1
|
Liang EY, Huang MH, Chen YT, Zhang PW, Shen Y, Tu XX, Chen WY, Wang Y, Yan J, Wang HY, Ke PF, Huang XZ. Tanshinone IIA modulates cancer cell morphology and movement via Rho GTPases-mediated actin cytoskeleton remodeling. Toxicol Appl Pharmacol 2024; 483:116839. [PMID: 38290667 DOI: 10.1016/j.taap.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Actin filaments form unique structures with robust actin bundles and cytoskeletal networks affixed to the extracellular matrix and interact with neighboring cells, which are crucial structures for cancer cells to acquire a motile phenotype. This study aims to investigate a novel antitumor mechanism by which Tanshinone IIA (Tan IIA) modulates the morphology and migration of liver cancer cells via actin cytoskeleton regulation. 97H and Huh7 exhibited numerous tentacle-like protrusions that interacted with neighboring cells. Following treatment with Tan IIA, 97H and Huh7 showed a complete absence of cytoplasmic protrusion and adherens junctions, thereby effectively impeding their migration capability. The fluorescence staining of F-actin and microtubules indicated that these tentacle-like protrusions and cell-cell networks were actin-based structures that led to morphological changes after Tan IIA treatment by retracting and reorganizing beneath the membrane. Tan IIA can reverse the actin depolymerization and cell morphology alterations induced by latrunculin A. Tan IIA down-regulated actin and Rho GTPases expression significantly, as opposed to inducing Rho signaling activation. Preventing the activity of proteasomes and lysosomes had no discernible impact on the modifications in cellular structure and protein expression induced by Tan IIA. However, as demonstrated by the puromycin labeling technique, the newly synthesized proteins were significantly inhibited by Tan IIA. In conclusion, Tan IIA can induce dramatic actin cytoskeleton remodeling by inhibiting the protein synthesis of actin and Rho GTPases, resulting in the suppression of tumor growth and migration. Targeting the actin cytoskeleton of Tan IIA is a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- En-Yu Liang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng-He Huang
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Nanhai, China
| | - Ying-Ting Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng-Wei Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Shen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Xin Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Ye Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Yu Wang
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Pei-Feng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Kato T, Jenkins RP, Derzsi S, Tozluoglu M, Rullan A, Hooper S, Chaleil RAG, Joyce H, Fu X, Thavaraj S, Bates PA, Sahai E. Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma. eLife 2023; 12:e76520. [PMID: 36892272 PMCID: PMC9998089 DOI: 10.7554/elife.76520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancers, such as squamous cell carcinoma, frequently invade as multicellular units. However, these invading units can be organised in a variety of ways, ranging from thin discontinuous strands to thick 'pushing' collectives. Here we employ an integrated experimental and computational approach to identify the factors that determine the mode of collective cancer cell invasion. We find that matrix proteolysis is linked to the formation of wide strands but has little effect on the maximum extent of invasion. Cell-cell junctions also favour wide strands, but our analysis also reveals a requirement for cell-cell junctions for efficient invasion in response to uniform directional cues. Unexpectedly, the ability to generate wide invasive strands is coupled to the ability to grow effectively when surrounded by extracellular matrix in three-dimensional assays. Combinatorial perturbation of both matrix proteolysis and cell-cell adhesion demonstrates that the most aggressive cancer behaviour, both in terms of invasion and growth, is achieved at high levels of cell-cell adhesion and high levels of proteolysis. Contrary to expectation, cells with canonical mesenchymal traits - no cell-cell junctions and high proteolysis - exhibit reduced growth and lymph node metastasis. Thus, we conclude that the ability of squamous cell carcinoma cells to invade effectively is also linked to their ability to generate space for proliferation in confined contexts. These data provide an explanation for the apparent advantage of retaining cell-cell junctions in squamous cell carcinomas.
Collapse
Affiliation(s)
- Takuya Kato
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Pathology, Kitasato UniversitySagamiharaJapan
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefanie Derzsi
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Hoffman La-RocheBaselSwitzerland
| | - Melda Tozluoglu
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Institute of Cancer ResearchLondonUnited Kingdom
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Raphaël AG Chaleil
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Holly Joyce
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Xiao Fu
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Selvam Thavaraj
- Centre for Oral, Clinical and Translational Sciences, King's College LondonLondonUnited Kingdom
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
3
|
Kim CH, Kim DE, Kim DH, Min GH, Park JW, Kim YB, Sung CK, Yim H. Mitotic protein kinase-driven crosstalk of machineries for mitosis and metastasis. Exp Mol Med 2022; 54:414-425. [PMID: 35379935 PMCID: PMC9076678 DOI: 10.1038/s12276-022-00750-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer. Improving understanding of the mechanisms linking cell division and cancer spread (metastasis) could provide novel strategies for treatment. A group of enzymes involved in cell division (mitosis) are also thought to play critical roles in the spread of cancers. Hyungshin Yim at Hanyang University in Ansan, South Korea, and co-workers in Korea and the USA reviewed the roles of several mitotic enzymes that are connected with metastasis as well as tumorigenesis. They discussed how these enzymes modify cytoskeletal proteins and other substrates during cancer progression. Some regulatory control of cell cytoskeletal structures is required for cancer cells to metastasize. Recent research has uncovered crosstalk between mitotic enzymes and metastatic cytoskeletal molecules in various cancers. Targeting mitotic enzymes and the ways they influence cytoskeletal mechanisms could provide valuable therapeutic strategies for suppressing metastasis.
Collapse
Affiliation(s)
- Chang-Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Dae-Hoon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Ga-Hong Min
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Jung-Won Park
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Chang K Sung
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
| |
Collapse
|
4
|
Chen M, Tan Y, Hu J, Jiang Y, Wang Z, Liu Z, Chen Q. Injectable Immunotherapeutic Thermogel for Enhanced Immunotherapy Post Tumor Radiofrequency Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104773. [PMID: 34729889 DOI: 10.1002/smll.202104773] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Tumor radiofrequency ablation (RFA) is a local and minimally invasive application using high temperature to induce coagulative necrosis of tumor, which has been commonly used in clinic. Although the tumor fragments generated by RFA can activate the host's immune system, it may be insufficient to inhibit cancer recurrence due to many factors such as the inefficient antigen presentation by dendritic cells (DCs). In this research, a convenient local administration strategy by blocking rho-associated kinases (ROCK) is applied to amplify the immune responses triggered by RFA via promoting the phagocytosis capacity of DCs. Briefly, ROCK inhibitor, Y27632, is successfully dispersed in the amphiphilic copolymer poly(D,L-lactide-co-glycolide)-b-poly(ethyleneglycol)-b-poly(D,L-lactideco-glycolide) (PLGA-PEG-PLGA) solution, which is sol at room temperature and forms hydrogel quickly at body temperature, obviously prolonging the retention of Y27632 after injection. Interestingly, in the melanoma tumor model, the generated tumor fragments after RFA treatment are swallowed by DCs and undergo reinforced antigen presentation process with the help of gradual released Y27632, further effectively activating T cell mediated anti-tumor immune responses and significantly improving the therapeutic efficiency of RFA. Overall, such strategy remarkably prolongs the survival of mice after RFA treatment, showing great potential for clinical translation as an improvement strategy for RFA.
Collapse
Affiliation(s)
- Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yanjun Tan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiaying Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yanping Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zixian Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
5
|
Liu Y, Li Y, Chen W, Ye X, Jia R, Yu L, Tang Q, Tu P, Jiang Y, Chu Q, Zheng X. Tetrastigma hemsleyanum flavones exert anti-hepatic carcinoma property both in vitro and in vivo. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract:
Tetrastigma hemsleyanum has been regarded as an anticancer food in China. However, its corresponding mechanisms remains unclear. Thus, in this study, the antitumor activity of flavones-rich fraction of root of Tetrastigma hemsleyanum (FRTH) was investigated in vitro and in vivo. The results indicated that FRTH could inhibit the proliferation and migration of HepG2 cells in vitro by PI3K/AKT pathway. FRTH could increase the ROS level and change the mitochondrial membrane potential (MMP) in HepG2 cells. In addition, FRTH treatment (300, 600 mg/kg BW) significantly suppressed tumor growth on HepG2 tumor-bearing nude mice. Besides, immunohistochemistry assays and western blotting revealed that FRTH enhanced the expression level of Bax/Bcl-2, cytochrome C, Caspase-3, caspase-9, Cleaved-caspase-3, and downregulated the expression level of CD31, ki67 and VEGF in HepG2 tumor-bearing mice. Our study suggests Tetrastigma hemsleyanum as a promising candidate medicine for liver cancer treatment.
