1
|
Khalili-Tanha G, Khalili-Tanha N, Rouzbahani AK, Mahdieh R, Jasemi K, Ghaderi R, Leylakoohi FK, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Ferns GA, Nazari E, Avan A. Diagnostic, prognostic, and predictive biomarkers in gastric cancer: from conventional to novel biomarkers. Transl Res 2024; 274:35-48. [PMID: 39260559 DOI: 10.1016/j.trsl.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Gastric cancer is a major health concern worldwide. The survival rate of Gastric cancer greatly depends on the stage at which it is diagnosed. Early diagnosis is critical for improving survival outcomes. To improve the chances of early diagnosis, regular screening tests, such as an upper endoscopy or barium swallow, are recommended for individuals at a higher risk due to factors like family history or a previous diagnosis of gastric conditions. Biomarkers can be detected and measured using non-invasive methods such as blood tests, urine tests, breath analysis, or imaging techniques. These non-invasive approaches offer many advantages, including convenience, safety, and cost-effectiveness, making them valuable tools for disease diagnosis, monitoring, and research. Biomarker-based tests have emerged as a useful tool for identifying gastric cancer early, monitoring treatment response, assessing the recurrence risk, and personalizing treatment plans. In this current review, we have explored both classical and novel biomarkers for gastric cancer. We have centralized their potential clinical application and discussed the challenges in Gastric cancer research.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | | | - Ramisa Mahdieh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Jasemi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rosa Ghaderi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
2
|
Sun X, Dong H, Su R, Chen J, Li W, Yin S, Zhang C. Lactylation-related gene signature accurately predicts prognosis and immunotherapy response in gastric cancer. Front Oncol 2024; 14:1485580. [PMID: 39669362 PMCID: PMC11634757 DOI: 10.3389/fonc.2024.1485580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor associated with significant rates of morbidity and mortality. Hence, developing efficient predictive models and directing clinical interventions in GC is crucial. Lactylation of proteins is detected in gastric cancer tumors and is linked to the advancement of gastric cancer. Methods The The Cancer Genome Atlas (TCGA) was utilized to analyze the gene expression levels associated with lactylation. A genetic pattern linked to lactylation was created using Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. The predictive ability of the model was evaluated and confirmed in the Gene Expression Omnibus (GEO) cohort, where patients were divided into two risk groups based on their scores. The study examined the relationship between gene expression and the presence of immune cells in the context of immunotherapy treatment. In vitro cytotoxicity assays, ELISA and PD-1 and PD-L1interaction assays were used to assess the expression of PD-L1 while knocking down SLC16A7. Results 29 predictive lactylation-related genes with differential expression were discovered. A signature consisting of three genes was developed and confirmed. Patients who had higher risk scores experienced worse clinical results. The group with lower risk showed increased Tumor Immune Dysfunction and Exclusion (TIDE) score and greater responsiveness to immunotherapy. The tumor tissues secrete more lactate acid than normal tissues and express more PD-L1 than normal tissues, that is, lactate acid promotes the immune evasion of tumor cells. In GC, the lactylation-related signature showed strong predictive accuracy. Utilizing both anti-lactylation and anti-PD-L1 may prove to be an effective approach for treating GC in clinical settings. We further proved that one of the lactate metabolism related genes, SCL16A7 could promote the expression of PD-L1 in GC cells. Conclusion The risk model not only provides a basis for better prognosis in GC patients, but also is a potential prognostic indicator to distinguish the molecular and immune characteristics, and the response from Immune checkpoint inhibitors (ICI) therapy and chemotherapy in GC.
Collapse
Affiliation(s)
- Xuezeng Sun
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haifeng Dong
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rishun Su
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingyao Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenchao Li
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Songcheng Yin
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
4
|
Ma Y, Ma Y. Kernel Bayesian logistic tensor decomposition with automatic rank determination for predicting multiple types of miRNA-disease associations. PLoS Comput Biol 2024; 20:e1012287. [PMID: 38976761 PMCID: PMC11257412 DOI: 10.1371/journal.pcbi.1012287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/18/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Identifying the association and corresponding types of miRNAs and diseases is crucial for studying the molecular mechanisms of disease-related miRNAs. Compared to traditional biological experiments, computational models can not only save time and reduce costs, but also discover potential associations on a large scale. Although some computational models based on tensor decomposition have been proposed, these models usually require manual specification of numerous hyperparameters, leading to a decrease in computational efficiency and generalization ability. Additionally, these linear models struggle to analyze complex, higher-order nonlinear relationships. Based on this, we propose a novel framework, KBLTDARD, to identify potential multiple types of miRNA-disease associations. Firstly, KBLTDARD extracts information from biological networks and high-order association network, and then fuses them to obtain more precise similarities of miRNAs (diseases). Secondly, we combine logistic tensor decomposition and Bayesian methods to achieve automatic hyperparameter search by introducing sparse-induced priors of multiple latent variables, and incorporate auxiliary information to improve prediction capabilities. Finally, an efficient deterministic Bayesian inference algorithm is developed to ensure computational efficiency. Experimental results on two benchmark datasets show that KBLTDARD has better Top-1 precision, Top-1 recall, and Top-1 F1 for new type predictions, and higher AUPR, AUC, and F1 values for new triplet predictions, compared to other state-of-the-art methods. Furthermore, case studies demonstrate the efficiency of KBLTDARD in predicting multiple types of miRNA-disease associations.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Mathematics and Statistics, Xiamen University of Technology, Xiamen, China
| | - Yuanyuan Ma
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
5
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
6
|
Kookli K, Soleimani KT, Amr EF, Ehymayed HM, Zabibah RS, Daminova SB, Saadh MJ, Alsaikhan F, Adil M, Ali MS, Mohtashami S, Akhavan-Sigari R. Role of microRNA-146a in cancer development by regulating apoptosis. Pathol Res Pract 2024; 254:155050. [PMID: 38199132 DOI: 10.1016/j.prp.2023.155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Despite great advances in diagnostic and treatment options for cancer, like chemotherapy surgery, and radiation therapy it continues to remain a major global health concern. Further research is necessary to find new biomarkers and possible treatment methods for cancer. MicroRNAs (miRNAs), tiny non-coding RNAs found naturally in the body, can influence the activity of several target genes. These genes are often disturbed in diseases like cancer, which perturbs functions like differentiation, cell division, cell cycle, apoptosis and proliferation. MiR-146a is a commonly and widely used miRNA that is often overexpressed in malignant tumors. The expression of miR-146a has been correlated with many pathological and physiological changes in cancer cells, such as the regulation of various cell death paths. It's been established that the control of cell death pathways has a huge influence on cancer progression. To improve our understanding of the interrelationship between miRNAs and cancer cell apoptosis, it's necessary to explore the impact of miRNAs through the alteration in their expression levels. Research has demonstrated that the appearance and spread of cancer can be mitigated by moderating the expression of certain miRNA - a commencement of treatment that presents a hopeful approach in managing cancer. Consequently, it is essential to explore the implications of miR-146a with respect to inducing different forms of tumor cell death, and evaluate its potential to serve as a target for improved chemotherapy outcomes. Through this review, we provide an outline of miR-146a's biogenesis and function, as well as its significant involvement in apoptosis. As well, we investigate the effects of exosomal miR-146a on the promotion of apoptosis in cancer cells and look into how it could possibly help combat chemotherapeutic resistance.
Collapse
Affiliation(s)
- Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | | | - Eman Fathy Amr
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shakhnoza B Daminova
- Department of Prevention of Dental Diseases, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Tashkent Medical Pediatric Institute, Bogishamol Street 223, Tashkent, Uzbekistan
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | | | | | - Saghar Mohtashami
- University of California Los Angeles, School of Dentistry, Los Angeles, CA, USA.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
7
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhou H, Hao X, Zhang P, He S. Noncoding RNA mutations in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1812. [PMID: 37544928 DOI: 10.1002/wrna.1812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Cancer is driven by both germline and somatic genetic changes. Efforts have been devoted to characterizing essential genetic variations in cancer initiation and development. Most attention has been given to mutations in protein-coding genes and associated regulatory elements such as promoters and enhancers. The development of sequencing technologies and in silico and experimental methods has allowed further exploration of cancer predisposition variants and important somatic mutations in noncoding RNAs, mainly for long noncoding RNAs and microRNAs. Association studies including GWAS have revealed hereditary variations including SNPs and indels in lncRNA or miRNA genes and regulatory regions. These mutations altered RNA secondary structures, expression levels, and target recognition and then conferred cancer predisposition to carriers. Whole-exome/genome sequencing comparing cancer and normal tissues has revealed important somatic mutations in noncoding RNA genes. Mutation hotspots and somatic copy number alterations have been identified in various tumor-associated noncoding RNAs. Increasing focus and effort have been devoted to studying the noncoding region of the genome. The complex genetic network of cancer initiation is being unveiled. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinpei Hao
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Liu R, Huang B, Shao Y, Cai Y, Liu X, Ren Z. Identification of memory B-cell-associated miRNA signature to establish a prognostic model in gastric adenocarcinoma. J Transl Med 2023; 21:648. [PMID: 37735667 PMCID: PMC10515266 DOI: 10.1186/s12967-023-04366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Memory B cells and microRNAs (miRNAs) play important roles in the progression of gastric adenocarcinoma (GAC), also known as stomach adenocarcinoma (STAD). However, few studies have investigated the use of memory B-cell-associated miRNAs in predicting the prognosis of STAD. METHODS We identified the marker genes of memory B cells by single-cell RNA sequencing (scRNA-seq) and identified the miRNAs associated with memory B cells by constructing an mRNA‒miRNA coexpression network. Then, univariate Cox, random survival forest (RSF), and stepwise multiple Cox regression (StepCox) algorithms were used to identify memory B-cell-associated miRNAs that were significantly related to overall survival (OS). A prognostic risk model was constructed and validated using these miRNAs, and patients were divided into a low-risk group and a high-risk group. In addition, the differences in clinicopathological features, tumour microenvironment, immune blocking therapy, and sensitivity to anticancer drugs in the two groups were analysed. RESULTS Four memory B-cell-associated miRNAs (hsa-mir-145, hsa-mir-125b-2, hsa-mir-100, hsa-mir-221) with significant correlations to OS were identified and used to construct a prognostic model. Time-dependent receiver operating characteristic (ROC) curve analysis confirmed the feasibility of the model. Kaplan‒Meier (K‒M) survival curve analysis showed that the prognosis was poor in the high-risk group. Comprehensive analysis showed that patients in the high-risk group had higher immune scores, matrix scores, and immune cell infiltration and a poor immune response. In terms of drug screening, we predicted eight drugs with higher sensitivity in the high-risk group, of which CGP-60474 was associated with the greatest sensitivity. CONCLUSIONS In summary, we identified memory B-cell-associated miRNA prognostic features and constructed a novel risk model for STAD based on scRNA-seq data and bulk RNA-seq data. Among patients in the high-risk group, STAD showed the highest sensitivity to CGP-60474. This study provides prognostic insights into individualized and precise treatment for STAD patients.
