanwhile, the pooled hazard ratio (HR) was used to estimate the prognostic value of miR-200c. RESULTS For the diagnostic value of miR-200c, six studies that included 202 patients with gastric cancer and 250 normal controls were analyzed. The sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.74, 0.66, 2.20, 0.40, 5.34, and 0.75, respectively. Subgroup analysis showed no significant difference in the type of the sample, method for testing miR-200c, and ethnicity among the patients. Meanwhile, for the prognostic value of miR-200c, seven studies comprising 935 patients with gastric cancer were analyzed. The pooled results showed that miR-200c expression was associated with overall survival (HR = 2.19) and disease-free survival (HR = 1.73), but not with progression-free survival (HR = 1.64) in patients with gastric cancer. There was no publication bias across the studies. CONCLUSIONS Both serum and tissue miR-200c have moderate diagnostic accuracy in gastric cancer. miR-200c could also be used as a valuable indicator for predicting the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Zong-Sheng Huang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xian-Wen Guo
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guo Zhang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lie-Xin Liang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bing Nong
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
28
|
Zhang LQ, Lu N. Role of miR-200c in early diagnosis of gastric cancer: Current status and prospects. Shijie Huaren Xiaohua Zazhi 2019; 27:382-388. [DOI: 10.11569/wcjd.v27.i6.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract, and its morbidity and mortality still rank the second among all cancers. The proportion of patients with advanced GC is higher, and their therapeutic effect is extremely poor. In recent years, numerous studies have shown that the content of miR-200c in GC patients is significantly increased, and the level of miR-200c is closely related to epithelial-mesenchymal transition and lymph node metastasis. Therefore, in-depth disclosure of the role of miR-200c in the diagnosis of GC will not only contribute to the early diagnosis of GC, but also help develop new effective treatment strategies and judge the prognosis of patients with GC. This article reviews the role of miR-200c in the early diagnosis of GC and discusses its application prospects.
Collapse
Affiliation(s)
- Ling-Qian Zhang
- Department of Oncology, Xinjiang Military Command General Hospital of PLA, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Ning Lu
- Department of Oncology, Xinjiang Military Command General Hospital of PLA, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
29
|
Ma MH, An JX, Zhang C, Liu J, Liang Y, Zhang CD, Zhang Z, Dai DQ. ZEB1-AS1 initiates a miRNA-mediated ceRNA network to facilitate gastric cancer progression. Cancer Cell Int 2019; 19:27. [PMID: 30774556 PMCID: PMC6364449 DOI: 10.1186/s12935-019-0742-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/31/2019] [Indexed: 12/19/2022] Open
Abstract
Background Currently, cancer-related competing endogenous RNA (ceRNA) networks are attracting significant interest. As long noncoding RNA ZEB1-AS1 has been reported to function as an oncogene due to sponging microRNAs (miRNAs) in several cancers, we hypothesized that it could interact with specific miRNAs to form regulatory networks and facilitate the growth of gastric cancer (GC). Methods MiRNAs interacting with ZEB1-AS1 were screened for and selected by bioinformatics analysis. Overexpression or repression of ZEB1-AS1 was performed to determine whether it could regulate selected miRNAs. Quantitative real-time polymerase chain reactions (qPCR) validated the expression profiles of ZEB1-AS1 and miR-149-3p in GC cell lines and tissue. Statistical analysis determined the clinical significance of ZEB1-AS1 in relation to miR-149-3p. Cell counting, wound healing and transwell assays were performed to assess cell proliferation, migration and invasion. A luciferase reporter assay was utilized to confirm the putative miR-149-3p-binding sites in ZEB1-AS1. Results Briefly, bioinformatics analysis inferred that ZEB1-AS1 interacts with miR-204, miR-610, and miR-149. Gain- or loss-of function assays suggested that ZEB1-AS1 negatively regulates miR-149-3p, miR-204-5p and miR-610 in GC cells. Validated by qPCR, ZEB1-AS1 was up-regulated and miR-149-3p down-regulated in GC cells and tissue. Data analyses indicated that ZEB1-AS1 and miR-149-3p are associated with the independent diagnosis and prognosis of GC. Functional assays support the theory that miR-149-3p hinders GC proliferation, migration and invasion, whereas its overexpression abrogates the corresponding effects induced by ZEB1-AS1. Lastly, dissection of the molecular mechanisms involved indicated that ZEB1-AS1 can regulate GC partly via a ZEB1-AS1/miR-149-3p axis. Conclusions ZEB1-AS1 can interact with specific miRNAs, forming a miRNA-mediated ceRNA network and promoting GC progress, partly through a ZEB1-AS1/miR-149-3p axis. Electronic supplementary material The online version of this article (10.1186/s12935-019-0742-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Hui Ma
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Jia-Xiang An
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Cheng Zhang
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Jie Liu
- 2Science Experiment Center, China Medical University, Shenyang, 110122 China
| | - Yu Liang
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Chun-Dong Zhang
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Zhen Zhang
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Dong-Qiu Dai
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| |
Collapse
|
30
|
Wang F, Zhang L, Xu H, Li R, Xu L, Qin Z, Zhong B. The Significance Role of microRNA-200c as a Prognostic Factor in Various Human Solid Malignant Neoplasms: A Meta-Analysis. J Cancer 2019; 10:277-286. [PMID: 30662548 PMCID: PMC6329861 DOI: 10.7150/jca.27536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: The aim of this study was to conduct a meta-analysis of 49 relevant studies to evaluate the prognostic value of miRNA-200c in various human malignant neoplasms. Methods: All relevant studies were identified by searching PubMed, Embase and Web of Science until August 15st, 2018. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) of miRNA-200c for overall survival (OS) and progression-free survival (PFS)/recurrence-free survival (RFS)/disease-free survival (DFS) were calculated to investigate such associations. Results: Overall, 49 eligible studies were included in this meta-analysis. Our results showed that high expression of miRNA-200c was significantly correlated with a poor OS in cancer (pooled HR = 1.32, 95% CI: 1.06-1.65), but was not significantly correlated with PFS/RFS/DFS in cancer (pooled HR=1.05, 95% CI: 0.84-1.23). In our subgroup analysis, high miRNA-200c expression predicted a significantly worse OS (pooled HR = 1.50, 95% CI: 1.12-2.01) only in Caucasians. Moreover, high miRNA-200c expression even showed significantly poor OS (pooled HR = 1.88, 95% CI: 1.39-2.54) in blood samples. In addition, a significantly unfavorable OS (pooled HR = 2.69, 95% CI: 1.49-4.85) and (pooled HR = 2.66, 95% CI: 1.07-6.59) associated with up-regulated miRNA-200c expression were observed in breast cancer and endometrial cancer, respectively. Besides, high miRNA-200c expression also showed significantly poor PFS/RFS/DFS (pooled HR=1.66, 95% CI: 1.03-2.67) in breast cancer. Conclusions: Our findings indicated that high miRNA-200c expression was a promising biomarker for patient survival and disease progression in malignant tumors, especially in breast cancer and endometrial cancer. Considering the insufficient evidence, further large-scale researches and clinical studies were needed to verify these results.