Collapse
|
6
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
7
|
Lu W, Chen Z, Wen J. RhoA/ROCK signaling pathway and astrocytes in ischemic stroke. Metab Brain Dis 2021; 36:1101-1108. [PMID: 33745103 DOI: 10.1007/s11011-021-00709-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Ischemic stroke is one of the most common and undertreated cerebral diseases with high mortality and disability rate. Various intrinsic and extrinsic factors regulate the onset, severity, and progression of ischemic stroke. As an integral part of the neuronal glia system, astrocytes provide many housekeeping functions in nervous system, and perform multiple functions both beneficial and detrimental for neuronal survival after ischemic stroke. In addition, the small GTPase Rho and its downstream Rho kinase (ROCK) are associated with various neuronal functions such as dendrite development, migration and axonal extension, and numerous central nervous system (CNS) diseases. The aim of this review is to summarize the role of RhoA/ROCK signaling pathway and astrocytes on neurological function after ischemic stroke. We also discuss the interaction of RhoA/ROCK signaling pathway and astrocytes on the tissue repair after brain injury.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical School, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Sanegre S, Eritja N, de Andrea C, Diaz-Martin J, Diaz-Lagares Á, Jácome MA, Salguero-Aranda C, García Ros D, Davidson B, Lopez R, Melero I, Navarro S, Ramon Y Cajal S, de Alava E, Matias-Guiu X, Noguera R. Characterizing the Invasive Tumor Front of Aggressive Uterine Adenocarcinoma and Leiomyosarcoma. Front Cell Dev Biol 2021; 9:670185. [PMID: 34150764 PMCID: PMC8209546 DOI: 10.3389/fcell.2021.670185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
The invasive tumor front (the tumor–host interface) is vitally important in malignant cell progression and metastasis. Tumor cell interactions with resident and infiltrating host cells and with the surrounding extracellular matrix and secreted factors ultimately determine the fate of the tumor. Herein we focus on the invasive tumor front, making an in-depth characterization of reticular fiber scaffolding, infiltrating immune cells, gene expression, and epigenetic profiles of classified aggressive primary uterine adenocarcinomas (24 patients) and leiomyosarcomas (11 patients). Sections of formalin-fixed samples before and after microdissection were scanned and studied. Reticular fiber architecture and immune cell infiltration were analyzed by automatized algorithms in colocalized regions of interest. Despite morphometric resemblance between reticular fibers and high presence of macrophages, we found some variance in other immune cell populations and distinctive gene expression and cell adhesion-related methylation signatures. Although no evident overall differences in immune response were detected at the gene expression and methylation level, impaired antimicrobial humoral response might be involved in uterine leiomyosarcoma spread. Similarities found at the invasive tumor front of uterine adenocarcinomas and leiomyosarcomas could facilitate the use of common biomarkers and therapies. Furthermore, molecular and architectural characterization of the invasive front of uterine malignancies may provide additional prognostic information beyond established prognostic factors.
Collapse
Affiliation(s)
- Sabina Sanegre
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, School of Medical, University of Valencia-INCLIVA, Valencia, Spain
| | - Núria Eritja
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institut de Recerca Biomèdica de LLeida (IRBLLEIDA), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Department of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida - University of Barcelona, Barcelona, Spain
| | - Carlos de Andrea
- Cancer CIBER (CIBERONC), Madrid, Spain.,Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Juan Diaz-Martin
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Ángel Diaz-Lagares
- Cancer CIBER (CIBERONC), Madrid, Spain.,Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - María Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - Carmen Salguero-Aranda
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - David García Ros
- Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ben Davidson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Rafel Lopez
- Cancer CIBER (CIBERONC), Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Ignacio Melero
- Cancer CIBER (CIBERONC), Madrid, Spain.,Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Samuel Navarro
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, School of Medical, University of Valencia-INCLIVA, Valencia, Spain
| | - Santiago Ramon Y Cajal
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Enrique de Alava
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Xavier Matias-Guiu
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institut de Recerca Biomèdica de LLeida (IRBLLEIDA), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Department of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida - University of Barcelona, Barcelona, Spain
| | - Rosa Noguera
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, School of Medical, University of Valencia-INCLIVA, Valencia, Spain
| |
Collapse
|
9
|
Şimay Demir YD, Özdemir A, Sucularlı C, Benhür E, Ark M. The implication of ROCK 2 as a potential senotherapeutic target via the suppression of the harmful effects of the SASP: Do senescent cancer cells really engulf the other cells? Cell Signal 2021; 84:110007. [PMID: 33845155 DOI: 10.1016/j.cellsig.2021.110007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023]
Abstract
Chemotherapy-induced senescent cancer cells secrete several factors in their microenvironment called SASP. Accumulated evidence states that SASP is responsible for some of the harmful effects of chemotherapy such as drug resistance and the induction of cancer cell proliferation, migration, and invasion. Therefore, to develop senolytic and/or senomorphic drugs, targeting the senescent cells gains importance as a new strategy for preventing the damage that senescent cancer cells cause. In the current work, we evaluated whether Rho/Rho kinase pathway has the potential to be used as a target pathway for the development of senolytic and/or senomorphic drugs in doxorubicin-induced senescent cancer cell lines. We have determined that inhibition of Rho/Rho kinase pathway with CT04 and Y27632 reduced the secretory activity of senescent cancer cells and changed the composition of SASP. Our results indicate that ROCK 2 isoform was responsible for these observed effects on the SASP. In addition, non-senescent cancer cell proliferation and migration accelerated by senescent cells were set back to the pre-induction levels after ROCK inhibition. Moreover, contrary to the previous observations, another important finding of the current work is that senescent HeLa and A549 cells did not engulf the non-senescent HeLa, A549 cells, and non-cancer HUVEC. These results indicate that ROCK inhibitors, in particular ROCK 2 specific inhibitors, have the potential to be developed as novel senomorphic drugs. In addition, we found that all senescent cancer cells do not share the same engulfment ability, and this process should not be generalized.
Collapse
Affiliation(s)
| | - Aysun Özdemir
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Ceren Sucularlı
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Elifnur Benhür
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Mustafa Ark
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey.
| |
Collapse
|
10
|
Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G, Wan X. Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming. Front Oncol 2021; 11:626577. [PMID: 33854965 PMCID: PMC8039382 DOI: 10.3389/fonc.2021.626577] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
The attachment of cells to the extracellular matrix (ECM) is the hallmark of structure–function stability and well-being. ECM detachment in localized tumors precedes abnormal dissemination of tumor cells culminating in metastasis. Programmed cell death (PCD) is activated during tumorigenesis to clear off ECM-detached cells through “anoikis.” However, cancer cells develop several mechanisms for abrogating anoikis, thus promoting their invasiveness and metastasis. Specific factors, such as growth proteins, pH, transcriptional signaling pathways, and oxidative stress, have been reported as drivers of anoikis resistance, thus enhancing cancer proliferation and metastasis. Recent studies highlighted the key contributions of metabolic pathways, enabling the cells to bypass anoikis. Therefore, understanding the mechanisms driving anoikis resistance could help to counteract tumor progression and prevent metastasis. This review elucidates the dynamics employed by cancer cells to impede anoikis, thus promoting proliferation, invasion, and metastasis. In addition, the authors have discussed other metabolic intermediates (especially amino acids and nucleotides) that are less explored, which could be crucial for anoikis resistance and metastasis.
Collapse
Affiliation(s)
- Funmilayo O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Adeleye O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lukman O Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Poisson L, Lopez-Charcas O, Chadet S, Bon E, Lemoine R, Brisson L, Ouaissi M, Baron C, Besson P, Roger S, Moussata D. Rock inhibition promotes Na V1.5 sodium channel-dependent SW620 colon cancer cell invasiveness. Sci Rep 2020; 10:13350. [PMID: 32770034 PMCID: PMC7414216 DOI: 10.1038/s41598-020-70378-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
The acquisition of invasive capacities by carcinoma cells, i.e. their ability to migrate through and to remodel extracellular matrices, is a determinant process leading to their dissemination and to the development of metastases. these cancer cell properties have often been associated with an increased Rho-ROCK signalling, and ROCK inhibitors have been proposed for anticancer therapies. In this study we used the selective ROCK inhibitor, Y-27632, to address the participation of the Rho-ROCK signalling pathway in the invasive properties of SW620 human colon cancer cells. Contrarily to initial assumptions, Y-27632 induced the acquisition of a pro-migratory cell phenotype and increased cancer cell invasiveness in both 3- and 2-dimensions assays. This effect was also obtained using the other ROCK inhibitor Fasudil as well as with knocking down the expression of ROCK-1 or ROCK-2, but was prevented by the inhibition of NaV1.5 voltage-gated sodium channel activity. Indeed, ROCK inhibition enhanced the activity of the pro-invasive NaV1.5 channel through a pathway that was independent of gene expression regulation. In conclusions, our evidence identifies voltage-gated sodium channels as new targets of the ROCK signalling pathway, as well as responsible for possible deleterious effects of the use of ROCK inhibitors in the treatment of cancers.
Collapse
Affiliation(s)
- Lucile Poisson
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Osbaldo Lopez-Charcas
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Emeline Bon
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Lucie Brisson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Mehdi Ouaissi
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| | - Pierre Besson
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France. .,Institut Universitaire de France, Paris, France.
| | - Driffa Moussata
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| |
Collapse
|
12
|
SNAIL Promotes Metastatic Behavior of Rhabdomyosarcoma by Increasing EZRIN and AKT Expression and Regulating MicroRNA Networks. Cancers (Basel) 2020; 12:cancers12071870. [PMID: 32664538 PMCID: PMC7408994 DOI: 10.3390/cancers12071870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a predominant soft tissue tumor in children and adolescents. For high-grade RMS with metastatic involvement, the 3-year overall survival rate is only 25 to 30%. Thus, understanding the regulatory mechanisms involved in promoting the metastasis of RMS is important. Here, we demonstrate for the first time that the SNAIL transcription factor regulates the metastatic behavior of RMS both in vitro and in vivo. SNAIL upregulates the protein expression of EZRIN and AKT, known to promote metastatic behavior, by direct interaction with their promoters. Our data suggest that SNAIL promotes RMS cell motility, invasion and chemotaxis towards the prometastatic factors: HGF and SDF-1 by regulating RHO, AKT and GSK3β activity. In addition, miRNA transcriptome analysis revealed that SNAIL-miRNA axis regulates processes associated with actin cytoskeleton reorganization. Our data show a novel role of SNAIL in regulating RMS cell metastasis that may also be important in other mesenchymal tumor types and clearly suggests SNAIL as a promising new target for future RMS therapies.