Collapse
Affiliation(s)
- Ruquan Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Biaojie Huang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongzhao Shao
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yongming Cai
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Xi Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhonglu Ren
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China.
| |
Collapse
|
10
|
Panoutsopoulou K, Liu Y, Avgeris M, Dreyer T, Dorn J, Magdolen V, Scorilas A. Repression of miR-146a in predicting poor treatment outcome in triple-negative breast cancer. Clin Biochem 2023; 114:43-51. [PMID: 36502883 DOI: 10.1016/j.clinbiochem.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES In the era of precision medicine, the highly aggressive and heterogenous triple-negative breast cancer (TNBC) is still characterized by limited options to support personalized prognosis and guide therapeutic interventions. Thereafter, the aim of the present study has been the thorough evaluation of miR-146a as a novel molecular indicator of TNBC prognosis and treatment outcome, utilizing four independent TNBC cohorts. DESIGN & METHODS miR-146a levels were clinically evaluated in our screening (n = 122) and three external validation TNBC cohorts (de Rinaldis et al. 2013, n = 114; Jézéquel et al. 2015, n = 107; TCGA, n = 180). Analysis of miR-146a and validated gene targets was performed in Jézéquel et al. and TCGA validation cohorts. Patients' survival, recurrence and metastasis were determined as clinical endpoints for the survival analysis. Internal validation was performed by bootstrap analysis and clinical net benefit was evaluated by decision curve analysis. RESULTS Reduction of miR-146a is strongly associated with patients' poor survival and can predict post-treatment disease early-recurrence, independently of tumor size, lymph node status, histological grade and patients' age. The analysis of the external validation cohorts corroborated the unfavorable nature of miR-146a repression regarding patients' survival and, strikingly, unveiled the ability of miR-146a to predict TNBC metastasis. Combined assessment of miR-146a levels and lymph node status resulted in superior risk-stratification of TNBC patients and higher clinical benefit regarding disease prognosis and post-treatment outcome. Ultimately, miR-146a was negatively associated with EGFR and SOX2 expression in TNBC. CONCLUSIONS miR-146a evaluation could ameliorate personalized prognosis and support precision medicine decisions in TNBC.
Collapse
Affiliation(s)
- Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Yueyang Liu
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany; Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
11
|
MicroRNA and Messenger RNA Expression Profiles in Canine Mammary Gland Tumor. Int J Mol Sci 2023; 24:ijms24032618. [PMID: 36768939 PMCID: PMC9917093 DOI: 10.3390/ijms24032618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Canine mammary gland tumor (CMT) is the most frequently diagnosed neoplasm in intact female dogs. As prognosis depends on the malignancy of tumors and metastasis levels, early and accurate diagnosis are crucial for prolongation of life expectancy. The genetic similarity of dogs with humans in addition to environmental and physiological similarities make them ideal models for the study of cancer. In this study, we analyzed differentially expressed microRNAs followed by RNA-Seq to investigate the alterations in mRNA levels based on the malignancy (benign, malignant) and the biopsy locations (tumors, surrounding normal tissues). We identified multiple breast cancer-related genes regardless of malignancy. We found cfa-miR-503 to be the only miRNA that showed altered expression in response to malignancy in CMTs. Although further validation is needed, cfa-miR-503 could be used as a potential diagnostic biomarker as well as a potential RNA-based anti-tumor drug in malignant CMTs.
Collapse
|
12
|
Liu X, Zhang K, Wang L, Geng B, Liu Z, Yi Q, Xia Y. Fluid shear stress-induced down-regulation of miR-146a-5p inhibits osteoblast apoptosis via targeting SMAD4. Physiol Res 2022. [DOI: 10.33549/physiolres.934922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fluid shear stress (FSS) plays an important role in osteoblast apoptosis. However, the role of miRNA in osteoblast apoptosis under FSS and possible molecular mechanisms remain unknown. Our aim of the study was to explore whether miR-146a-5p regulates osteoblast apoptosis under FSS and its molecular mechanisms. FSS could down-regulate the expression of miR-146a-5p in MC3T3-E1 cells. We confirm that up-regulation of miR-146a-5p promotes osteoblasts apoptosis and down-regulation of miR-146a-5p inhibits osteoblasts apoptosis. We further demonstrated that FSS inhibits osteoblast apoptosis by down-regulated miR-146a-5p. Dual-luciferase reporter assay validated that SMAD4 is a direct target gene of miR-146a-5p. In addition, mimic-146a-5p suppressed FSS-induced up-regulation of SMAD4 protein levels, which suggests that FSS elevated SMAD4 protein expression levels via regulation miR-146a-5p. Further investigations showed that SMAD4 could inhibit osteoblast apoptosis. We demonstrated that miR-146a-5p regulates osteoblast apoptosis via targeting SMAD4. Taken together, our present study showed that FSS-induced down-regulation miR-146a-5p inhibits osteoblast apoptosis via target SMAD4. These findings may provide novel mechanisms for FSS to inhibit osteoblast apoptosis, and also may provide a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Y Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, China
| |
Collapse
|
13
|
Chen S, Wang Y, Li D, Wang H, Zhao X, Yang J, Chen L, Guo M, Zhao J, Chen C, Zhou Y, Liang G, Xu L. Mechanisms Controlling MicroRNA Expression in Tumor. Cells 2022; 11:cells11182852. [PMID: 36139427 PMCID: PMC9496884 DOI: 10.3390/cells11182852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are widely present in many organisms and regulate the expression of genes in various biological processes such as cell differentiation, metabolism, and development. Numerous studies have shown that miRNAs are abnormally expressed in tumor tissues and are closely associated with tumorigenesis. MiRNA-based cancer gene therapy has consistently shown promising anti-tumor effects and is recognized as a new field in cancer treatment. So far, some clinical trials involving the treatment of malignancies have been carried out; however, studies of miRNA-based cancer gene therapy are still proceeding slowly. Therefore, furthering our understanding of the regulatory mechanisms of miRNA can bring substantial benefits to the development of miRNA-based gene therapy or other combination therapies and the clinical outcome of patients with cancer. Recent studies have revealed that the aberrant expression of miRNA in tumors is associated with promoter sequence mutation, epigenetic alteration, aberrant RNA modification, etc., showing the complexity of aberrant expression mechanisms of miRNA in tumors. In this paper, we systematically summarized the regulation mechanisms of miRNA expression in tumors, with the aim of providing assistance in the subsequent elucidation of the role of miRNA in tumorigenesis and the development of new strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Hui Wang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
- Correspondence: (Y.Z.); (G.L.); (L.X.)
| | - Guiyou Liang
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550031, China
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Correspondence: (Y.Z.); (G.L.); (L.X.)
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Correspondence: (Y.Z.); (G.L.); (L.X.)
| |
Collapse
|
14
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
15
|
Sun S, Wang F, Sun Y, Bai L. miR-146a suppresses the expression of vascular endothelial growth factor and inflammatory responses in diabetic retinopathy. Growth Factors 2022; 40:89-97. [PMID: 35605149 DOI: 10.1080/08977194.2022.2077732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study was designed to explore the role of miR-146a in diabetic retinopathy (DR). 30 healthy control (HC), 50 patients with type 2 diabetes mellitus, and 48 DR patients were enrolled. Blood was collected and levels of miR-146a expression, vascular endothelial growth factor (VEGF), and three inflammatory cytokines (NF-κB, IL-1β, and TNF-α) were detected. Moreover, ARPE-19 cells were treated with miR-146a mimic or inhibitor in the presence of high glucose to evaluate its effect in vitro. DR patients had the lowest level of miR-146a and the highest level of VEGF as well as the most severe inflammation among the three groups. In addition, the miR-146a level was negatively correlated with the expression of VEGF and three inflammatory cytokines, respectively in DR patients. Moreover, VEGF expression was positively correlated with these three inflammatory cytokines in DR patients. In summary, miR-146a could inhibit VEGF expression and inflammation in DR.
Collapse
Affiliation(s)
- Shichao Sun
- Department of Neurology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fujun Wang
- Department of Endocrinology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yao Sun
- Department of Radiology, The Hebei Province Hospital of TCM, Shijiazhuang, Hebei, China
| | - Lei Bai
- Department of Endocrinology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
16
|
Tian W, Pang X, Luan F. Diagnosis value of miR-181, miR-652, and CA72-4 for gastric cancer. J Clin Lab Anal 2022; 36:e24411. [PMID: 35446997 PMCID: PMC9169223 DOI: 10.1002/jcla.24411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To find a useful disease marker for early diagnosis of gastric cancer, we tried to explore the expression of serum miR-181, miR-652, and carbohydrate antigen 72-4 (CA72-4). PATIENTS AND METHODS According to clinical pathologic stages, 112 patients with gastric cancer were divided into early gastric cancer group (n = 60) and advanced gastric cancer group (n = 52), stage I-II (n = 65), and stage III-IV (n = 47). Another 50 cases of gastric benign lesions and 40 healthy controls were also selected. Real-time quantitative PCR together with chemiluminescence were applied to detect expression levels. ROC curve was applied to judge their diagnostic efficiency. Pearson's correlation analysis was put into use to investigate the relevance of three indicators. RESULTS Compared with benign lesions group and control group, significantly higher expression levels were found in patients of gastric cancer (all p < 0.001). Similarly, compared with early gastric cancer group, significantly higher expression levels were found in advanced gastric cancer group (all p < 0.001). The same result was also found in stage III-IV (all p < 0.001). The best cutoff values were 0.93, 2.38, and 16.94 U/ml, respectively. The area under the curve (0.917, 95%CI: 0.856-0.975) of the three combined diagnosis of early gastric cancer was the largest, and its sensitivity and specificity were 92.5% and 86.8%. And miR-181 and miR-652 were positively correlated with CA72-4 (r = 0.772, p < 0.001, r = 0.853, p < 0.001). CONCLUSION Serum miR-181, miR-652, and CA72-4 are closely linked to the occurrence and development of gastric cancer. Combination of three indicators has diagnostic value for early gastric cancer.
