1
|
Sun F, Ma Y, Li D, Yang Q, Yuan T, Liu T, Tian X, Zhu Z, Zheng W, Wang Y, Wang W. Gentiopicroside Attenuated Dopaminergic Neurodegeneration via Inhibiting Neuroinflammatory Responses and Ferroptosis in Experimental Models of Parkinson's Disease. Basic Clin Pharmacol Toxicol 2025; 136:e70036. [PMID: 40256942 DOI: 10.1111/bcpt.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/22/2025]
Abstract
Along with the hallmark of α-synuclein deposition, neuroinflammation and iron accumulation have emerged as essential pathological features for dopaminergic neuron degeneration in PD patients and animal models. Preclinical studies have highlighted gentiopicroside's anti-inflammatory activities in treating arthritis, colitis and pancreatitis, and its neuroprotective effects on neurological diseases such as AD, chronic neuropathic pain and ischemia. However, the effects and mechanisms of gentiopicroside on PD-related conditions remain uncertain. Here, we evaluated the potential benefits of gentiopicroside using a unilateral 6-OHDA rat model and a MPP+-induced cell model. Our findings indicated that gentiopicroside improved motor deficits and restored nigral TH-positive neurons in vivo. Mechanistically, gentiopicroside ameliorated inflammatory responses of 6-OHDA-induced rats, decreased NF-κB and pro-inflammatory cytokines levels and reduced Iba-1-positive microglia in the substantia nigra. Furthermore, gentiopicroside regulated the levels of DMT1 and FPN1, thereby inhibiting iron accumulation in PD rats. In vitro, gentiopicroside preserved the viability of MPP+-treated SH-SY5Y cells and suppressed NF-κB activity and its downstream factors' levels. Meanwhile, gentiopicroside inhibited lipid peroxidation and ROS production, while it upregulated the expression of GPX4 in MPP+-treated cells. And these antiferroptosis effects were also linked to iron transporters regulation. Conclusively, gentiopicroside exhibits neuroprotective effects via alleviating neuroinflammation and iron-dependent ferroptosis, offering promise for PD treatment.
Collapse
Affiliation(s)
- Fangling Sun
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yifu Ma
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Dan Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qianqian Yang
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Tingwei Yuan
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Tingting Liu
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Xin Tian
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Zixin Zhu
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wenrong Zheng
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yufeng Wang
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wen Wang
- Department of Laboratory Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
2
|
Wang TW, Zhou LL, Yuan J, Zhou WX, Wang HR, Yu TT, Zhai JC, Tang CB, Jiang W, Yu JQ, Zheng RQ, Yu HL, Shao J. Study of the relationship between iron metabolism disorders and sepsis-associated liver injury: A prospective observational study. World J Gastroenterol 2025; 31:104584. [PMID: 40248384 PMCID: PMC12001195 DOI: 10.3748/wjg.v31.i14.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/17/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Sepsis-associated liver injury (SALI) refers to secondary liver function impairment caused by sepsis, patients with SALI often have worse clinical outcomes. The early identification and assessment of the occurrence and progression of SALI are pressing issues that urgently need to be resolved. AIM To investigate the relationship between iron metabolism and SALI. METHODS In this prospective study, 139 patients were recruited, with 53 assigned to the SALI group. The relationships between SALI and various iron metabolism-related biomarkers were examined. These biomarkers included serum iron (SI), total iron-binding capacity (TIBC), serum ferritin, transferrin, and transferrin saturation. To identify independent risk factors for SALI, both univariate and multivariate logistic regression analyses were performed. Additionally, receiver operating characteristic curve analysis was utilized to assess the predictive value of these biomarkers for the occurrence of SALI. RESULTS There were no statistically significant differences in age, sex, body mass index, Sequential Organ Failure Assessment scores (excluding liver function), or APACHE II scores between the two groups of patients. Compared with the sepsis group, the SALI group presented significantly higher SI (P < 0.001), TIBC (P < 0.001), serum ferritin (P = 0.001), transferrin (P = 0.005), and transferrin saturation levels (P < 0.001). Multivariate logistic regression analysis revealed that SI (odds ratio = 1.24, 95% confidence interval: 1.11-1.40, P < 0.001) and TIBC levels (odds ratio = 1.13, 95% confidence interval: 1.05-1.21, P < 0.001) were independent predictors of SALI. Receiver operating characteristic curve analysis revealed that SI and TIBC had areas under the curve of 0.816 and 0.757, respectively, indicating moderate predictive accuracy for SALI. CONCLUSION Iron metabolism disorders are closely associated with the development of SALI, and SI and TIBC may serve as potential predictive biomarkers. The combined use of SI and TIBC has superior diagnostic efficacy for SALI. These findings provide valuable insights for the early identification and management of SALI among patients with sepsis.
Collapse
Affiliation(s)
- Tian-Wei Wang
- Department of Intensive Care Unit, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Lu-Lu Zhou
- Department of Intensive Care Unit, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Jing Yuan
- Department of Functional Examination, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Wen-Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Hao-Ran Wang
- Department of Intensive Care Unit, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Ting-Ting Yu
- Department of Intensive Care Unit, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Ji-Chao Zhai
- Department of Intensive Care Unit, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Cheng-Bin Tang
- Department of Center for Cardiac Macrovascular Disease, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Wei Jiang
- Department of Intensive Care Unit, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Jiang-Quan Yu
- Department of Intensive Care Unit, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Rui-Qiang Zheng
- Department of Intensive Care Unit, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Hai-Long Yu
- Department of Neuro Intensive Care Unit, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
- Department of Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Jun Shao
- Department of Center for Cardiac Macrovascular Disease, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| |
Collapse
|
3
|
Li X, Cheng R, Naeem M, Nie X, Wang J, Zhao L, Liu X, Shi Z, Zhang J. Sevoflurane Inhibits the Proliferation of Neural Precursor Cells and Neural Migration of Mice by Inducing Iron Metabolism Disorders. CNS Neurosci Ther 2025; 31:e70369. [PMID: 40202153 PMCID: PMC11979790 DOI: 10.1111/cns.70369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Sevoflurane (Sev) is a volatile anesthetic and inhibits the proliferation of neural precursor cells (NPCs) and neuronal migration in the embryonic brain, thereby affecting offspring's cortical development and cognitive function. METHODS Pregnant mice were treated with 2.5% Sev. In utero, plasmids with GFP were electroporated into embryonic cortical neural precursor cells. Cell proliferation and neurite growth were detected by immunofluorescence of Ki67, pH 3, BrdU, Map2, and phalloidin labeling, respectively. Ferritin, transferrin receptor1 (TfR1), and confilin were detected by western blot. RESULTS Sev inhibited the proliferation of NPCs by down-regulating the expression of pH 3 and Ki67, and also delayed the radial migration of cortical neurons. Sev impaired the multipolar-to-bipolar transition of migrating neurons by affecting Golgi orientation. Furthermore, Sev down-regulated the expression of TfR1and increased the protein levels of ferritin heavy chain (FtH) and ferritin light chain (FtL) and caused the iron accumulation in the brain. Meanwhile, Sev induced the abnormal depolymerization and polymerization of microfilaments by increasing the ratio of p-Cofilin/Cofilin and decreasing the ratio of F-actin/G-actin. Meanwhile, Sev inhibited cortical development by decreasing the neurite growth and number of branches of neurites. DFO, an iron-chelating agent, could significantly ameliorate the inhibitory effect of Sev on the proliferation of NPCs and radial migration of projection neurons. CONCLUSIONS Sev inhibited the NPCs proliferation and neuronal migration by inducing iron metabolic dysfunction. Regulating iron homeostasis could protect the cortical development of the embryo against Sev exposure during pregnancy.