Collapse
|
13
|
Alghzzawy ZM, Elmaghraby TK, El-Hamid Hagag SA, Awwad MH. Combretastatin A-4 disodium phosphate and low dose gamma irradiation suppress hepatocellular carcinoma by downregulating ROCK1 and VEGF gene expression. Mol Biol Rep 2020; 47:1883-1893. [DOI: 10.1007/s11033-020-05282-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/29/2022]
|
14
|
Zucchini C, Manara MC, Cristalli C, Carrabotta M, Greco S, Pinca RS, Ferrari C, Landuzzi L, Pasello M, Lollini PL, Gambarotti M, Donati DM, Scotlandi K. ROCK2 deprivation leads to the inhibition of tumor growth and metastatic potential in osteosarcoma cells through the modulation of YAP activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:503. [PMID: 31878963 PMCID: PMC6933701 DOI: 10.1186/s13046-019-1506-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023]
Abstract
Background The treatment of metastatic osteosarcoma (OS) remains a challenge for oncologists, and novel therapeutic strategies are urgently needed. An understanding of the pathways that regulate OS dissemination is required for the design of novel treatment approaches. We recently identified Rho-associated coiled-coil containing protein kinase 2 (ROCK2) as a crucial driver of OS cell migration. In this study, we explored the impact of ROCK2 disruption on the metastatic capabilities of OS cells and analyzed its functional relationship with Yes-associated protein-1 (YAP), the main transcriptional mediator of mechanotransduction signaling. Methods The effects of ROCK2 depletion on metastasis were studied in NOD Scid gamma (NSG) mice injected with U-2OS cells in which ROCK2 expression had been stably silenced. Functional studies were performed in vitro in human U-2OS cells and in three novel cell lines derived from patient-derived xenografts (PDXs) by using standard methods to evaluate malignancy parameters and signaling transduction. The nuclear immunostaining of YAP and the evaluation of its downstream targets Cysteine Rich Angiogenic Inducer 6, Connective Tissue Growth Factor and Cyclin D1 by quantitative PCR were performed to analyze YAP activity. The effect of the expression and activity of ROCK2 and YAP on tumor progression was analyzed in 175 OS primary tumors. Results The silencing of ROCK2 markedly reduced tumor growth and completely abolished the metastatic ability of U-2OS cells. The depletion of ROCK2, either by pharmacological inhibition or silencing, induced a dose- and time-dependent reduction in the nuclear expression and transcriptional activity of YAP. The nuclear expression of YAP was observed in 80/175 (46%) tumor samples and was significantly correlated with worse patient prognosis and a higher likelihood of metastasis and death. The use of verteporfin, a molecule that specifically inhibits the TEAD–YAP association, remarkably impaired the growth and migration of OS cells in vitro. Moreover to inhibiting YAP activity, our findings indicate that verteporfin also affects the ROCK2 protein and its functions. Conclusions We describe the functional connection between ROCK2 and YAP in the regulation of OS cell migration and metastasis formation. These data provide support for the use of verteporfin as a possible therapeutic option to prevent OS cell dissemination.
Collapse
Affiliation(s)
- Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), University of Bologna, Via Massarenti 9, 40126, Bologna, BO, Italy.
| | - Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Camilla Cristalli
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Marianna Carrabotta
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Sara Greco
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Rosa Simona Pinca
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Cristina Ferrari
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Michela Pasello
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), University of Bologna, Via Massarenti 9, 40126, Bologna, BO, Italy
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Clinica Ortopedica III, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of DIBINEM, University of Bologna, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
15
|
Shen Y, Bu L, Li R, Chen Z, Tian F, Ge Q. Expression And Biological Interaction Network Of RHOC For Hepatic Carcinoma With Metastasis In PBMC Samples. Onco Targets Ther 2019; 12:9117-9128. [PMID: 31806997 PMCID: PMC6842290 DOI: 10.2147/ott.s222235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Objectives Hepatic carcinoma with metastasis remains incurable, and clinical diagnostic methods lacked adequate sensitivity and specificity. Therefore, seeking effectively diagnostic biomarkers is still essential for it. RHOC was reported to be linked to metastasis of hepatic carcinoma. However, almost all of the studies used tissues as detection samples, which was not ideal for clinical course minoring. Therefore, here, it was aimed to use PBMC samples that were not only easily accessible but also minimally invasive to determine the expression and biological interaction network of RHOC for hepatic carcinoma with metastasis. Methods PBMC samples were isolated. Then, RNA-seq was performed to identify the DEGs between hepatic carcinoma with metastasis and hepatic carcinoma with solitary tumor. Subsequently, q-RT-PCR was used to verify the expression level of RHOC. Finally, bioinformatic analysis was used to present the biological interaction network of RHOC for hepatic carcinoma with metastasis in PBMC samples. Results The results of both RNA-seq and q-RT-PCR showed that the expression level of RHOC was significantly higher in the PBMC samples of hepatic carcinoma with metastasis than in those of hepatic carcinoma with solitary tumor. By using variety of bioinformatic analysis platforms, in PBMCs, 18 co-expression genes with RHOC were identified and their interaction network showed that MYL9 and RHOC had the highest edge evidence, and were involved in some cell migration-related pathways. Conclusion Our results indicated that RHOC in PBMCs could be potentially minimally invasive indicators for the diagnosis and clinical course supervision of hepatic carcinoma with metastasis, and its biological interaction network determined based on bioinformatic methods would lay a foundation for further study of the role of RHOC in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Yanting Shen
- Department of Science and Education, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, People's Republic of China
| | - Lu Bu
- Department of Interventional Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Rui Li
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People's Republic of China
| | - Zhenzhu Chen
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People's Republic of China
| | - Fei Tian
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People's Republic of China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
16
|
Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, Tang Q, Sheng F, Li G, Zhang R. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol 2019; 55:833-844. [PMID: 31485605 PMCID: PMC6741846 DOI: 10.3892/ijo.2019.4864] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rho-associated protein kinase 1 (ROCK1), a member of the ROCK family, serves an important function in cell migration and invasion in neoplasms. ROCK1 has been found to be overexpressed in several types of cancers. However, the role of ROCK1 in non-small-cell lung cancer (NSCLC) is poorly understood. In the present study, ROCK1 was found to be overexpressed in NSCLC cells and tissues, and it was associated with poor survival of NSCLC patients. Subsequently, ROCK1 knockdown NSCLC cell lines were established using shRNA. ROCK1 knockdown significantly reduced the migration and invasion ability in the cell monolayer scratching and Transwell assays. ROCK1 knockdown was also found to markedly inhibit cell adhesion ability. Moreover, the phosphorylation of focal adhesion kinase (FAK) was inhibited by ROCK1 knockdown, reducing NSCLC cell migration and invasion ability. This mechanistic study revealed that ROCK1 significantly enhanced cell migration and invasion by inhibiting the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/FAK pathway. More importantly, the interruption of the PTEN/PI3K/FAK pathway markedly rescued the inhibition of cell migration and invasion mediated by ROCK1 knockdown. Taken together, these results suggest a novel role for ROCK1 in cell migration and invasion by inhibiting cell adhesion ability, and indicate that ROCK1 may be of value as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
17
|
Stella GM, Kolling S, Benvenuti S, Bortolotto C. Lung-Seeking Metastases. Cancers (Basel) 2019; 11:E1010. [PMID: 31330946 PMCID: PMC6678078 DOI: 10.3390/cancers11071010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022] Open
Abstract
Metastases from different cancer types most often affect the lung parenchyma. Moreover, the lungs are among the most frequent sites of growth of metastatic masses of uncertain/unknown lineage of origin. Thus, with regards to pulmonary neoplastic parenchymal nodules, the critical issue is to determine if they are IN the lung or OF the lung. In this review, we highlight the clinical, instrumental and molecular features which characterize lung metastases, mainly focusing on recently advancing and emerging concepts regarding the metastatic niche, inflammation, angiogenesis, immune modulation and gene expression. A novel issue is related to the analysis of biomechanical forces which cooperate in the expansion of tumor masses in the lungs. We here aim to analyze the biological, genetic and pathological features of metastatic lesions to the lungs, here referred to as site of metastatic growth. This point should be a crucial part of the algorithm for a proper diagnostic and therapeutic approach in the era of personalized medicine.
Collapse
Affiliation(s)
- Giulia M Stella
- Department of Medical Sciences and Infectious Diseases, Unit of Respiratory System Diseases, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy.
| | | | - Silvia Benvenuti
- Department of Molecular Therapeutics and Exploratory Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
18
|
Libanje F, Raingeaud J, Luan R, Thomas Z, Zajac O, Veiga J, Marisa L, Adam J, Boige V, Malka D, Goéré D, Hall A, Soazec J, Prall F, Gelli M, Dartigues P, Jaulin F. ROCK2 inhibition triggers the collective invasion of colorectal adenocarcinomas. EMBO J 2019; 38:e99299. [PMID: 31304629 PMCID: PMC6627234 DOI: 10.15252/embj.201899299] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
The metastatic progression of cancer is a multi-step process initiated by the local invasion of the peritumoral stroma. To identify the mechanisms underlying colorectal carcinoma (CRC) invasion, we collected live human primary cancer specimens at the time of surgery and monitored them ex vivo. This revealed that conventional adenocarcinomas undergo collective invasion while retaining their epithelial glandular architecture with an inward apical pole delineating a luminal cavity. To identify the underlying mechanisms, we used microscopy-based assays on 3D organotypic cultures of Caco-2 cysts as a model system. We performed two siRNA screens targeting Rho-GTPases effectors and guanine nucleotide exchange factors. These screens revealed that ROCK2 inhibition triggers the initial leader/follower polarization of the CRC cell cohorts and induces collective invasion. We further identified FARP2 as the Rac1 GEF necessary for CRC collective invasion. However, FARP2 activation is not sufficient to trigger leader cell formation and the concomitant inhibition of Myosin-II is required to induce invasion downstream of ROCK2 inhibition. Our results contrast with ROCK pro-invasive function in other cancers, stressing that the molecular mechanism of metastatic spread likely depends on tumour types and invasion mode.