Collapse
Affiliation(s)
- Wenyan Tian
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
| | - Xueqin Pang
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
| | - Fujuan Luan
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
| |
Collapse
|
17
|
Yang X, Liu R. Long non-coding RNA HCG18 promotes gastric cancer progression by regulating miRNA-146a-5p/tumor necrosis factor receptor-associated factor 6 axis. Bioengineered 2022; 13:6781-6793. [PMID: 35240920 PMCID: PMC8973972 DOI: 10.1080/21655979.2022.2034565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although long non-coding RNAs (lncRNAs) have been demonstrated to be dysregulated in gastric cancer (GC), the function of lncRNA HCG18 (HCG18) in GC is elusive. Therefore, the study was designed to evaluate the underlying mechanism of HCG18 in GC. HCG18 and microRNA 146a-5p (miR-146a-5p) levels in GC were evaluated by RT-qPCR. The effects of miR-146a-5p and HCG18 on GC cell function were examined using Transwell assay, colony formation, and CCK-8 assays. Tumor necrosis factor receptor-associated factor 6 (TRAF6) and p65 expression levels were detected by Western blot. HCG18 and miR-146a-5p target genes were identified using luciferase reporter and bioinformatics assays. HCG18 expression was increased in GC. HCG18 overexpression significantly increased GC cell proliferation, invasion, and migration. Furthermore, HCG18 overexpression inhibited miR-146a-5p and upregulated TRAF6 and p65 expression. Finally, miR-146a-5p/TRAF6 was found to be involved in the role of HCG18 in GC progression in vivo. Altogether, HCG18 promotes GC progression via the miR-146a-5p/TRAF6 axis and could be a GC treatment target.
Collapse
Affiliation(s)
- Xianwu Yang
- Department of Gastroenterology, Shijiazhuang People's Hospital, Shijiazhuang City, P. R. China
| | - Run Liu
- Department of Gastroenterology, Shijiazhuang People's Hospital, Shijiazhuang City, P. R. China
| |
Collapse
|
18
|
Lu Z, Yun Y, Zhang Y, Ou Y, Wang M. Promotion of microRNA-146a by histone deacetylase 4 silencing contributes to radiosensitization of esophageal carcinoma. J Transl Med 2022; 20:101. [PMID: 35193602 PMCID: PMC8862391 DOI: 10.1186/s12967-021-03171-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background Histone deacetylases (HDACs) have been identified to be implicated in the carcinogenesis and cancer progression. The present study was performed to probe into the effect of HDAC4 on radioresistance of esophageal carcinoma (EC). Methods The expression of HDAC4 in responders and non-responders to radiotherapy was characterized by RT-qPCR, immunohistochemistry, and Western blot analysis. EC cells were exposed to continuous fractionated X-ray irradiation, and their proliferation and apoptosis were evaluated by means of colony formation assay and flow cytometry based Annexin V-FITC/PI apoptosis assay in response to HDAC4 overexpression or silencing. Mechanistic investigation was conducted by means of in silico analysis and dual-luciferase reporter gene assay. Tumor xenografts derived from radioresistant EC cells were exposed to local X-ray irradiation in vivo for validation. Results High expression of HDAC4 was detected in either tumor tissues derived from radiotherapy responders or radioresistant EC cells. Loss of HDAC4 contributed to suppressed proliferation and enhanced apoptosis of radioresistant EC cells. Moreover, our findings revealed that HDAC4 conferred radioresistance of EC by downregulating microRNA-146a (miR-146a). Interleukin-1 receptor-associated kinase 1 (IRAK1) was a target of miR-146a, and its knockdown promoted radiosensitivity. Silencing of HDAC4 radiosensitized EC cells both in vitro and in vivo via the miR-146a/IRAK1 axis. Conclusion Hence, loss of HDAC4 upregulated miR-146a to limit radioresistance. This study aids in the better understanding about mechanism responsible for radioresistance of EC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03171-z.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Yifei Yun
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Yutong Zhang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Yao Ou
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Meihua Wang
- Department of Pathology, Changzhou Tumor Hospital, Soochow University, No. 68, Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
19
|
Yi C, Li J, Xin Q, Shan S, Ding E, Jin M, Li B, Li J, Liu Q. Association of microRNA polymorphisms with gastric cancer risk in the North Chinese Han population. J Cancer Res Ther 2022; 18:581-586. [DOI: 10.4103/jcrt.jcrt_74_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Thai SF, Jones CP, Robinette BL, Ren H, Vallanat B, Fisher AA, Kitchin KT. Effects of Silver Nanoparticles and Silver Nitrate on mRNA and microRNA Expression in Human Hepatocellular Carcinoma Cells (HepG2). JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5414-5428. [PMID: 33980351 PMCID: PMC10563035 DOI: 10.1166/jnn.2021.19481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to understand toxicity of nano silver, human hepatocellular carcinoma (HepG2) cells were treated either with silver nitrate (AgNO₃) or with nano silver capped with glutathione (Ag-S) at various concentration. Differentially expressed genelists for mRNA and microRNA were obtained through Illumina RNA sequencing and DEseq data analyses. Both treatments showed non-linear dose response relationships for mRNA and microRNA. Gene expression analysis showed signaling pathways common to both nano Ag-S and AgNO₃, such as cell cycle regulation, DNA damage response and cancer related pathways. But, nano Ag-S caused signaling pathway changes that were not altered by AgNO₃ such as NRF2-mediated oxidative stress response inflammation, cell membrane signaling, and cell proliferation. Nano Ag-S also affected p53 signaling, survival, apoptosis, tissue repair, lipid synthesis, angiogenesis, liver fibrosis and tumor development. Several of the pathways affected by nano Ag-S are hypothesized as major contributors to nanotoxicity. MicroRNA target filter analysis revealed additional affected pathways that were not reflected in the mRNA expression response alone, including DNA damage signaling, genomic stability, ROS, cell cycle, ubiquitination, DNA methylation, cell proliferation and fibrosis for AgNO₃; and cell cycle regulation, P53 signaling, cell proliferation, survival, apoptosis, tissue repair and so on for nano Ag-S. These pathways may be mediated by microRNA repression of protein translation.Our study clearly showed that the addition of microRNA profiling increased the numbers of signaling pathways discovered that affected by the treatments on HepG2 cells and gave US a better picture of the effects of these reagents in the cells.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Carlton P Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Brian L Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | | - Anna A Fisher
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Kirk T Kitchin
- US Environmental Protection Agency, Retired from EPA, Durham NC 27709, USA
| |
Collapse
|
22
|
Mei D, Qi Y, Xia Y, Ma J, Hu H, Ai J, Chen L, Wu N, Liao D. Microarray profile analysis identifies ETS1 as potential biomarker regulated by miR-23b and modulates TCF4 in gastric cancer. World J Surg Oncol 2021; 19:311. [PMID: 34686186 PMCID: PMC8540102 DOI: 10.1186/s12957-021-02417-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background Gastric cancer (GC), a common malignancy of the human digestive system, represents the second leading cause of cancer-related deaths worldwide. Early detection of GC has a significant impact on clinical outcomes. The aim of this study was to identify potential GC biomarkers. Methods In this study, we conducted a multi-step analysis of expression profiles in GC clinical samples downloaded from TCGA database to identify differentially expressed miRNAs (DEMs) and differentially expressed mRNAs (DEGs). Potential prognostic biomarkers from the available DEMs were then established using the Cox regression method. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the biological role of the predicted target genes of the miRNA biomarkers. Then, the prognostic DEM-mediated regulatory network was constructed based on transcription factor (TF)–miRNA–target interaction. Subsequently, the consensus genes were further determined based on the overlap between DEGs and these target genes of DEMs. Besides, expression profile, co-expression analysis, immunity, and prognostic values of these prognostic genes were also investigated to further explore the roles in the mechanism of GC tumorigenesis. Results We got five miRNAs, including miR-23b, miR-100, miR-143, miR-145, and miR-409, which are associated with the overall survival of GC patients. Subsequently, enrichment analysis of the target genes of the miRNA biomarkers shown that the GO biological process terms were mainly enriched in mRNA catabolic process, nuclear chromatin, and RNA binding. In addition, the KEGG pathways were significantly enriched in fatty acid metabolism, extracellular matrix (ECM) receptor interaction, and proteoglycans in cancer pathways. The transcriptional regulatory network consisting of 68 TFs, 4 DEMs, and 58 targets was constructed based on the interaction of TFs, miRNAs, and targets. The downstream gene ETS1 of miR-23b and TCF4 regulated by ETS1 were obtained by the regulatory network construction and co-expression analysis. High expression of ETS1 and TCF4 indicated poor prognosis in GC patients, particularly in the advanced stages. The expression of ETS1 and TCF4 was correlated with CD4+ T cells, CD8+ T cells, and B cells. Conclusions miR-23b, ETS1, and TCF4 were identified as the prognostic biomarkers. ETS1 and TCF4 had potential immune function in GC, which provided a theoretical basis for molecular-targeted combined immunotherapy in the future.
Collapse
Affiliation(s)
- Dinglian Mei
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Yalong Qi
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Yuanyuan Xia
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Jun Ma
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Hao Hu
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Jun Ai
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Liqiang Chen
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China
| | - Ning Wu
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China
| | - Daixiang Liao
- The Department of Oncology, Beijing Mentougou District Hospital, Beijing, 102300, People's Republic of China.
| |
Collapse
|
23
|
de Mesquita TGR, Junior JDES, de Lacerda TC, Queiroz KLGD, Júnior CMDS, Neto JPDM, Gomes LAM, de Souza MLG, Guerra MVDF, Ramasawmy R. Variants of MIRNA146A rs2910164 and MIRNA499 rs3746444 are associated with the development of cutaneous leishmaniasis caused by Leishmania guyanensis and with plasma chemokine IL-8. PLoS Negl Trop Dis 2021; 15:e0009795. [PMID: 34543271 PMCID: PMC8483412 DOI: 10.1371/journal.pntd.0009795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Leishmania are intracellular protozoan parasites that cause a wide spectrum of clinical manifestations in genetically susceptible individuals with an insufficient or balanced Th1 immune response to eliminate the parasite. MiRNAs play important regulatory role in numerous biological processes including essential cellular functions. miR146-a acts as an inhibitor of interleukin 1 receptor associated kinase 1 (IRAK1) and tumour necrosis factor (TNF) receptor associated factor 6 (TRAF6) present in the toll-like receptors pathway while miR499a modulates TGF-β and TNF signalling pathways. Here, we investigated whether MIRNA146A rs2910164 and MIRNA499 rs3746444 variants are associated with the development of L. guyanensis (Lg)-cutaneous leishmaniasis (CL). The variants MIR146A rs2910164 and MIR499A rs3746444 were assessed in 850 patients with Lg-CL and 891 healthy controls by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma cytokines were measured using the BioPlex assay. Carriers of rs2910164 CC genotype have 30% higher odds of developing CL (ORadjage/sex = 1.3 [95%CI 0.9–1.8]; Padjage/sex 0.14) compared to individuals with the genotype GG (ORadjage/sex = 0.77 [95%CI 0.56–1.0]; Padjage/sex 0.14) if exposed to Lg-infection. Heterozygous GC individuals also showed lower odds of developing CL (ORadjage/sex = 0.77 [95%CI 0.5–1.1]; Padjage/sex 0.09). Homozygosity for the allele C is suggestive of an association with the development of Lg-CL among exposed individuals to Lg-infection. However, the odds of developing CL associated with the CC genotype was evident only in male individuals (ORadjage = 1.3 [95% CI = 0.9–2.0]; Padjage = 0.06). Individuals homozygous for the G allele tend to have higher plasma IL-8 and CCL5. Similarly, for the MIR499A rs3746444, an association with the G allele was only observed among male individuals (OR = 1.4 [1.0–1.9]; P = 0.009). In a dominant model, individuals with the G allele (GG-GA) when compared to the AA genotype reveals that carriers of the G allele have 40% elevated odds of developing Lg-CL (ORadjage = 1.4 [1.1–1.9]). Individuals with the GG genotype have higher odds of developing Lg-CL (ORadjage/sex = 2.0 [95%CI 0.83–5.0]; Padjage = 0.01. Individuals homozygous for the G allele have higher plasma IL-8. Genetic combinations of both variants revealed that male individuals exposed to Lg bearing three or four susceptible alleles have higher odds of developing Lg-CL (OR = 2.3 [95% CI 1.0–4.7]; p = 0.017). Both MIR146A rs2910164 and MIR499A rs3746444 are associated with the development of Lg-CL and this association is prevalent in male individuals. Leishmaniasis is caused by infection with Leishmania parasites. In regions with the presence of Leishmania parasites, all people do not develop the disease despite similar exposure. Only a proportion of inhabitants progress to the development of disease. Clinical manifestations depend on the vector and Leishmania species, as well the host genetic background and genetically determined immune responses. miRNAs play important roles in regulating gene expression and many biological processes including immune pathways. miR-146a targets TRAF6 and IRAK1 genes, that encode key adaptor molecules downstream of toll-like receptors (TLRs). TLRs are critical in immune response to Leishmania-infection. miR499-a modulates inflammation-related signalling pathways such as TGFβ, TNFα and TLR pathways. In this study, we showed that MIR146A and MIR499A variants are risk factors to developing cutaneous leishmaniasis caused by L. guyanensis in Amazonas state of Brazil. Individuals with these variants are susceptible to the development of CL.