Collapse
Affiliation(s)
- Feng Wang
- Department of Ultrasound, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing, 210029, China
| | - Lei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Haoxiang Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ran Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Bing Zhong
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.,Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
31
|
Zhang H, Jiang H, Zhang H, Liu J, Hu X, Chen L. miR-4262, low level of which predicts poor prognosis, targets proto-oncogene CD163 to suppress cell proliferation and invasion in gastric cancer. Onco Targets Ther 2019; 12:599-607. [PMID: 30697057 PMCID: PMC6339465 DOI: 10.2147/ott.s187881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND miR-4262 was identified as a tumor promoter in several cancers, but its exact role in gastric carcinoma is still largely unknown. METHODS The expression of miR-4262 was detected in gastric cancer tissues. Different concentrations of miR-4262 mimic and miR-4262 antagomir were respectively transfected into primary gastric carcinoma cells. After incubation for 72 h, the overexpression efficiencies were confirmed by qPCR, cell proliferation was detected with the CCK-8 assay, cell apoptosis was detected by using the PI/Annexin V Cell Apoptosis Kit, and cell invasion was detected with the Transwell invasion assay. The molecular mechanisms underlying the action of miR-4262 in gastric carcinoma cells were also explored. RESULTS In this study, we found that miR-4262 was significantly downregulated in gastric tissue from gastric cancer patients compared with that from the control group. Moreover, the level of miR-4262 was significantly lower in advanced gastric carcinoma. Additionally, lower level of miR-4262 was correlated with poorer prognosis and lower survival rate in gastric cancer patients. Then, different concentrations of miR-4262 mimic and miR-4262 antagomir were transfected into primary gastric carcinoma cells, respectively. The results showed that miR-4262 mimic suppressed proliferation and invasion and promoted cell apoptosis in a dose-dependent manner in gastric carcinoma cells. In contrast, miR-4262 antagomir increased proliferation and invasion and decreased cell apoptosis in a dose-dependent manner in gastric carcinoma cells. Furthermore, miR-4262 could directly target and suppress the expression of the proto-oncogene CD163. CONCLUSION Our findings indicate that lower level of miR-4262 predicts poorer prognosis in gastric patients, and miR-4262 can target proto-oncogene CD163 to suppress gastric cancer cell proliferation and invasion.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Huijuan Jiang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Huixiang Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Juncai Liu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Xigang Hu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Lei Chen
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| |
Collapse
|
32
|
Ying G, Wu R, Xia M, Fei X, He QE, Zha C, Wu F. Identification of eight key miRNAs associated with renal cell carcinoma: A meta-analysis. Oncol Lett 2018; 16:5847-5855. [PMID: 30344735 PMCID: PMC6176358 DOI: 10.3892/ol.2018.9384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/20/2018] [Indexed: 11/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common renal carcinoma in the human kidney. To date, to the best of our knowledge, there are no biomarkers for the early monitoring and diagnosis of RCC patients. The present study aimed to develop deeper insight into the molecular mechanisms of microRNAs (miRNAs/miRs) in the regulation of RCC development and to reveal candidate miRNA biomarkers in human RCC. A meta-analysis was used to integrate the published and independent RCC miRNA expression profiling investigations that compared the miRNA expression profiles in RCC samples with control samples. The meta-signature miRNA target genes were then predicted in TargetScan. The predicted targets were further analyzed using Gene Ontology and pathway enrichment analysis with the Database for Annotation, Visualization and Integrated Discovery online tool, and then the transcription factors of meta-signature miRNA target genes were identified in Tfacts. A total of 7 publicly available and independent RCC miRNA expression profiling datasets were collected, and 2 upregulated (hsa-miR-155-5p and hsa-miR-210-5p) and 6 downregulated (hsa-miR-138-5p, hsa-miR-141-5p, hsa-miR-200c-5p, hsa-miR-362-5p, hsa-miR-363-5p and hsa-miR-429) meta-signature miRNAs in renal carcinoma were identified. The targeted gene enrichment analysis indicated that the meta-signature miRNAs may influence several pathways that participate in cancerogenesis, including the ‘rap1 signaling pathway’, ‘renal cell carcinoma’ and ‘microRNAs in cancer’. Overall, the present meta-analysis identified 2 upregulated and 6 downregulated meta-signature miRNAs from 7 renal carcinoma datasets, the dysregulated miRNAs that may contribute to kidney carcinoma development. This research may reveal candidate miRNA biomarkers in human RCC.