Collapse
Affiliation(s)
| | | | - Rui Luan
- INSERM U‐981Gustave RoussyVillejuifFrance
| | | | - Olivier Zajac
- INSERM U‐981Gustave RoussyVillejuifFrance
- Present address:
Department of Translational ResearchCurie InstituteParisFrance
| | - Joel Veiga
- Cell Biology ProgramMemorial Sloan‐Kettering Cancer CenterNew YorkNYUSA
- Present address:
Imagine InstituteParisFrance
| | - Laetitia Marisa
- Programme “Cartes d'Identité des Tumeurs”Ligue Nationale Contre le CancerParisFrance
| | - Julien Adam
- Pathology DepartmentGustave RoussyVillejuifFrance
| | | | - David Malka
- Digestive Cancer UnitGustave RoussyVillejuifFrance
| | - Diane Goéré
- Digestive Cancer UnitGustave RoussyVillejuifFrance
| | - Alan Hall
- Cell Biology ProgramMemorial Sloan‐Kettering Cancer CenterNew YorkNYUSA
| | | | - Friedrich Prall
- Institute of PathologyUniversity Medicine of RostockRostockGermany
| | | | | | | |
Collapse
|
19
|
Bhagirath D, Yang TL, Tabatabai ZL, Shahryari V, Majid S, Dahiya R, Tanaka Y, Saini S. Role of a novel race-related tumor suppressor microRNA located in frequently deleted chromosomal locus 8p21 in prostate cancer progression. Carcinogenesis 2019; 40:633-642. [PMID: 30874288 PMCID: PMC7331454 DOI: 10.1093/carcin/bgz058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
The prostate cancer (PCa) genome is characterized by deletions of chromosome 8p21-22 region that increase significantly with tumor grade and are associated with poor prognosis. We proposed and validated a novel, paradigm-shifting hypothesis that this region is associated with a set of microRNA genes-miR-3622, miR-3622b, miR-383-that are lost in PCa and play important mechanistic roles in PCa progression and metastasis. Extending our hypothesis, in this study, we evaluated the role of a microRNA gene located in chromosome 8p-miR-4288-by employing clinical samples and cell lines. Our data suggests that (i) miR-4288 is widely downregulated in primary prostate tumors and cell lines; (ii) miR-4288 expression is lost in metastatic castration-resistant PCa; (ii) miR-4288 downregulation is race-related PCa alteration that is prevalent in Caucasian patients and not in African Americans; (iii) in Caucasians, miR-4288 was found to be associated with increasing tumor grade and high serum prostate-specific antigen, suggesting that miR-4288 downregulation/loss may be associated with tumor progression specifically in Caucasians; (iv) miR-4288 possess significant potential as a molecular biomarker to predict aggressiveness/metastasis; and (v) miR-4288 is anti-proliferative, is anti-invasive and inhibits epithelial-to-mesenchymal transition; and (vi) miR-4288 directly represses expression of metastasis/invasion-associated genes MMP16 and ROCK1. Thus, the present study demonstrates a tumor suppressor role for a novel miRNA located with a frequently lost region in PCa, strengthening our hypothesis that this locus is causally related to PCa disease progression via loss of microRNA genes. Our study suggests that miR-4288 may be a novel biomarker and therapeutic target, particularly in Caucasians.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Thao Ly Yang
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Z Laura Tabatabai
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Varahram Shahryari
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Abstract
Comprehensive theory explaining the relationship between estrogen (E2) and ezrin in metastasis of thyroid cancer remains non-elicited. In vitro results revealed that E2 could stimulate the expression and phosphorylation of ezrin in a time and dose dependent manner. Our data clearly showed that E2 enhanced the migration and invasion of cells, which was reversed by the transfection of cells with ezrin specific siRNA. Further, we observed that Phosphoinositide 3-kinase (PI3K) ROCK-2 are among the kinases responsible for E2 induced phosphorylation of ezrin. Clinical validation of ezrin/phospho-ezrin revealed that phospho-ezrin was intensely expressed in follicular thyroid carcinoma (FTC) and follicular variant of papillary thyroid carcinoma (FVPTC), while it was completely absent in follicular adenoma (FA) lesions in which the differentiation of the follicular neoplasms remains subtle. When histology of different carcinomas is correlated with benign FA with respect to phospho-ezrin, we observed that the marker was highly significant (p = 0.0001). 100% sensitivity, specificity and diagnostic accuracy of the above marker in the histological association of FTC, FVPTC with FA, enables us to suggest phospho-ezrin as a diagnostic marker to differentiate the follicular neoplasms. These data are the first to suggest the dynamic regulation of ezrin phosphorylation during metastasis in FTC.
Collapse
|
21
|
Williams A, Nowak JF, Dass R, Samuel J, Mills KL. Toward Morphologically Relevant Extracellular Matrix in Vitro Models: 3D Fiber Reinforced Hydrogels. Front Physiol 2018; 9:966. [PMID: 30087619 PMCID: PMC6066552 DOI: 10.3389/fphys.2018.00966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/02/2018] [Indexed: 11/16/2022] Open
Abstract
The extracellular matrix (ECM) is known to play an important role in the health of cells and tissues. Not only are chemical signals transmitted via bonds and tightly controlled diffusion, but the structure of the ECM also provides important physical signaling for the cells attached to it. The structure is composed of a mesh of fibrous proteins, such as collagen, embedded in a hydrated gel matrix of glycosaminoglycans. To study cell behavior with respect to the combined morphology and mechanics of such matrices is not currently possible with the types of 3D cell culture matrices available. Most of the cell culture matrices are single-phase bio- or polymeric hydrogels. Therefore, here we developed a continuous hybrid manufacturing process to make fiber-reinforced composite hydrogels. A far field electrospinning process was used to deposit the fibrous component with the aid of guiding electrodes; and a gravity-assisted, droplet-based system controlled the rate of addition of the cell-laden hydrogel component. The addition of the fibrous component slightly increased the elastic modulus of the pure hydrogel. The cells that were embedded into the fiber-reinforced hydrogels were viable for 8 days. The cells were randomly placed in the matrix such that some had no contact to the fibers and others were initially in proximity to fibers. The cells with no contact to fibers grew into spheroidal clusters within the hydrogel, and those in proximity to the fibers spread out and grew along the fibers showing that the fiber-reinforced hydrogels are able to control cell behavior with morphological cues.
Collapse
Affiliation(s)
- Ashok Williams
- Department of Mechanical, Aerospace, Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - James F Nowak
- Department of Mechanical, Aerospace, Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Rachel Dass
- Department of Mechanical, Aerospace, Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Johnson Samuel
- Department of Mechanical, Aerospace, Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - K L Mills
- Department of Mechanical, Aerospace, Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
22
|
Zhang W, Bhetwal BP, Gunst SJ. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle. J Physiol 2018; 596:3617-3635. [PMID: 29746010 DOI: 10.1113/jp275751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASp). N-WASP transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. ABSTRACT Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase-inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We found that ROCK regulates airway smooth muscle contraction by mediating activation of p21-activated kinase (Pak), a serine-threonine kinase, to promote actin polymerization. Pak catalyses paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signalling module to paxillin, which activates the guanine nucleotide exchange factor (GEF) activity of βPIX towards Cdc42. Cdc42 is required for the activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp), which transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bhupal P Bhetwal
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR, Holland EJ. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018; 16:398-414. [PMID: 29908870 DOI: 10.1016/j.jtos.2018.06.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
The cornea is unique because of its complete avascularity. Corneal neovascularization (CNV) can result from a variety of etiologies including contact lens wear; corneal infections; and ocular surface diseases due to inflammation, chemical injury, and limbal stem cell deficiency. Management is focused primarily on the etiology and pathophysiology causing the CNV and involves medical and surgical options. Because inflammation is a key factor in the pathophysiology of CNV, corticosteroids and other anti-inflammatory medications remain the mainstay of treatment. Anti-VEGF therapies are gaining popularity to prevent CNV in a number of etiologies. Surgical options including vessel occlusion and ocular surface reconstruction are other options depending on etiology and response to medical therapy. Future therapies should provide more effective treatment options for the management of CNV.
Collapse
Affiliation(s)
- Danial Roshandel
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Albert Y Cheung
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Khaliq Kurji
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alejandra Maiz
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Setareh Jalali
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Edward J Holland
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Design of Fiber Networks for Studying Metastatic Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:289-318. [DOI: 10.1007/978-3-319-95294-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Daubriac J, Han S, Grahovac J, Smith E, Hosein A, Buchanan M, Basik M, Boucher Y. The crosstalk between breast carcinoma-associated fibroblasts and cancer cells promotes RhoA-dependent invasion via IGF-1 and PAI-1. Oncotarget 2017. [PMID: 29535813 PMCID: PMC5828213 DOI: 10.18632/oncotarget.23735] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) can remodel the extracellular matrix to promote cancer cell invasion, but the paracrine signaling between CAFs and cancer cells that regulates tumor cell migration remains to be identified. To determine how the interaction between CAFs and cancer cells modulates the invasiveness of cancer cells, we developed a 3-dimensional co-culture model composed of breast cancer (BC) MDA-MB-231 cell spheroids embedded in a collagen gel with and without CAFs. We found that the crosstalk between CAFs and cancer cells promotes invasion by stimulating the scattering of MDA-MB-231 cells, which was dependent on RhoA/ROCK/phospho MLC signaling in cancer cells but independent of RhoA in CAFs. The activation of RhoA/ROCK in cancer cells activates MLC and increases migration, while the genetic-down-regulation of RhoA and pharmacological inhibition of ROCK reduced cell scattering and invasion. Two distinct mechanisms induced the activation of the RhoA/ROCK pathway in MDA-MB-231 cells, the secretion of IGF-1 by CAFs and the upregulation of PAI-1 in cancer cells. In an orthotopic model of BC, IGF-1R inhibition decreased the incidence of lung metastasis, while Y27632-inhibition of ROCK enhanced the lung metastasis burden, which was associated with an increased recruitment of CAFs and expression of PAI-1. Thus the crosstalk between CAFs and BC cells increases the secretion of IGF-1 in CAFs and PAI-1 activity in cancer cells. Both IGF1 and PAI-1 activate RhoA/ROCK signaling in cancer cells, which increases cell scattering and invasion.