Collapse
Affiliation(s)
- Tirza Gabrielle Ramos de Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - José do Espírito Santo Junior
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | - Thais Carneiro de Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | | | | | | | | | | | - Marcus Vinitius de Farias Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas–REGESAM, Manaus, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Amazonas, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas–REGESAM, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
24
|
Wang Y, Liu X, Hu G, Hu C, Gao Y, Huo M, Zhu H, Liu M, Xu N. EGFR-IL-6 Signaling Axis Mediated the Inhibitory Effect of Methylseleninic Acid on Esophageal Squamous Cell Carcinoma. Front Pharmacol 2021; 12:719785. [PMID: 34393797 PMCID: PMC8363297 DOI: 10.3389/fphar.2021.719785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 01/15/2023] Open
Abstract
Epidemiological and experimental evidence indicate that selenium is associated with a reduced risk of some cancers, including esophageal cancer. However, the exact mechanism is still unclear. In the present study, we used esophageal squamous cell carcinoma (ESCC) cell lines and animal models to explore the anti-cancer mechanism of methylseleninic acid (MSA). Firstly, MSA treatment dramatically attenuated Epidermal Growth Factor Receptor (EGFR) protein expression but did not alter mRNA levels in ESCC cells. On the contrary, EGFR overexpression partly abolished the inhibitory effect of MSA. With a microRNA-array, we found MSA up-regulated miR-146a which directly targeted EGFR, whereas miR-146a inhibitor antagonized MSA-induced decrease of EGFR protein. We further used 4-nitroquinoline-1-oxide (4NQO)-induced esophageal tumor mice model to evaluate the inhibitory effect of MSA in vivo. MSA treatment significantly decreased the tumor burden and EGFR protein expression in tumor specimens. Furthermore, MSA treatment inhibited EGFR pathway and subsequntly reduced Interleukin-6 (IL-6) secretion in the supernatant of cancer cell lines. MSA-induced IL-6 suppression was EGFR-dependent. To further evaluate the association of IL-6 and the anti-tumor effect of MSA on esophageal cancer, we established the 4NQO-induced esophageal tumor model in IL-6 knock-out (IL-6 KO) mice. The results showed that IL-6 deficiency did not affect esophageal tumorigenesis in mice, but the inhibitory effect of MSA was abolished in IL-6 KO mice. In conclusion, our study demonstrated that MSA upregulated miR-146a which directly targeted EGFR, and inhibited EGFR protein expression and pathway activity, subsequently decreased IL-6 secretion. The inhibitory effect of MSA on esophageal cancer was IL-6 dependent. These results suggested that MSA may serve as a potential drug treating esophageal cancer.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanghui Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Gao
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Huo
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Pita I, Libânio D, Dias F, Teixeira AL, Nogueira I, Medeiros R, Dinis-Ribeiro M, Pimentel-Nunes P. Original Article: MicroRNA Dysregulation in the Gastric Carcinogenesis Cascade: Can We Anticipate Its Role in Individualized Care? Pathobiology 2021; 88:338-350. [PMID: 34274936 DOI: 10.1159/000515548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric carcinogenesis progresses from normal mucosa, atrophic/metaplastic gastritis, and dysplasia to adenocarcinoma. MicroRNAs (miRNAs) regulate DNA expression and have been implicated; however, their role is not fully established. AIMS The aim of this study was to characterize plasma and tissue expression of several miRNAs in gastric carcinogenesis stages. METHODS Single-center cross-sectional study in 64 patients: 19 controls (normal mucosa); 15 with extensive atrophic/metaplastic gastritis; and 30 with early gastric neoplasia (EGN). Seven miRNAs (miR-21, miR-146a, miR-181b, miR-370, miR-375, miR 181b, and miR-490) were quantified by real time-qPCR in peripheral blood and endoscopic biopsy samples. RESULTS We found a significant upregulation of miR-181b, miR-490, and miR-21 in the EGN mucosa (overexpression 2-14-times higher than controls). We observed a significant underexpression of miR-146a and miR-370 in atrophic/metaplastic gastritis (86 and 66% decrease, p = 0.008 and p = 0.001) and in EGN (89 and 62% reduction, p = 0.034 and p = 0.032) compared with controls. There were no differences between lesions and nonneoplastic mucosa and no dysregulation of plasma miRNAs. CONCLUSION We found significant dysregulation of 5 miRNAs in gastric carcinogenesis, suggesting a tumor suppressor role for miR-146a and miR-370 and oncogenic potential for miR-21, miR-181, and miR-490. These changes happen diffusely in the gastric mucosa, suggesting a high-risk field defect, which may influence these patients' surveillance.
Collapse
Affiliation(s)
- Inês Pita
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Diogo Libânio
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,MEDCIDS - Department of Community Medicine, Health Information and Decision of the Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Inês Nogueira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.,Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.,Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University (UFP), Porto, Portugal
| | - Mário Dinis-Ribeiro
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,MEDCIDS - Department of Community Medicine, Health Information and Decision of the Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,MEDCIDS - Department of Community Medicine, Health Information and Decision of the Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
26
|
Dräger O, Metz K, Busch M, Dünker N. Role of L1CAM in retinoblastoma tumorigenesis: identification of novel therapeutic targets. Mol Oncol 2021; 16:957-981. [PMID: 34228897 PMCID: PMC8847994 DOI: 10.1002/1878-0261.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The study presented focuses on the role of the neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) in retinoblastoma (RB), the most common malignant intraocular childhood tumor. L1CAM is differentially expressed in a variety of human cancers and has been suggested as a promising therapeutic target. We likewise observed differential expression patterns for L1CAM in RB cell lines and patient samples. The two proteases involved in ectodomain shedding of L1CAM (L1CAM sheddases: ADAM10 and ADAM17) were likewise differentially expressed in the RB cell lines investigated, and an involvement in L1CAM processing in RB cells could be verified. We also identified ezrin, galectin-3, and fibroblast growth factor basic as L1CAM signaling target genes in RB cells. Lentiviral L1CAM knockdown induced apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells, whereas L1CAM-overexpressing RB cells displayed the opposite effects. Chicken chorioallantoic membrane assays revealed that L1CAM depletion decreases the tumorigenic and migration potential of RB cells in vivo. Moreover, L1CAM depletion decreased viability and tumor growth of etoposide-resistant RB cell lines upon etoposide treatment in vitro and in vivo. Thus, L1CAM and its processing sheddases are potential novel targets for future therapeutic RB approaches.
Collapse
Affiliation(s)
- Oliver Dräger
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Klaus Metz
- Institute of Pathology, University of Duisburg-Essen, Medical Faculty, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| |
Collapse
|
27
|
Yilmaz UC, Bagca BG, Karaca E, Durmaz A, Durmaz B, Aykut A, Kayalar H, Avci CB, Susluer SY, Pariltay E, Gunduz C, Cogulu O. Propolis Extract Regulate microRNA Expression in Glioblastoma and Brain Cancer Stem Cells. Anticancer Agents Med Chem 2021; 22:378-389. [PMID: 33949939 DOI: 10.2174/1871520621666210504082528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Grade IV gliomas are classified as glioblastoma (GBM), which is the most malignant brain cancer type. Various genetic and epigenetic mechanisms play a role in the initiation and progression of GBM. MicroRNAs (miRNAs) are small, non-coding RNA molecules that are the main epigenetic regulatory RNA class. They play variable roles in both physiological and pathological conditions, including GBM pathogenesis, by regulating expression levels of the target genes. Brain cancer stem cells (BCSCs) are subpopulations of brain cancer mass that are responsible for poor prognosis, including therapy resistance and relapse. Epigenetic regulation mediated by miRNAs is also a critical component of BCSC self-renewal and differentiation properties. Propolis is a resinous substance that is collected by honey bees from various plant sources. The flavonoids content of propolis varies, depending on the region collected andthe extraction method. Although the effects of propolis that have been collected from different sources on the miRNA expression levels in the glioblastoma cells have been shown, the effects on the BCSCs are not known yet. OBJECTIVE The aim of this study is to evaluate the effects of Aydın, a city in western Turkey, propolis, on miRNA expression levels of BCSCs and GBM cells. METHODS Aydin propolis was dissolved in 60% ethanol, and after evaporation, distilled water was added to prepare the propolis stock solution. The flavonoids content of the Aydin propolis was determined by MS Q-TOF analysis. Commercially obtained U87MG, GBM cell line, and BCSCs were used as in vitro brain cancer models. The cytotoxic and apoptotic effects of Aydın propolis were determined via WST-1 assay and Annexin V test, respectively. The miRNA expression profile was investigated via the real-time qRT-PCR method, and fold changes were calculated by using the 2-∆∆Ct method compared to untreated control cells. The miRNA-mRNA-pathway interactions, including significantly altered miRNAs, were determined using different bioinformatics tools and databases. RESULTS Quercetin 3-methyl ether was determined as the major component of the Aydin propolis. Aydin propolis did not show significant cytotoxic and apoptotic effects on both GBM and BCSCs up to 2mg/ml concentration. Aydin propolis treatment decreased the expression of nine and five miRNAs in the U87MG 2.13 to 5.65 folds and BCSCs 2.02 to 12.29 folds, respectively. Moreover, 10 miRNAs 2.22 to 10.56 folds were upregulated in propolis treated GBM cells compared to the control group, significantly (p<0.05). In the study, the potential roles of two new miRNAs, whose regulations in glioma were not previously defined, were identified. One of these miR-30d-5p, a novel potential oncomiR in GBM was 2.46 folds downregulated in Aydin propolis treated GBM cells. The other one is miR-335-5p which is a potential tumor suppressor miR in GBM, was 5.66 folds upregulated in Aydin propolis treated GBM cells. FOXO pathway and its upstream and downstream regulators and critically neuronal developmental regulators NOTCH and WNT pathways were determined as the most deregulated pathways in Aydin propolis treated cells. CONCLUSION The determination of the anti-cancer effect of Aydın propolis on the miRNA expression of GBM, especially on cancer stem cells, may contribute to the elucidation of brain cancer genetics by supporting further analyses.