Collapse
Affiliation(s)
- Xincheng Li
- Laboratory of Molecular Iron MetabolismCollege of Life Science, Hebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Runjiao Cheng
- Laboratory of Molecular Iron MetabolismCollege of Life Science, Hebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Mahammad Naeem
- Laboratory of Molecular Iron MetabolismCollege of Life Science, Hebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Xiaoou Nie
- Laboratory of Molecular Iron MetabolismCollege of Life Science, Hebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Jiaqi Wang
- Laboratory of Molecular Iron MetabolismCollege of Life Science, Hebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Liqiang Zhao
- Laboratory of Molecular Iron MetabolismCollege of Life Science, Hebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Xiaopeng Liu
- The Second Affiliated Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Zhenhua Shi
- Laboratory of Molecular Iron MetabolismCollege of Life Science, Hebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Jianhua Zhang
- Laboratory of Molecular Iron MetabolismCollege of Life Science, Hebei Normal UniversityShijiazhuangHebei ProvinceChina
| |
Collapse
|
4
|
Liu B, Dong K, Zhao Y, Wang X, Sun Z, Xie F, Qian L. Depletion of MGO or Its Derivatives Ameliorate CUMS-Induced Neuroinflammation. Cells 2025; 14:397. [PMID: 40136646 PMCID: PMC11941696 DOI: 10.3390/cells14060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Advanced glycation end products (AGEs) are a series of structurally complex and harmful compounds formed through the reaction between the carbonyl group of reducing sugars (such as glucose and fructose) and the free amino groups of proteins, lipids, or nucleic acids. Excessive accumulation of AGEs in the body can trigger oxidative stress, induce inflammatory responses, and contribute to the development of diabetes, atherosclerosis, and neurological disorders. Within the category of dicarbonyl compounds, methylglyoxal (MGO)-a byproduct resulting from glucose degradation-serves as a pivotal precursor in the formation of AGEs and the induction of neurotoxicity. Specifically, AGEs generated from MGO display significant cytotoxicity toward cells in the central nervous system. Therefore, we aimed to investigate the role of MGO-AGEs in neuroinflammation mediated by CUMS. Interestingly, we found that the overexpression of glyoxalase 1 (GLO1) reduced the levels of MGO in corticosterone-treated microglia, thereby alleviating the inflammatory response. Furthermore, overexpression of GLO1 in the hippocampus of chronically stressed mice reduced MGO levels, mitigating CUMS-induced neuroinflammation and cognitive impairment. Additionally, when using the receptor for advanced glycation end products (RAGE) inhibitor FPS-ZM1 in primary microglia cells, we observed that despite corticosterone-induced elevation of MGO, no significant inflammatory response occurred. This suggests that RAGE clearance can reduce MGO-AGE-mediated neurotoxicity. Subsequently, we used FPS-ZM1 to treat chronically stressed mice and found that it significantly ameliorated neuroinflammation and cognitive dysfunction. These results suggest that targeting MGO metabolism could serve as a therapeutic approach to manage neuroinflammation in stress-related mental disorders.
Collapse
Affiliation(s)
- Bing Liu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Ke Dong
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
- School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Xue Wang
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Lingjia Qian
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| |
Collapse
|
5
|
da Costa Caiado MJ, Dolga AM, den Dunnen WFA. Iron(ing) out parkinsonisms: The interplay of proteinopathy and ferroptosis in Parkinson's disease and tau-related parkinsonisms. Redox Biol 2025; 79:103478. [PMID: 39721496 PMCID: PMC11732237 DOI: 10.1016/j.redox.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Parkinsonian syndromes are characterised by similar motor-related symptomology resulting from dopaminergic neuron damage. While Parkinson's disease (PD) is the most prevalent parkinsonism, we also focus on two other variants, Progressive supranuclear palsy (PSP) and Corticobasal degeneration (CBD). Due to the clinical similarities of these parkinsonisms, and since definite diagnoses are only possible post-mortem, effective therapies and novel biomarkers of disease are scarce. Thus, we explore the current findings relating to the relationship of parkinsonism proteinopathy (α-synuclein in PD, and tau in PSP/CBD) paralleled to a specific form of cell death, ferroptosis. Ferroptosis is characterised by iron-induced lipid peroxidation and several markers of this pathway have been identified to control intracellular iron fluctuations. However, in parkinsonism, these mechanisms are thought to become dysfunctional. Although both proteinopathies have been linked to ferroptosis, much less is known about ferroptotic cell death and tau in the context of PSP/CBD. Interestingly, clinical trials targeting iron have recently shown conflicting results which begs to question the complexity of the ferroptotic pathway and alludes to the need for exploring other ferroptosis-related machinery as possible therapeutic targets. Overall, we address the literature gap in parkinsonism proteinopathy and ferroptosis, and its relevance to understanding disease pathophysiology and aetiology.
Collapse
Affiliation(s)
- Maria João da Costa Caiado
- Graduate School of Medical Sciences (GSMS) and Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, 9713 GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands.
| | - Amalia M Dolga
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
6
|
Huang S, Li W, Wang D, Feng H, Wang B, Dong X, Zhao W, Liu D, Wang Y. Maternal exposure to deltamethrin during pregnancy and lactation impairs hippocampal learning and memory function of male offspring by ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117729. [PMID: 39818137 DOI: 10.1016/j.ecoenv.2025.117729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Deltamethrin (DM), a broad-spectrum insecticide, is widely used in the world. It can exert direct action on the central nervous system to produce neurotoxicity. Exposure to DM can lead to iron metabolism disorder, oxidative stress and learning and memory dysfunction. In our study, pregnant Wistar rats were randomly divided into four groups and gavaged at doses of 0, 1, 4 or 10 mg/kg/d DM from gestational day (GD) 0 to postnatal day (PND) 21. We used behavioral experiments and Nissl staining to observe the hippocampal development and learning and memory function of male offspring. In order to further confirm the regulation mechanisms of DM, we detected ferrous ion, oxidative stress, ferroptosis related proteins, phospholipase C (PL-C)/inositol triphosphate 3 receptor (IP3R) signaling pathway, intracellular Ca2+ and calcineurin (CaN) content in vivo. In vitro,we selected HT-22 cells to be exposed to DM under the intervention of ferrostatin-1 and pifithrin-α. Our results showed that maternal exposure to DM reduced T-maze correctness and the number of hippocampal neurons, and increased shuttle box passive avoidance rate. Moreover, maternal exposure to DM increased the expression of ferrous ion, malondialdehyde (MDA) and prostaglandin-endoperoxide synthase 2 (PTGS2) protein, and decreased the glutathione (GSH) level in the hippocampus, which was contributed to ferroptosis by p53-mediated solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) axis in the male offspring. Furthermore, the ferroptosis caused by DM exposure could active PL-C/IP3R signaling pathway and increase the intracellular Ca2+ and CaN level, leading to an imbalance of calcium homeostasis in the hippocampus. Thus, maternal exposure to DM during pregnancy and lactation could impair hippocampal learning and memory function of male offspring by p53-mediated ferroptosis.