Collapse
Affiliation(s)
- Julien Daubriac
- Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shiwei Han
- Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jelena Grahovac
- Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eve Smith
- Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Abdel Hosein
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Canada
| | - Marguerite Buchanan
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Canada
| | - Mark Basik
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Canada
| | - Yves Boucher
- Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Northey JJ, Przybyla L, Weaver VM. Tissue Force Programs Cell Fate and Tumor Aggression. Cancer Discov 2017; 7:1224-1237. [PMID: 29038232 DOI: 10.1158/2159-8290.cd-16-0733] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 06/07/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
Biomechanical and biochemical cues within a tissue collaborate across length scales to direct cell fate during development and are critical for the maintenance of tissue homeostasis. Loss of tensional homeostasis in a tissue not only accompanies malignancy but may also contribute to oncogenic transformation. High mechanical stress in solid tumors can impede drug delivery and may additionally drive tumor progression and promote metastasis. Mechanistically, biomechanical forces can drive tumor aggression by inducing a mesenchymal-like switch in transformed cells so that they attain tumor-initiating or stem-like cell properties. Given that cancer stem cells have been linked to metastasis and treatment resistance, this raises the intriguing possibility that the elevated tissue mechanics in tumors could promote their aggression by programming their phenotype toward that exhibited by a stem-like cell.Significance: Recent findings argue that mechanical stress and elevated mechanosignaling foster malignant transformation and metastasis. Prolonged corruption of tissue tension may drive tumor aggression by altering cell fate specification. Thus, strategies that could reduce tumor mechanics might comprise effective approaches to prevent the emergence of treatment-resilient metastatic cancers. Cancer Discov; 7(11); 1224-37. ©2017 AACR.
Collapse
Affiliation(s)
- Jason J Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Laralynne Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, California. .,Departments of Anatomy, Bioengineering and Therapeutic Sciences, and Radiation Oncology, and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and The Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California
| |
Collapse
|
27
|
Ye G, Huang K, Yu J, Zhao L, Zhu X, Yang Q, Li W, Jiang Y, Zhuang B, Liu H, Shen Z, Wang D, Yan L, Zhang L, Zhou H, Hu Y, Deng H, Liu H, Li G, Qi X. MicroRNA-647 Targets SRF-MYH9 Axis to Suppress Invasion and Metastasis of Gastric Cancer. Theranostics 2017; 7:3338-3353. [PMID: 28900514 PMCID: PMC5595136 DOI: 10.7150/thno.20512] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/29/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in regulating tumour development and progression. Here we show that miR-647 is repressed in gastric cancer (GC), and associated with GC metastasis. Moreover, we identify that miR-647 can suppress GC cell migration and invasion in vitro. Mechanistically, we confirm miR-647 directly binds to the 3' untranslated regions of SRF mRNA, and SRF binds to the CArG box located at the MYH9 promoter. CCG-1423, an inhibitor of RhoA/SRF-mediated gene transcription, inhibits the expression of MYH9, especially in SRF downregulated cells. Overexpression of miR-647 inhibits MGC 80-3 cells' metastasis in orthotropic GC models, but increasing SRF expression in these cells reverses this change. Importantly, we found the synergistic inhibition effect of CCG-1423 and agomir-647, an engineered miRNA mimic, on cancer metastasis in orthotropic GC models. Our study demonstrates that miR-647 functions as a tumor metastasis suppressor in GC by targeting SRF/MYH9 axis.
Collapse
Affiliation(s)
- Gengtai Ye
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Kunzhai Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Liying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Xianjun Zhu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Qingbin Yang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Wende Li
- Guangdong Key Laboratory of Laboratory Animal, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Baoxiong Zhuang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Hao Liu
- Leder Human Biology and Translational Medicine, Biology and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
| | - Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Da Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Li Yan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Lei Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Haipeng Zhou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| | - Xiaolong Qi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515 China
| |
Collapse
|
28
|
Corda G, Sala A. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis 2017; 6:e364. [PMID: 28737757 PMCID: PMC5541719 DOI: 10.1038/oncsis.2017.69] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
Frizzled receptors are the mediators of the wnt canonical and non-canonical pathways, which play fundamental roles in cell differentiation and organism development. A large body of work indicates that dysregulation of wnt signalling is a feature of oncogenic transformation, but most of the studies published so far focus on the assessment of the consequences of aberrations of the canonical pathway in human cancer. In this review, we discuss the emerging role of the wnt non-canonical pathway regulated by frizzled receptor 6 (Fzd6) in the pathogenesis of different types of human malignancies. The function played by Fzd6 in the physiology of normal and cancer cells has been highlighted in the view that an increased knowledge of the signalling pathways upstream and downstream of this receptor could ultimately result in the identification of new targets for cancer therapy.
Collapse
Affiliation(s)
- G Corda
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - A Sala
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.,Dipartimento di Scienze Psicologiche, della Salute e del Territorio, University 'G d'Annunzio' Chieti-Pescara, Centro Studi sull'Invecchiamento, Chieti, Italy
| |
Collapse
|
29
|
Rath N, Morton JP, Julian L, Helbig L, Kadir S, McGhee EJ, Anderson KI, Kalna G, Mullin M, Pinho AV, Rooman I, Samuel MS, Olson MF. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Mol Med 2017; 9:198-218. [PMID: 28031255 PMCID: PMC5286371 DOI: 10.15252/emmm.201606743] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a KrasG12D/p53R172H mouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three-dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK-induced genes that facilitate extracellular matrix remodeling, with greatest fold-changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13 MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three-dimensional contexts. Treatment of KrasG12D/p53R172H PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor-associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth.
Collapse
Affiliation(s)
- Nicola Rath
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Linda Julian
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Lena Helbig
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | | | | | - Margaret Mullin
- Electron Microscopy Facility, School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Andreia V Pinho
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ilse Rooman
- Oncology Research Centre, Free University Brussels (VUB), Brussels, Belgium
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Michael F Olson
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Millar FR, Janes SM, Giangreco A. Epithelial cell migration as a potential therapeutic target in early lung cancer. Eur Respir Rev 2017; 26:26/143/160069. [PMID: 28143875 PMCID: PMC9489048 DOI: 10.1183/16000617.0069-2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023] Open
Abstract
Lung cancer is the most lethal cancer type worldwide, with the majority of patients presenting with advanced stage disease. Targeting early stage disease pathogenesis would allow dramatic improvements in lung cancer patient survival. Recently, cell migration has been shown to be an integral process in early lung cancer ontogeny, with preinvasive lung cancer cells shown to migrate across normal epithelium prior to developing into invasive disease. TP53 mutations are the most abundant mutations in human nonsmall cell lung cancers and have been shown to increase cell migration via regulation of Rho-GTPase protein activity. In this review, we explore the possibility of targeting TP53-mediated Rho-GTPase activity in early lung cancer and the opportunities for translating this preclinical research into effective therapies for early stage lung cancer patients. Preinvasive lung cancer cell migration is a potential novel therapeutic target in early lung cancerhttp://ow.ly/FJGm305JxMQ
Collapse
Affiliation(s)
- Fraser R Millar
- Lungs for Living, UCL Respiratory, Division of Medicine, University College London, London, UK.,Dept of Thoracic Medicine, University College London Hospital, London, UK
| | - Sam M Janes
- Lungs for Living, UCL Respiratory, Division of Medicine, University College London, London, UK.,Dept of Thoracic Medicine, University College London Hospital, London, UK
| | - Adam Giangreco
- Lungs for Living, UCL Respiratory, Division of Medicine, University College London, London, UK
| |
Collapse
|
31
|
He H, Wei Z, Du F, Meng C, Zheng D, Lai Y, Yao H, Zhou H, Wang N, Luo XG, Ma W, Zhang TC. Transcription of HOTAIR is regulated by RhoC-MRTF-A-SRF signaling pathway in human breast cancer cells. Cell Signal 2017; 31:87-95. [PMID: 28069441 DOI: 10.1016/j.cellsig.2017.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
Abstract
HOTAIR is a long non-coding RNA highly expressed in cancer tissues and is a negative prognostic factor, whereas the mechanism by which HOTAIR expression is upregulated in cancers remains elusive. In the present study, the regulation of HOTAIR transcription was investigated in breast cancer cells MCF7 and T47D. We found that, when the RhoC-ROCK signaling was disturbed by specific siRNAs or chemical inhibitors, the expression of HOTAIR would be down-regulated. Further, MRTF-A and SRF were found to affect HOTAIR expression. HOTAIR promoter activity was demonstrated to be regulated by the RhoC-MRTF-A-SRF signaling in a CArG-box-dependent manner. Moreover, MRTF-A was identified to physically interact with HOTAIR promoter, and RNA polymerase II association on HOTAIR promoter was enhanced by MRTF-A overexpression. Taken together, our results suggest that HOTAIR is regulated by the RhoC-MRTF-A-SRF signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Hongpeng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhaoqiang Wei
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fu Du
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chao Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Deliang Zheng
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yongwei Lai
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hailin Yao
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hao Zhou
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wenjian Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.; College of Life Sciences, Wuhan University of Science and Technology, Wuhan 430081, PR China..