Collapse
Affiliation(s)
- Guanghui Ying
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Ruilan Wu
- Postanesthetic Care Unit, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Min Xia
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Xiapei Fei
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Qi En He
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Chenqin Zha
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Fuquan Wu
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| |
Collapse
|
33
|
Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J, Tang Z, Liao QX, Zhang H, Zeng LS, Cui SZ. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway. Mol Cancer 2018; 17:126. [PMID: 30134915 PMCID: PMC6106894 DOI: 10.1186/s12943-018-0874-1] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022] Open
Abstract
Background Gastric cancer (GC) is a common malignancy and frequent cause of cancer-related death. Long non-coding RNAs (lncRNAs) have emerged as important regulators and tissue-specific biomarkers of multiple cancers, including GC. Recent evidence has indicated that the novel lncRNA LINC01133 plays an important role in cancer progression and metastasis. However, its function and molecular mechanism in GC remain largely unknown. Methods LINC01133 expression was detected in 200 GC and matched non-cancerous tissues by quantitative reverse transcription PCR. Gain- and loss-of-function experiments were conducted to investigate the biological functions of LINC01133 both in vitro and in vivo. Insights into the underlying mechanisms of competitive endogenous RNAs (ceRNAs) were determined by bioinformatics analysis, dual-luciferase reporter assays, quantitative PCR arrays, TOPFlash/FOPFlash reporter assay, luciferase assay, and rescue experiments. Results LINC01133 was downregulated in GC tissues and cell lines, and its low expression positively correlated with GC progression and metastasis. Functionally, LINC01133 depletion promoted cell proliferation, migration, and the epithelial–mesenchymal transition (EMT) in GC cells, whereas LINC01133 overexpression resulted in the opposite effects both in vitro and in vivo. Bioinformatics analysis and luciferase assays revealed that miR-106a-3p was a direct target of LINC01133, which functioned as a ceRNA in regulating GC metastasis. Mechanistic analysis demonstrated that miR-106a-3p specifically targeted the adenomatous polyposis coli (APC) gene, and LINC01133/miR-106a-3p suppressed the EMT and metastasis by inactivating the Wnt/β-catenin pathway in an APC-dependent manner. Conclusions Our findings suggest that reduced expression of LINC01133 is associated with aggressive tumor phenotypes and poor patient outcomes in GC. LINC01133 inhibits GC progression and metastasis by acting as a ceRNA for miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway, suggesting that LINC01133 may serve as a potential prognostic biomarker and anti-metastatic therapeutic target for GC. Electronic supplementary material The online version of this article (10.1186/s12943-018-0874-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian-Zi Yang
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Tian-Tian Cheng
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qing-Jun He
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zi-Ying Lei
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Jun Chi
- Department of Endoscopy and Laser, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhen Tang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Quan-Xing Liao
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Si Zeng
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Shu-Zhong Cui
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
34
|
Correlation between miR-200 Family Overexpression and Cancer Prognosis. DISEASE MARKERS 2018; 2018:6071826. [PMID: 30069274 PMCID: PMC6057334 DOI: 10.1155/2018/6071826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
The correlation between miR-200 family overexpression and cancer prognosis remains controversial. Therefore, we conducted a systematic review and meta-analysis by searching PubMed, Embase, Cochrane Library, China Biology Medicine disc (CBM), and China National Knowledge Infrastructure (CNKI) to identify eligible studies. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to evaluate the strength of the correlations. Additionally, different subgroup analyses and publication bias test were performed. Eventually, we analyzed 23 articles that included five tumor types and 3038 patients. Consequently, high expression of miR-200 family in various tumors was associated with unfavorable overall survival (OS) in both univariate (HR = 1.32, 95% CI: 1.14-1.54, P < 0.001) and multivariate (HR = 1.32, 95% CI: 1.16-1.49, P < 0.001) analyses. Likewise, a similar result was found in different subgroups of the patient source, cancer type, test method, sample source, miR-200 component, and sample size. However, no association of miR-200 family was detected with recurrence- or relapse-free survival (RFS) (univariate: HR = 1.02, 95% CI: 0.96-1.09, P = 0.47; multivariate: HR = 1.07, 95% CI: 1.00-1.14, P = 0.07), progression-free survival (PFS) (univariate: HR = 0.96, 95% CI: 0.54-1.70, P = 0.88; multivariate: HR = 1.17, 95% CI: 0.86-1.61, P = 0.32), and disease-free survival (DFS) (univariate: HR = 0.90, 95% CI: 0.74-1.09, P = 0.29; multivariate: HR = 0.98, 95% CI: 0.68-1.41, P = 0.90). Our findings have provided convincing evidence that miR-200 family overexpression suggested poor prognosis of various cancer types, which efforts may raise the potential use of miR-200 family for cancer prognosis in clinical practice.
Collapse
|
35
|
Yin Y, Song WW, Wang Y, Zhao W, Wu J, Xu W. MicroRNA-200 families and prognostic value in various carcinomas: A systematic review and meta-analysis. Aging Med (Milton) 2018; 1:39-45. [PMID: 31942478 PMCID: PMC6880694 DOI: 10.1002/agm2.12005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recently, some studies have showed that miR-200 families act as novel biomarkers for the prediction of cancer outcomes. AIMS This meta-analysis was designed to investigate the associations between miR-200 families and the prognosis of patients with various cancers. MATERIALS & METHODS Eligible published databases including PubMed, Embase and Chinese National Knowledge Infrastructure (CNKI) databases were searched for articles until October 18, 2016. We performed a meta-analysis by calculating pooled hazard ratios (HR) and 95% confidence intervals (CI). Data were extracted from studies comparing overall survival (OS), progression-free survival (PFS) or recurrence-free survival (RFS). RESULTS For OS, the pooled HR was 1.54 (95% CI: 1.01-2.33), showing that high miR-200 family was clearly related to poor survival in various carcinomas, but no significantly association was found in PFS or RFS. Subgroup analysis indicated that upregulated miR-200 family was linked to poor OS in Asians (HR = 2.19, 95% CI: 1.27-3.78) but not in Caucasians (HR = 0.94, 95% CI: 0.46-1.91). Similarly, high miR-200 expression could not clearly predict the relationship with PFS and RFS. For cancer type, high miR-200 also predicted poor OS among lung cancer patients (HR = 3.09, 95% CI: 1.75-5.46). Besides, only elevated miR-200c of the miR-200 family indicated a significantly poor OS (HR = 2.25, 95% CI: 1.39-3.64). DISCUSSION Aberrant expression of miRNAs played a crucial role in the area of human carcinomas. Many studies have indicated that miRNAs are considered promising tumor biomarkers for prognosis and potential targets for clinical treatment. We have testified that high levels of miR-200 family expression (predominantly miR-200c) are significantly associated with poor survival and prognostic outcomes of patients with cancers, especially in lung cancer. However, no statistically significant results were calculated for miR-200a/b and miR-429, and this might result from a relatively small number of articles about them. In other tumor models except lung cancer, our results indicated that high miR-200 family was not obviously associated with OS (Gastric or Colorectal cancer; Ovarian cancer; Others). In addition, some other records showed the opposite results, for they exhibited that upregulated miR-200 family level was linked to longer survival. For ethnic group, our stratified analyses showed that the Asian population predicted poor OS. While the Caucasian population did not exhibit an significant association with OS. This discrepancy might result from different hereditary backgrounds and environment exposure. Although these results have indicated that miR-200 families were promising biomarkers to predict prognosis for patients with cancers, there were several limitations in this analysis that would impact its quality. Generally, further studies should be warranted to clarify this question and to provide a new novel idea for routine clinical application. CONCLUSION Our findings suggest that miR-200 family might be a potentially useful biomarker for predicting cancer prognosis, especially for lung cancer in Asians.