Collapse
Affiliation(s)
- Shasha Huang
- Yongchuan Center for Disease Control and Prevention, Chongqing, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Wanqi Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China; Tai'an Center for Disease Control and Prevention, Shandong, China
| | - Dengke Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Huiwen Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Bo Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Xinyu Dong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Wei Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- NHC Key Laboratory of Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Qin Q, Wang D, Qu Y, Li J, An K, Mao Z, Li J, Xiong Y, Min Z, Xue Z. Enhanced glycolysis-derived lactate promotes microglial activation in Parkinson's disease via histone lactylation. NPJ Parkinsons Dis 2025; 11:3. [PMID: 39753581 PMCID: PMC11698869 DOI: 10.1038/s41531-024-00858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice. Notably, we observed a marked increase in histone lactylation, particularly H3K9 lactylation, in microglia in the substantia nigra of PD mice. Mechanistically, CUT&Tag and Chip-qPCR analyses revealed that H3K9 lactylation enriched at the SLC7A11promoter and activated its expression. Importantly, inhibiting SLC7A11 by sulfasalazine mitigated microglia-mediated neuroinflammation and improved motor function in PD mice. Moreover, we found that lactate-induce histone lactylation is dependent on P300/CBP. Collectively, our findings demonstrate that glycolysis-derived lactate promotes microglial activation via histone lactylation and provide a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke An
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Cheng J, Dong X, Yang Y, Qin X, Zhou X, Zhang D. Synergistic machine learning models utilizing ferroptosis-related genes for improved neuroblastoma outcome prediction. Transl Pediatr 2024; 13:2164-2182. [PMID: 39822999 PMCID: PMC11732634 DOI: 10.21037/tp-24-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Background Neuroblastoma (NB) is a highly heterogeneous and common pediatric malignancy with a poor prognosis. Ferroptosis, an iron-dependent cell death pathway, may play a crucial role in NB tumor progression and immune response. This study aimed to investigate ferroptosis in NB to identify potential therapeutic targets and develop predictive models for prognosis and recurrence. Methods Six datasets were accessed from the ArrayExpress database and Gene Expression Omnibus. Ferroptosis-related genes (FRGs) were selected from the FerrDb website. Unsupervised clustering, differential expression analysis, weighted correlation network analysis (WGCNA), and gene set enrichment analysis (GSEA) were adopted to investigate potential pathways associated with ferroptosis in NB and identify the key genes involved. We used the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression to develop the ferroptosis-related prognostic signatures (FRPS) while using machine learning (ML) algorithms to construct the recurrence model. Results Ribosome and cell cycle may be the potential pathways for ferroptosis involved in NB, with MYCN and RRM2 identified as key genes in this regulatory process. Five FRGs-ATG7 (-1.009), ELAVL1 (1.739), PPARA (0.493), RDX6 (1.457), and TERT (0.247)-were screed out for the FRPS, which showed excellent predictive performance in comparison with other published NB signatures. Eight FRGs-ALDH3A2 (48.597), TERT (23.398), ULK2 (21.034), AKR1C1 (20.699), MFN2 (12.575), SLC16A1 (12.342), TF (10.240), and DDR2 (7.598)-were selected based on the importance scores to construct the recurrence model. Among the models, utilizing random forest (RF), XGboost, support vector machine (SVM), K-nearest neighbors (KNN), and linear discriminant analysis (LDA), the RF model exhibited the highest performance. Conclusions We investigated the potential ferroptosis-related pathways and hub- FRGs in NB and developed prognosis and recurrence models, providing new potential targets for prognostic evaluation and treatment in NB patients.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Dong
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohan Qin
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Zhou
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Da Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Zhu Q, Zhai J, Chen Z, Guo Z, Sun X, Li J, Wang N, Yao X, Zhang C, Deng H, Wang S, Yang G. DEHP regulates ferritinophagy to promote testicular ferroptosis via suppressing SIRT1/PGC-1α pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176497. [PMID: 39326761 DOI: 10.1016/j.scitotenv.2024.176497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
To increase elasticity and flexibility, di-2-ethylhexyl phthalate (DEHP) is used in a variety of industrial products, but excessive exposure to it can pose a threat to human health. In epidemiological studies of population exposure to DEHP, attention has been paid to damage to the male reproductive system. However, the toxicological mechanism of DEHP regarding testicular injury is not well understood. We used Western blot analysis, transmission electron microscopy, fluorescence staining, transient transfection and assay kit to detect relevant indicators, and the results were as follows: After DEHP exposure, the expression levels of ACSL4, COX2, TF, FTH1, LC3, AMPK, p-AMPK, ULK1, p-ULK1, serum iron, tissue iron and MDA in the exposure group were significantly increased. The expression levels of GPX4, NCOA4, p62, SIRT1, and PGC-1α, as well as the contents of GSH and ATP, decreased. Electron microscopy showed that more autophagosomes were observed. Our findings suggest that exposure to DEHP induced ferritinophagy and ferroptosis in the testis. In vitro, the promoting effect of ferritinophagy on ferroptosis was verified by applying the autophagy inhibitor (3-MA) and si-NCOA4. Moreover, Mono-(2-ethylhexyl) phthalate (MEHP) inhibited the mitochondrial regulatory protein SIRT1/PGC-1α, leading to mitochondrial dysfunction. Changes in mitochondrial reactive oxygen species (MtROS) and energy over-activated AMPK/ULK1 autophagy pathway, and then promoted ferritinophagy, which increased the sensitivity of TM4 cells to ferroptosis. This research offers a theoretical framework for the prevention and management of DEHP-induced harm.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
10
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
11
|
Liu B, Dong K, Chen X, Dong H, Zhao Y, Wang X, Sun Z, Xie F, Qian L. Inhibition of Glycolysis Alleviates Chronic Unpredictable Mild Stress Induced Neuroinflammation and Depression-like Behavior. Brain Sci 2024; 14:1098. [PMID: 39595861 PMCID: PMC11591872 DOI: 10.3390/brainsci14111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Growing evidence suggests that glucose metabolism plays a crucial role in activated immune cells, significantly contributing to the occurrence and development of neuroinflammation and depression-like behaviors. Chronic stress has been reported to induce microglia activation and disturbances in glucose metabolism in the hippocampus. AIMS This study aims to investigate how chronic stress-mediated glycolysis promotes neuroinflammation and to assess the therapeutic potential of the glycolysis inhibitor, 2-deoxy-D-glucose (2-DG), in a model of chronic stress-induced neuroinflammation and depression-like behavior. METHODS In in vitro studies, we first explored the effects of 2-DG on the inflammatory response of microglia cells. The results showed that corticosterone (Cort) induced reactive oxygen species (ROS) production, increased glycolysis, and promoted the release of inflammatory mediators. However, these effects were reversed by intervention with 2-DG. Subsequently, we examined changes in depression-like behavior and hippocampal glycolysis in mice during chronic stress. The results indicated that chronic stress led to prolonged escape latency in the Morris water maze, increased platform-crossing frequency, reduced sucrose preference index, and extended immobility time in the forced swim test, all of which are indicative of depression-like behavior in mice. Additionally, we found that the expression of the key glycolytic enzyme hexokinase 2 (HK2) was upregulated in the hippocampus of stressed mice, along with an increased release of inflammatory factors. Further in vivo experiments investigated the effects of 2-DG on glycolysis and pro-inflammatory mediator production, as well as the therapeutic effects of 2-DG on chronic stress-induced depression-like behavior in mice. The results showed that 2-DG alleviated chronic stress-induced depression-like behaviors, such as improving escape latency and platform-crossing frequency in the Morris water maze, and increasing the time spent in the center of the open field. Additionally, 2-DG intervention reduced the level of glycolysis in the hippocampus and decreased the release of pro-inflammatory mediators. CONCLUSIONS These findings suggest that 2-DG can mitigate neuroinflammation and depressive behaviors by inhibiting glycolysis and inflammatory responses. Overall, our results highlight the potential of 2-DG as a therapeutic agent for alleviating chronic stress-induced neuroinflammation through the regulation of glycolysis.
Collapse
Affiliation(s)
- Bing Liu
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Ke Dong
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
- School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Xiaobing Chen
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Huafeng Dong
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Xue Wang
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Lingjia Qian
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| |
Collapse
|
12
|
Zhang J, Liu J, Li Y, Zhang X, Yang C. Regulatory Role and Molecular Mechanism of Mammalian Sterile 20-Like Kinase 1 in 1-Methyl-4-Phenylpyridinium Ion-Induced Parkinson's Disease Cell Model. Rejuvenation Res 2024; 27:154-162. [PMID: 39003528 DOI: 10.1089/rej.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial degenerative disease in the elder. Given the involvement of mammalian sterile 20-like kinase 1 (MST1) in PD, this article was to illustrate the mechanism of MST1 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced PD cell model. Cells were treated with different concentrations of MPP+ to establish a PD cell model. Reverse transcription-quantitative polymerase chain reaction and Western blot revealed that MST1 expression and iron ion concentration increased, but cellular viability decreased with MPP+ concentration. Inhibition of MST1 decreased ferroptosis; increased cellular viability, iron ion content, and levels of glutathione peroxidase 4; and decreased reactive oxygen species and lactate dehydrogenase release. Upregulation of ferroptosis levels using ferroptosis agonist Erastin reduced the protective effect of MST1 inhibition on PD cells. Mechanistically, dual-luciferase analysis identified that miR-23b-3p targeted MST1 and inhibited its expression. Overexpression of miR-23b-3p inhibited MST1 levels, thereby reducing cellular ferroptosis and attenuating MPP+-induced cell injury. Collectively, MST1 expression increased with increasing MPP+ concentration, and miR-23b-3p targeted MST1 to reduce ferroptosis and MPP+-induced cell injury.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurology, Jingmen People's Hospital, Jingmen, China
| | - Jie Liu
- Department of Neurology, Jingmen People's Hospital, Jingmen, China
| | - Yongle Li
- Department of Neurology, Jingmen People's Hospital, Jingmen, China
| | - Xuexian Zhang
- Department of Neurology, Jingmen People's Hospital, Jingmen, China
