1
|
Zhao L, Wang J, Yang W, Zhang C, Zhang W, Chen J. Insights into phosphorylation-induced influences on conformations and inhibitor binding of CDK6 through GaMD trajectory-based deep learning. Phys Chem Chem Phys 2025; 27:6546-6562. [PMID: 40072875 DOI: 10.1039/d4cp04579c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The phosphorylation of residue T177 produces a significant effect on the conformational dynamics of CDK6. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) are applied to explore the molecular mechanism of the phosphorylation-mediated effect on the conformational dynamics of CDK6 bound by three inhibitors 6ZV, 6ZZ and 0RS, in which 6ZV and 6ZZ have been used to test clinical performance. The DL finds that the β-sheets, αC helix as well as the T-loop are involved in obvious differences of conformation contacts and suggests that the T-loop plays a key role in the function of CDK6. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of T177 leads to alterations of the T-loop conformation and the results from principal component analysis (PCA) indicate that the phosphorylation affects the fluctuation behavior of the β-sheets and the T-loop in CDK6. Interaction networks of inhibitors with CDK6 were analyzed and the information reveals that 6ZV contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. Our MM-GBSA calculations suggest that the binding ability of 6ZV to CDK6 is stronger than 6ZZ and 0RS. We anticipate that this work could provide useful information for further understanding of CDK6 function and developing new promising inhibitors targeting CDK6.
Collapse
Affiliation(s)
- Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Canqing Zhang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Weiwei Zhang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| |
Collapse
|
2
|
Paternot S, Raspé E, Meiller C, Tarabichi M, Assié J, Libert F, Remmelink M, Bisteau X, Pauwels P, Blum Y, Le Stang N, Tabone‐Eglinger S, Galateau‐Sallé F, Blanquart C, Van Meerbeeck JP, Berghmans T, Jean D, Roger PP. Preclinical evaluation of CDK4 phosphorylation predicts high sensitivity of pleural mesotheliomas to CDK4/6 inhibition. Mol Oncol 2024; 18:866-894. [PMID: 36453028 PMCID: PMC10994244 DOI: 10.1002/1878-0261.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options. We evaluated the impact of CDK4/6 inhibition by palbociclib in 28 MPM cell lines including 19 patient-derived ones, using various approaches including RNA-sequencing. Palbociclib strongly and durably inhibited the proliferation of 23 cell lines, indicating a unique sensitivity of MPM to CDK4/6 inhibition. When observed, insensitivity to palbociclib was mostly explained by the lack of active T172-phosphorylated CDK4. This was associated with high p16INK4A (CDKN2A) levels that accompany RB1 defects or inactivation, or (unexpectedly) CCNE1 overexpression in the presence of wild-type RB1. Prolonged palbociclib treatment irreversibly inhibited proliferation despite re-induction of cell cycle genes upon drug washout. A senescence-associated secretory phenotype including various potentially immunogenic components was irreversibly induced. Phosphorylated CDK4 was detected in 80% of 47 MPMs indicating their sensitivity to CDK4/6 inhibitors. Its absence in some highly proliferative MPMs was linked to very high p16 (CDKN2A) expression, which was also observed in public datasets in tumours from short-survival patients. Our study supports the evaluation of CDK4/6 inhibitors for MPM treatment, in monotherapy or combination therapy.
Collapse
Affiliation(s)
- Sabine Paternot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Clément Meiller
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Jean‐Baptiste Assié
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
- CEpiA (Clinical Epidemiology and Ageing), EA 7376‐IMRBUniversity Paris‐Est CréteilFrance
- GRC OncoThoParisEst, Service de Pneumologie, CHI Créteil, UPECCréteilFrance
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
- BRIGHTCore, ULBBrusselsBelgium
| | - Myriam Remmelink
- Department of Pathology, Erasme HospitalUniversité Libre de BruxellesBelgium
| | - Xavier Bisteau
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE)Integrated Personalized and Precision Oncology Network (IPPON)WilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le CancerParisFrance
- Present address:
IGDR UMR 6290, CNRS, Université de Rennes 1France
| | - Nolwenn Le Stang
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
| | | | - Françoise Galateau‐Sallé
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
- Cancer Research Center INSERM U1052‐CNRS 5286RLyonFrance
| | | | | | - Thierry Berghmans
- Clinic of Thoracic OncologyInstitut Jules Bordet, Université Libre de BruxellesBrusselsBelgium
| | - Didier Jean
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| |
Collapse
|
3
|
Begagić E, Pugonja R, Bečulić H, Čeliković A, Tandir Lihić L, Kadić Vukas S, Čejvan L, Skomorac R, Selimović E, Jaganjac B, Juković-Bihorac F, Jusić A, Pojskić M. Molecular Targeted Therapies in Glioblastoma Multiforme: A Systematic Overview of Global Trends and Findings. Brain Sci 2023; 13:1602. [PMID: 38002561 PMCID: PMC10669565 DOI: 10.3390/brainsci13111602] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
This systematic review assesses current molecular targeted therapies for glioblastoma multiforme (GBM), a challenging condition with limited treatment options. Using PRISMA methodology, 166 eligible studies, involving 2526 patients (61.49% male, 38.51% female, with a male-to-female ratio of 1.59/1), were analyzed. In laboratory studies, 52.52% primarily used human glioblastoma cell cultures (HCC), and 43.17% employed animal samples (mainly mice). Clinical participants ranged from 18 to 100 years, with 60.2% using combined therapies and 39.8% monotherapies. Mechanistic categories included Protein Kinase Phosphorylation (41.6%), Cell Cycle-Related Mechanisms (18.1%), Microenvironmental Targets (19.9%), Immunological Targets (4.2%), and Other Mechanisms (16.3%). Key molecular targets included Epidermal Growth Factor Receptor (EGFR) (10.8%), Mammalian Target of Rapamycin (mTOR) (7.2%), Vascular Endothelial Growth Factor (VEGF) (6.6%), and Mitogen-Activated Protein Kinase (MEK) (5.4%). This review provides a comprehensive assessment of molecular therapies for GBM, highlighting their varied efficacy in clinical and laboratory settings, ultimately impacting overall and progression-free survival in GBM management.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Amila Čeliković
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Čejvan
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Rasim Skomorac
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Edin Selimović
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
| | - Fatima Juković-Bihorac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
- Department of Pathology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Aldin Jusić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
4
|
Pita JM, Raspé E, Coulonval K, Decaussin-Petrucci M, Tarabichi M, Dom G, Libert F, Craciun L, Andry G, Wicquart L, Leteurtre E, Trésallet C, Marlow LA, Copland JA, Durante C, Maenhaut C, Cavaco BM, Dumont JE, Costante G, Roger PP. CDK4 phosphorylation status and rational use for combining CDK4/6 and BRAF/MEK inhibition in advanced thyroid carcinomas. Front Endocrinol (Lausanne) 2023; 14:1247542. [PMID: 37964967 PMCID: PMC10641312 DOI: 10.3389/fendo.2023.1247542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Background CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.