Collapse
Affiliation(s)
- Yuan Yin
- Nanjing Medical UniversityJiangning District, NanjingChina
| | - Wei Wei Song
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yu Wang
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Weihong Zhao
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jianqing Wu
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei Xu
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
36
|
Zeng W, Rao N, Li Q, Wang G, Liu D, Li Z, Yang Y. Genome-wide Analyses on Single Disease Samples for Potential Biomarkers and Biological Features of Molecular Subtypes: A Case Study in Gastric Cancer. Int J Biol Sci 2018; 14:833-842. [PMID: 29989098 PMCID: PMC6036754 DOI: 10.7150/ijbs.24816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose: Based on the previous 3 well-defined subtypes of gastric adenocarcinoma (invasive, proliferative and metabolic), we aimed to find potential biomarkers and biological features of each subtype. Methods: The genome-wide co-expression network of each subtype of gastric cancer was firstly constructed. Then, the functional modules in each genome-wide co-expression network were divided. Next, the key genes were screened from each functional module. Finally, the enrichment analysis was performed on the key genes to mine the biological features of each subtype. Comparative analysis between each pair of subtypes was performed to find the common and unique features among different subtypes. Results: A total of 207 key genes were identified in invasive, 215 key genes in proliferative, and 204 key genes in metabolic subtypes. Most key genes in each subtype were unique and new findings compared with that of the existing related researches. The GO and KEGG enrichment analyses for the key genes of each subtype revealed important biological features of each subtype. Conclusions: For a subtype, most identified key genes and important biological features were unique, which means that the key genes can be used as the potential biomarker of a subtype, and each subtype of gastric cancer might have different occurrence and development mechanisms. Thus, different diagnosis and therapy methods should be applied to the invasive, proliferative and metabolic subtypes of gastric cancer.
Collapse
Affiliation(s)
- Wei Zeng
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China.,Department of Biomedical Engineering, School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Nini Rao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China.,Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, 523808, China
| | - Qian Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guangbin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dingyun Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhengwen Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuntao Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
37
|
A novel microRNA signature predicts survival in stomach adenocarcinoma. Oncotarget 2018; 8:28144-28153. [PMID: 28423653 PMCID: PMC5438638 DOI: 10.18632/oncotarget.15961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/22/2017] [Indexed: 01/07/2023] Open
Abstract
Recent microRNA (miRNA) expression profiling studies suggest the clinical use of miRNAs as potential prognostic biomarkers in various malignancies. In this study, aiming to identify microRNAs with prognostic value for overall survival (OS) in stomach adenocarcinoma (STAD) patients, we analyzed the miRNA expression profiles and the associated clinical characteristics in 380 STAD samples from The Cancer Genome Atlas (TCGA) dataset. An eight-miRNA signature for predicting OS in STAD patients was identified and self-validated by survival analysis and semi-supervised principal components method. We developed a linear prognostic model composed of these miRNAs to divide patients into high- and low-risk groups according to the calculated prognostic scores. Kaplan-Meier analysis demonstrated that patients in the high-risk group had worse OS compared with patients in the low-risk group. Notably, this miRNA prognostic model showed prognostic significance to the STAD patients in early stages and the chemo-resistant patients, who would potentially benefit from additional medical interventions. Finally, this eight-miRNA signature is an independent prognostic biomarker and demonstrates a good predictive performance for 5-year survival. Thus, this signature may serve as a novel biomarker for predicting survival as well as chemotherapy response in STAD patients.
Collapse
|
38
|
Zhao X, Li R, Qiao M, Yan J, Sun Q. MiR-548a-3p Promotes Keratinocyte Proliferation Targeting PPP3R1 after Being Induced by IL-22. Inflammation 2018; 41:496-504. [PMID: 29181737 DOI: 10.1007/s10753-017-0705-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Psoriasis is an immune-mediated chronic skin disorder where T cells play a main role, and numerous inflammatory cytokines are implicated in its pathogenesis by initiating keratinocyte proliferation. Interleukin-22 (IL-22), an IL-10 family cytokines, is critical in the pathogenesis and development of psoriasis. To determine the target of microRNA (miR) -548a-3p and investigate its role in keratinocyte proliferation after treating human keratinocytes (HaCaT) with IL-22, we used quantitative reverse transcriptase PCR to measure the expression of miR-548a-3p in both HaCaT cells stimulated with IL-22 and psoriatic lesions, and then detected the biological function of miR-548a-3p in HaCaT cells by performing Counting Kit-8 (CCK-8) assays. Luciferase reporter assay was conducted to determine the target gene of miR-548a-3p. Immunohistochemistry and Western blot were performed to verify the target gene. Results showed that miR-548a-3p was significantly upregulated both in HaCaT cells treated with IL-22 and psoriatic lesions. The over expression of miR-548a-3p could promote the proliferation of HaCaT cells. Luciferase was mutated in the 3'UTR of PPP3R1, a gene coding Calcineurin. Immunohistochemistry and Western blot demonstrated that the expression of PPP3R1 decreased respectively in psoriatic lesions and HaCaT cells. In conclusion, the expression of miR-548a-3p is upregulated in IL-22 mediated keratinocyte proliferative disorder like psoriasis. The impact of miR-548a-3p on keratinocyte proliferation may be implemented by targeting PPP3R1 and T regulatory cells may be involved in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Xintong Zhao
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Ronghua Li
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Meng Qiao
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
39
|
Zhang J, Jin M, Chen X, Zhang R, Huang Y, Liu H, Zhu J. Loss of PPM1F expression predicts tumour recurrence and is negatively regulated by miR-590-3p in gastric cancer. Cell Prolif 2018; 51:e12444. [PMID: 29473240 DOI: 10.1111/cpr.12444] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES MicroRNAs (miRNAs) as small non-coding RNA molecules act by negatively regulating their target genes. Recent studies have shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) plays a critical role in cancer metastasis. But, the regulation mechanisms of PPM1F by miRNAs in gastric cancer (GC) remain undefined. METHODS The correlation of PPM1F or miR-590-3p (miR-590) expression with clinicopathological features and prognosis of the patients with GC was analysed by TCGA RNA-sequencing data. The miRNAs that target PPM1F gene were identified by bioinformatics and Spearman correlation analysis, and the binding site between miR-590 and PPM1F 3'UTR was confirmed by dual luciferase assay. MTT and Transwell assays were conducted to evaluate the effects of miR-590 or (and) PPM1F on cell proliferation and invasion. RESULTS We found that PPM1F expression was downregulated in GC tissues and cell lines and was correlated with tumour recurrence in patients with GC. The decreased expression of PPM1F was attributed to the dysregulation of miR-590 expression rather than its genetic or epigenetic alterations. Overexpression of miR-590 promoted cell proliferation and invasion capability of GC cells, while knockdown of miR-590 reversed these effects. Moreover, PPM1F was validated as a direct target of miR-590 and counteracted the tumour-promoting effects caused by miR-590. The expression of miR-590 presented the negative correlation with PPM1F expression and acted as an independent prognostic factor for tumour recurrence in patients with GC. CONCLUSION PPM1F may function as a suppressive factor and is negatively regulated by miR-590 in GC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ming Jin