| | - Chunxiang Yang
- Department of Neurology, Jingmen People's Hospital, Jingmen, China
| |
Collapse
|
13
|
Zhang B, Chen K, Dai Y, Luo X, Xiong Z, Zhang W, Huang X, So KF, Zhang L. Human α-synuclein aggregation activates ferroptosis leading to parvalbumin interneuron degeneration and motor learning impairment. Commun Biol 2024; 7:1227. [PMID: 39349708 PMCID: PMC11443099 DOI: 10.1038/s42003-024-06896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
The accumulation of α-synuclein induces neuronal loss in midbrain nuclei and leads to the disruption of motor circuits, while the pathology of α-synuclein in cortical regions remains elusive. To better characterize cortical synucleinopathy, here we generate a mouse model with the overexpression of human α-synuclein in the primary motor cortex (M1) of mice. A combination of molecular, in vivo recording, and behavioral approaches reveal that cortical expression of human α-synuclein results in the overexcitation of cortical pyramidal neurons (PNs), which are regulated by the decreased inhibitory inputs from parvalbumin-interneurons (PV-INs) to impair complex motor skill learning. Further mechanistic dissections reveal that human α-synuclein aggregation activates ferroptosis, contributing to PV-IN degeneration and motor circuit dysfunction. Taken together, the current study adds more knowledge to the emerging role and pathogenic mechanism of ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Borui Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
| | - Kai Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
| | - Yelin Dai
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
| | - Xi Luo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
| | - Ziwei Xiong
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
| | - Weijia Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
| | - Xiaodan Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, P. R. China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, P. R. China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
14
|
Zhu Q, Zhai J, Chen Z, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. Ferritinophagy: Molecular mechanisms and role in disease. Pathol Res Pract 2024; 262:155553. [PMID: 39180800 DOI: 10.1016/j.prp.2024.155553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Ferritinophagy is a regulatory pathway of iron homeostasis. It is a process in which nuclear receptor coactivator 4 (NCOA4) carries ferritin to autophagolysosomes for degradation. After ferritin is degraded by autophagy, iron ions are released, which promotes the labile iron pool (LIP) to drive the Fenton reaction to cause lipid peroxidation. Furthermore, ferroptosis promoted by the accumulation of lipid reactive oxygen species (ROS) induced by ferritinophagy can cause a variety of systemic diseases. In clinical studies, targeting the genes regulating ferritinophagy can prevent and treat such diseases. This article describes the key regulatory factors of ferritinophagy and the mechanism of ferritinophagy involved in ferroptosis. It also reviews the damage of ferritinophagy to the body, providing a theoretical basis for further finding clinical treatment methods.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
15
|
Chen M, Chen S, Liu K, Ye Z, Qian Y, He J, Xia J, Xing P, Yang J, Wa Ng Y, Wu T. Putative Adverse Outcome Pathway for Parkinson's Disease-like Symptoms Induced by Silicon Quantum Dots based on In Vivo/ Vitro Approaches. ACS NANO 2024; 18:25271-25289. [PMID: 39186478 DOI: 10.1021/acsnano.4c08516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Given the commercial proliferation of silicon quantum dots (SiQDs) and their inevitable environmental dispersal, this study critically examines their biological and public health implications, specifically regarding Parkinson's disease. The study investigated the toxicological impact of SiQDs on the onset and development of PD-like symptoms through the induction of ferroptosis, utilizing both in vivo [Caenorhabditis elegans (C. elegans)] and in vitro (SH-SY5Y neuroblastoma cell line) models. Our findings demonstrated that SiQDs, characterized by their stable and water-soluble physicochemical properties, tended to accumulate in neuronal tissues. This accumulation precipitated dopaminergic neurodegeneration, manifested as diminished dopamine-dependent behaviors, and escalated the expression of PD-specific genes in C. elegans. Importantly, the results revealed that SiQDs induced ferritinophagy, a selective autophagy pathway that triggered ferroptosis and resulted in PD-like symptoms, even exacerbating disease progression in biological models. These insights were incorporated into a putatively qualitative and quantitative adverse outcome pathway framework, highlighting the serious neurodegenerative risks posed by SiQDs through ferroptosis pathways. This study provides a multidisciplinary analysis critical for informing policy on the regulation of SiQDs exposure to safeguard susceptible populations and guiding the responsible development of nanotechnologies impacting environmental and public health.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
- Yancheng Kindergarten Teachers College, Yancheng 224005, P. R. China
| | - Siyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Kehan Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Zongjian Ye
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yijing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jing He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jieyi Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Pengcheng Xing
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jiafu Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yán Wa Ng
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, P. R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| |
Collapse
|
16
|
Meng X, Liu J, Kang J, Wang M, Guan Z, Tian D, Chen X. Lamivudine protects mice from gastric ulcer by activating PGK1 to suppress ferroptosis. Biochem Pharmacol 2024; 227:116440. [PMID: 39029631 DOI: 10.1016/j.bcp.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Gastric ulcer is a highly prevalent digestive tract disease across the world, which is recurrent and hard to cure, sometimes transforming into gastric cancer if left untreated, posing great threat to human health. To develop new medicines for gastric ulcer, we ran a series of screens with ethanol stress model in GES-1 cells, and we uncovered that lamivudine rescued cells from ethanol toxicity. Then, we confirmed this discovery using the well-established ethanol-induced gastric ulcer model in mice and our findings suggest that lamivudine can directly activate phosphoglycerate kinase 1 (PGK1, EC 2.7.2.3), which binds and stimulates superoxide dismutase 1 (SOD1, EC 1.15.1.1) to inhibit ferroptosis and ultimately improve gastric ulcer. Moreover, AAV-PGK1 exhibited comparable gastroprotective effects to lamivudine. The findings are expected to offer novel therapeutic strategies for gastric ulcer, encompassing both lamivudine and AAV-PGK1.
Collapse
Affiliation(s)
- Xinrui Meng
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Jingjing Liu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Jia Kang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Menghan Wang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Zhanghui Guan
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Dong Tian
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Xinping Chen
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China.
| |
Collapse
|
17
|
Wang H, Mao W, Zhang Y, Feng W, Bai B, Ji B, Chen J, Cheng B, Yan F. NOX1 triggers ferroptosis and ferritinophagy, contributes to Parkinson's disease. Free Radic Biol Med 2024; 222:331-343. [PMID: 38876456 DOI: 10.1016/j.freeradbiomed.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The progressive loss of dopaminergic neurons in the midbrain is the hallmark of Parkinson's disease (PD). A newly emerging form of lytic cell death, ferroptosis, has been implicated in PD. However, it remains unclear in terms of PD-associated ferroptosis underlying causative genes and effective therapeutic approaches. This research explored the underlying mechanism of ferroptosis-related genes in PD. Here, Firstly, we found NOX1 associated with ferroptosis differently in PD patients by bioinformatics analysis. In vitro and in vivo models of PD were constructed to explore the underlying mechanism. qPCR, Western blot analysis, immunohistochemistry, immunofluorescence, Ferro orange, and BODIPY C11 were utilized to analyze the levels of ferroptosis. Transcriptomics sequencing was to investigate the downstream pathway and the analysis of immunoprecipitation to validate the upstream factor. In conclusion, NOX1 upregulation and activation of ferroptosis-related neurodegeneration, therefore, might be useful as a clinical therapeutic agent.
Collapse
Affiliation(s)
- Huiqing Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wenwei Mao
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Yuhan Zhang
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Wenhui Feng
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Bo Bai
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Bingyuan Ji
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, People's Republic of China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, 272067, Jining, People's Republic of China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067, Jining, People's Republic of China; College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China.
| | - Fuling Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
18
|
Fu M, Wang Q, Gao L, Yuan X, Wang J. Antimicrobial drugs for Parkinson's disease: Existing therapeutic strategies and novel drugs exploration. Ageing Res Rev 2024; 99:102387. [PMID: 38942200 DOI: 10.1016/j.arr.2024.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 06/30/2024]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by loss of dopaminergic neurons in the substantia nigra, as well as the abnormal accumulation of misfolded α-synuclein. Clinically, PD is featured by typical motor symptoms and some non-motor symptoms. Up to now, although considerable progress has been made in understanding the pathogenesis of PD, there is still no effective therapeutic treatment for the disease. Thus, exploring new therapeutic strategies has been a topic that needs to be addressed urgently. Noteworthy, with the proposal of the microbiota-gut-brain axis theory, antimicrobial drugs have received significant attention due to their effects on regulating the intestinal microbiota. Nowadays, there is growing evidence showing that some antimicrobial drugs may be promising drugs for the treatment of PD. Data from pre-clinical and clinical studies have shown that some antimicrobial drugs may play neuroprotective roles in PD by modulating multiple biochemical and molecular pathways, including reducing α-synuclein aggregation, inhibiting neuroinflammation, regulating mitochondrial structure and function, as well as suppressing oxidative stress. In this paper, we summarized the effects of some antimicrobial drugs on PD treatment from recent pre-clinical and clinical studies. Then, we further discussed the potential of a few antimicrobial drugs for treating PD based on molecular docking and molecular dynamics simulation. Importantly, we highlighted the potential of clorobiocin as the therapeutic strategy for PD owing to its ability to inhibit α-synuclein aggregation. These results will help us to better understand the potential of antimicrobial drugs in treating PD and how antimicrobial drugs may alleviate or reverse the pathological symptoms of PD.