Collapse
Affiliation(s)
- Jaime M. Pita
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Katia Coulonval
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Geneviève Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- BRIGHTCore, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Tumor Bank of the Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Andry
- Department of Head & Neck and Thoracic Surgery, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Wicquart
- Tumorothèque du Groupement de Coopération Sanitaire-Centre Régional de Référence en Cancérologie (C2RC) de Lille, Lille, France
| | - Emmanuelle Leteurtre
- Department of Pathology, Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Inserm, Centre Hospitalo-Universitaire (CHU) Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christophe Trésallet
- Department of General and Endocrine Surgery - Pitié-Salpêtrière Hospital, Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
- Department of Digestive, Bariatric and Endocrine Surgery - Avicenne University Hospital, Paris Nord - Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Branca M. Cavaco
- Molecular Endocrinology Group, Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Costante
- Departments of Endocrinology and Medical Oncology, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
5
|
Song J, Ge Y, Dong M, Guan Q, Ju M, Song X, Han J, Zhao L. Molecular interplay between EIF4 family and circular RNAs in cancer: Mechanisms and therapeutics. Eur J Pharmacol 2023:175867. [PMID: 37369297 DOI: 10.1016/j.ejphar.2023.175867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
The eukaryotic translation initiation factor 4 (EIF4) family is a major contributor to the recruitment of mRNAs to ribosomes during the initial translation stage in eukaryotes, whose dysregulation either allows for cancer transformation or prevents disordered cancerous cell growth. Circular RNAs (circRNAs), which exhibit distinctive structures and are widely expressed in eukaryotes, are anticipated to be a clinical diagnostic biomarker for cancer therapy. There is considerable evidence that EIF4s can influence the biogenesis, transport, and function of circRNAs and, in turn, circRNAs can control the expressions of EIF4s through certain molecular pathways. Herein, we primarily review the emerging studies of the EIF4 family and pinpoint the roles of dysregulated EIF4s in cancer. We also evaluate the patterns of intricate interactions between circRNAs and EIF4s and discuss the potential utility of circRNA-based therapeutics targeting EIF4s in clinical cancer research.
Collapse
Affiliation(s)
- Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Mingyan Dong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Xueyi Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| | - Jiali Han
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
6
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 PMCID: PMC10341773 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
| | | | | | - Michael T. Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
7
|
Sager RA, Backe SJ, Ahanin E, Smith G, Nsouli I, Woodford MR, Bratslavsky G, Bourboulia D, Mollapour M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat Rev Urol 2022; 19:305-320. [PMID: 35264774 PMCID: PMC9306014 DOI: 10.1038/s41585-022-00571-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The treatment of advanced and metastatic kidney cancer has entered a golden era with the addition of more therapeutic options, improved survival and new targeted therapies. Tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and immune checkpoint blockade have all been shown to be promising strategies in the treatment of renal cell carcinoma (RCC). However, little is known about the best therapeutic approach for individual patients with RCC and how to combat therapeutic resistance. Cancers, including RCC, rely on sustained replicative potential. The cyclin-dependent kinases CDK4 and CDK6 are involved in cell-cycle regulation with additional roles in metabolism, immunogenicity and antitumour immune response. Inhibitors of CDK4 and CDK6 are now commonly used as approved and investigative treatments in breast cancer, as well as several other tumours. Furthermore, CDK4/6 inhibitors have been shown to work synergistically with other kinase inhibitors, including mTOR inhibitors, as well as with immune checkpoint inhibitors in preclinical cancer models. The effect of CDK4/6 inhibitors in kidney cancer is relatively understudied compared with other cancers, but the preclinical studies available are promising. Collectively, growing evidence suggests that targeting CDK4 and CDK6 in kidney cancer, alone and in combination with current therapeutics including mTOR and immune checkpoint inhibitors, might have therapeutic benefit and should be further explored.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Garrett Smith
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Syracuse VA Medical Center, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Syracuse VA Medical Center, Syracuse, NY, USA.
| |
Collapse
|
8
|
Coulonval K, Vercruysse V, Paternot S, Pita JM, Corman R, Raspé E, Roger PP. Monoclonal antibodies to activated CDK4: use to investigate normal and cancerous cell cycle regulation and involvement of phosphorylations of p21 and p27. Cell Cycle 2021; 21:12-32. [PMID: 34913830 PMCID: PMC8837260 DOI: 10.1080/15384101.2021.1984663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cyclin-dependent kinase 4 (CDK4) is a master integrator that couples mitogenic/oncogenic signaling with the cell division cycle. It is deregulated in most cancers and inhibitors of CDK4 have become standard of care drugs for metastatic estrogen-receptor positive breast cancers and are being evaluated in a variety of other cancers. We previously characterized the T-loop phosphorylation at T172 of CDK4 as the highly regulated step that determines the activity of cyclin D-CDK4 complexes. Moreover we demonstrated that the highly variable detection of T172-phosphorylated CDK4 signals the presence or absence of the active CDK4 targeted by the CDK4/6 inhibitory drugs, which predicts the tumor cell sensitivity to these drugs including palbociclib. To date, the phosphorylation of CDK4 has been very poorly studied because only few biochemical techniques and reagents are available for it. In addition, the available ones including 2D-IEF separation of CDK4 modified forms are considered too tedious. The present report describes the generation, selection and characterization of the first monoclonal antibodies that specifically recognize the active CDK4 phosphorylated on its T172 residue. One key to this success was the immunization with a long phosphopeptide corresponding to the complete activation segment of CDK4. These monoclonal antibodies specifically recognize T172-phosphorylated CDK4 in a variety of assays, including western blotting, immunoprecipitation and, as a capture antibody, a sensitive ELISA from cell lysates. The specific immunoprecipitation of T172-phosphorylated CDK4 allowed to clarify the involvement of phosphorylations of co-immunoprecipitated p21 and p27, showing a privileged interaction of T172-phosphorylated CDK4 with S130-phosphorylated p21 and S10-phosphorylated p27.
Abbreviations:
2D: two-dimensional; CAK: CDK-activating kinase; CDK: cyclin-dependent kinase; HAT: Hypoxanthine-Aminopterin-Thymidine; FBS: fetal bovine serum; IP: immunoprecipitation; ID: immunodetection; mAb: monoclonal antibody; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate buffer saline; pRb: retinoblastoma susceptibility protein; SDS: sodium dodecyl sulfate; DTT: dithiotreitol; TET: tetracyclin repressor; Avi: Avi tag; TEV: tobacco etch virus cleavage site; EGFP: enhanced green fluorescent protein; BirA: bifunctional protein biotin ligase BirA; IRES: internal ribosome entry site; HIS: poly-HIS purification tag; DELFIA: dissociation-enhanced lanthanide fluorescent immunoassay; 3-MBPP1: 1-(1,1-dimethylethyl)-3[(3-methylphenyl) methyl]-1H-pyrazolo[3,4-d] pyrimidin-4-amine; BSA: bovine serum albumin; ECL: Enhanced chemiluminescence
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Vincent Vercruysse
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Sabine Paternot
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Jaime M Pita
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Robert Corman
- Kaneka Eurogentec, Liège Science Park, Seraing, Belgium
| | - Eric Raspé
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Pierre P Roger
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| |
Collapse
|
9
|
Lazow MA, Hoffman L, Schafer A, Osorio DS, Boué DR, Rush S, Wright E, Lane A, DeWire-Schottmiller MD, Smolarek T, Sipple J, Taggert H, Reuss J, Salloum R, Hummel TR, de Blank P, Pillay-Smiley N, Sutton ME, Asher A, Stevenson CB, Drissi R, Finlay JL, Fouladi M, Fuller C. Characterizing temporal genomic heterogeneity in pediatric low-grade gliomas. Acta Neuropathol Commun 2020; 8:182. [PMID: 33153497 PMCID: PMC7643477 DOI: 10.1186/s40478-020-01054-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Recent discoveries have provided valuable insight into the genomic landscape of pediatric low-grade gliomas (LGGs) at diagnosis, facilitating molecularly targeted treatment. However, little is known about their temporal and therapy-related genomic heterogeneity. An adequate understanding of the evolution of pediatric LGGs' genomic profiles over time is critically important in guiding decisions about targeted therapeutics and diagnostic biopsy at recurrence. Fluorescence in situ hybridization, mutation-specific immunohistochemistry, and/or targeted sequencing were performed on paired tumor samples from primary diagnostic and subsequent surgeries. Ninety-four tumor samples from 45 patients (41 with two specimens, four with three specimens) from three institutions underwent testing. Conservation of BRAF fusion, BRAFV600E mutation, and FGFR1 rearrangement status was observed in 100%, 98%, and 96% of paired specimens, respectively. No loss or gain of IDH1 mutations or NTRK2, MYB, or MYBL1 rearrangements were detected over time. Histologic diagnosis remained the same in all tumors, with no acquired H3K27M mutations or malignant transformation. Changes in CDKN2A deletion status at recurrence occurred in 11 patients (42%), with acquisition of hemizygous CDKN2A deletion in seven and loss in four. Shorter time to progression and shorter time to subsequent surgery were observed among patients with acquired CDKN2A deletions compared to patients without acquisition of this alteration [median time to progression: 5.5 versus 16.0 months (p = 0.048); median time to next surgery: 17.0 months versus 29.0 months (p = 0.031)]. Most targetable genetic aberrations in pediatric LGGs, including BRAF alterations, are conserved at recurrence and following chemotherapy or irradiation. However, changes in CDKN2A deletion status over time were demonstrated. Acquisition of CDKN2A deletion may define a higher risk subgroup of pediatric LGGs with a poorer prognosis. Given the potential for targeted therapies for tumors harboring CDKN2A deletions, biopsy at recurrence may be indicated in certain patients, especially those with rapid progression.