| |
Collapse
|
32
|
Takeshita N, Hasegawa M, Sasaki K, Seki D, Seiryu M, Miyashita S, Takano I, Oyanagi T, Miyajima Y, Takano-Yamamoto T. In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J Bone Miner Metab 2017; 35:40-51. [PMID: 26825658 DOI: 10.1007/s00774-016-0737-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
Sutures are fibrous tissues that connect bones in craniofacial skeletal complexes. Cranio- and dentofacial skeletal deformities in infant and adolescent patients can be treated by applying tensile force to sutures to induce sutural bone formation. The early gene expression induced by mechanical stress is essential for bone formation in long bones; however, early gene expression during sutural bone formation induced by tensile force is poorly characterized. In vivo studies are essential to evaluate molecular responses to mechanical stresses in heterogeneous cell populations, such as sutures. In this paper we examined in vivo early gene expression and the underlying regulatory mechanism for this expression in tensile-force-applied cranial sutures, focusing on genes involved in vascularization. Tensile force upregulated expression of vascular factors, such as vascular endothelial growth factor (Vegf) and endothelial cell markers, in sutures within 3 h. The expression of connective tissue growth factor (Ctgf) and Rho-associated coiled-coil containing protein kinase 2 (Rock2) was also upregulated by tensile force. A CTGF-neutralizing antibody and the ROCK inhibitor, Y-27632, abolished tensile-force-induced Vegf expression. Moreover, tensile force activated extracellular signal-related kinase 1/2 (ERK1/2) signaling in sagittal sutures, and the ERK1/2 inhibitor, U0126, partially inhibited tensile-force-induced Ctgf expression. These results indicate that tensile force induces in vivo gene expression associated with vascularization early in tensile-force-induced sutural bone formation. Moreover, the early induction of Vegf gene expression is regulated by CTGF and ROCK2.
Collapse
Affiliation(s)
- Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masakazu Hasegawa
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Daisuke Seki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Seiryu
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shunro Miyashita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ikuko Takano
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Miyajima
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
33
|
Samuel MS, Rath N, Masre SF, Boyle ST, Greenhalgh DA, Kochetkova M, Bryson S, Stevenson D, Olson MF. Tissue-selective expression of a conditionally-active ROCK2-estrogen receptor fusion protein. Genesis 2016; 54:636-646. [PMID: 27775859 DOI: 10.1002/dvg.22988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 11/10/2022]
Abstract
The serine/threonine kinases ROCK1 and ROCK2 are central mediators of actomyosin contractile force generation that act downstream of the RhoA small GTP-binding protein. As a result, they have key roles in regulating cell morphology and proliferation, and have been implicated in numerous pathological conditions and diseases including hypertension and cancer. Here we describe the generation of a gene-targeted mouse line that enables CRE-inducible expression of a conditionally-active fusion between the ROCK2 kinase domain and the hormone-binding domain of a mutated estrogen receptor (ROCK2:ER). This two-stage system of regulation allows for tissue-selective expression of the ROCK2:ER fusion protein, which then requires administration of estrogen analogues such as tamoxifen or 4-hydroxytamoxifen to elicit kinase activity. This conditional gain-of-function system was validated in multiple tissues by crossing with mice expressing CRE recombinase under the transcriptional control of cytokeratin14 (K14), murine mammary tumor virus (MMTV) or cytochrome P450 Cyp1A1 (Ah) promoters, driving appropriate expression in the epidermis, mammary or intestinal epithelia respectively. Given the interest in ROCK signaling in normal physiology and disease, this mouse line will facilitate research into the consequences of ROCK activation that could be used to complement conditional knockout models. Birth Defects Research (Part A) 106:636-646, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael S Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Frome Road, Adelaide, South Australia, 5000, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Nicola Rath
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Siti F Masre
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Allied Health Sciences, University of Kebangsaan, Kuala Lumpur, 50300, Malaysia
- Section of Dermatology and Molecular Carcinogenesis College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sarah T Boyle
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Frome Road, Adelaide, South Australia, 5000, Australia
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marina Kochetkova
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Sheila Bryson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Stevenson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Michael F Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
34
|
Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b. Sci Rep 2016; 6:30031. [PMID: 27445265 PMCID: PMC4957108 DOI: 10.1038/srep30031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with cagA-positive Helicobacter pylori is the strongest risk factor for atrophic gastritis, peptic ulcers, and gastric cancer. CagA, the product of the cagA gene, is a bacterial oncoprotein, which, upon delivery into gastric epithelial cells, binds to and inhibits the polarity-regulating kinase, partitioning-defective 1b (PAR1b) [also known as microtubule affinity-regulating kinase 2 (MARK2)], via its CagA multimerization (CM) motif. The inhibition of PAR1b elicits junctional and polarity defects, rendering cells susceptible to oncogenesis. Notably, the polymorphism in the CM motif has been identified among geographic variants of CagA, differing in either the copy number or the sequence composition. In this study, through quantitative analysis of the complex formation between CagA and PAR1b, we found that several CagA species have acquired elevated PAR1b-binding activity via duplication of the CM motifs, while others have lost their PAR1b-binding activity. We also found that strength of CagA-PAR1b interaction was proportional to the degrees of stress fiber formation and tight junctional disruption by CagA in gastric epithelial cells. These results indicate that the CM polymorphism is a determinant for the magnitude of CagA-mediated deregulation of the cytoskeletal system and thereby possibly affects disease outcome of cagA-positive H. pylori infection, including gastric cancer.
Collapse
|
35
|
Yanardağ Açık D, Yılmaz M, Sarı İ, Öztuzcu S, Sayıner ZA, Subari S, Demiryürek AT. Investigation of Rho-Kinase Expressions and Polymorphisms in Mantle Cell Lymphoma Patients. Turk J Haematol 2016; 33:141-7. [PMID: 26377148 PMCID: PMC5100726 DOI: 10.4274/tjh.2015.0193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Mantle cell lymphoma (MCL) is a rare but aggressive form of B-cell non-Hodgkin lymphoma characterized by excessive expression of cyclin D1. Intracellular signaling enzyme Rho-kinase (ROCK) can contribute to cellular migration, proliferation, and differentiation, as well as tumor development and metastasis. However, ROCK gene and protein expressions or polymorphisms have never been investigated in MCL patients. The purpose of this study was to investigate the role of ROCK gene and protein expressions in MCL patients. We also examined ROCK2 gene polymorphisms in this study. MATERIALS AND METHODS A total of 60 patients with MCL and 60 healthy controls were included in this retrospective study. Hematoxylin and eosin-stained lymph node tissue slides in the entire archive were reevaluated and used for immunohistochemistry, gene expression, and polymerase chain reaction studies. RESULTS In immunohistochemical studies, there were significant increases in ROCK1 (p=0.0009) and ROCK2 (p<0.0001) protein expressions in MCL patients when compared with the control group. Although a marked increase in ROCK1 gene expression (p=0.0215) was noted, no significant change was observed in ROCK2 gene expression in MCL patients. Seven ROCK2 polymorphisms were studied, but the results showed no significant differences between the groups. CONCLUSION This is the first study to show that ROCK1 gene and ROCK protein expressions may contribute to the development of MCL.
Collapse
Affiliation(s)
- Didar Yanardağ Açık
- Gaziantep University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Gaziantep, Turkey, Phone : +90 532 157 76 56, E-mail :
| | | | | | | | | | | | | |
Collapse
|
36
|
Tumor-induced remote ECM network orientation steers angiogenesis. Sci Rep 2016; 6:22580. [PMID: 26931404 PMCID: PMC4773852 DOI: 10.1038/srep22580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
Tumor angiogenesis promotes tumor growth and metastasis. Here, we use automated sequential microprinting of tumor and endothelial cells in extracellular matrix (ECM) scaffolds to study its mechanical aspects. Quantitative reflection microscopy shows that tumor spheroids induce radial orientation of the surrounding collagen fiber network up to a distance of five times their radius. Across a panel of ~20 different human tumor cell lines, remote collagen orientation is correlated with local tumor cell migration behavior. Tumor induced collagen orientation requires contractility but is remarkably resistant to depletion of collagen-binding integrins. Microvascular endothelial cells undergo directional migration towards tumor spheroids once they are within the tumor-oriented collagen fiber network. Laser ablation experiments indicate that an intact physical connection of the oriented network with the tumor spheroid is required for mechanical sensing by the endothelial cells. Together our findings indicate that, in conjunction with described activities of soluble angiogenic factors, remote physical manipulation of the ECM network by the tumor can help to steer angiogenesis.