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanxia Huang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Liu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinshui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
40
|
The tumor suppressive miR-200b subfamily is an ERG target gene in human prostate tumors. Oncotarget 2018; 7:37993-38003. [PMID: 27191272 PMCID: PMC5122366 DOI: 10.18632/oncotarget.9366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
The TMPRSS2-ERG fusion occurs in approximately 50% of prostate cancer (PCa), resulting in expression of the oncogenic ERG in the prostate. Because ERG is a transcriptional activator, we hypothesized that ERG-regulated genes contribute to PCa development. Since microRNA (miRNA) has crucial functions in cancer, we searched for miRNAs regulated by ERG in PCas. We mined published datasets based on the MSKCC Prostate Oncogene Project, in which a comprehensive analysis defined the miRNA transcriptomes in 113 PCas. We retrieved the miRNA expression datasets, and identified miRNAs differentially expressed between ERG-positive and ERG-negative samples. Out of 369 miRNAs, miR-200a, −200b, −429 and −205 are the only miRNAs significantly increased in ERG-positive tumors. Strikingly, miR-200a, −200b and −429 are transcribed as a single polycistronic transcript, suggesting they are regulated at the transcriptional level. With ChIP-qPCR and in vitro binding assay, we identified two functional ETS motifs in the miR-200b/a/429 gene promoter. Knockdown of ERG in PCa cells reduced expression of these three miRNAs. In agreement with the well-established tumor suppressor function, overexpression of the miR-200b/a/429 gene inhibited PCa cell growth and invasion. In summary, our study reveals that miR-200b/a/429 is an ERG target gene, which implicates an important role in TMPRSS2/ERG-dependent PCa development. Although induction of the tumor suppressive miR-200b subfamily by oncogenic ERG appears to be counterintuitive, it is consistent with the observation that the vast majority of primary prostate cancers are slow-growing and indolent.
Collapse
|
41
|
Yu L, Wu D, Gao H, Balic JJ, Tsykin A, Han TS, Liu YD, Kennedy CL, Li JK, Mao JQ, Tan P, Oshima M, Goodall GJ, Jenkins BJ. Clinical Utility of a STAT3-Regulated miRNA-200 Family Signature with Prognostic Potential in Early Gastric Cancer. Clin Cancer Res 2018; 24:1459-1472. [PMID: 29330205 DOI: 10.1158/1078-0432.ccr-17-2485] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The majority of gastric cancer patients are diagnosed with late-stage disease, for which distinct molecular subtypes have been identified that are potentially amenable to targeted therapies. However, there exists no molecular classification system with prognostic power for early-stage gastric cancer (EGC) because the molecular events promoting gastric cancer initiation remain ill-defined.Experimental Design: miRNA microarrays were performed on gastric tissue from the gp130F/F preclinical EGC mouse model, prior to tumor initiation. Computation prediction algorithms were performed on multiple data sets and independent gastric cancer patient cohorts. Quantitative real-time PCR expression profiling was undertaken in gp130F/F-based mouse strains and human gastric cancer cells genetically engineered for suppressed activation of the oncogenic latent transcription factor STAT3. Human gastric cancer cells with modulated expression of the miR-200 family member miR-429 were also assessed for their proliferative response.Results: Increased expression of miR-200 family members is associated with both tumor initiation in a STAT3-dependent manner in gp130F/F mice and EGC (i.e., stage IA) in patient cohorts. Overexpression of miR-429 also elicited contrasting pro- and antiproliferative responses in human gastric cancer cells depending on their cellular histologic subtype. We also identified a miR-200 family-regulated 15-gene signature that integrates multiple key current indicators of EGC, namely tumor invasion depth, differentiation, histology, and stage, and provides superior predictive power for overall survival compared with each EGC indicator alone.Conclusions: Collectively, our discovery of a STAT3-regulated, miR-200 family-associated gene signature specific for EGC, with predictive power, provides a molecular rationale to classify and stratify EGC patients for endoscopic treatment. Clin Cancer Res; 24(6); 1459-72. ©2018 AACR.
Collapse
Affiliation(s)
- Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Di Wu
- Department of Periodontology, School of Dentistry, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hugh Gao
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Jesse J Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Anna Tsykin
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia.,School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia
| | - Tae-Su Han
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - You Dong Liu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.,Department of General Surgery, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Catherine L Kennedy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ji Kun Li
- Department of General Surgery, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Qi Mao
- Department of General Surgery, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick Tan
- Genome Institute of Singapore, Singapore.,Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Gregory J Goodall
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia.,School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
42
|
Wu C, Zheng X, Li X, Fesler A, Hu W, Chen L, Xu B, Wang Q, Tong A, Burke S, Ju J, Jiang J. Reduction of gastric cancer proliferation and invasion by miR-15a mediated suppression of Bmi-1 translation. Oncotarget 2018; 7:14522-36. [PMID: 26894855 PMCID: PMC4924733 DOI: 10.18632/oncotarget.7392] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
B-cell specific moloney leukemia virus insertion site 1 (Bmi-1) gene plays important roles in gastric cancer, but the epigenetic regulatory mechanism by microRNA (miRNA) and the functional significance of Bmi-1 inhibition in gastric cancer remains elusive. In this study, we systematically investigated the functional roles of miRNA mediated Bmi-1 suppression in gastric cancer. Our results show that the expression of miR-15a is significantly reduced in gastric cancer and the protein expression levels of Bmi-1 are inversely correlated with miR-15a (P = 0.034) in gastric cancer patient samples. Functional studies revealed that ectopic expression of miR-15a decreased Bmi-1 in gastric cancer cell lines with reduced proliferation and tumor invasion. High levels of Bmi-1 in gastric cancer patients are significantly associated with better overall survival (P = 0.024) based on the Kaplan-Meier survival analysis.