Collapse
|
10
|
Raspé E, Coulonval K, Pita JM, Paternot S, Rothé F, Twyffels L, Brohée S, Craciun L, Larsimont D, Kruys V, Sandras F, Salmon I, Van Laere S, Piccart M, Ignatiadis M, Sotiriou C, Roger PP. CDK4 phosphorylation status and a linked gene expression profile predict sensitivity to palbociclib. EMBO Mol Med 2018; 9:1052-1066. [PMID: 28566333 PMCID: PMC5538335 DOI: 10.15252/emmm.201607084] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cyclin D-CDK4/6 are the first CDK complexes to be activated in the G1 phase in response to oncogenic pathways. The specific CDK4/6 inhibitor PD0332991 (palbociclib) was recently approved by the FDA and EMA for treatment of advanced ER-positive breast tumors. Unfortunately, no reliable predictive tools are available for identifying potentially responsive or insensitive tumors. We had shown that the activating T172 phosphorylation of CDK4 is the central rate-limiting event that initiates the cell cycle decision and signals the presence of active CDK4. Here, we report that the profile of post-translational modification including T172 phosphorylation of CDK4 differs among breast tumors and associates with their subtypes and risk. A gene expression signature faithfully predicted CDK4 modification profiles in tumors and cell lines. Moreover, in breast cancer cell lines, the CDK4 T172 phosphorylation best correlated with sensitivity to PD0332991. This gene expression signature identifies tumors that are unlikely to respond to CDK4/6 inhibitors and could help to select a subset of patients with HER2-positive and basal-like tumors for clinical studies on this class of drugs.
Collapse
Affiliation(s)
- Eric Raspé
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Campus Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium .,ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium
| | - Katia Coulonval
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Campus Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium.,ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium
| | - Jaime M Pita
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Campus Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium.,ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Paternot
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Campus Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium.,ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Rothé
- ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium.,Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laure Twyffels
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sylvain Brohée
- ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium.,Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Tumor Bank of the Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Flavienne Sandras
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Biobank of the Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle Salmon
- ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium.,Department of Pathology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Biobank of the Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Martine Piccart
- ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium.,Medical Oncology Clinic, Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Michail Ignatiadis
- ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium.,Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christos Sotiriou
- ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium .,Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre P Roger
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Campus Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium .,ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
He H, Xu J, Xie W, Guo QL, Jiang FL, Liu Y. Reduced state transition barrier of CDK6 from open to closed state induced by Thr177 phosphorylation and its implication in binding modes of inhibitors. Biochim Biophys Acta Gen Subj 2017; 1862:501-512. [PMID: 29108955 DOI: 10.1016/j.bbagen.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND CDK6 is considered as a highly validated anticancer drug target due to its essential role in regulating cell cycle progression at G1 restriction point. Activation of CDK6 requires the phosphorylation of Thr177 on A-loop, but the structural insights of the activation mechanism remain unclear. METHODS Herein, all-atoms molecular dynamics (MD) simulations were used to study the effects of Thr177 phosphorylation on the dynamic structure of CDK6-Vcyclin complex. RESULTS MD results indicated that the free energy barrier of the transition from open to closed state decreased ~47.2% after Thr177 phosphorylation. Key steps along the state transition process were obtained from a cluster analysis. Binding preference of ten different inhibitors to open or closed state were also investigated through molecular docking along with MD simulations methods. CONCLUSIONS Our results indicated that Thr177 phosphorylation increased the flexibility around the ATP-binding pocket. The transition of the ATP-binding pocket between open and closed states should be considered for understanding the binding of CDK6 inhibitors. GENERAL SIGNIFICANCE This work could deepen the understanding of CDKs activation mechanism, and provide useful information for the discovery of new CDKs inhibitors with high affinity and specificity.
Collapse
Affiliation(s)
- Huan He
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Juan Xu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wen Xie
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China
| | - Qing-Lian Guo
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Key Laboratory of Coal Conversion and Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, PR China.
| |
Collapse
|
12
|
Fujiwara D, Tsubaki M, Takeda T, Tomonari Y, Koumoto YI, Sakaguchi K, Nishida S. Statins induce apoptosis through inhibition of Ras signaling pathways and enhancement of Bim and p27 expression in human hematopoietic tumor cells. Tumour Biol 2017; 39:1010428317734947. [PMID: 28990465 DOI: 10.1177/1010428317734947] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently, statins have been demonstrated to improve cancer-related mortality or prognosis in patients of various cancers. However, the details of the apoptosis-inducing mechanisms remain unknown. This study showed that the induction of apoptosis by statins in hematopoietic tumor cells is mediated by mitochondrial apoptotic signaling pathways, which are activated by the suppression of mevalonate or geranylgeranyl pyrophosphate biosynthesis. In addition, statins decreased the levels of phosphorylated extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin through suppressing Ras prenylation. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin by statins induced Bim expression via inhibition of Bim phosphorylation and ubiquitination and cell-cycle arrest at G1 phase via enhancement of p27 expression. Moreover, combined treatment of U0126, a mitogen-activated protein kinase kinase 1/2 inhibitor, and rapamycin, a mammalian target of rapamycin inhibitor, induced Bim and p27 expressions. The present results suggested that statins induce apoptosis by decreasing the mitochondrial transmembrane potential, increasing the activation of caspase-9 and caspase-3, enhancing Bim expression, and inducing cell-cycle arrest at G1 phase through inhibition of Ras/extracellular signal-regulated kinase and Ras/mammalian target of rapamycin pathways. Therefore, our findings support the use of statins as potential anticancer agents or concomitant drugs of adjuvant therapy.