Collapse
Affiliation(s)
- Ugur C Yilmaz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Bakiye G Bagca
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Asude Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Burak Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ayca Aykut
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Husniye Kayalar
- Ege University, Faculty of Pharmacy, Department of Pharmacognosy, Izmir, Turkey
| | - Cigir B Avci
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Sunde Y Susluer
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Erhan Pariltay
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Cumhur Gunduz
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Ozgur Cogulu
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
28
|
van Zweeden AA, Opperman RCM, Honeywell RJ, Peters GJ, Verheul HMW, van der Vliet HJ, Poel D. The prognostic impact of circulating miRNAs in patients with advanced esophagogastric cancer during palliative chemotherapy. Cancer Treat Res Commun 2021; 27:100371. [PMID: 33866108 DOI: 10.1016/j.ctarc.2021.100371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022]
Abstract
The prognosis of patients with advanced oesophageal cancer (EC) and gastric cancer (GC) is poor. Circulating microRNAs (ci-miRNAs) may have prognostic and predictive value to improve patient selection for palliative treatment. The purpose of this study is to assess the prognostic and predictive value of specific ci-miRNAs in plasma of patients with EC and GC treated with first-line palliative gemcitabine and cisplatin. Droplet digital PCR (ddPCR) was used to quantify miR-200c-3p, miR-375, miR-21-5p, miR-148a-3p, miR-146a-5p, miR-141-3p and miR-218-5p in plasma from 68 patients. ci-miRNA expression was analyzed in relation to overall survival (OS), progression-free survival (PFS), and response to chemotherapy. ci-miRNA levels were detectable in 36 baseline (71%) samples and in 14 (47%) follow-up samples. Increased circulating miR-200c-3p in GC showed a trend (p = 0.06) towards a shorter OS. High circulating miR-375 was associated with a longer OS (p = 0.02) in patients with esophageal adenocarcinoma (EAC). No significant difference was observed in ci-miRNA expression between paired pre- and on-treatment samples. ci-miRNA expression was not associated with response to chemotherapy. ci-miRNAs can be measured in plasma samples of patients treated with first-line palliative chemotherapy using ddPCR despite prolonged storage in heparin. Elevated circulating miR-375 might be a prognostic marker for patients with EAC.
Collapse
Affiliation(s)
- Annette A van Zweeden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands,; Amstelland Hospital, Internal Medicine, Amstelveen, Netherlands,.
| | - Roza C M Opperman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands,.
| | - Richard J Honeywell
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands,.
| | - Godefridus J Peters
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands,; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland,.
| | - Henk M W Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands,; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands,.
| | - Hans J van der Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands,; Lava Therapeutics, Yalelaan 60, Utrecht, Netherlands,.
| | - Dennis Poel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands,; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands,.
| |
Collapse
|
29
|
Zhang C, Pan X, Peng X, Liu K, Wang J, Zhao L, Chen X, Huang G, Li H, Ye J, Lai Y. miR-30b-5p up-regulation related to the dismal prognosis for patients with renal cell cancer. J Clin Lab Anal 2021; 35:e23599. [PMID: 33247622 PMCID: PMC7891535 DOI: 10.1002/jcla.23599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of renal cell carcinoma (RCC) is often made late since there is no early symptom, which thus results in dismal patient prognosis. As a result, new biomarkers are urgently needed and efforts should be made to identify their functions in predicting RCC prognosis. microRNAs (miRNAs) are a class of small noncoding RNAs that are about 20-22 nucleotides in length, and they have been demonstrated to function as prognostic markers in numerous tumors. This study aimed to assess the role of miR-30b-5p in predicting the prognosis of RCC postoperatively. In this study, RNA was extracted from 284 formalin-fixed and paraffin-embedded kidney cancer tissue samples. After cDNA synthesis, real-time quantitative PCR (RT-qPCR) was adopted for detecting the relative miR-30b-5p level. Then, the Kaplan-Meier method, Cox regression analysis, and the receiver operating characteristic curve analysis were applied in analyzing the miR-30b-5p effect on the prognosis for patients. Our findings indicated that, following adjustment for age, gender, tumor stage, and tumor size, patients with low miR-30b-5p expression had remarkably longer overall survival. Thus, the miR-30b-5p level might be related to RCC prognosis.
Collapse
Affiliation(s)
- Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Xiang Pan
- Department of UrologyAffiliated Hospital of Yangzhou UniversityYangzhouChina
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeGuangdong ShantouChina
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Anhui Medical UniversityHefeiChina
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Anhui Medical UniversityHefeiChina
| | - Xuan Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeGuangdong ShantouChina
| | - Guocheng Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeGuangdong ShantouChina
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
30
|
Gao Y, Wang Y, Wang X, Zhao C, Wang F, Du J, Zhang H, Shi H, Feng Y, Li D, Yan J, Yao Y, Hu W, Ding R, Zhang M, Wang L, Huang C, Zhang J. miR-335-5p suppresses gastric cancer progression by targeting MAPK10. Cancer Cell Int 2021; 21:71. [PMID: 33482821 PMCID: PMC7821696 DOI: 10.1186/s12935-020-01684-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies have established the roles of microRNAs (miRNAs) in cancer progression. The aberrant expression of miR-335-5p has been reported in many cancers, including gastric cancer (GC). In this study, the precise roles of miR-335-5p in GC as well as the molecular mechanisms underlying its effects, including the role of its target MAPK10, were evaluated. Methods Quantitative real-time PCR was used to evaluate miR-335-5p levels in GC cell lines and tissues. MTT and colony formation assays were used to detect cell proliferation, and Transwell and wound-healing assays were used to evaluate the invasion and migration of GC cells. The correlation between levels of miR-335-5p and the cell cycle-related target gene mitogen-activated protein kinase 10 (MAPK10) in GC was analyzed. In addition, the candidate target was evaluated by a luciferase reporter assay, qRT-PCR, and western blotting. Results The levels of miR-335-5p were downregulated in GC tissues and cell lines. Furthermore, miR-335-5p inhibited the proliferation and migration of GC cells and induced apoptosis. Additionally, miR-335-5p arrested the cell cycle at the G1/S phase in GC cells in vitro. Levels of miR-335-5p and the cell cycle-related target gene MAPK10 in GC were correlated, and MAPK10 was directly targeted by miR-335-5p. Conclusions These data suggest that miR-335-5p is a tumor suppressor and acts via MAPK10 to inhibit GC progression.
Collapse
Affiliation(s)
- Yi Gao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Yanfeng Wang
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Changan Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Fenghui Wang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Juan Du
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Huahua Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Haiyan Shi
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Yun Feng
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Dan Li
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Jing Yan
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Yan Yao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Weihong Hu
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Ruxin Ding
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Mengjie Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Lumin Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China. .,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
31
|
Paciorek P, Żuberek M, Grzelak A. Rola miRNA w rozwoju wybranych nowotworów – potencjalne zastosowanie w diagnostyce*. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
MikroRNA (miRNA) są małymi cząsteczkami kwasu rybonukleinowego, które mimo że nie podlegają procesowi translacji, pełnią ważną funkcję regulacyjną w komórkach eukariotycznych. Ich fizjologiczną funkcją jest utrzymywanie homeostazy komórek. Zaburzona ekspresja miRNA może spowodować rozwój wielu chorób, w tym chorób nowotworowych. Działanie miRNA polega na hamowaniu tworzenia się białek, w tym białek o właściwościach onkogennych i antyonkogennych. Mutacje w miejscach kodowania miRNA mogą prowadzić do nadmiernego lub zmniejszonego wytwarzania wspomnianych białek. Odkrycie miRNA i poznanie ich roli w komórce otworzyło nowe możliwości dla diagnostyki chorób nowotworowych. Zmiany poziomu odpowiednich miRNA, w krwiobiegu lub innych płynach ustrojowych, mogą być markerem diagnostycznym chorób. Diagnostyka onkologiczna mogłaby przebiegać na podstawie badań profilu miRNA pacjenta i porównania go z opracowanymi wcześniej profilami zmian miRNA powiązanymi z występowaniem danego rodzaju choroby nowotworowej. Informacja o zmianach profilu miRNA podstawowych w regulacji ekspresji genów związanych z procesami nowotworzenia, mogłaby się przyczynić do opracowania terapii eksperymentalnych opartych na przywróceniu pierwotnego poziomu miRNA w komórkach, a tym samym, na przywróceniu prawidłowej regulacji ekspresji genów. Coraz nowsze metody wyciszania i włączania ekspresji miRNA mogą w przyszłości zaowocować skutecznymi rozwiązaniami terapeutycznymi.
Collapse
Affiliation(s)
- Patrycja Paciorek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Mariusz Żuberek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Agnieszka Grzelak
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| |
Collapse
|
32
|
Le CT, Nguyen TL, Nguyen TD, Nguyen TA. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a. RNA (NEW YORK, N.Y.) 2020; 26:1777-1786. [PMID: 32994184 PMCID: PMC7668254 DOI: 10.1261/rna.077487.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/25/2020] [Indexed: 06/04/2023]
Abstract
The Microprocessor complex of DROSHA and DGCR8 initiates the biosynthesis of microRNAs (miRNAs) by processing primary miRNAs (pri-miRNAs). The Microprocessor can be oriented on pri-miRNAs in opposite directions to generate productive and unproductive cleavages at their basal and apical junctions, respectively. However, only the productive cleavage gives rise to miRNAs. A single nucleotide polymorphism (SNP, rs2910164) in pri-mir-146a is associated with various human diseases. Although this SNP was found to reduce the expression of miRNA, it is still not known if it affects the activity of the Microprocessor directly, and how it functions. In this study, we revealed that the SNP creates an unexpected mGHG motif at the apical junction of pri-mir-146a. This mGHG motif interacts with the double-stranded RNA-binding domain (dsRBD) of DROSHA, switching its orientation on pri-mir-146a from the basal to the apical junction. As a result, the SNP facilitates Microprocessor to cleave SNP-pri-mir-146a at its unproductive sites. Our findings help to elucidate the molecular mechanism that explains how the disease-associated SNP modulates the biogenesis of pri-mir-146a and thereby affects its cellular functions.