Collapse
|
37
|
Liu Y, Minze LJ, Mumma L, Li XC, Ghobrial RM, Kloc M. Mouse macrophage polarity and ROCK1 activity depend on RhoA and non-apoptotic Caspase 3. Exp Cell Res 2016; 341:225-36. [DOI: 10.1016/j.yexcr.2016.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/05/2023]
|
38
|
Hsu CY, Chang ZF, Lee HH. Immunohistochemical evaluation of ROCK activation in invasive breast cancer. BMC Cancer 2015; 15:943. [PMID: 26626121 PMCID: PMC4665871 DOI: 10.1186/s12885-015-1948-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/20/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Two isoforms of Rho-associated coiled-coil kinase (ROCK), ROCKI and ROCKII, play an important role in many cellular processes. Despite the accumulating evidence showing that ROCK could be a potential cancer therapeutic target, the relevant tumor types to ROCK activation are not well clarified. The aim of this study was to evaluate the ROCK activation status in different tumor types of breast cancer. RESULTS We evaluated the immunoreactivities of phosphorylation-specific antibodies of ROCKI and ROCKII to inform their kinase activation in 275 of breast carcinoma tissues, including 56 of carcinoma in situ, 116 of invasive carcinoma, and 103 of invasive carcinoma with metastasis. ROCKII activation signal detected in nucleus was significantly correlated with tumor metastasis, while ROCKI and cytosolic ROCKII activation signals made no significant difference in that metastasis. Furthermore, nuclear ROCKII activation signal was associated with poor clinical outcome and correlated with late tumor stage, low expression of estrogen receptor (ER) and progesterone receptor (PR), overexpression of human epidermal growth factor receptor 2 (HER2) and high Ki67 labeling index. CONCLUSIONS Nuclear ROCKII activation signal might contribute to the tumor metastasis in breast cancer. Differences in ROCK activation that underlie the phenotypes of breast cancer could enhance our understanding for the use of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd, Taipei, Taiwan ROC. .,Department of Pathology, National Yang-Ming University School of Medicine, No. 155, Sec. 2, Linong St, Taipei, Taiwan ROC.
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong St, Taipei, Taiwan ROC.
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 11221 No. 155, Sec. 2, Linong Street, Taipei, Taiwan ROC.
| |
Collapse
|
39
|
Chin VT, Nagrial AM, Chou A, Biankin AV, Gill AJ, Timpson P, Pajic M. Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med 2015; 17:e17. [PMID: 26507949 PMCID: PMC4836205 DOI: 10.1017/erm.2015.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Rho/ROCK pathway is involved in numerous pivotal cellular processes that have made it an area of intense study in cancer medicine, however, Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are yet to make an appearance in the clinical cancer setting. Their performance as an anti-cancer therapy has been varied in pre-clinical studies, however, they have been shown to be effective vasodilators in the treatment of hypertension and post-ischaemic stroke vasospasm. This review addresses the various roles the Rho/ROCK pathway plays in angiogenesis, tumour vascular tone and reciprocal feedback from the tumour microenvironment and explores the potential utility of ROCK inhibitors as effective vascular normalising agents. ROCK inhibitors may potentially enhance the delivery and efficacy of chemotherapy agents and improve the effectiveness of radiotherapy. As such, repurposing of these agents as adjuncts to standard treatments may significantly improve outcomes for patients with cancer. A deeper understanding of the controlled and dynamic regulation of the key components of the Rho pathway may lead to effective use of the Rho/ROCK inhibitors in the clinical management of cancer.
Collapse
Affiliation(s)
- Venessa T. Chin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Adnan M. Nagrial
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- The Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Australia
| | - Angela Chou
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Anatomical Pathology, Sydpath, St Vincent's Hospital, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, UK
| | - Anthony J. Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
- University of Sydney, Sydney, NSW 2006, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| |
Collapse
|
40
|
Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AKE, Welch HC, Timpson P. The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases 2015; 6:123-33. [PMID: 26103062 PMCID: PMC4601362 DOI: 10.4161/21541248.2014.973749] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma.
Collapse
Affiliation(s)
- Marina Pajic
- a The Kinghorn Cancer Center; Cancer Division; Garvan Institute of Medical Research ; Sydney , Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Reymond N, Im JH, Garg R, Cox S, Soyer M, Riou P, Colomba A, Muschel RJ, Ridley AJ. RhoC and ROCKs regulate cancer cell interactions with endothelial cells. Mol Oncol 2015; 9:1043-55. [PMID: 25677806 PMCID: PMC4449123 DOI: 10.1016/j.molonc.2015.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 01/13/2023] Open
Abstract
RhoC is a member of the Rho GTPase family that is implicated in cancer progression by stimulating cancer cell invasiveness. Here we report that RhoC regulates the interaction of cancer cells with vascular endothelial cells (ECs), a crucial step in the metastatic process. RhoC depletion by RNAi reduces PC3 prostate cancer cell adhesion to ECs, intercalation between ECs as well as transendothelial migration in vitro. Depletion of the kinases ROCK1 and ROCK2, two known RhoC downstream effectors, similarly decreases cancer interaction with ECs. RhoC also regulates the extension of protrusions made by cancer cells on vascular ECs in vivo. Transient RhoC depletion is sufficient to reduce both early PC3 cell retention in the lungs and experimental metastasis formation in vivo. Our results indicate RhoC plays a central role in cancer cell interaction with vascular ECs, which is a critical event for cancer progression.
Collapse
Affiliation(s)
- Nicolas Reymond
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's, House, Guy's Campus, London SE1 1UL, UK
| | - Jae Hong Im
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7IJ, England, UK
| | - Ritu Garg
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's, House, Guy's Campus, London SE1 1UL, UK
| | - Susan Cox
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's, House, Guy's Campus, London SE1 1UL, UK
| | - Magali Soyer
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's, House, Guy's Campus, London SE1 1UL, UK
| | - Philippe Riou
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's, House, Guy's Campus, London SE1 1UL, UK
| | - Audrey Colomba
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's, House, Guy's Campus, London SE1 1UL, UK
| | - Ruth J Muschel
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7IJ, England, UK
| | - Anne J Ridley
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's, House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
42
|
Tozluoglu M, Mao Y, Bates PA, Sahai E. Cost-benefit analysis of the mechanisms that enable migrating cells to sustain motility upon changes in matrix environments. J R Soc Interface 2015; 12:20141355. [PMID: 25878128 PMCID: PMC4424668 DOI: 10.1098/rsif.2014.1355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/19/2015] [Indexed: 12/30/2022] Open
Abstract
Cells can move through extracellular environments with varying geometries and adhesive properties. Adaptation to these differences is achieved by switching between different modes of motility, including lamellipod-driven and blebbing motility. Further, cells can modulate their level of adhesion to the extracellular matrix (ECM) depending on both the level of force applied to the adhesions and cell intrinsic biochemical properties. We have constructed a computational model of cell motility to investigate how motile cells transition between extracellular environments with varying surface continuity, confinement and adhesion. Changes in migration strategy are an emergent property of cells as the ECM geometry and adhesion changes. The transition into confined environments with discontinuous ECM fibres is sufficient to induce shifts from lamellipod-based to blebbing motility, while changes in confinement alone within a continuous geometry are not. The geometry of the ECM facilitates plasticity, by inducing shifts where the cell has high marginal gain from a mode change, and conserving persistency where the cell can continue movement regardless of the motility mode. This regulation of cell motility is independent of global changes in cytoskeletal properties, but requires locally higher linkage between the actin network and the plasma membrane at the cell rear, and changes in internal cell pressure. In addition to matrix geometry, we consider how cells might transition between ECM of different adhesiveness. We find that this requires positive feedback between the forces cells apply on the adhesion points, and the strength of the cell-ECM adhesions on those sites. This positive feedback leads to the emergence of a small number of highly adhesive cores, similar to focal adhesions. While the range of ECM adhesion levels the cell can invade is expanded with this feedback mechanism; the velocities are lowered for conditions where the positive feedback is not vital. Thus, plasticity of cell motility sacrifices the benefits of specialization, for robustness.
Collapse
Affiliation(s)
- Melda Tozluoglu
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, UK Biomolecular Modelling Laboratory, London Research Institute, Cancer Research UK, London, UK Tumour Cell Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Yanlan Mao
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
43
|
Vogel CJ, Smit MA, Maddalo G, Possik PA, Sparidans RW, van der Burg SH, Verdegaal EM, Heck AJR, Samatar AA, Beijnen JH, Altelaar AFM, Peeper DS. Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK. Pigment Cell Melanoma Res 2015; 28:307-17. [PMID: 25728708 DOI: 10.1111/pcmr.12364] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 02/25/2015] [Indexed: 12/13/2022]
Abstract
No effective targeted therapy is currently available for NRAS mutant melanoma. Experimental MEK inhibition is rather toxic and has only limited efficacy in clinical trials. At least in part, this is caused by the emergence of drug resistance, which is commonly seen for single agent treatment and shortens clinical responses. Therefore, there is a dire need to identify effective companion drug targets for NRAS mutant melanoma. Here, we show that at concentrations where single drugs had little effect, ROCK inhibitors GSK269962A or Fasudil, in combination with either MEK inhibitor GSK1120212 (Trametinib) or ERK inhibitor SCH772984 cooperatively caused proliferation inhibition and cell death in vitro. Simultaneous inhibition of MEK and ROCK caused induction of BimEL , PARP, and Puma, and hence apoptosis. In vivo, MEK and ROCK inhibition suppressed growth of established tumors. Our findings warrant clinical investigation of the effectiveness of combinatorial targeting of MAPK/ERK and ROCK in NRAS mutant melanoma.
Collapse
Affiliation(s)
- Celia J Vogel
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tung JC, Barnes JM, Desai SR, Sistrunk C, Conklin MW, Schedin P, Eliceiri KW, Keely PJ, Seewaldt VL, Weaver VM. Tumor mechanics and metabolic dysfunction. Free Radic Biol Med 2015; 79:269-80. [PMID: 25532934 PMCID: PMC4339308 DOI: 10.1016/j.freeradbiomed.2014.11.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/01/2014] [Accepted: 11/25/2014] [Indexed: 12/14/2022]
Abstract
Desmosplasia is a characteristic of most solid tumors and leads to fibrosis through abnormal extracellular matrix (ECM) deposition, remodeling, and posttranslational modifications. The resulting stiff tumor stroma not only compromises vascular integrity to induce hypoxia and impede drug delivery, but also promotes aggressiveness by potentiating the activity of key growth, invasion, and survival pathways. Intriguingly, many of the protumorigenic signaling pathways that are mechanically activated by ECM stiffness also promote glucose uptake and aerobic glycolysis, and an altered metabolism is a recognized hallmark of cancer. Indeed, emerging evidence suggests that metabolic alterations and an abnormal ECM may cooperatively drive cancer cell aggression and treatment resistance. Accordingly, improved methods to monitor tissue mechanics and metabolism promise to improve diagnostics and treatments to ameliorate ECM stiffening and elevated mechanosignaling may improve patient outcome. Here we discuss the interplay between ECM mechanics and metabolism in tumor biology and suggest that monitoring these processes and targeting their regulatory pathways may improve diagnostics, therapy, and the prevention of malignant transformation.