Collapse
Affiliation(s)
- Daichiro Fujiwara
- 1 Division of Pharmacotherapy, School of Pharmacy, Kindai University, Higashi-Osaka, Japan.,2 Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Masanobu Tsubaki
- 1 Division of Pharmacotherapy, School of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Tomoya Takeda
- 1 Division of Pharmacotherapy, School of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Yoshika Tomonari
- 1 Division of Pharmacotherapy, School of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Yu-Ichi Koumoto
- 1 Division of Pharmacotherapy, School of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Katsuhiko Sakaguchi
- 2 Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Shozo Nishida
- 1 Division of Pharmacotherapy, School of Pharmacy, Kindai University, Higashi-Osaka, Japan
| |
Collapse
|
13
|
JNKs function as CDK4-activating kinases by phosphorylating CDK4 and p21. Oncogene 2017; 36:4349-4361. [PMID: 28368408 PMCID: PMC5537611 DOI: 10.1038/onc.2017.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/16/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022]
Abstract
Cyclin D-CDK4/6 are the first cyclin-dependent kinase (CDK) complexes to be activated by mitogenic/oncogenic pathways. They have a central role in the cell multiplication decision and in its deregulation in cancer cells. We identified T172 phosphorylation of CDK4 rather than cyclin D accumulation as the distinctly regulated step determining CDK4 activation. This finding challenges the view that the only identified metazoan CDK-activating kinase, cyclin H-CDK7-Mat1 (CAK), which is constitutively active, is responsible for the activating phosphorylation of all cell cycle CDKs. We previously showed that T172 phosphorylation of CDK4 is conditioned by an adjacent proline (P173), which is not present in CDK6 and CDK1/2. Although CDK7 activity was recently shown to be required for CDK4 activation, we proposed that proline-directed kinases might specifically initiate the activation of CDK4. Here, we report that JNKs, but not ERK1/2 or CAK, can be direct CDK4-activating kinases for cyclin D-CDK4 complexes that are inactivated by p21-mediated stabilization. JNKs and ERK1/2 also phosphorylated p21 at S130 and T57, which might facilitate CDK7-dependent activation of p21-bound CDK4, however, mutation of these sites did not impair the phosphorylation of CDK4 by JNKs. In two selected tumor cells, two different JNK inhibitors inhibited the phosphorylation and activation of cyclin D1-CDK4-p21 but not the activation of cyclin D3-CDK4 that is mainly associated to p27. Specific inhibition by chemical genetics in MEFs confirmed the involvement of JNK2 in cyclin D1-CDK4 activation. Therefore, JNKs could be activating kinases for cyclin D1-CDK4 bound to p21, by independently phosphorylating both CDK4 and p21.
Collapse
|
14
|
Gong W, Zheng J, Liu X, Ma J, Liu Y, Xue Y. Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e. Oncotarget 2016; 7:62208-62223. [PMID: 27556696 PMCID: PMC5308721 DOI: 10.18632/oncotarget.11403] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023] Open
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA, promotes oncogenesis in various tumors, including human gliomas. Herein, we studied the expression and function of NEAT1 in glioma stem cells (GSCs). Quantitative real-time PCR demonstrated that NEAT1 was upregulated in GSCs. NEAT1 knockdown inhibited GSC cell proliferation, migration and invasion and promoted GSC apoptosis. A potential binding region between NEAT1 and microRNA let-7e was confirmed by dual-luciferase assays. Upregulation of NEAT1 reduced the expression of let-7e, and there was reciprocal repression between NEAT1 and let-7e in an Argonaute 2-dependent manner. Let-7e expression was lower expression in glioblastoma tissues and GSCs than in normal brain tissues and cells. Restoration of let-7e suppressed tumor function by inhibiting proliferation, migration and invasion while promoting apoptosis in GSCs. NEAT1 knockdown and let-7e overexpression both reduced NRAS protein expression. NRAS was identified as a direct target of let-7e and promoted oncogenesis in GSCs. As NEAT1 promoted oncogenesis by downregulating let-7e expression, both of these genes could be considered for application in glioma therapy.
Collapse
Affiliation(s)
- Wei Gong
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
15
|
Ahn DH, Ciombor KK, Mikhail S, Bekaii-Saab T. Genomic diversity of colorectal cancer: Changing landscape and emerging targets. World J Gastroenterol 2016; 22:5668-5677. [PMID: 27433082 PMCID: PMC4932204 DOI: 10.3748/wjg.v22.i25.5668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/20/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Improvements in screening and preventive measures have led to an increased detection of early stage colorectal cancers (CRC) where patients undergo treatment with a curative intent. Despite these efforts, a high proportion of patients are diagnosed with advanced stage disease that is associated with poor outcomes, as CRC remains one of the leading causes of cancer-related deaths in the world. The development of next generation sequencing and collaborative multi-institutional efforts to characterize the cancer genome has afforded us with a comprehensive assessment of the genomic makeup present in CRC. This knowledge has translated into understanding the prognostic role of various tumor somatic variants in this disease. Additionally, the awareness of the genomic alterations present in CRC has resulted in an improvement in patient outcomes, largely due to better selection of personalized therapies based on an individual’s tumor genomic makeup. The benefit of various treatments is often limited, where recent studies assessing the genomic diversity in CRC have identified the development of secondary tumor somatic variants that likely contribute to acquired treatment resistance. These studies have begun to alter the landscape of treatment for CRC that include investigating novel targeted therapies, assessing the role of immunotherapy and prospective, dynamic assessment of changes in tumor genomic alterations that occur during the treatment of CRC.
Collapse
|
16
|
Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C, Liu Y. CRNDE Promotes Malignant Progression of Glioma by Attenuating miR-384/PIWIL4/STAT3 Axis. Mol Ther 2016; 24:1199-1215. [PMID: 27058823 DOI: 10.1038/mt.2016.71] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/01/2016] [Indexed: 12/16/2022] Open
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is the most upregulated long noncoding RNA (lncRNA) in glioma. Herein, the function and potential molecular mechanisms of CRNDE and miR-384 were illustrated in glioma cells. CRNDE overexpression facilitated cell proliferation, migration, and invasion, while inhibited glioma cells apoptosis. Quantitative real-time polymerase chain reaction (PCR) demonstrated that miR-384 was downregulated in human glioma tissues and glioma cell lines. Moreover, restoration of miR-384 exerted tumor-suppressive functions. In addition, the expression of miR-384 was negatively correlated with CRNDE expression. A binding region between CRNDE and miR-384 was confirmed using luciferase assays. Moreover, CRNDE promoted cell malignant behavior by decreasing miR-384 expression. At the molecular level, treatment by CRNDE knockdown or miR-384 overexpression resulted in a decrease of piwi-like RNA-mediated gene silencing 4 (PIWIL4) protein. Besides, PIWIL4 was identified as a target of miR-384 and plays an oncogenic role in glioma. Similarly, downstream proteins of PIWIL4 such as STAT3, cyclin D1, VEGFA, SLUG, MMP-9, caspase 3, Bcl-2, and bcl-xL were modulated when treated with miR-384 and PIWIL4. Remarkably, CRNDE knockdown combined with miR-384 overexpression led to tumor regression in vivo. Overall, these results depicted a novel pathway mediated by CRNDE in glioma, which may be a potential application for glioma therapy.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Chengbin Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| |
Collapse
|
17
|
Paternot S, Colleoni B, Bisteau X, Roger PP. The CDK4/CDK6 inhibitor PD0332991 paradoxically stabilizes activated cyclin D3-CDK4/6 complexes. Cell Cycle 2015; 13:2879-88. [PMID: 25486476 DOI: 10.4161/15384101.2014.946841] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
CDK4 and CDK6 bound to D-type cyclins are master integrators of G1 phase cell cycle regulations by initiating the inactivating phosphorylation of the central oncosuppressor pRb. Because of their frequent deregulation in cancer, cyclin D-CDK4/6 complexes are emerging as especially promising therapeutic targets. The specific CDK4/6 inhibitor PD0332991 is currently tested in a growing number of phase II/III clinical trials against a variety of pRb-proficient chemotherapy-resistant cancers. We have previously shown that PD0332991 inhibits not only CDK4/6 activity but also the activation by phosphorylation of the bulk of cyclin D-CDK4 complexes stabilized by p21 binding. Here we show that PD0332991 has either a positive or a negative impact on the activation of cyclin D-CDK4/6 complexes, depending on their binding to p21. Indeed, whereas PD0332991 inhibits the phosphorylation and activity of p21-bound CDK4/6, it specifically stabilized activated cyclin D3-CDK4/6 complexes devoid of p21 and p27. After elimination of PD0332991, these activated cyclin D3-CDK4/6 complexes persisted for at least 24 h, resulting in paradoxical cell cycle entry in the absence of a mitogenic stimulation. This unsuspected positive effect of PD0332991 on cyclin D3-CDK4/6 activation should be carefully assessed in the clinical evaluation of PD0332991, which until now only involves discontinuous administration protocols.