Collapse
Affiliation(s)
- Cong Truc Le
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Thuy Linh Nguyen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Trung Duc Nguyen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
33
|
Kipkeeva F, Muzaffarova T, Korotaeva A, Nikulin M, Grishina K, Mansorunov D, Apanovich P, Karpukhin A. MicroRNA in Gastric Cancer Development: Mechanisms and Biomarkers. Diagnostics (Basel) 2020; 10:E891. [PMID: 33142817 PMCID: PMC7692123 DOI: 10.3390/diagnostics10110891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and difficult diseases to treat. The study of signaling pathway regulation by microRNA provides information on the mechanisms of GC development and is the basis for biomarker creation. In this study, a circuit of microRNA interactions with signaling pathways was constructed. The microRNAs, associated with metastasis and chemoresistance, are described. In most cases, microRNAs in GC regulate the Wnt/β-catenin, PI3K/AKT/mTOR, RAS/RAF/ERK/MAPK, NF-kB, TGF-β, and JAK/STAT pathways. Part of the microRNA acts on several target genes that function in different pathways. This often leads to an intensification of the induced processes. MicroRNAs have also been described that have the opposite effect on different pathways, causing different functional consequences. By acting on several target genes, or genes associated with several pathways, microRNAs can function in a signaling network. MicroRNAs associated with metastasis most often interact with the Wnt/β-catenin pathway. MicroRNAs affecting chemoresistance, in most cases, affect the regulators of apoptosis and are associated with the PI3K/AKT/mTOR pathway. The characteristics of microRNAs proposed as candidates for GC biomarkers were analyzed. The currently developed diagnostic and prognostic panels of microRNAs are also considered.
Collapse
Affiliation(s)
- Fatimat Kipkeeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Tatyana Muzaffarova
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexandra Korotaeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Maxim Nikulin
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia;
| | - Kristina Grishina
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Danzan Mansorunov
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Pavel Apanovich
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexander Karpukhin
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| |
Collapse
|
34
|
The influence of genetic variability in IL1B and MIR146A on the risk of pleural plaques and malignant mesothelioma. Radiol Oncol 2020; 54:429-436. [PMID: 33085641 PMCID: PMC7585336 DOI: 10.2478/raon-2020-0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Asbestos exposure is associated with the development of pleural plaques as well as malignant mesothelioma (MM). Asbestos fibres activate macrophages, leading to the release of inflammatory mediators including interleukin 1 beta (IL-1β). The expression of IL-1β may be influenced by genetic variability of IL1B gene or regulatory microRNAs (miRNAs). This study investigated the effect of polymorphisms in IL1B and MIR146A genes on the risk of developing pleural plaques and MM. Subjects and methods In total, 394 patients with pleural plaques, 277 patients with MM, and 175 healthy control subjects were genotyped for IL1B and MIR146A polymorphisms. Logistic regression was used in statistical analysis. Results We found no association between MIR146A and IL1B genotypes, and the risk of pleural plaques. MIR146A rs2910164 was significantly associated with a decreased risk of MM (OR = 0.31, 95% CI = 0.13–0.73, p = 0.008). Carriers of two polymorphic alleles had a lower risk of developing MM, even after adjustment for gender and age (OR = 0.34, 95% CI = 0.14–0.85, p = 0.020). Among patients with known asbestos exposure, carriers of at least one polymorphic IL1B rs1143623 allele also had a lower risk of MM in multivariable analysis (OR = 0.50, 95% CI = 0.28–0.92, p = 0.025). The interaction between IL1B rs1143623 and IL1B rs1071676 was significantly associated with an increased risk of MM (p = 0.050). Conclusions Our findings suggest that genetic variability of inflammatory mediator IL-1β could contribute to the risk of developing MM, but not pleural plaques.
Collapse
|
35
|
Lin J, Liu Z, Liao S, Li E, Wu X, Zeng W. Elevated microRNA-7 inhibits proliferation and tumor angiogenesis and promotes apoptosis of gastric cancer cells via repression of Raf-1. Cell Cycle 2020; 19:2496-2508. [PMID: 32931357 PMCID: PMC7553585 DOI: 10.1080/15384101.2020.1807670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/01/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Since the essential involvement of microRNAs (miRNAs) in the development and progression of GC, the study was for the exploration of the value of microRNA-7 (miR-7) in the evaluation of neoadjuvant chemotherapy for gastric cancer (GC) and its effects on apoptosis, proliferation and angiogenesis of GC. METHODS miR-7 expression in serum of GC patients before and after neoadjuvant chemotherapy were detected to explore its role in neoadjuvant chemotherapy of GC. The GC cells were transfected with miR-7 mimics/inhibitors, or siRNA-Raf-1 to figure out their roles in proliferation, migration, invasion, cycle distribution and apoptosis. Tumor xenograft was conducted to test tumor growth. Microvessel density (MVD) in tumors was tested by immunohistochemical staining. RESULTS miR-7 expression in serum of GC patients was lower than that of healthy controls while it was elevated after neoadjuvant chemotherapy. Moreover, higher miR-7 expression was exhibited in chemotherapy-effective patients rather than chemotherapy-ineffective patients (P < 0.01). miR-7 expression in serum was connected with tumor size, degree of differentiation, TNM stage and lymphatic metastasis.miR-7 was decreased and Raf-1 was elevated in GC cells (both P < 0.05). Elevated miR-7 or declined Raf-1 inhibited GC cell migration, proliferation and invasion, cell cycle entry, xenografted tumor growth and MVD and stimulated apoptosis (all P < 0.05). Down-regulated Raf-1 reversed the impacts of miR-7 knockdown on GC cells (all P < 0.05). CONCLUSION Our study highlights that elevated miR-27a indicates the good efficacy of neoadjuvant chemotherapy in GC and miR-7 targets Raf-1 to suppress tumor development and angiogenesis of GC cells.
Collapse
Affiliation(s)
- Jing Lin
- Oncology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- CONTACT Jing Lin
| | - Zewa Liu
- Oncology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shasha Liao
- Oncology Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
| | - E Li
- Oncology Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
| | - Xiaohua Wu
- Oncology Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
| | - Wanting Zeng
- MSci Applied Medical Science, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
36
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
37
|
Santos JSD, Zunta GL, Negrini AB, Ribeiro MSG, Martinez CAR, Ribeiro ML, Lourenço GJ, Ortega MM. The association of a single-nucleotide variant in the microRNA-146a with advanced colorectal cancer prognosis. Tumour Biol 2020; 42:1010428320923856. [PMID: 32438863 DOI: 10.1177/1010428320923856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to evaluate the association of single-nucleotide variant n.60G>C (rs2910164) of microRNA (miR)-146a, related to suppressing of BRCA1/2 DNA repair protein, with the risk and survival of colorectal cancer patients, as well as miR-146a and BRCA1/2 levels and miR binding efficiency. The genotypes were identified in 125 colorectal cancer patients and 276 controls using TaqMan polymerase chain reaction assay. The miR-146a and BRCA1/2 levels were assessed by quantitative-polymerase chain reaction protocols. Primary precursor of miR-146a containing G (wild-type) and C (variant) allele were cloned into pcDNA.3.3 vector and co-transfected in HT-29 colorectal cancer cell line. Luciferase reporter assay was performed to assess miR-146a binding to BRCA2 3'-untranslated region in HT-29. The differences between groups were calculated using chi-square or Fisher's exact test, logistic regression, and Mann-Whitney test. The prognostic impact of single-nucleotide variant genotypes on overall survival was evaluated by Kaplan-Meier estimate and Cox regression. The GC or CC genotypes prevalence was similar in patients and controls (50.4% vs 50.7%, p = 0.74). However, patients with tumors in advanced stage with miR-146a GG genotype had 2.41 more chance of dying than GC or CC genotypes. In addition, tumor tissues of patients with GG genotype presented higher miR-146a (p = 0.02) and lower BRCA1 (p = 0.01) and BRCA2 (p < 0.0001) levels when compared to those with GC or CC genotypes. In fact, pcDNA.3.3-miR-146a-G presented increased binding capacity to the 3'-untranslated region of BRCA2 (p = 0.001) compared to pcDNA.3.3-miR-146a-C. In addition, the G allele altered the binding affinity between miR-146a and its BRCA2 3'-untranslated region target (p < 0.001), thus enhancing suppression of BRCA2 expression. Our results suggest that single-nucleotide variant rs2910164 does not influence the colorectal cancer risk in Brazilian patients; however, the GG genotype could act as a factor of worse prognosis in patients with advanced disease due to suppression of BRCA1/2 modulated by miR-146a.
Collapse
Affiliation(s)
- Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University (USF), Bragança Paulista, Brazil
| | - Gabriella Lucatto Zunta
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University (USF), Bragança Paulista, Brazil
| | - Amanda Binatto Negrini
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University (USF), Bragança Paulista, Brazil
| | - Marina Silva Guinda Ribeiro
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University (USF), Bragança Paulista, Brazil
| | | | - Marcelo Lima Ribeiro
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University (USF), Bragança Paulista, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University (USF), Bragança Paulista, Brazil
| |
Collapse
|
38
|
A Group of miRNA as Candidates for Prognostic Biomarkers of Gastric Cancer Metastasis. Bull Exp Biol Med 2020; 169:77-80. [PMID: 32488785 DOI: 10.1007/s10517-020-04828-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 12/28/2022]
Abstract
An association was found between reduced expression of miR-34a, miR-146a with both metastasis to regional lymph nodes (relative risk RR=10.50 and RR=5.25, respectively) and the development of distant metastases (RR=9.50 and RR=4, 40, respectively) in gastric cancer. They are excellent classifiers: AUC>0.9 for both miRNAs. The association of miR-335 expression with metastasis to the lymph nodes is much weaker, but it is also a good classifier for identifying a group with distant metastasis (RR=5.90). A correlation was found between the expression of miR-34a and miR-146a during metastasis, which is absent in non-metastatic tumors. Thus, miR-34a, miR-146a, and miR-335 miRNAs can be proposed as candidates for biomarkers of the risk of gastric cancer metastasis.