Collapse
Affiliation(s)
- Mengjie Fu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qiuchen Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Lihui Gao
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xin Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
19
|
Zhang Y, Xie J. Ferroptosis implication in environmental-induced neurotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172618. [PMID: 38663589 DOI: 10.1016/j.scitotenv.2024.172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Neurotoxicity, stemming from exposure to various chemical, biological, and physical agents, poses a substantial threat to the intricate network of the human nervous system. This article explores the implications of ferroptosis, a regulated form of programmed cell death characterized by iron-dependent lipid peroxidation, in environmental-induced neurotoxicity. While apoptosis has historically been recognized as a primary mechanism in neurotoxic events, recent evidence suggests the involvement of additional pathways, including ferroptosis. The study aims to conduct a comprehensive review of the existing literature on ferroptosis induced by environmental neurotoxicity across diverse agents such as natural toxins, insecticides, particulate matter, acrylamide, nanoparticles, plastic materials, metal overload, viral infections, anesthetics, chemotherapy, and radiation. The primary objective is to elucidate the diverse mechanisms through which these agents trigger ferroptosis, leading to neuronal cell death. Furthermore, the article explores potential preventive or therapeutic strategies that could mitigate ferroptosis, offering insights into protective measures against neurological damage induced by environmental stressors. This comprehensive review contributes to our evolving understanding of neurotoxicological processes, highlighting ferroptosis as a significant contributor to neuronal cell demise induced by environmental exposures. The insights gained from this study may pave the way for the development of targeted interventions to protect against ferroptosis-mediated neurotoxicity and ultimately safeguard public health.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
20
|
Asuku AO, Ayinla MT, Olajide TS, Oyerinde TO, Yusuf JA, Bayo-Olugbami AA, Fajemidagba GA. Coffee and Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2024; 289:1-19. [PMID: 39168575 DOI: 10.1016/bs.pbr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease marked by dopaminergic neuronal loss and misfolded alpha-synuclein (α-syn) accumulation, which results in both motor and cognitive symptoms. Its occurrence grows with age, with a larger prevalence among males. Despite substantial study, effective medicines to reduce or stop the progression of diseases remain elusive. Interest has grown in examining dietary components, such as caffeine present in coffee, for potential medicinal effects. Epidemiological studies imply a lower incidence of PD with coffee drinking, attributable to caffeine's neuroprotective abilities. Beyond caffeine, coffee constituent like chlorogenic acid and cafestol have anti-Parkinsonian benefits. Moreover, coffee use has been related with variations in gut microbiota composition, which may reduce intestinal inflammation and prevent protein misfolding in enteric nerves, perhaps through the microbiota-gut-brain axis. This review gives a summary of the neuroprotective effects of coffee, investigating both its motor and non-motor advantages in individuals with PD as well as in experimental models of PD. We reviewed some bioactive constituents of coffee, their respective interactions with misfolded α-syn accumulation, and its emerging mechanisms associated to the gut microbiome.
Collapse
Affiliation(s)
- Abraham Olufemi Asuku
- Bioresources Development Centre, National Biotechnology Research and Development Agency, Ogbomoso, Oyo, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara, Nigeria.
| | - Maryam Tayo Ayinla
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara, Nigeria
| | - Tobiloba Samuel Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Toheeb O Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Joshua Ayodele Yusuf
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | | | | |
Collapse
|
21
|
Kong L, Wang Y, Tong Z, Dai R, Yusuf A, Du L, Liu B, Huang Z, Hu L. Granulathiazole A protects 6-OHDA-induced Parkinson's disease from ferroptosis via activating Nrf2/HO-1 pathway. Bioorg Chem 2024; 147:107399. [PMID: 38678778 DOI: 10.1016/j.bioorg.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Two pairs of enantiomers (1a-2b), namely (±)-alterpyrone F and (±)-alterpyrone G, along with a rare benzothiazole meroterpenoid granulathiazole A (3, GA), and two undescribed compounds called respectively granulahydeoate (4) and granulaone (5), were obtained from the co-cultivation of Alternaria brassicicola and Penicillium sp. HUBU0120. Exhaustive analyses of NMR, single crystal XRD, Mo2(OAc)4-induced circular dichroism data, and a modified Mosher's method distinguished the absolute configurations of isolates. Bioactive evaluations exhibited that GA possessed promising anti-PD activity in both in vitro and in vivo PD models viz. 6-OHDA-induced SH-SY5Y cells and 6-OHDA-induced zebrafish, respectively. Moreover, our research demonstrated that ferroptosis activated by 6-OHDA was mitigated in PD models after treated with GA. Extensive molecular mechanism studies in PD-modelled cells manifested that GA attenuated the decreased expressions of SLC7A11, GPX4, and FSP-1, and the increased level of ACSL4 via activating Nrf2/HO-1 pathway as well as ameliorated the accumulation of α-synuclein.
Collapse
Affiliation(s)
- Luqi Kong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yilan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhou Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Rongrong Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Abdulla Yusuf
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844000, China.
| | - Lifen Du
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan 430033, China.
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Linzhen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844000, China.
| |
Collapse
|
22
|
Wang D, Wu Y, Zhou X, Liang C, Ma Y, Yuan Q, Wu Z, Hao X, Zhu X, Li X, Shi J, Chen J, Fan H. Cadmium exposure induced neuronal ferroptosis and cognitive deficits via the mtROS-ferritinophagy pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123958. [PMID: 38621452 DOI: 10.1016/j.envpol.2024.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Exposure to environmental cadmium (Cd) is known to cause neuronal death and cognitive decline in humans. Ferroptosis, a novel iron-dependent type of regulated cell death, is involved in various neurological disorders. In the present study, Cd exposure triggered ferroptosis in the mouse hippocampus and in the HT22 murine hippocampal neuronal cell line, as indicated by significant increases in ferroptotic marker expression, intracellular iron levels, and lipid peroxidation. Interestingly, ferroptosis of hippocampal neurons in response to Cd exposure relied on the induction of autophagy since the suppression of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) substantially ameliorated Cd-induced ferroptosis. Furthermore, nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin was required for the Cd-induced ferroptosis of hippocampal neurons, demonstrating that NCOA4 knockdown decreased intracellular iron levels and lipid peroxidation and increased cell survival, following Cd exposure. Moreover, Cd-induced mitochondrial reactive oxygen species (mtROS) generation was essential for the ferritinophagy-mediated ferroptosis of hippocampal neurons. Importantly, pretreatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated Cd-induced hippocampal neuronal death and cognitive impairment in mice. Taken together, these findings indicate that ferroptosis is a novel mechanism underlying Cd-induced neurotoxicity and cognitive impairment and that the mtROS-ferritinophagy axis modulates Cd-induced neuronal ferroptosis.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yiran Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiang Zhou
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Quan Yuan
- Henan Province Rongkang Hospital, Luoyang, China
| | - Ziyue Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xinyu Li
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Shi
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
23
|
Shen J, Chen S, Li X, Wu L, Mao X, Jiang J, Zhu D. Salidroside Mediated the Nrf2/GPX4 Pathway to Attenuates Ferroptosis in Parkinson's Disease. Neurochem Res 2024; 49:1291-1305. [PMID: 38424396 PMCID: PMC10991011 DOI: 10.1007/s11064-024-04116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Parkinson's Disease (PD) is characterized by the loss of dopaminergic neurons, with ferroptosis playing a significant role. Salidroside (SAL) has shown neuroprotective potential, this study aims to explore its capacity to mitigate ferroptosis in PD, focusing on the modulation of the Nuclear Factor E2-Related Factor 2 (Nrf2)/ Glutathione Peroxidase 4 (GPX4) pathway. Male C57BL/6 mice were subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD-like symptoms, followed by SAL and Nrf2 inhibitor administration. Then behavioral tests, immunohistochemical staining, transmission electron microscopy, and Western blot analysis were conducted to assess motor functions, pathological changes, ferroptosis, and related protein expressions. In vitro, SH-SY5Y cells were treated with erastin to induce ferroptosis to assess the protective effects of SAL. Additionally, A53T-α-synuclein (α-syn) was used to stimulate the PD model, SAL and a Nrf2 inhibitor (ML385) was utilized to elucidate the role of the Nrf2/GPX4 pathway in mitigating ferroptosis in PD. In vivo, SAL significantly improved motor functions and reduced the expression of α-syn, while increasing tyrosine hydroxylase (TH) expression of PD mice. Additionally, SAL treatment notably enhanced the levels of antioxidants and reduced MDA and iron content in the substantia nigra of PD mice. In vitro, SAL treatment increased the TH, GPX4, Nrf2 expression, and mitochondrial membrane potential whereas alleviated ferroptosis through the Nrf2/GPX4 pathway, as evidenced in erastin-induced and α-syn overexpressing SH-SY5Y cells. While these effects were reversed upon Nrf2 inhibition. SAL demonstrates significant potential in mitigating PD pathology and ferroptosis, positioning the Nrf2/GPX4 pathway as a promising therapeutic target. However, future studies should focus on the long-term effects of SAL, its pharmacokinetics, addressing the multifactorial nature of PD pathogenesis.