Collapse
Key Words
- 2D, 2-dimensional
- BrdU, bromodeoxyuridine
- CAK, CDK-activating kinase
- CDK, cyclin-dependent kinase
- CDK4
- CDK6
- FBS, fetal bovine serum
- IP, immunoprecipitation
- PAGE, polyacrylamide gel electrophoresis
- PBS, phosphate buffer saline
- PD033, PD0332991
- PD0332991
- Palbociclib
- SDS, sodium dodecyl sulfate
- SEM, standard error of the mean
- cell cycle-based tumor therapeutics
- cyclin D3
- p21
- pRb, retinoblastoma susceptibility protein
Collapse
Affiliation(s)
- Sabine Paternot
- a WELBIO and Institute of Interdisciplinary Research (IRIBHM) ; Université Libre de Bruxelles ; Campus Erasme; Brussels , Belgium
| | | | | | | |
Collapse
|
18
|
Ouyang Q, Chen G, Zhou J, Li L, Dong Z, Yang R, Xu L, Cui H, Xu M, Yi L. Neurotensin signaling stimulates glioblastoma cell proliferation by upregulating c-Myc and inhibiting miR-29b-1 and miR-129-3p. Neuro Oncol 2015; 18:216-26. [PMID: 26180082 DOI: 10.1093/neuonc/nov114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/30/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neurotensin (NTS) and its primary receptor NTSR1 are implicated in cancer progression. Aberrant expression of NTS/NTSR1 contributes to the proliferation of glioblastoma cells; however, the mechanism is not fully understood. METHODS Microarray and real-time PCR were performed to identify the NTS-regulated micro (mi)RNAs. The targets of the miRNAs were identified by luciferase assays and immunoblot analysis. The c-Myc binding sites in the miR-29b-1 and cyclin-dependent kinase (CDK)4 promoters were identified through chromatin immunoprecipitation assay. Cell proliferation was evaluated by Cell Counting Kit-8 assay and flow cytometry analysis. An orthotopic xenograft model demonstrated the role of NTS/NTSR1 and miRNAs in glioblastoma growth in vivo. RESULTS Pharmacological inhibition or small interfering NTSR1 treatment blocked glioblastoma cell cycle progression in the G1 phase with a concomitantly decreased expression of CDK6, CDK4, and c-Myc. Knockdown of NTSR1 increased the expression of miR-29b-1 and miR-129-3p, which were responsible for the decreased CDK6 expression. NTS/NTSR1 signaling activated the transcription factor c-Myc in U87 cells, leading to increased CDK4 expression and repressed miR-29b-1 expression. Knockdown of NTSR1 decreased the glioblastoma growth in vivo and significantly prolonged the survival time of the tumor-bearing mice, an effect that can be largely reversed by antagomir. CONCLUSIONS Our study showed a novel regulatory mechanism of NTS/NTSR1, an upstream signaling of miRNAs and c-Myc, in glioblastoma progression. The inhibition of the NTSR1 function or the upregulation of miR-29b-1 and miR-129-3p expression impaired glioma cell proliferation. These results suggested that the NTS/NTSR1/c-Myc/miRNA axis may be a potential therapeutic target for glioblastoma therapy.
Collapse
Affiliation(s)
- Qing Ouyang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| | - Gang Chen
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| | - Ji Zhou
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| | - Lei Li
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| | - Zhen Dong
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| | - Rui Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| | - Hongjuan Cui
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China (O.Q., Z.J., X.L., X.M., Y.L.); Biomedical Analysis Center, Third Military Medical University, Chongqing, China (C.G.); State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China (D.Z., Y.R., C.H.); State Key Laboratory of Trauma, Burns and Combined Injury, Department one, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China (L.L.)
| |
Collapse
|
19
|
Kegelman TP, Hu B, Emdad L, Das SK, Sarkar D, Fisher PB. In vivo modeling of malignant glioma: the road to effective therapy. Adv Cancer Res 2015; 121:261-330. [PMID: 24889534 DOI: 10.1016/b978-0-12-800249-0.00007-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite an increased emphasis on developing new therapies for malignant gliomas, they remain among the most intractable tumors faced today as they demonstrate a remarkable ability to evade current treatment strategies. Numerous candidate treatments fail at late stages, often after showing promising preclinical results. This disconnect highlights the continued need for improved animal models of glioma, which can be used to both screen potential targets and authentically recapitulate the human condition. This review examines recent developments in the animal modeling of glioma, from more established rat models to intriguing new systems using Drosophila and zebrafish that set the stage for higher throughput studies of potentially useful targets. It also addresses the versatility of mouse modeling using newly developed techniques recreating human protocols and sophisticated genetically engineered approaches that aim to characterize the biology of gliomagenesis. The use of these and future models will elucidate both new targets and effective combination therapies that will impact on disease management.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Bin Hu
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
20
|
Bisteau X, Paternot S, Colleoni B, Ecker K, Coulonval K, De Groote P, Declercq W, Hengst L, Roger PP. CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point. PLoS Genet 2013; 9:e1003546. [PMID: 23737759 PMCID: PMC3667761 DOI: 10.1371/journal.pgen.1003546] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/22/2013] [Indexed: 01/24/2023] Open
Abstract
Cell cycle progression, including genome duplication, is orchestrated by cyclin-dependent kinases (CDKs). CDK activation depends on phosphorylation of their T-loop by a CDK–activating kinase (CAK). In animals, the only known CAK for CDK2 and CDK1 is cyclin H-CDK7, which is constitutively active. Therefore, the critical activation step is dephosphorylation of inhibitory sites by Cdc25 phosphatases rather than unrestricted T-loop phosphorylation. Homologous CDK4 and CDK6 bound to cyclins D are master integrators of mitogenic/oncogenic signaling cascades by initiating the inactivation of the central oncosuppressor pRb and cell cycle commitment at the restriction point. Unlike the situation in CDK1 and CDK2 cyclin complexes, and in contrast to the weak but constitutive T177 phosphorylation of CDK6, we have identified the T-loop phosphorylation at T172 as the highly regulated step determining CDK4 activity. Whether both CDK4 and CDK6 phosphorylations are catalyzed by CDK7 remains unclear. To answer this question, we took a chemical-genetics approach by using analogue-sensitive CDK7(as/as) mutant HCT116 cells, in which CDK7 can be specifically inhibited by bulky adenine analogs. Intriguingly, CDK7 inhibition prevented activating phosphorylations of CDK4/6, but for CDK4 this was at least partly dependent on its binding to p21cip1. In response to CDK7 inhibition, p21-binding to CDK4 increased concomitantly with disappearance of the most abundant phosphorylation of p21, which we localized at S130 and found to be catalyzed by both CDK4 and CDK2. The S130A mutation of p21 prevented the activating CDK4 phosphorylation, and inhibition of CDK4/6 and CDK2 impaired phosphorylations of both p21 and p21-bound CDK4. Therefore, specific CDK7 inhibition revealed the following: a crucial but partly indirect CDK7 involvement in phosphorylation/activation of CDK4 and CDK6; existence of CDK4-activating kinase(s) other than CDK7; and novel CDK7-dependent positive feedbacks mediated by p21 phosphorylation by CDK4 and CDK2 to sustain CDK4 activation, pRb inactivation, and restriction point passage. In the cell cycle, duplication of all the cellular components and subsequent cell division are governed by a family of protein kinases associated with cyclins (CDKs). Related CDK4 and CDK6 bound to cyclins D are the first CDKs to be activated in response to cell proliferation signals. They thus play a central role in the cell multiplication decision, especially in most cancer cells in which CDK4 activity is highly deregulated. We have identified the activating T172 phosphorylation instead of cyclin D expression as the highly regulated step determining CDK4 activation. This finding contrasts with the prevalent view that the only identified metazoan CDK-activating kinase, CDK7, is constitutively active. By using human cells genetically engineered for specific chemical inhibition of CDK7, we found that CDK7 activity was indeed required for CDK4 activation. However, this dependence was conditioned by CDK4 binding to the CDK inhibitory protein p21, which increased in response to CDK7 inhibition. Further investigation revealed that CDK7 inhibition affects a major phosphorylation of p21, which we found to be required for CDK4 activation and performed by CDK4 itself and CDK2. Thus, depending on CDK7 activity, CDK4 and CDK2 facilitate CDK4 activation, generating novel positive feedbacks involved in the cell cycle decision.