Collapse
|
39
|
Ahadi A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB Life 2020; 72:884-898. [DOI: 10.1002/iub.2259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
40
|
Yang SS, Ma S, Dou H, Liu F, Zhang SY, Jiang C, Xiao M, Huang YX. Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp Cell Res 2020; 391:111983. [PMID: 32268136 DOI: 10.1016/j.yexcr.2020.111983] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To explore the effects of breast cancer (BC)-derived exosomes on invasion and migration of BC cells. METHODS Exosomes (Exo-MA, Exo-M7, Exo-M1) were extracted from normal breast epithelial cells (MCF-10A), BC cells (MCF-7/MDA-MB-231) and BC cells with miR-146a overexpression or knockdown using multi-step differential centrifugation. Morphologies and sizes of exosomes were observed by transmission electron microscope (TEM) and particle size analysis respectively. BC mouse models were injected with DIR labeled Exo-MA, Exo-M7 or Exo-M1. The epithelial-mesenchymal transition (EMT) in BC cells was determined by PCR and Western blot. PKH67 labeled Exo-MA, Exo-M7 and Exo-M1 were incubated with NFs or MCF-7 to measure the activation of CAFs. Cell invasion and migration abilities were determined by scratch test and Transwell assay. RESULTS Exo-MA, Exo-M7, Exo-M1 were successfully extracted with positive expressions of Alix, CD63 and TSG101. Contents of Ki67, N-cadherin, Vimentin and Snail-1 were increased but E-cadherin was decreased, compared to Exo-MA group. Exo-M7 or Exo-M1 could increase BC cell proliferation and enhance EMT in nude mouse. Exo-M7 and Exo-M1 could accelerate the transformation of NFs into CAFs and promote the recruitment of CAFs in MCF-7. Transfection of miR-146a could promote the transformation of NFs into CAFs and promote cell invasion and migration of MCF-7 cells. As a target gene of miR-146a, TXNIP could inhibit the activation of CAFs. miR-146a overexpression or TXNIP silence enhance the activation of Wnt signal pathway. CONCLUSION BC-derived exosomes promote the activation of CAFs through miR-146a/TXNIP axis to activate Wnt pathway, which in turn enhances invasion and metastasis of BC cells.
Collapse
Affiliation(s)
- Shan-Shan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Shuang Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - He Dou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Feng Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Shi-Yuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Cong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Min Xiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China.
| | - Yuan-Xi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
41
|
Fu W, Liu Z, Zhang J, Shi Y, Zhao R, Zhao H. Effect of miR-144-5p on the proliferation, migration, invasion and apoptosis of human umbilical vein endothelial cells by targeting RICTOR and its related mechanisms. Exp Ther Med 2020; 19:1817-1823. [PMID: 32104237 PMCID: PMC7027162 DOI: 10.3892/etm.2019.8369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study was to investigate the effect of microRNA (miR)-144-5p on human umbilical vein endothelial cells (HUVECs) to explore the role of miR-144-5p in atherosclerosis. miR-144-5p expression was upregulated in HUVECs using miR-144-5p mimics. The relative expression level of miR-144-5p in HUVECs was detected using reverse transcription-quantitative PCR (RT-qPCR). Cell proliferation was detected by performing an MTT assay. Apoptosis was determined via flow cytometry. Cell migration ability was detected by a wound-healing assay. Cell invasion was determined by a transwell assay. The protein levels of phosphorylated (p)-PI3K, p-Akt and endothelial nitric oxide synthase (eNOS) were detected using western blot analysis. The binding sites between miR-144-5p and 3'-untranslated region of rapamycin-insensitive companion of mTOR (RICTOR) mRNA were predicted by TargetScan and confirmed by a dual luciferase reporter assay. The present study showed that miR-144-5p mimics significantly inhibited cell proliferation and induced apoptosis in HUVECs. In addition, miR-144-5p mimics could suppress migration and invasion of HUVECs. Further analysis identified that RICTOR was a direct target gene of miR-144-5p. Moreover, miR-144-5p upregulation decreased the protein level of p-PI3K, p-Akt and eNOS. In conclusion, miR-144-5p regulated HUVEC proliferation, migration, invasion, and apoptosis through affecting the PI3K-Akt-eNOS signaling pathway by altering the expression of RICTOR. These results indicated that miR-144-5p may be a potential target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Fu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zidong Liu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jing Zhang
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yuxue Shi
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ruiyao Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Heng Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
42
|
Xu J, Zhang Z, Chen Q, Yang L, Yin J. miR-146b Regulates Cell Proliferation and Apoptosis in Gastric Cancer by Targeting PTP1B. Dig Dis Sci 2020; 65:457-463. [PMID: 31441000 DOI: 10.1007/s10620-019-05771-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS The purpose of this study is to explore the inhibition or activation effects of microRNA-146 B on the expression of PTP1B in gastric cancer cells. METHODS The expressions of PTP1B and miR-146b in gastric cancer were detected by RT-qPCR. The effects of miR-146b on cell apoptosis and proliferation of gastric cancer were detected. The methods used in the detection process included Annexin V/PI dying method, colony formation assay, and MTT assay. The downstream target gene miR-146b was predicted and screened by bioinformatics and luciferase reporter assay. The mRNA and protein expressions of the target gene PTP1B miR-146b were determined using RT-qPCR and western blot. The expression of miR-146 B in mice was detected by the cells transfected with microRNA-146 B in vivo. RESULTS Compared with normal tissues, PTP1B was higher and miR-146b was lower in cancer cells. Over-expression of miR-146b can inhibit cell viability and increase the apoptosis rate. According to the luciferase reporter assay, PTP1B was the downstream target gene of miR-146b. The re-introduction of PTP1B reversed the growth inhibition and apoptosis of gastric cancer cells induced by miR-146b. From the mouse xenograft model, the over-expression of miR-146b inhibited the tumor growth and reduced the expression level of PTP1B. CONCLUSION miR-146b directly inhibits the expression of PTP1B and suppressed the growth and development of gastric cancer.
Collapse
Affiliation(s)
- Jianguo Xu
- Department of Oncology Surgery, People's Hospital of Qinghai Province, Xining City, 810007, Qinghai Province, China
| | - Zilong Zhang
- Department of Oncology Surgery, People's Hospital of Qinghai Province, Xining City, 810007, Qinghai Province, China
| | - Qing Chen
- Department of Orthopedic, The 991 Hospital of PLA, Nanjing City, 441011, Jiangsu Province, China
| | - Lin Yang
- Department of Immunity, Medical College of Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang City, 441053, Hubei Province, China
| | - Jiao Yin
- Department of Immunity, Medical College of Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang City, 441053, Hubei Province, China.
| |
Collapse
|
43
|
Wei Y, Wang Y, Zang A, Wang Z, Fang G, Hong D. MiR-4766-5p Inhibits The Development And Progression Of Gastric Cancer By Targeting NKAP. Onco Targets Ther 2019; 12:8525-8536. [PMID: 31802890 PMCID: PMC6801498 DOI: 10.2147/ott.s220234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose It is widely known that some specific microRNAs can regulate the expressions of genes in gastric cancer cells at the post-transcriptional level. Previous studies have identified that miRNA-4766-5p was involved in tumor cell proliferation and can be an independent prognostic indicator for malignant pleural mesothelioma. However, the mechanism underlying gastric cancer via the miRNA-4766-5p pathway remains to be blank. Methods We investigated the expression of miR-4766-5p in gastric cancer tissues and cells through qRT-PCR. We used RNAi to change the expressions of miR-4766-5p in gastric cancer cell lines, AGS and MKN45. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the mRNA expression of miR-4766-5p. We identified cell proliferation by CCK8 and clone formation assays. We analyzed the cell apoptosis and cycle through flow cytometry. At last, we used a dual-luciferase reporter assay to illustrate the interaction between miR-4766-5p and NKAP and used Western blot to determine the protein expression of signaling pathways. Results We found that 1) miR-4766-5p was down-regulated in gastric cancer tissues and cells lines; 2) miR-4766-5p inhibited cell proliferation of gastric cancer cell lines significantly; 3) miR-4766-5p significantly inhibited cell migration and invasion of gastric cancer cells; 4) miR-4766-5p induced gastric cancer cell apoptosis. 5) NKAP was a direct target gene of miR-4766-5p; and 6) miR-4766-5p induced inactivation of AKT/mTOR pathway. Conclusion The above results indicate that miR-4766-5p suppressed the proliferation and metastasis of gastric cancer cells through targeting NKAP. Our findings could probably contribute to the diagnostics and prognostics of gastric cancer through new methodologies.
Collapse
Affiliation(s)
- Yaning Wei
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding City, Hebei Province 071000, People's Republic of China
| | - Yanan Wang
- Department of Medical Pathology, Affiliated Hospital of Hebei University, Baoding City, Hebei Province 071000, People's Republic of China
| | - Aimin Zang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding City, Hebei Province 071000, People's Republic of China
| | - Zhiyu Wang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding City, Hebei Province 071000, People's Republic of China
| | - Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding City, Hebei Province 071000, People's Republic of China
| | - Dan Hong
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding City, Hebei Province 071000, People's Republic of China
| |
Collapse
|
44
|
Battaglia C, Venturin M, Sojic A, Jesuthasan N, Orro A, Spinelli R, Musicco M, De Bellis G, Adorni F. Candidate Genes and MiRNAs Linked to the Inverse Relationship Between Cancer and Alzheimer's Disease: Insights From Data Mining and Enrichment Analysis. Front Genet 2019; 10:846. [PMID: 31608105 PMCID: PMC6771301 DOI: 10.3389/fgene.2019.00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022] Open
Abstract
The incidence of cancer and Alzheimer’s disease (AD) increases exponentially with age. A growing body of epidemiological evidence and molecular investigations inspired the hypothesis of an inverse relationship between these two pathologies. It has been proposed that the two diseases might utilize the same proteins and pathways that are, however, modulated differently and sometimes in opposite directions. Investigation of the common processes underlying these diseases may enhance the understanding of their pathogenesis and may also guide novel therapeutic strategies. Starting from a text-mining approach, our in silico study integrated the dispersed biological evidence by combining data mining, gene set enrichment, and protein-protein interaction (PPI) analyses while searching for common biological hallmarks linked to AD and cancer. We retrieved 138 genes (ALZCAN gene set), computed a significant number of enriched gene ontology clusters, and identified four PPI modules. The investigation confirmed the relevance of autophagy, ubiquitin proteasome system, and cell death as common biological hallmarks shared by cancer and AD. Then, from a closer investigation of the PPI modules and of the miRNAs enrichment data, several genes (SQSTM1, UCHL1, STUB1, BECN1, CDKN2A, TP53, EGFR, GSK3B, and HSPA9) and miRNAs (miR-146a-5p, MiR-34a-5p, miR-21-5p, miR-9-5p, and miR-16-5p) emerged as promising candidates. The integrative approach uncovered novel miRNA-gene networks (e.g., miR-146 and miR-34 regulating p62 and Beclin1 in autophagy) that might give new insights into the complex regulatory mechanisms of gene expression in AD and cancer.