Collapse
Affiliation(s)
- Jun Shen
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China.
| | - Shasha Chen
- Department of Medical Geriatrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xin Li
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China
| | - Lele Wu
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China
| | - Xue Mao
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China
| | - Jingjie Jiang
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China
| | - Dabu Zhu
- Department of Pharmacy, Hangzhou Linping District First People's Hospital, Hangzhou, 311199, Zhejiang, China
| |
Collapse
|
24
|
Carneiro P, Ferreira M, Marisa Costa V, Carvalho F, Capela JP. Protective effects of amphetamine and methylphenidate against dopaminergic neurotoxicants in SH-SY5Y cells. Curr Res Toxicol 2024; 6:100165. [PMID: 38562456 PMCID: PMC10982568 DOI: 10.1016/j.crtox.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Full treatment of the second most common neurodegenerative disorder, Parkinson's disease (PD), is still considered an unmet need. As the psychostimulants, amphetamine (AMPH) and methylphenidate (MPH), were shown to be neuroprotective against stroke and other neuronal injury diseases, this study aimed to evaluate their neuroprotective potential against two dopaminergic neurotoxicants, 6-hydroxydopamine (6-OHDA) and paraquat (PQ), in differentiated human dopaminergic SH-SY5Y cells. Neither cytotoxicity nor mitochondrial membrane potential changes were seen following a 24-hour exposure to either therapeutic concentration of AMPH or MPH (0.001-10 μM). On the other hand, a 24-hour exposure to 6-OHDA (31.25-500 μM) or PQ (100-5000 μM) induced concentration-dependent mitochondrial dysfunction, assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and lysosomal damage, evaluated by the neutral red uptake assay. The lethal concentrations 25 and 50 retrieved from the concentration-toxicity curves in the MTT assay were 99.9 µM and 133.6 µM for 6-OHDA, or 422 µM and 585.8 µM for PQ. Both toxicants caused mitochondrial membrane potential depolarization, but only 6-OHDA increased reactive oxygen species (ROS). Most importantly, PQ-induced toxicity was partially prevented by 1 μM of AMPH or MPH. Nonetheless, neither AMPH nor MPH could prevent 6-OHDA toxicity in this experimental model. According to these findings, AMPH and MPH may provide some neuroprotection against PQ-induced neurotoxicity, but further investigation is required to determine the exact mechanism underlying this protection.
Collapse
Affiliation(s)
- Patrícia Carneiro
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Mariana Ferreira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - João Paulo Capela
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| |
Collapse
|
25
|
Xiao Z, Wang X, Pan X, Xie J, Xu H. Mitochondrial iron dyshomeostasis and its potential as a therapeutic target for Parkinson's disease. Exp Neurol 2024; 372:114614. [PMID: 38007207 DOI: 10.1016/j.expneurol.2023.114614] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Abnormal iron accumulation has been implicated in the etiology of Parkinson's disease (PD). Understanding how iron damages dopaminergic neurons in the substantia nigra (SN) of PD is particularly important for developing targeted neurotherapeutic strategies for the disease. However, it is still not fully understood how excess iron contributes to the neurodegeneration of dopaminergic neurons in PD. There has been increased attention on mitochondrial iron dyshomeostasis, iron-induced mitochondrial dysfunction and ferroptosis in PD. Therefore, this review begins with a brief introduction to describe cellular iron metabolism and the dysregulation of iron metabolism in PD. Then we provide an update on how iron is delivered to mitochondria and induces the damage of dopaminergic neurons in PD. In addition, we also summarize new research progress on iron-dependent ferroptosis in PD and mitochondria-localized proteins involved in ferroptosis. This will provide new insight into potential therapeutic strategies targeting mitochondrial iron dysfunction.
Collapse
Affiliation(s)
- Zhixin Xiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xiaoya Wang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xuening Pan
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
26
|
Liu T, Wu H, Wei J. The Construction and Validation of a Novel Ferroptosis-Related Gene Signature in Parkinson's Disease. Int J Mol Sci 2023; 24:17203. [PMID: 38139032 PMCID: PMC10742934 DOI: 10.3390/ijms242417203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
As a newly discovered regulated cell death mode, ferroptosis is associated with the development of Parkinson's disease (PD) and has attracted much attention. Nonetheless, the relationship between ferroptosis and PD pathogenesis remains unclear. The GSE8397 dataset includes GPL96 and GPL97 platforms. The differential genes were analyzed by immune infiltration and Gene Set Enrichment Analysis (GSEA) (p < 0.05), and differential multiple |logFC| > 1 and weighted gene coexpression network analysis (WGCNA) were used to screen differential expression genes (DEGs). The intersection with 368 ferroptosis-related genes (FRGs) was conducted for gene ontology/Kyoto encyclopedia of gene and genome (GO/KEGG) enrichment analysis, gene expression analysis, correlation analysis, single-cell sequencing analysis, and prognosis analysis (area under the curve, AUC) and to predict relevant miRNAs and construct network diagrams using Cytoscape. The intersection genes of differentially expressed ferroptosis-related genes (DEFRGs) and mitochondrial dysfunction genes were validated in the substantia nigra of MPTP-induced PD mice models by Western blotting and immunohistochemistry, and the protein-binding pocket was predicted using the DoGSiteScorer database. According to the results, the estimated scores were positively correlated with the stromal scores or immune scores in the GPL96 and GPL97 platforms. In the GPL96 platform, the GSEA showed that differential genes were mainly involved in the GnRH signaling pathway, B cell receptor signaling pathway, inositol phosphate metabolism, etc. In the GPL97 platform, the GSEA showed that differential genes were mainly involved in the ubiquitin-mediated proteolysis, axon guidance, Wnt signaling pathway, MAPK signaling pathway, etc. We obtained 26 DEFRGs, including 12 up-regulated genes and 14 down-regulated genes, with good correlation. The area under the prognostic analysis curve (AUC > 0.700) showed a good prognostic ability. We found that they were enriched in different neuronal cells, oligodendrocytes, astrocytes, oligodendrocyte precursor cells, and microglial cells, and their expression scores were positively correlated, and selected genes with an AUC curve ≥0.9 were used to predict miRNA, including miR-214/761/3619-5p, miR-203, miR-204/204b/211, miR-128/128ab, miR-199ab-5p, etc. For the differentially expressed ferroptosis-mitochondrial dysfunction-related genes (DEF-MDRGs) (AR, ISCU, SNCA, and PDK4), in the substantia nigra of mice, compared with the Saline group, the expression of AR and ISCU was decreased (p < 0.05), and the expression of α-Syn and PDK4 was increased (p < 0.05) in the MPTP group. Therapeutic drugs that target SNCA include ABBV-0805, Prasinezumab, Cinpanemab, and Gardenin A. The results of this study suggest that cellular DEF-MDRGs might play an important role in PD. AR, ISCU, SNCA, and PDK4 have the potential to be specific biomarkers for the early diagnosis of PD.
Collapse
Affiliation(s)
| | | | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.)
| |
Collapse
|
27
|
Hu L, Lan Q, Tang C, Yang J, Zhu X, Lin F, Yu Z, Wang X, Wen C, Zhang X, Lu Z. Abnormalities of serum lipid metabolism in patients with acute paraquat poisoning caused by ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115543. [PMID: 37827095 DOI: 10.1016/j.ecoenv.2023.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
As the mechanism of paraquat (PQ) poisoning is still not fully elucidated, and no specific treatment has been developed in medical practice, the management of PQ poisoning continues to present a medical challenge. In this study, the objective was to investigate the early metabolic changes in serum metabolism and identify the key metabolic pathways involved in patients with PQ poisoning. Quantitative analysis was conducted to determine the relevant metabolites. Additionally, experiments were carried out in both plasma and cell to elucidate the mechanisms underlying metabolic disorder and cell death in PQ poisoning. The study found that polyunsaturated fatty acids (PUFAs) and their metabolites, such as arachidonic acid (AA) and hydroxy eicosatetraenoic acids (HETEs), were significantly increased by non-enzymatic oxidative reaction. Reactive oxygen species (ROS) production increased rapidly at 2 h after PQ poisoning, followed by an increase in PUFAs at 12 h, and intracellular glutathione, cysteine (Cys), and Fe2+ at 24 h. However, at 36 h later, intracellular glutathione and Cys decreased, HETEs increased, and the expression of SLC7A11 and glutathione peroxidase 4 (GPX4) decreased. Ultrastructural examination revealed the absence of mitochondrial cristae. Deferoxamine was found to alleviate lipid oxidation, and increase the viability of PQ toxic cells in the low dose. In conclusion, unsaturated fatty acids metabolism was the key metabolic pathways in PQ poisoning. PQ caused cell death through the induction of ferroptosis. Inhibition of ferroptosis could be a novel strategy for the treatment of PQ poisoning.