Collapse
Affiliation(s)
- Xavier Bisteau
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Paternot
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Bianca Colleoni
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Karin Ecker
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Katia Coulonval
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe De Groote
- Department for Molecular Biomedical Research, VIB, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department for Molecular Biomedical Research, VIB, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ludger Hengst
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Pierre P. Roger
- WELBIO and Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
21
|
García-Claver A, Lorente M, Mur P, Campos-Martín Y, Mollejo M, Velasco G, Meléndez B. Gene expression changes associated with erlotinib response in glioma cell lines. Eur J Cancer 2013; 49:1641-53. [DOI: 10.1016/j.ejca.2013.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/11/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
|
22
|
Grzmil M, Hemmings BA. Overcoming resistance to rapalogs in gliomas by combinatory therapies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1371-80. [PMID: 23395884 DOI: 10.1016/j.bbapap.2013.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Michal Grzmil
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | |
Collapse
|
23
|
Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012. [PMID: 22508724 DOI: 10.1101/gad.187922.112.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that "glioblastoma" represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012; 26:756-84. [PMID: 22508724 DOI: 10.1101/gad.187922.112] [Citation(s) in RCA: 428] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that "glioblastoma" represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
See WL, Tan IL, Mukherjee J, Nicolaides T, Pieper RO. Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Res 2012; 72:3350-9. [PMID: 22573716 DOI: 10.1158/0008-5472.can-12-0334] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Loss of neurofibromin 1 (NF1) leads to hyperactivation of RAS, which in turn signals through the RAF/MEK/ERK and phosphoinositide 3-kinase (PI3K)/mTOR pathways to regulate cell growth and survival. Because NF1-deficient acute myeloid leukemias are sensitive to MEK inhibitors, we investigated here whether NF1-deficient glioblastoma multiforme (GBM) would respond to MEK inhibition. In 19 GBM cell lines, we found that treatment with the clinically available MEK inhibitors PD0325901 or AZD6244 decreased levels of phospho-ERK, the downstream effector of MEK, regardless of NF1 status. However, growth inhibition occurred only in a subset of NF1-deficient cells, in association with decreased levels of cyclin D1, increased levels of p27, and G1 arrest. As a single agent, PD0325901 suppressed the growth of NF1-deficient, MEK inhibitor-sensitive cells in vivo as well. Mechanistically, NF1-deficient, MEK inhibitor-sensitive cells were dependent upon the RAF/MEK/ERK pathway for growth and did not activate the PI3K pathway as a mechanism of acquired resistance. Importantly, NF1-deficient cells intrinsically resistant to MEK inhibition were sensitized by the addition of the dual PI3K/mTOR inhibitor PI-103. Taken together, our findings indicate that a subset of NF1-deficient GBMs may respond to MEK inhibitors currently being tested in clinical trials.
Collapse
Affiliation(s)
- Wendy L See
- Department of Neurological Surgery, University of California, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
26
|
Kim DK, Nam BY, Li JJ, Park JT, Lee SH, Kim DH, Kim JY, Kang HY, Han SH, Yoo TH, Han DS, Kang SW. Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes. Diabetologia 2012; 55:1205-17. [PMID: 22311416 DOI: 10.1007/s00125-012-2467-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/31/2011] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Translationally controlled tumour protein (TCTP) is thought to be involved in cell growth by regulating mTOR complex 1 (mTORC1) signalling. As diabetes characteristically induces podocyte hypertrophy and mTORC1 has been implicated in this process, TCTP may have a role in the pathogenesis of diabetes-induced podocyte hypertrophy. METHODS We investigated the effects and molecular mechanisms of TCTP in diabetic mice and in high glucose-stimulated cultured podocytes. To characterise the role of TCTP, we conducted lentivirus-mediated gene silencing of TCTP both in vivo and in vitro. RESULTS Glomerular production of TCTP was significantly higher in streptozotocin induced-diabetic DBA/2J mice than in control animals. Double-immunofluorescence staining for TCTP and synaptopodin revealed that podocyte was the principal cell responsible for this increase. TCTP knockdown attenuated the activation of mTORC1 downstream effectors and the overproduction of cyclin-dependent kinase inhibitors (CKIs) in diabetic glomeruli, along with a reduction in proteinuria and a decrease in the sizes of podocytes as well as glomeruli. In addition, knockdown of TCTP in db/db mice prevented the development of diabetic nephropathy, as indicated by the amelioration of proteinuria, mesangial expansion, podocytopenia and glomerulosclerosis. In accordance with the in vivo data, TCTP inhibition abrogated high glucose-induced hypertrophy in cultured podocytes, which was accompanied by the downregulation of mTORC1 effectors and CKIs. CONCLUSIONS/INTERPRETATION These findings suggest that TCTP might play an important role in the process of podocyte hypertrophy under diabetic conditions via the regulation of mTORC1 activity and the induction of cell-cycle arrest.
Collapse
Affiliation(s)
- D K Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cuny T, Gerard C, Saveanu A, Barlier A, Enjalbert A. Physiopathology of somatolactotroph cells: from transduction mechanisms to cotargeting therapy. Ann N Y Acad Sci 2011; 1220:60-70. [PMID: 21388404 DOI: 10.1111/j.1749-6632.2010.05924.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In pituitary somatolactotroph cells, G protein-coupled receptors and receptor tyrosine kinases binding their specific ligands trigger an enzymatic cascade that converges to MAP kinase activation in the subcellular compartment. Different signaling pathways, such as AC/cAMP/PKA and PI3K/Akt pathways, interact with MAP kinase to regulate key physiological functions, such as hormonal secretion and cell proliferation. Abnormalities affecting these signaling pathways have been identified as preponderant factors of pituitary tumorigenesis. In addition to trans-sphenoidal surgery, somatostatin analogs are used to control hormonal hypersecretion in GH-secreting adenomas. However, a subset of these tumors remains uncontrolled with these treatFments, calling for new therapeutic approaches. In these cases, novel multivalent somatostatin analogs or new somatostatin-dopamine chimeric molecules could be of interest. Another attractive therapeutic approach may be to use one or several inhibitors acting downstream in the signaling pathway, such as mammalian target of rapamycin inhibitor. Cotargeting therapy and gene therapy are promising tools for these problematic pituitary tumors.