Collapse
Affiliation(s)
- Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
| | - Xiao Zheng
- Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.,Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Xiaodong Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.,Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Andrew Fesler
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
| | - Lujun Chen
- Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
| | - Bin Xu
- Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
| | - Qi Wang
- Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
| | | | - Stephanie Burke
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Jingfang Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Jingting Jiang
- Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
| |
Collapse
|
43
|
Integrated MicroRNA-mRNA Analysis Reveals miR-204 Inhibits Cell Proliferation in Gastric Cancer by Targeting CKS1B, CXCL1 and GPRC5A. Int J Mol Sci 2017; 19:ijms19010087. [PMID: 29283424 PMCID: PMC5796037 DOI: 10.3390/ijms19010087] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer (GC) is the second most frequent cause of cancer-related deaths worldwide. MicroRNAs are single-stranded RNA molecules of 21–23 nucleotides that regulate target gene expression through specific base-pairing interactions between miRNA and untranslated regions of targeted mRNAs. In this study, we generated a multistep approach for the integrated analysis of miRNA and mRNA expression. First, both miRNA and mRNA expression profiling datasets in gastric cancer from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) identified 79 and 1042 differentially expressed miRNAs and mRNAs, respectively, in gastric cancer. Second, inverse correlations between miRNA and mRNA expression levels identified 3206 miRNA–mRNA pairs combined with 79 dysregulated miRNAs and their 774 target mRNAs predicted by three prediction tools, miRanda, PITA, and RNAhybrid. Additionally, miR-204, which was found to be down-regulated in gastric cancer, was ectopically over-expressed in the AGS gastric cancer cell line and all down-regulated targets were identified by RNA sequencing (RNA-seq) analysis. Over-expression of miR-204 reduced the gastric cancer cell proliferation and suppressed the expression of three targets which were validated by qRT-PCR and luciferase assays. For the first time, we identified that CKS1B, CXCL1, and GPRC5A are putative targets of miR-204 and elucidated that miR-204 acted as potential tumor suppressor and, therefore, are useful as a promising therapeutic target for gastric cancer.
Collapse
|
44
|
Wei W, Shi L, Chen W, Hu L, Chen D, Shi X, Xiang H, Guo C, Wu Z. miR-200c regulates the proliferation, apoptosis and invasion of gastric carcinoma cells through the downregulation of EDNRA expression. Int J Mol Med 2017; 41:1619-1626. [PMID: 29286062 DOI: 10.3892/ijmm.2017.3317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/28/2017] [Indexed: 11/05/2022] Open
Abstract
This study aimed to investigate the regulatory effects of microRNA (miR)‑200c on the proliferation, apoptosis and invasion of gastric carcinoma cells and to elucidate the underlying mechanisms involving the possible role of endothelin receptor A (EDNRA). The expression levels of miR‑200c and EDNRA in the gastric carcinoma cell lines, BGC‑823, SGC‑7901 and HGC‑27, and in GES‑1 normal gastric cells were evaluated by RT‑PCR and western blot analysis. The gastric carcinoma cells, particularly the BGC‑823 cells, expressed significantly lower levels of miR‑200c than the normal gastric cells (P<0.01). Thus, the BGC‑823 cells were employed as model cells. In comparison to the normal gastric cells, EDNRA was overexpressed in the gastric carcinoma cells (P<0.01). Following the transfection of the gastric carcinoma cells with miR‑200c mimics, or negative control vector (miR‑200c NC), or with siRNA targeting EDNRA (siRNA EDNRA) or negatvie control siRNA (siRNA NC), the expression levels were assessed again by RT‑PCR and western blot analysis. The successful transfection of miR‑200c mimics was observed and this markedly elevated the expression of miR‑200c (P<0.01). The transfection of miR‑200c mimics or siRNA EDNRA notably decreased the EDNRA mRNA and protein expression levels (both P<0.01). In additoin, dual‑luciferase reporter gene analysis was performed to reveal the targeting relationship between miR‑200c and EDNRA. EDNRA was found to be the downstream target gene of miR‑200c. Moreover, methyl thiazolyl tetrazolium (MTT) assay, Hoechst staining and Transwell assay were conducted to demonstrate the effects of miR‑200c mimics or siRNA EDNRA on the proliferation, apoptosis and invasion of the gastric carcinoma cells, respectively. We found that transfection with miR‑200c mimics and siRNA EDNRA were able to markedly suppress the proliferation and invasive capacity, and to promote the apoptosis of the gastric carcinoma cells (all P<0.01). On the whole, our data indicate that miR‑200c regulates the proliferation, apoptosis and invasion of gastric carcinoma cells through the downregulation of EDNRA expression.
Collapse
Affiliation(s)
- Wei Wei
- Department of Gastroenterology, Jinhua Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Li Shi
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Liyu Hu
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Dan Chen
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xiaoying Shi
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Hua Xiang
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Cunguo Guo
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Zhenping Wu
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
45
|
Kurata A, Yamada M, Ohno SI, Inoue S, Hashimoto H, Fujita K, Takanashi M, Kuroda M. Expression level of microRNA-200c is associated with cell morphology in vitro and histological differentiation through regulation of ZEB1/2 and E-cadherin in gastric carcinoma. Oncol Rep 2017; 39:91-100. [PMID: 29138864 PMCID: PMC5783608 DOI: 10.3892/or.2017.6093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
Scirrhous type gastric cancer is characterized by diffuse infiltration of poorly differentiated adenocarcinoma cells and poor prognosis. Although association of poorly differentiated histology with reduction in E-cadherin expression, as well as association of microRNA (miR)-200c with E-cadherin through regulation of ZEB1/2, has been reported, participation of miR-200c in gastric carcinogenesis is not fully understood. We used 6 cell lines originating from gastric cancers, and investigated levels of miR-200c along with its target mRNAs ZEB1/2 and E-cadherin by qRT-PCR. ZEB1 and E-cadherin protein expression was also assessed via western blotting. Furthermore, we investigated the expression levels of miR-200c by in situ hybridization, along with the expression of ZEB1 and E-cadherin by immunohistochemistry, in 97 gastric adenocarcinoma tissues. Inverse correlation between miR-200c and ZEB1 levels were obtained by qRT-PCR in cell lines (P<0.05). Cell lines with low miR-200c and high ZEB1 exhibited low E-cadherin expression in both qRT-PCR and western blotting, and exhibited spindle-shaped morphology, in contrast to round cell morphology in those cell lines with high miR-200c levels. Inverse correlations were also obtained between miR-200c and ZEB1 as well as between ZEB1 and E-cadherin levels in tissue samples (P<0.001). Cancer tissues with low miR-200c, high ZEB1, and low E-cadherin expression were associated with poorly differentiated histology, in contrast to tubular form in cancers with high miR-200c expression levels (P<0.001). Our data revealed that downregulation of miR-200c primarily regulated cell morphology by downregulation of E-cadherin through upregulation of ZEB1, leading to poorly differentiated histology in gastric cancer.