Collapse
Affiliation(s)
- Lufeng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qin Lan
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; West China Hospital, Sichuan University
| | - Congrong Tang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianhui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xingjie Zhu
- Department of Theater, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feiyan Lin
- Clinical research center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zheng Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xianqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Wen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiuhua Zhang
- Clinical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China.
| |
Collapse
|
28
|
Wang Y, Wen Q, Chen R, Gan Z, Huang X, Wang P, Cao X, Zhao N, Yang Z, Yan J. Iron-inhibited autophagy via transcription factor ZFP27 in Parkinson's disease. J Cell Mol Med 2023; 27:3614-3627. [PMID: 37668106 PMCID: PMC10660624 DOI: 10.1111/jcmm.17946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
Parkinson's disease (PD) is a challenge because of the ageing of the population and the disease's complicated pathogenesis. Accumulating evidence showed that iron and autophagy were involved in PD. Nevertheless, the molecular mechanism and role of iron and autophagy in PD are not yet elucidated. In the present study, it was shown that PD mice had significant motor dysfunction, increased iron content, less dopamine neurons and more α-synuclein accumulation in the substantia nigra. Meanwhile, PD mice treated with deferoxamine exhibited less iron content, relieved the dyskinesia and had a significant increase in dopamine neurons and a significant decrease in α-synuclein. Autophagy induced by LC3 was inhibited in PD models with iron treatment. Following verification showed that iron aggregation restrained insulin-like growth factor 2 (IGF2) and transcription factor zinc finger protein 27 (ZFP27) in PD models. In addition, LC3-induced autophagy flux was reduced with ZFP27 knockdown. Furthermore, ZFP27 affected autophagy by regulating LC3 promoter activity. These data suggest that iron deposition inhibits IGF2 and ZFP27 to reduce LC3-induced autophagy, and ultimately decrease dopamine neurons, accelerating PD progression. Our findings provide a novel insight that ZFP27-mediated iron-related autophagy and IGF2 may activate the downstream kinase gene to trigger autophagy in the PD model.
Collapse
Affiliation(s)
- Yinying Wang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Qian Wen
- Neurosurgery Department of the Second Hospital Affiliated, Kunming Medical University, Kunming, China
| | - Rongsha Chen
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Zhichao Gan
- Neurosurgery Department of the Second Hospital Affiliated, Kunming Medical University, Kunming, China
| | - Xinwei Huang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Pengfei Wang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Xia Cao
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- Neurosurgery Department of the Second Hospital Affiliated, Kunming Medical University, Kunming, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinyuan Yan
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, China
| |
Collapse
|
29
|
Dong X, Zhang Z, Yu N, Shi H, Lin L, Hou Y. A Novel Role of ARA70 in Regulating Ferritinophagy of RGCs During Retinal Ischemia Reperfusion. DNA Cell Biol 2023; 42:668-679. [PMID: 37903234 DOI: 10.1089/dna.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Although the contribution of ferroptosis, an iron-dependent cell death, to ischemia reperfusion (IR)-induced retinal injury has been reported before, to optimize therapeutic strategy, there is still an urgent need to identify potential candidates involved in this process. Androgen Receptor-Associated Protein of 70 kDa (ARA70) is a cargo receptor for ferritinophagy, and its role in retinal ferroptosis has not been revealed yet. Herein, we explored the role of ARA70 in IR-associated retinal lesions by in vivo (C57BL/6 J mice with intraocular pressure of 90-100 mmHg) and in vitro (retinal ganglion cells (RGCs) stimulated with tert-butyl hydroperoxide (tBH)) experiments. It was found that IR upregulated ARA70 expression and accelerated lipid peroxidation in retinal tissues. We first confirmed that two ferroptosis inhibitors, deferiprone or ferrostatin-1 (Fer-1), suppressed ferritin degradation, restrained apoptosis and inflammation, and protected mouse retinas against IR stress. Next, primary mouse RGCs were treated with tBH to simulate IR environment in vitro. ARA70 expression was decreased at lower concentrations of tBH (5-20 μM), but increased at higher concentrations (40-80 μM). Interestingly, the expression of ferritin-related proteins (ferritin heavy chain, FTH; ferritin light chain, FTL) showed an opposite alteration. Knockdown of ARA70 protected RGCs from tBH-induced damage. It inhibited the delivery of ferritin to lysosomes for ferritinophagy and thus reducing cellular Fe2+ concentration. Besides, ARA70 knockdown suppressed autophagy and inflammation of tBH-treated RGCs. These findings provide novel insights into the pathogenesis of retinal IR, and may be helpful for treatment of retinal diseases.
Collapse
Affiliation(s)
- Xin Dong
- Department of Ophthalmology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Zijian Zhang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Nannan Yu
- Department of Ophthalmology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Huanqi Shi
- Department of Ophthalmology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Lili Lin
- Department of Ophthalmology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yongsheng Hou
- Department of Ophthalmology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
30
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
31
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
32
|
Lu H, Zhang B, Yin T, Hua Y, Cao C, Ge M, Shen D, Zhou YL, Jia Z. Ferroptosis-Related Immune Genes in Hematological Diagnosis of Parkinson's Diseases. Mol Neurobiol 2023; 60:6395-6409. [PMID: 37452932 DOI: 10.1007/s12035-023-03468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence suggested that ferroptosis and immune activation, as well as their interactions, played a crucial role in the occurrence and progression of Parkinson's disease (PD). However, whether this interaction could serve as the basis for a hematological diagnosis of PD remained poorly understood. This study aimed to construct a novel hematological model for PD diagnosis based on the ferroptosis-related immune genes. The brain imaging of PD patients was obtained from the Affiliated Hospital of Nantong University. We used least absolute shrinkage and selection operator (LASSO) to identify the optimal signature ferroptosis-related immune genes based on six gene expression profile datasets of substantia nigra (SN) and peripheral blood of PD patients. Then we used the support vector machine (SVM) classifier to construct the hematological diagnostic model named Ferr.Sig for PD. Gene set enrichment analysis was utilized to execute gene functional annotation. The brain imaging and functional annotation analysis revealed prominent iron deposition and immune activation in the SN region of PD patients. We identified a total of 17 signature ferroptosis-related immune genes using LASSO method and imported them to SVM classifier. The Ferr.Sig model exhibited a high diagnostic accuracy, and its area under the curve (AUC) for distinguishing PD patients from healthy controls in the training and internal validation cohort reached 0.856 and 0.704, respectively. We also used the Ferr.Sig into other external validation cohorts, and a comparable AUC with the internal cohort was obtained, with the AUC of 0.727 in Scherzer's cohort, 0.745 in Roncagli's cohort, and 0.778 in Meiklejohn's cohort. Furthermore, the diagnostic performance of Ferr.Sig was not interfered by the other neurodegenerative diseases. This study revealed the value of ferroptosis-related immune genes in PD diagnosis, which may provide a novel direction and strategy for the development of novel biomarkers with less invasiveness, low cost, and high accuracy for PD screening and diagnosis.
Collapse
Affiliation(s)
- Heyue Lu
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Bo Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Tingting Yin
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Ye Hua
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Chenyang Cao
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Min Ge
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - Dandan Shen
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China.
| | - Zhongzheng Jia
- Department of Medical Imaging, Affiliated Hospital and Medical School of Nantong University, NO.20, Xisi Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
33
|
Cai Q, Shen Q, Zhu W, Zhang S, Ke J, Lu Z. Paraquat-induced ferroptosis suppression via NRF2 expression regulation. Toxicol In Vitro 2023; 92:105655. [PMID: 37507096 DOI: 10.1016/j.tiv.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Paraquat (PQ) is an environmentally friendly and efficient herbicide, but PQ misuse or intentional self-use can cause death through multiple organ damage and can cause acute lung injury. Existing clinical treatments alleviate symptoms but do not significantly improve the mortality rate. Ferroptosis is a type of necrosis that presents in a manner very similar to the cell damage induced by high doses of PQ, but the role of ferroptosis in paraquat-induced lung injury remains unclear. In this study, we aimed to explore the role of ferroptosis in PQ-induced A549 cell injury and identify the potential mechanisms and critical sites of protection against PQ-induced A549 injury by ferroptosis inhibitors. We found that the ferroptosis inhibitors Ferr-1 and Lip-1 inhibit ferroptosis by attenuating oxidative stress through the upregulation of NRF2 gene expression. The protective role of the ferroptosis inhibitor Dfo was most evident in paraquat-induced cell injury. Dfo inhibited ferroptosis by iron chelation and promoted NRF2 protein level reduction. NRF2 attenuated PQ-induced ferroptosis in A549 cells, mainly through the upregulation of SLC40A1 to encourage the movement of iron to the extracellular side to alleviate iron overload, and the upregulation of SLC7A11 to promote the expression of GPX4 to inhibit lipid peroxidation.