Collapse
Affiliation(s)
- Thomas Cuny
- Research Center of Neurobiology and Neurophysiology of Marseille, CRN2M, UMR 6231 CNRS, University of Mediterranée, Institut Fédératif Jean Roche, Marseille, France.
| | | | | | | | | |
Collapse
|
28
|
Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR pathway. Biochem Biophys Res Commun 2010; 404:40-5. [PMID: 21094138 DOI: 10.1016/j.bbrc.2010.11.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/13/2010] [Indexed: 01/13/2023]
Abstract
Centchroman (CC; 67/20; INN: Ormeloxifene) is a non-steroidal antiestrogen extensively used as a female contraceptive in India. In the present study, we report the anti-proliferative effect of CC in head and neck squamous cell carcinoma (HNSCC) cells. CC inhibited cell proliferation in a dose dependent manner at 24 h of treatment. Further studies showed that CC treatment induced apoptosis, inhibited Akt/mTOR and signal transducers and activators of transcription protein 3 (STAT3) signaling, altered proteins associated with cell cycle regulation and DNA damage and inhibited colony forming efficiency of HNSCC cells. In addition, CC displayed anti-proliferative activity against a variety of non-HNSCC cell lines of diverse origin. The ability of CC to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further studies into its role as a therapeutic strategy against HNSCC.
Collapse
|
29
|
Puli S, Jain A, Lai JCK, Bhushan A. Effect of combination treatment of rapamycin and isoflavones on mTOR pathway in human glioblastoma (U87) cells. Neurochem Res 2010; 35:986-93. [PMID: 20177775 DOI: 10.1007/s11064-010-0142-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2010] [Indexed: 12/13/2022]
Abstract
Glioblastoma Multiforme (GBM) is a malignant primary brain tumor associated with poor survival rate. PI3K/Akt pathway is highly upregulated in gliomas due to deletion or mutation of PTEN and its activation is associated with tumor grade. mTOR is downstream from PI3K/Akt pathway and it initiates translation through its action on S6K and 4E-BP1. mTOR is an important therapeutic target in many cancers, including glioblastomas. Rapamycin and its analogues are known to inhibit mTOR pathway; however, they also show simultaneous upregulation of Akt and eIF4E survival pathways on inhibition of mTOR, rendering cells more resistant to rapamycin treatment. In this study we investigated the effect of combination treatment of rapamycin with isoflavones such as genistein and biochanin A on mTOR pathway and activation of Akt and eIF4E in human glioblastoma (U87) cells. Our results show that combination treatment of rapamycin with isoflavones, especially biochanin A at 50 muM, decreased the phosphorylation of Akt and eIF4E proteins and rendered U87 cells more sensitive to rapamycin treatment when compared to cells treated with rapamycin alone. These results suggest the importance of combining chemopreventive with chemotherapeutic agents in order to increase the efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Shilpa Puli
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy and Idaho Biomedical Research Institute, Idaho State University, Pocatello, ID 83209-8334, USA
| | | | | | | |
Collapse
|
30
|
Koul N, Sharma V, Dixit D, Ghosh S, Sen E. Bicyclic triterpenoid Iripallidal induces apoptosis and inhibits Akt/mTOR pathway in glioma cells. BMC Cancer 2010; 10:328. [PMID: 20576128 PMCID: PMC2916920 DOI: 10.1186/1471-2407-10-328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The highly resistant nature of glioblastoma multiforme (GBM) to chemotherapy prompted us to evaluate the efficacy of bicyclic triterpenoid Iripallidal against GBM in vitro. METHODS The effect of Iripallidal on proliferation and apoptosis in glioma cell lines was evaluated by MTS, colony formation and caspase-3 activity. The effect of iripallidal to regulate (i) Akt/mTOR and STAT3 signaling (ii) molecules associated with cell cycle and DNA damage was evaluated by Western blot analysis. The effect of Iripallidal on telomerase activity was also determined. RESULTS Iripallidal (i) induced apoptosis, (ii) inhibited Akt/mTOR and STAT3 signaling, (iii) altered molecules associated with cell cycle and DNA damage, (iv) inhibited telomerase activity and colony forming efficiency of glioma cells. In addition, Iripallidal displayed anti-proliferative activity against non-glioma cancer cell lines of diverse origin. CONCLUSION The ability of Iripallidal to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further investigation into its role as a therapeutic strategy against GBM.
Collapse
Affiliation(s)
- Nitin Koul
- National Brain Research Centre, Manesar, Haryana, India.
| | | | | | | | | |
Collapse
|
31
|
Blancquaert S, Wang L, Paternot S, Coulonval K, Dumont JE, Harris TE, Roger PP. cAMP-dependent activation of mammalian target of rapamycin (mTOR) in thyroid cells. Implication in mitogenesis and activation of CDK4. Mol Endocrinol 2010; 24:1453-68. [PMID: 20484410 DOI: 10.1210/me.2010-0087] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
How cAMP-dependent protein kinases [protein kinase A (PKA)] transduce the mitogenic stimulus elicited by TSH in thyroid cells to late activation of cyclin D3-cyclin-dependent kinase 4 (CDK4) remains enigmatic. Here we show in PC Cl3 rat thyroid cells that TSH/cAMP, like insulin, activates the mammalian target of rapamycin (mTOR)-raptor complex (mTORC1) leading to phosphorylation of S6K1 and 4E-BP1. mTORC1-dependent S6K1 phosphorylation in response to both insulin and cAMP required amino acids, whereas inhibition of AMP-activated protein kinase and glycogen synthase kinase 3 enhanced insulin but not cAMP effects. Unlike insulin, TSH/cAMP did not activate protein kinase B or induce tuberous sclerosis complex 2 phosphorylation at T1462 and Y1571. However, like insulin, TSH/cAMP produced a stable increase in mTORC1 kinase activity that was associated with augmented 4E-BP1 binding to raptor. This could be caused in part by T246 phosphorylation of PRAS40, which was found as an in vitro substrate of PKA. Both in PC Cl3 cells and primary dog thyrocytes, rapamycin inhibited DNA synthesis and retinoblastoma protein phosphorylation induced by TSH and insulin. Although rapamycin reduced cyclin D3 accumulation, the abundance of cyclin D3-CDK4 complexes was not affected. However, rapamycin inhibited the activity of these complexes by decreasing the TSH and insulin-mediated stimulation of activating T172 phosphorylation of CDK4. We propose that mTORC1 activation by TSH, at least in part through PKA-dependent phosphorylation of PRAS40, crucially contributes to mediate cAMP-dependent mitogenesis by regulating CDK4 T172-phosphorylation.
Collapse
Affiliation(s)
- Sara Blancquaert
- Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
Guigon CJ, Fozzatti L, Lu C, Willingham MC, Cheng SY. Inhibition of mTORC1 signaling reduces tumor growth but does not prevent cancer progression in a mouse model of thyroid cancer. Carcinogenesis 2010; 31:1284-91. [PMID: 20299527 DOI: 10.1093/carcin/bgq059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selective drugs targeting dysregulated oncogenic pathways are promising cancer therapies. Because the mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated in human follicular thyroid cancer (FTC), we hypothesized that its inhibition could block cancer development and progression. We, therefore, analyzed the effect of a treatment with a specific mTORC1 inhibitor (RAD001) in a faithful mouse model of FTC with constitutive mTORC1 activation (TRbeta(PV/PV)Pten(+/-) mice). The treatment did not prevent capsular and vascular invasion of the thyroid and the occurrence of lung metastasis. However, it substantially decelerated thyroid tumor growth, thereby prolonging TRbeta(PV/PV)Pten(+/-) mouse life span. RAD001 efficiently inhibited mTORC1 activity, as shown by the reduced phosphorylation of its downstream targets involved in the activity of the translation machinery, such as ribosomal S6 kinase (p70(S6K)), eukaryotic translation initiation factor 4E binding protein (4E-BP1) and the eukaryotic translation initiation factors eIF-4B and eIF-4G. Whereas mTORC1 signaling inhibition did not alter cell apoptosis, it induced a significant decrease in cell proliferation that was associated with the reduced abundance and altered activity of key regulators of cell cycle progression. Altogether, our data indicate that mTORC1 signaling plays a major role in the integration of the mitogenic signal in FTC. Therefore, our preclinical study with a relevant mouse model of FTC demonstrates for the first time that RAD001 efficaciously stabilizes cancer growth although it does not prevent its fatal outcome. In conclusion, our work underscores that in the treatment of FTC patients, RAD001 can only be used in combination with drugs and therapies inducing tumor shrinkage and blocking metastasis.