Collapse
Affiliation(s)
- Atsushi Kurata
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masatoshi Yamada
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shin-Ichiro Ohno
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shigeru Inoue
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hirotsugu Hashimoto
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
46
|
Deng M, Zeng C, Lu X, He X, Zhang R, Qiu Q, Zheng G, Jia X, Liu H, He Z. miR-218 suppresses gastric cancer cell cycle progression through the CDK6/Cyclin D1/E2F1 axis in a feedback loop. Cancer Lett 2017. [PMID: 28634044 DOI: 10.1016/j.canlet.2017.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies in several cancers have suggested that miR-218 has anti-tumor activities, but its function is yet to be elucidated. In this study, we investigated the regulation and function of miR-218 (miR-218-5p) in the cell cycle progression of gastric cancer (GC). We found that miR-218 could suppress proliferation of gastric cancer cells, induce cell cycle arrest at the G1 phase and inhibit tumor growth and metastasis in vivo. We also demonstrated that miR-218 specifically targeted the 3'-UTR regions of CDK6 and cyclin D1 and inhibited the expression of these molecules, which in turn repressed the pRb/E2F1 signaling pathway. Overexpression of CDK6 and Cyclin D1 reversed miR-218-mediated inhibition of pRB/E2F1 signaling and attenuated the miR-218-induced cell cycle arrest. More importantly, miR-218 expression was significantly reduced and inversely correlated with the levels of CDK6 and Cyclin D1 in gastric cancer tissues. Decreased miR-218 expression was also correlated with advanced clinical stage, lymph node metastasis, and poor prognosis in gastric cancer patients. Furthermore, we showed that miR-218 expression was directly activated by E2F1 through the transactivation of miR-218 host genes, SLIT2 and SLIT3, revealing a negative feedback regulation of miR-218 expression. Taken together, our results describe a regulatory loop miR-218-CDK6/CyclinD1-E2F1 whose disruption may contribute to cell cycle progression in gastric cancer and indicate the potential application of miR-218 in cancer therapy.
Collapse
Affiliation(s)
- Min Deng
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chao Zeng
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Xihong Lu
- Guangzhou Eighth People's Hospital, Guangzhou, Guangdong Province, China
| | - Xiusheng He
- Cancer Research Institute, University of South China, Hengyang, Hunan Province, China
| | - Ruixin Zhang
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qinwei Qiu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guopei Zheng
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoting Jia
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Zhimin He
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
47
|
Sui M, Jiao A, Zhai H, Wang Y, Wang Y, Sun D, Li P. Upregulation of miR-125b is associated with poor prognosis and trastuzumab resistance in HER2-positive gastric cancer. Exp Ther Med 2017; 14:657-663. [PMID: 28672982 PMCID: PMC5488498 DOI: 10.3892/etm.2017.4548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/10/2017] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is one of the most common types of human cancer associated with a poor prognosis. MicroRNAs (miRs), a class of non-coding RNAs that are 18–25 nucleotides in length, act as key regulators in gene expression, and have been implicated in various human cancer types. miR-125b has been implicated in the malignant progression of gastric cancer. However, the association between miR-125b expression, clinicopathological characteristics and trastuzumab resistance in human epidermal growth factor receptor 2 (HER2)-positive gastric cancer remains unclear. In the current study, in situ hybridization data demonstrated that 81.8% (108/132) of gastric cancer tissues exhibited positive expression of miR-125b, while only 26.3% (10/38) of non-tumor gastric tissues were miR-125b-positive. Reverse transcription-quantitative polymerase chain reaction data indicated that the expression level of miR-125b was markedly increased in gastric cancer tissues compared with non-cancerous gastric tissues. Furthermore, the miR-125b level was significantly associated with tumor (T) stage, lymph node metastasis, distant metastasis and TNM stage of gastric cancer (P<0.05). Increased miR-125b expression predicated poor prognosis in patients with gastric cancer. For HER2-positive gastric cancer, the upregulation of miR-125b expression was significantly associated with advanced malignant progression, as well as a poor prognosis (P<0.05). Furthermore, data from the present study indicated that the increased miR-125b level was significantly associated with trastuzumab resistance in HER2-positive gastric cancer (P<0.05). Therefore, the current study suggests that miR-125b may become a potential biomarker for predicting prognoses and clinical outcomes in patients with HER2-positive gastric cancer that receive trastuzumab treatment.
Collapse
Affiliation(s)
- Minghua Sui
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Aihong Jiao
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Huiyuan Zhai
- Department of Gastrointestinal Surgery, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Yan Wang
- Department of Hematology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Yong Wang
- Department of General Surgery, General Hospital of Ping Coal Group, Pingdingshan, Henan 467000, P.R. China
| | - Dengjun Sun
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Peng Li
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
48
|
Ki J, Jang E, Han S, Shin MK, Kang B, Huh YM, Haam S. Instantaneous pH-Boosted Functionalization of Stellate Gold Nanoparticles for Intracellular Imaging of miRNA. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17702-17709. [PMID: 28524648 DOI: 10.1021/acsami.6b16452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Various types of nanoprobes have recently been utilized to monitor living organisms by detecting and imaging intracellular biomarkers, such as microRNAs (miRs). We here present a simple one-pot method to prepare stellate gold nanoparticles functionalized with miR-detecting molecular beacons (SGNP-MBs); low pH conditions permitted the rapid-high loading of MBs on the surface of SGNPs. Compared to the conventional gold nanoparticle-based MBs, SGNPs carried a 4.5-fold higher load of MBs and exhibited a 6.4-fold higher cellular uptake. We demonstrated that SGNP-MBs were successfully internalized in human gastric cancer cell lines and could be used to accurately detect and image intracellular miRs in an miR-specific manner. Furthermore, the relative levels of intracellular miRs in three different cell lines expressing miR-10b (high, moderate, and low levels) could be monitored using SGNP-MBs. Consequently, these results indicated that SGNP-MBs could have applications as highly potent, efficient nanoprobes to assess intracellular miR levels in living cells.