Collapse
Affiliation(s)
- Jason C Tung
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | - J Matthew Barnes
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | - Matthew W Conklin
- Department of Biomedical Engineering, University of Wisconsin Carbone Comprehensive Cancer Center, Wisconsin Institute for Medical Research, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Pepper Schedin
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Laboratory for Cell and Molecular Biology, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Patricia J Keely
- Department of Biomedical Engineering, University of Wisconsin Carbone Comprehensive Cancer Center, Wisconsin Institute for Medical Research, University of Wisconsin at Madison, Madison, WI 53706, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California at San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California at San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA; Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Zheng L, Hu X, Huang Y, Xu G, Yang J, Li L. In vivo
bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study. Biomed Mater 2015; 10:015016. [DOI: 10.1088/1748-6041/10/1/015016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Zhao ZH, Tian Y, Yang JP, Zhou J, Chen KS. RhoC, vascular endothelial growth factor and microvascular density in esophageal squamous cell carcinoma. World J Gastroenterol 2015; 21:905-912. [PMID: 25624724 PMCID: PMC4299343 DOI: 10.3748/wjg.v21.i3.905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/23/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the expression of Ras homolog (Rho)C, vascular endothelial growth factor (VEGF) and CD105 in esophageal squamous cell carcinoma.
METHODS: Semi-quantitative reverse transcriptase polymerase chain reaction, in situ hybridization and immunohistochemical streptavidin-biotin- peroxidase methods were used to detect expression of RhoC mRNA and protein, and VEGF protein in 62 cases with esophageal squamous cell carcinoma, 31 cases with adjacent atypical hyperplastic tissues, and 62 cases with normal esophageal mucosa. CD105 antibody labeling was used to measure microvascular density. Expression levels were compared according to clinicopathologic and patient parameters.
RESULTS: Expression of RhoC mRNA showed a positive correlation with the protein level in esophageal squamous cell carcinoma, as well as with VEGF protein levels. RhoC mRNA expression was mainly located within the cytoplasm of the tumor cells, appearing as blue to purple particles by in situ hybridization. The differences in RhoC mRNA expression in esophageal squamous cell carcinoma, adjacent atypical hyperplasia and normal esophageal mucosa were significant (P < 0.05). The relative expression of RhoC mRNA in cancer tissues with lymph node metastasis was significantly higher than in the tissues without lymph node metastasis (P < 0.05). VEGF protein expression was consistent with microvascular density (t = 25.52, P < 0.05). Positive expression of VEGF protein in esophageal squamous cell carcinoma of different histologic gradings did not differ significantly. Positive expression of VEGF protein in carcinoma tissues with deep infiltration was significantly higher than in tissues with only superficial infiltration (P < 0.05). The positive expression of VEGF protein in cancer tissues with lymph node metastasis was significantly higher than in the tissues without lymph node metastasis (P < 0.05).
CONCLUSION: RhoC protein may upregulate VEGF expression, thereby promoting tumor angiogenesis. RhoC mRNA and protein expression was correlated with metastasis.
Collapse
|
47
|
Madsen CD, Hooper S, Tozluoglu M, Bruckbauer A, Fletcher G, Erler JT, Bates PA, Thompson B, Sahai E. STRIPAK components determine mode of cancer cell migration and metastasis. Nat Cell Biol 2015; 17:68-80. [PMID: 25531779 PMCID: PMC5354264 DOI: 10.1038/ncb3083] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/11/2014] [Indexed: 12/15/2022]
Abstract
The contractile actomyosin cytoskeleton and its connection to the plasma membrane are critical for control of cell shape and migration. We identify three STRIPAK complex components, FAM40A, FAM40B and STRN3, as regulators of the actomyosin cortex. We show that FAM40A negatively regulates the MST3 and MST4 kinases, which promote the co-localization of the contractile actomyosin machinery with the Ezrin/Radixin/Moesin family proteins by phosphorylating the inhibitors of PPP1CB, PPP1R14A-D. Using computational modelling, in vitro cell migration assays and in vivo breast cancer metastasis assays we demonstrate that co-localization of contractile activity and actin-plasma membrane linkage reduces cell speed on planar surfaces, but favours migration in confined environments similar to those observed in vivo. We further show that FAM40B mutations found in human tumours uncouple it from PP2A and enable it to drive a contractile phenotype, which may underlie its role in human cancer.
Collapse
Affiliation(s)
- Chris D. Madsen
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Steven Hooper
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Melda Tozluoglu
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Andreas Bruckbauer
- Lymphocyte Interaction Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Georgina Fletcher
- Epithelial Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Barry Thompson
- Epithelial Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| |
Collapse
|
48
|
Nimnual AS, Taylor LJ, Nyako M, Jeng HH, Bar-Sagi D. Perturbation of cytoskeleton dynamics by the opposing effects of Rac1 and Rac1b. Small GTPases 2014; 1:89-97. [PMID: 21686260 DOI: 10.4161/sgtp.1.2.14427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 01/03/2023] Open
Abstract
Rac1, a ubiquitously expressed member of the Rho GTPase family, plays a pivotal role in the regulation of multiple cellular processes including cytoskeleton reorganization, cell growth, differentiation and motility. Here we show that the tumor-specific splice variant of Rac1, Rac1b, negatively regulates Rac1 activity. The expression of Rac1b in HeLa cells interferes with Rac1 activation by PDGF, leads to a reduction in membrane-bound Rac1 and promotes an increase in Rho activity. The antagonistic relationship between Rac1 and Rac1b perturbs the regulatory circuitry that controls actin cytoskeleton dynamics thereby leading to tumor-linked alterations in cell morphology and motility.
Collapse
Affiliation(s)
- Anjaruwee S Nimnual
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, NY USA
| | | | | | | | | |
Collapse
|
49
|
RhoC mediates invasion and migration of CaSki cells through the Rho-associated serine-threonine protein kinase 1 signaling pathway. Int J Gynecol Cancer 2014; 24:184-91. [PMID: 24457551 DOI: 10.1097/igc.0000000000000053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE The small GTPase RhoC in human cancers is up-regulated and correlated with tumor metastasis. However, the role of Rho/Rho-associated serine-threonine protein kinase 1 (ROCK1) signaling pathway in human cervical cancer is still unclear. In this study, we examine the effects of RhoC and its major downstream target, ROCK1, on the invasion and migration of CaSki cells to investigate the role of RhoC/ROCK1 signaling pathway in the progression of cervical squamous cell carcinoma. METHODS RhoC and ROCK1 protein expression in CaSki cells was detected by Western blotting. Scratch and transwell assays were carried out to assess the effects of RhoC on invasion and migration of CaSki cells. Cell viability was assayed by MTT test after adding the ROCK1 inhibitor Y-27632 to CaSki cells. RESULTS Overexpression of RhoC protein in CaSki cells significantly increases ROCK1 expression and promotes cell invasion and migration compared with the control group (P < 0.05). However, in the inhibition of ROCK1 with Y-27632 in CaSki cells when RhoC was overexpressed, the rate of invasiveness and migration was reduced remarkably (P < 0.05), dropping to comparable levels as the control. CONCLUSIONS This study suggested that the activation of RhoC/ROCK1 signaling pathways is likely involved in the progression of cervical squamous cell carcinoma.
Collapse
|
50
|
Bottino J, Gelaleti GB, Maschio LB, Jardim-Perassi BV, de Campos Zuccari DAP. Immunoexpression of ROCK-1 and MMP-9 as prognostic markers in breast cancer. Acta Histochem 2014; 116:1367-73. [PMID: 25218053 DOI: 10.1016/j.acthis.2014.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common tumor in women and it has high mortality mainly due to the occurrence of tumor metastasis. Both the processes of cell migration and anchorage to the substrate are essential for the development of metastasis. These processes occur by rearrangements of the actin cytoskeleton, regulated by Rho-associated protein kinase 1 (ROCK-1). The degradation of the extracellular matrix, influenced by metalloproteinase 9 (MMP-9) also exerts greater cell invasiveness. The present study evaluated the ROCK-1 and MMP-9 proteins using an immunohistochemical method through the selection of invasive ductal breast carcinoma. The protein expression was correlated to clinicopathological parameters and overall survival of the patients. High expression of the ROCK-1 protein was correlated statistically to the status of lymph nodes (p=0.007) and showed variable expression in different clinical stages of the tumor. MMP-9 showed a strong immunostaining in patients with metastasis that had died, whereas there was no marker in normal breast tissues. In addition, 46.6% of patients classified as poor prognosis showed high expression of ROCK-1 and MMP-9 protein and another 40.0% just showed high expression of MMP-9. Thus, the differential expression of ROCK-1 and MMP-9 proteins suggests their potential use as prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Jenifer Bottino
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil
| | - Gabriela Bottaro Gelaleti
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Larissa Bazela Maschio
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Bruna Victorasso Jardim-Perassi
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Debora Aparecida Pires de Campos Zuccari
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil.
| |
Collapse
|