Collapse
Affiliation(s)
- Celine J Guigon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | | | | | | | |
Collapse
|
33
|
Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol 2010; 36 Suppl 3:S3-S17. [PMID: 19963098 DOI: 10.1053/j.seminoncol.2009.10.011] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the discovery of rapamycin, considerable progress has been made in unraveling the details of the mammalian target of rapamycin (mTOR) signaling network, including the upstream mechanisms that modulate mTOR signaling functions, and the roles of mTOR in the regulation of mRNA translation and other cell growth-related responses. mTOR is found in two different complexes within the cell, mTORC1 and mTORC2, but only mTORC1 is sensitive to inhibition by rapamycin. mTORC1 is a master controller of protein synthesis, integrating signals from growth factors within the context of the energy and nutritional conditions of the cell. Activated mTORC1 regulates protein synthesis by directly phosphorylating 4E-binding protein 1 (4E-BP1) and p70S6K (S6K), translation initiation factors that are important to cap-dependent mRNA translation, which increases the level of many proteins that are needed for cell cycle progression, proliferation, angiogenesis, and survival pathways. In normal physiology, the roles of mTOR in both glucose and lipid catabolism underscore the importance of the mTOR pathway in the production of metabolic energy in quantities sufficient to fuel cell growth and mitotic cell division. Several oncogenes and tumor-suppressor genes that activate mTORC1, often through the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, are frequently dysregulated in cancer. Novel analogs of rapamycin (temsirolimus, everolimus, and deforolimus), which have improved pharmaceutical properties, were designed for oncology indications. Clinical trials of these analogs have already validated the importance of mTOR inhibition as a novel treatment strategy for several malignancies. Inhibition of mTOR now represents an attractive anti-tumor target, either alone or in combination with strategies to target other pathways that may overcome resistance. The far-reaching downstream consequences of mTOR inhibition make defining the critical molecular effector mechanisms that mediate the anti-tumor response and associated biomarkers that predict responsiveness to mTOR inhibitors a challenge and priority for the field.
Collapse
Affiliation(s)
- James J Gibbons
- Department of Oncology Discovery, Pfizer Inc., 401 N Middletown Rd., Pearl River, NY 10960, USA.
| | | | | |
Collapse
|
34
|
A small molecule inhibitor of Pim protein kinases blocks the growth of precursor T-cell lymphoblastic leukemia/lymphoma. Blood 2009; 115:824-33. [PMID: 19965690 DOI: 10.1182/blood-2009-07-233445] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The serine/threonine Pim kinases are up-regulated in specific hematologic neoplasms, and play an important role in key signal transduction pathways, including those regulated by MYC, MYCN, FLT3-ITD, BCR-ABL, HOXA9, and EWS fusions. We demonstrate that SMI-4a, a novel benzylidene-thiazolidine-2, 4-dione small molecule inhibitor of the Pim kinases, kills a wide range of both myeloid and lymphoid cell lines with precursor T-cell lymphoblastic leukemia/lymphoma (pre-T-LBL/T-ALL) being highly sensitive. Incubation of pre-T-LBL cells with SMI-4a induced G1 phase cell-cycle arrest secondary to a dose-dependent induction of p27(Kip1), apoptosis through the mitochondrial pathway, and inhibition of the mammalian target of rapamycin C1 (mTORC1) pathway based on decreases in phospho-p70 S6K and phospho-4E-BP1, 2 substrates of this enzyme. In addition, treatment of these cells with SMI-4a was found to induce phosphorylation of extracellular signal-related kinase1/2 (ERK1/2), and the combination of SMI-4a and a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor was highly synergistic in killing pre-T-LBL cells. In immunodeficient mice carrying subcutaneous pre-T-LBL tumors, treatment twice daily with SMI-4a caused a significant delay in the tumor growth without any change in the weight, blood counts, or chemistries. Our data suggest that inhibition of the Pim protein kinases may be developed as a therapeutic strategy for the treatment of pre-T-LBL.
Collapse
|
35
|
Duffy A, Kummar S. Targeting mitogen-activated protein kinase kinase (MEK) in solid tumors. Target Oncol 2009; 4:267-73. [PMID: 19899001 DOI: 10.1007/s11523-009-0125-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/14/2009] [Indexed: 12/30/2022]
Abstract
The Raf-mitogen activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) protein kinase signaling cascade is an important intracellular pathway whose activation influences many fundamental cellular processes and whose aberrancy is associated with cancer cell growth. In addition to activation from within by, for example, Raf mutations, this pathway is frequently activated from above by mutated Ras or epidermal growth factor receptor (EGFR). Given the near ubiquity of derangements affecting at least part of this network in cancer, there is a strong and clear rationale for interrupting it. In recent times, in colorectal and lung cancer, Ras and EGFR mutant status have been shown to be critically important and mutually exclusive predictors of response to anti-EGFR therapies. These developments underline the importance of targeting downstream effectors, and MEK inhibition has been the subject of intense scientific and clinical research for some time now. This article reviews the current status of MEK inhibitors with regard to their clinical development.
Collapse
Affiliation(s)
- Austin Duffy
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, 10/13N240G, Bethesda, MD 20892, USA.
| | | |
Collapse
|
36
|
Differential regulation of cyclin-dependent kinase 4 (CDK4) and CDK6, evidence that CDK4 might not be activated by CDK7, and design of a CDK6 activating mutation. Mol Cell Biol 2009; 29:4188-200. [PMID: 19487459 DOI: 10.1128/mcb.01823-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The homologous cyclin-dependent kinases (CDK) CDK4 and CDK6 integrate mitogenic and oncogenic signaling cascades with the cell cycle. Their activation requires binding to a D-type cyclin and then T-loop phosphorylation at T172 and T177 (respectively) by the only CDK-activating kinase identified in animal cells, cyclin H-CDK7. At odds with the existing data showing the constitutive activity of CDK7, we have recently identified the T172 phosphorylation of cyclin D-bound CDK4 as a crucial cell cycle regulatory target. Here we show that T172 phosphorylation of CDK4 is conditioned by its unique proline 173 residue. In contrast to CDK4, CDK6 does not contain such a proline and, unexpectedly, remained poorly phosphorylated and active in a variety of cells. Mutations of proline 173 did not adversely affect CDK4 activation by CDK7, but in cells they abolished CDK4 T172 phosphorylation and activity. Conversely, substituting a proline for the corresponding residue of CDK6 enforced its complete, apparently cyclin-independent T177 phosphorylation and dramatically increased its activity. These results lead us to propose that CDK4 might not be phosphorylated by CDK7 in intact cells but is more likely phosphorylated by another, presumably proline-directed kinase(s). Moreover, they provide a new model of a potentially oncogenic activating mutation of a CDK.
Collapse
|