Collapse
Affiliation(s)
- Jisun Ki
- Department of Chemical and Biomolecular Engineering, Yonsei University , Yonsei-ro 50, Seoul 120-749, South Korea
| | - Eunji Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University , Yonsei-ro 50, Seoul 120-749, South Korea
| | - Seungmin Han
- Department of Chemical and Biomolecular Engineering, Yonsei University , Yonsei-ro 50, Seoul 120-749, South Korea
| | - Moo-Kwang Shin
- Department of Chemical and Biomolecular Engineering, Yonsei University , Yonsei-ro 50, Seoul 120-749, South Korea
| | - Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University , Yonsei-ro 50, Seoul 120-749, South Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University , Seoul 120-752, South Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University , Yonsei-ro 50, Seoul 120-749, South Korea
| |
Collapse
|
49
|
Jiang M, Ma W, Gao Y, Jia K, Zhang Y, Liu H, Sun Q. IL-22-induced miR-122-5p promotes keratinocyte proliferation by targeting Sprouty2. Exp Dermatol 2017; 26:368-374. [PMID: 27943426 DOI: 10.1111/exd.13270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Psoriasis is a common inflammatory skin disease, but the exact pathogenesis is largely unknown. Interleukin-22 (IL-22) has demonstrated its vital role in T-cell-mediated immune response by interacting with keratinocytes in the pathogenesis of psoriasis. Here, we showed the differentially expressed miRNAs and their potential targets in HaCaT cells stimulated by IL-22 using miRNA and mRNA microarrays. We revealed a total of 20 significantly changed (more than twofold) miRNAs in HaCaT cells and validated the results with quantitative reverse transcriptase PCR (qRT-PCR). We demonstrated that miR-122-5p was up-regulated both in HaCaT cells stimulated by IL-22 and in psoriatic lesions. Then, we aimed to investigate the biological roles and potential mechanism of miR-122-5p in keratinocytes. As a result, CCK-8 assay indicated that overexpression of miR-122-5p in keratinocytes promoted proliferation and conversely inhibition of endogenous miR-122-5p suppressed proliferation. According to the microarray analysis, we assumed that Sprouty2 (Spry2), a negative regulator of extracellular signal regulated kinase/mitogen-activated protein kinase signalling pathway, was a direct target gene of miR-122-5p. We found that the staining of Spry2 in cytoplasm was mainly localized in both basal and suprabasal layers of epidermis and showed a markedly decreased expression in psoriasis than in normal control by immunohistochemistry. Luciferase reporter and Western blot assays in HaCaT cells demonstrated that Spry2 was a direct target gene of miR-122-5p. In conclusion, IL-22-induced miR-122-5p promotes keratinocyte proliferation possibly by downregulating the expression of Spry2 thus playing important roles in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| | - Weiyuan Ma
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| | - Yumei Gao
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| | - Kun Jia
- Shandong University School of Medicine, Jinan, Shandong, China
| | - Yan Zhang
- Shandong University School of Medicine, Jinan, Shandong, China
| | - Haidong Liu
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shangdong University, Jinan, Shandong, China
| |
Collapse
|
50
|
Qiu X, Zhu H, Liu S, Tao G, Jin J, Chu H, Wang M, Tong N, Gong W, Zhao Q, Qiang F, Zhang Z. Expression and prognostic value of microRNA-26a and microRNA-148a in gastric cancer. J Gastroenterol Hepatol 2017; 32:819-827. [PMID: 27529338 DOI: 10.1111/jgh.13533] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM In our previous study, we demonstrated that four microRNAs (miRNAs) (miR-26a, miR-142-3p, miR-148a, and miR-195) that were downregulated in both plasma and tumor tissues were confirmed to be promising non-invasive diagnostic biomarkers for gastric cancer (GC). METHODS We used the quantitative reverse transcription polymerase chain reaction to assess the expression levels of the four miRNAs from paraffin-embedded surgical specimens of GC patients. Kaplan-Meier curves and log-rank test were applied to predict the correlation between miRNAs and cumulative overall survival (OS) of patients with GC. Besides, we performed in vitro assays including cell proliferation, migration, invasion and colony formation, and apoptosis. RESULTS The median of miRNA expression in paraffin-embedded tissues were used as the cutoff value to classify patients into high or low expression groups. Down-regulation of miR-26a and miR-148a was significantly associated with shorter OS of GC patients either in the test set (miR-26a: P = 0.009; miR-148a: P = 0.005) or the validation set (miR-26a: P = 0.011; miR-148a: P = 0.024). When two sets were combined, Cox regression analysis demonstrated that both of miR-26a and miR-148a were independent prognostic factors for predicting OS of patients with GC (miR-26a: HR = 0.76, 95% CI = 0.61-0.94; miR-148a: HR = 0.73, 95% CI = 0.58-0.91). Furthermore, elevated expression of miR-26 significantly suppressed cell proliferation, migration, invasion and colony formation, and induced apoptosis of MGC-803 cells compared with negative control groups (P < 0.05). CONCLUSION These findings supported miR-26a and miR-148a could serve as potential prognostic biomarkers for GC.
Collapse
Affiliation(s)
- Xiaonan Qiu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haixia Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Core Laboratory, Nantong Tumor Hospital, Nantong, China
| | - Sang Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guoquan Tao
- Department of General Surgery, Huai-An First People's Hospital Affiliated to Nanjing Medical University, Huai-An, China
| | - Jing Jin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weida Gong
- Department of General Surgery, Yixing Cancer Hospital, Yixing, China
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fulin Qiang
- Core Laboratory, Nantong Tumor Hospital, Nantong, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|