Collapse
Affiliation(s)
- Cristina Battaglia
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Italy.,Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Marco Venturin
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Italy
| | - Aleksandra Sojic
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Nithiya Jesuthasan
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Alessandro Orro
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Roberta Spinelli
- Istituto Istruzione Superiore Statale IRIS Versari, Cesano Maderno, Italy
| | - Massimo Musicco
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Gianluca De Bellis
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Fulvio Adorni
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| |
Collapse
|
45
|
Wang H, Li X, Li T, Wang L, Wu X, Liu J, Xu Y, Wei W. Multiple roles of microRNA-146a in immune responses and hepatocellular carcinoma. Oncol Lett 2019; 18:5033-5042. [PMID: 31612014 PMCID: PMC6781720 DOI: 10.3892/ol.2019.10862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs/miRs), consisting of ~22 nucleotides of single-stranded RNA, participate in post-transcriptional gene regulation by binding to the 3′-untranslated region (UTR) of mRNAs, repressing their translation and promoting their degradation. Studies have shown that certain miRNAs play a key role in the control of various cellular activities, such as inhibiting inflammation, modulating cell differentiation and suppressing cancer growth. The role of miR-146a in the immune response and in the pathogenesis of hepatocellular carcinoma (HCC) has also been investigated. Although some studies have shown that increased miR-146a levels are associated with HCC, others have revealed that miR-146a suppresses cancer cell proliferation, invasion and metastasis. Toll-like receptor 4 (TLR4) signaling has an important role in regulating innate and adaptive immune responses. In addition, TLR4 is functionally expressed in HCC cells and promotes HCC cell proliferation, which can be regulated by miR-146a. The present review focuses on the recent progress in analyzing the multiple roles of miR-146a in mediating the TLR4 pathway and adaptive immune response. Finally, the function of miR-146a in the pathogenesis of HCC is also discussed.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xuemei Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lianzi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xian Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiaqing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
46
|
Protective potential of miR-146a-5p and its underlying molecular mechanism in diverse cancers: a comprehensive meta-analysis and bioinformatics analysis. Cancer Cell Int 2019; 19:167. [PMID: 31285693 PMCID: PMC6592002 DOI: 10.1186/s12935-019-0886-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background/aims Studies have shown that miR-146a-5p was differentially expressed in diverse cancers, but the associations between miR-146a-5p expression and prognosis across multiple types of cancer as well its potential targets and downstream pathways have not been comprehensively analyzed. In this study, we performed the first meta-analysis of the prognostic value of miR-146a-5p expression in diverse malignancies and explored prospective targets of miR-146a-5p and related signaling pathways. Methods A thorough search for articles related to miR-146a-5p was performed, and RNA-seq data from The Cancer Genome Atlas (TCGA) and microarray data from gene expression omnibus profiles were used to collect information about the prognostic value of miR-146a-5p. A comprehensive meta-analysis was conducted. Twelve platforms in miRWalk 2.0 were applied to predict targets of miR-146a-5p. TCGA RNA-seq data were used to validate the inverse relationships between miR-146a-5p and its likely targets. Subsequently, gene ontology and pathway analyses were conducted using Funrich version 3.1.3. Potential protein–protein interaction (PPI) networks were constructed. Potential target genes of miR-146a-5p in lung cancer were validated by RT-qPCR. Results We included 10 articles in the meta-analysis. In a pooled analysis, the high miR-146a-5p expression group showed a better overall survival in solid cancers, particularly in reproductive system cancers and digestive system cancers. A total of 120 predicted target genes were included in a bioinformatics analysis. Five pathways involving phospholipase C (PLC) and aquaporins (AQPs) were the most significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways. Moreover, the PPI network displayed the related signaling pathways and interactions among proteins. AQP1 and FYN were validated by RT-qPCR to be potential targets of miR-146a-5p in lung cancer. Conclusion There is a close link between high miR-146a-5p expression and better overall survival in 21 types of solid cancer, especially in reproductive system and digestive system cancers. Furthermore, miR-146a-5p could inhibit diverse malignancies by modulating pathways linked to PLC or AQPs. In summary, miR-146a-5p is a potential prognostic biomarker and therapeutic target for various cancers.
Collapse
|
47
|
Iacona JR, Lutz CS. miR-146a-5p: Expression, regulation, and functions in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1533. [PMID: 30895717 DOI: 10.1002/wrna.1533] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Cancer as we know it is actually an umbrella term for over 100 very unique malignancies in various tissues throughout the human body. Each type, and even subtype of cancer, has different genetic, epigenetic, and other cellular events responsible for malignant development and metastasis. Recent work has indicated that microRNAs (miRNAs) play a major role in these processes, sometimes by promoting cancer growth and other times by suppressing tumorigenesis. miRNAs are small, noncoding RNAs that negatively regulate expression of specific target genes. This review goes into an in-depth look at the most recent finding regarding the significance of one particular miRNA, miR-146a-5p, and its involvement in cancer. Target gene validation and pathway analysis have provided mechanistic insight into this miRNA's purpose in assorted tissues. Additionally, this review outlines novel findings that suggest miR-146a-5p may be useful as a noninvasive biomarker and as a targeted therapeutic in several cancers. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| |
Collapse
|
48
|
Guan H, You Z, Wang C, Fang F, Peng R, Mao L, Xu B, Chen M. MicroRNA-200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Cancer Med 2019; 8:1474-1485. [PMID: 30784214 PMCID: PMC6488151 DOI: 10.1002/cam4.2029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is still considered a significant health care challenge worldwide due in part to the distinct transformation of androgen‐dependent prostate cancer (ADPC) into treatment‐refractory castration‐resistant prostate cancer (CRPC). Consequently, there is an urgent need to explore novel molecular mechanisms underlying treatment resistance in ADPC. Although numerous studies have alluded to the role of miR‐200a in several cancers, the biological significance of miR‐200a in prostate cancer remains unknown. After performing microarray analysis and reanalysis of the publicly available Memorial Sloan Kettering Cancer Center dataset, miR‐200a expression was found higher in ADPC tissues and its expression was positively associated with survival of CRPC patients. In vitro studies showed that miR‐200a overexpression in CRPC cells markedly suppressed cellular proliferation and facilitated apoptosis. In vivo studies indicated that overexpression of miR‐200a inhibited growth and metastasis of prostate cancer. The luciferase reporter assay demonstrated that BRD4 is a direct target gene of miR‐200a and it could reverse miR‐200a‐mediated biological effects in prostate cancer cells. Most importantly, our findings indicated that miR‐200a suppresses the progression of CRPC by inhibiting the activation of BRD4‐mediated AR signaling. This finding provides the foundation for the development of more personalized therapeutic approaches for CRPC patients.
Collapse
Affiliation(s)
- Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zonghao You
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Can Wang
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Fang Fang
- Department of Immunology, Bengbu Medical College, Bengbu, China
| | - Rui Peng
- Department of Graduate School, Bengbu Medical College, Bengbu, China
| | - Likai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Xu
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
49
|
Shomali N, Shirafkan N, Duijf PHG, Ghasabi M, Babaloo Z, Yousefi M, Mansoori B, Asadi M, Shanehbandi D, Baghbani E, Mohammadi A, Baradaran B. Downregulation of miR-146a promotes cell migration in Helicobacter pylori-negative gastric cancer. J Cell Biochem 2018; 120:9495-9505. [PMID: 30537266 DOI: 10.1002/jcb.28225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
microRNAs (miRs) are short noncoding RNAs that post-transcriptionally suppress gene expression. miR-146a acts as an oncogene or a tumor suppressor in various cancers, including gastric cancer, but it is unclear what determines whether miR-146a is oncogenic or tumor suppressive and the molecular mechanisms are still largely unknown. The aim of this study was to investigate the role of miR-146a in gastric cancer, by focusing on its expression in patients who were negative for Helicobacter pylori and its reduced and increased expression effect in vitro. Twenty gastric cancer patients who were negative for H. pylori infection were selected and the expression levels of miRNA-146a in these gastric tumors, in their matched normal gastric tissues and in gastric cancer cell lines with varying tumorigenic potential was measured. Further, the impact of increased and decreased miR-146a expression levels on the expression of predicted target genes, cell migration, viability, proliferation, and apoptosis was examined, respectively. Our results for the first time indicated that miR-146a is downregulated in H. pylori-negative gastric cancers and suggests that H. pylori infection determines whether miR-146a acts as an oncogene or tumor suppressor. The level of miR-146a expression inversely correlates with the tumorigenicity of three gastric cancer cell lines and low miR-146a expression predicts poor recurrence-free survival. It was also found that miR-146a reduces the expression levels of the prometastatic genes and suppresses MKN-45 cell migration. Functional studies showed that miR-146a acts as a tumor suppressor miR and identifies miR-146a as a candidate for antimetastatic miRNA replacement therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Translational Research Institute, University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Yang Y, Qu A, Zhao R, Hua M, Zhang X, Dong Z, Zheng G, Pan H, Wang H, Yang X, Zhang Y. Genome-wide identification of a novel miRNA-based signature to predict recurrence in patients with gastric cancer. Mol Oncol 2018; 12:2072-2084. [PMID: 30242969 PMCID: PMC6275280 DOI: 10.1002/1878-0261.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
The current tumor node metastasis (TNM) staging system is inadequate for identifying high-risk gastric cancer (GC) patients. Using a systematic and comprehensive-biomarker discovery and validation approach, we attempted to build a microRNA (miRNA)-recurrence classifier (MRC) to improve the prognostic prediction of GC. We identified 312 differentially expressed miRNAs in 446 GC tissues compared to 45 normal controls by analyzing high-throughput data from The Cancer Genome Atlas (TCGA). Using a Cox regression model, we developed an 11-miRNA signature that could successfully discriminate high-risk patients in the training set (n = 372; P < 0.0001). Quantitative real-time polymerase chain reaction-based validation in an independent clinical cohort (n = 88) of formalin-fixed paraffin-embedded clinical GC samples showed that MRC-derived high-risk patients succumb to significantly poor recurrence-free survival in GC patients (P < 0.0001). Cox and stratification analysis indicated that the prognostic value of this signature was independent of clinicopathological risk factors. Time-dependent receiver operating characteristic (ROC) analysis revealed that the area under the curve of this signature was significantly larger than that of TNM stage in the TCGA (0.733 vs. 0.589 at 3 years, P = 0.004; 0.802 vs. 0.635 at 5 years, P = 0.005) and validation cohort (0.835 vs. 0.689 at 3 years, P = 0.003). A nomogram was constructed for clinical use, which integrated both MRC and clinical-related variables (depth of invasion, lymph node status and distance metastasis) and did well in the calibration plots. In conclusion, this novel miRNA-based signature is superior to currently used clinicopathological features for identifying high-risk GC patients. It can be readily translated into clinical practice with formalin-fixed paraffin-embedded specimens for specific decision-making applications.
Collapse
Affiliation(s)
- Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Ailin Qu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Rui Zhao
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Mengmeng Hua
- Department of Oral Pathology, Institute of Stomatology, Qilu Hospital, Shandong University, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|