Collapse
Affiliation(s)
- Qiqi Cai
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Qunhe Shen
- Emergency Department, Enze Hospital, Enze Medical Center, Taizhou, China
| | - Weimin Zhu
- Emergency Department, Enze Hospital, Enze Medical Center, Taizhou, China
| | - Sheng Zhang
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Jingjing Ke
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Zhongqiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical, the key specialty of traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan period (Emergency Department), Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
34
|
Ye Z, Li C, Liu S, Liang H, Feng J, Lin D, Chen Y, Peng S, Bu L, Tao E, Jing X, Liang Y. Dl-3-n-butylphthalide activates Nrf2, inhibits ferritinophagy, and protects MES23.5 dopaminergic neurons from ferroptosis. Chem Biol Interact 2023; 382:110604. [PMID: 37315914 DOI: 10.1016/j.cbi.2023.110604] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
Ferroptosis, a newly identified iron-dependent form of cell death, has recently been implicated in the pathogenesis of Parkinson's disease (PD). Dl-3-n-butylphthalide (NBP) attenuates behavioral and cognitive deficits in animal models of PD. However, the potential of NBP to prevent dopaminergic neuron death by suppressing ferroptosis has rarely been explored. In this study, we aimed to investigate the effects of NBP on ferroptosis in erastin-induced dopaminergic neurons (MES23.5 cells) and the underlying mechanisms involved in these effects. Our results demonstrated that erastin significantly decreased viability of MES23.5 dopaminergic neurons in a dose-dependent manner, which was reversible by ferroptosis inhibitors. We further verified that NBP protected erastin-treated MES23.5 cells from death by inhibiting ferroptosis. Erastin increased the mitochondrial membrane density, caused lipid peroxidation, and decreased GPX4 expression in MES23.5 cells, which could be reversed by NBP preconditioning. NBP pretreatment suppressed erastin-induced labile iron accumulation and reactive oxygen species generation. Moreover, we demonstrated that erastin significantly reduced FTH expression, and pre-administration with NBP promoted Nrf2 translocation into the nucleus and increased the protein level of FTH. Additionally, the expression of LC3B-II in MES23.5 cells pretreated with NBP before administration of erastin was lower than that in cells treated with erastin alone. NBP reduced colocalization of FTH and autophagosomes in MES23.5 cells exposed to erastin. Finally, erastin gradually inhibited NCOA4 expression in a time-dependent manner, which was reversible by NBP pretreatment. Taken together, these results indicated that NBP suppressed ferroptosis via regulating FTH expression, which was achieved by promoting Nrf2 nuclear translocation and inhibiting NCOA4-mediated ferritinophagy. As such, NBP may be a promising therapeutic agent for the treatment of neurological diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Ziying Ye
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Chuna Li
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, China
| | - Shuqiong Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Hongbin Liang
- Department of Neurology, Ordos Central Hospital, No.23 Ejin Horo West Street, Ordos, 017000, China
| | - Jialiang Feng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Danyu Lin
- Department of Neurology, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Ying Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Sudan Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Lulu Bu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Enxiang Tao
- Department of Neurology, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025 Shennan Middle Road, Shenzhen, 518033, China.
| | - Xiuna Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Yanran Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
35
|
Shen L, Wang X, Zhai C, Chen Y. Ferroptosis: A potential therapeutic target in autoimmune disease (Review). Exp Ther Med 2023; 26:368. [PMID: 37408857 PMCID: PMC10318600 DOI: 10.3892/etm.2023.12067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Ferroptosis is a distinct type of regulated cell death characterized by iron overload and lipid peroxidation. Ferroptosis is regulated by numerous factors and controlled by several mechanisms. This cell death type has a relationship with the immune system, which may be regulated by damage-associated molecular patterns. Ferroptosis participates in the progression of autoimmune diseases, including autoimmune hepatitis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, Parkinson's Disease, psoriasis and insulin-dependent diabetes mellitus. The present review summarizes the role of ferroptosis in autoimmune disorders and discusses ferroptosis as a potential therapeutic target for autoimmune disease.
Collapse
Affiliation(s)
- Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaohan Wang
- Department of Gastroenterology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
36
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
37
|
Wang P, Chen Q, Tang Z, Wang L, Gong B, Li M, Li S, Yang M. Uncovering ferroptosis in Parkinson's disease via bioinformatics and machine learning, and reversed deducing potential therapeutic natural products. Front Genet 2023; 14:1231707. [PMID: 37485340 PMCID: PMC10358855 DOI: 10.3389/fgene.2023.1231707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Objective: Ferroptosis, a novel form of cell death, is closely associated with excessive iron accumulated within the substantia nigra in Parkinson's disease (PD). Despite extensive research, the underlying molecular mechanisms driving ferroptosis in PD remain elusive. Here, we employed a bioinformatics and machine learning approach to predict the genes associated with ferroptosis in PD and investigate the interactions between natural products and their active ingredients with these genes. Methods: We comprehensively analyzed differentially expressed genes (DEGs) for ferroptosis associated with PD (PDFerDEGs) by pairing 3 datasets (GSE7621, GSE20146, and GSE202665) from the NCBI GEO database and the FerrDb V2 database. A machine learning approach was then used to screen PDFerDEGs for signature genes. We mined the interacted natural product components based on screened signature genes. Finally, we mapped a network combined with ingredients and signature genes, then carried out molecular docking validation of core ingredients and targets to uncover potential therapeutic targets and ingredients for PD. Results: We identified 109 PDFerDEGs that were significantly enriched in biological processes and KEGG pathways associated with ferroptosis (including iron ion homeostasis, iron ion transport and ferroptosis, etc.). We obtained 29 overlapping genes and identified 6 hub genes (TLR4, IL6, ADIPOQ, PTGS2, ATG7, and FADS2) by screening with two machine learning algorithms. Based on this, we screened 263 natural product components and subsequently mapped the "Overlapping Genes-Ingredients" network. According to the network, top 5 core active ingredients (quercetin, 17-beta-estradiol, glycerin, trans-resveratrol, and tocopherol) were molecularly docked to hub genes to reveal their potential role in the treatment of ferroptosis in PD. Conclusion: Our findings suggested that PDFerDEGs are associated with ferroptosis and play a role in the progression of PD. Taken together, core ingredients (quercetin, 17-beta-estradiol, glycerin, trans-resveratrol, and tocopherol) bind well to hub genes (TLR4, IL6, ADIPOQ, PTGS2, ATG7, and FADS2), highlighting novel biomarkers for PD.
Collapse
Affiliation(s)
- Peng Wang
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Chen
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhuqian Tang
- School of Pharmacy, Key Laboratory for Modern Research of Traditional Chinese Medicine of Jiangsu, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu, China
| | - Liang Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bizhen Gong
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Min Li
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shaodan Li
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Minghui Yang
- Department of Traditional Chinese Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
38
|
Tang F, Zhou LY, Li P, Jiao LL, Chen K, Guo YJ, Ding XL, He SY, Dong B, Xu RX, Xiong H, Lei P. Inhibition of ACSL4 Alleviates Parkinsonism Phenotypes by Reduction of Lipid Reactive Oxygen Species. Neurotherapeutics 2023; 20:1154-1166. [PMID: 37133631 PMCID: PMC10457271 DOI: 10.1007/s13311-023-01382-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 05/04/2023] Open
Abstract
Ferroptosis is a programmed cell death pathway that is recently linked to Parkinson's disease (PD), where the key genes and molecules involved are still yet to be defined. Acyl-CoA synthetase long-chain family member 4 (ACSL4) esterifies polyunsaturated fatty acids (PUFAs) which is essential to trigger ferroptosis, and is suggested as a key gene in the pathogenesis of several neurological diseases including ischemic stroke and multiple sclerosis. Here, we report that ACSL4 expression in the substantia nigra (SN) was increased in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated model of PD and in dopaminergic neurons in PD patients. Knockdown of ACSL4 in the SN protected against dopaminergic neuronal death and motor deficits in the MPTP mice, while inhibition of ACSL4 activity with Triacsin C similarly ameliorated the parkinsonism phenotypes. Similar effects of ACSL4 reduction were observed in cells treated with 1-methyl-4-phenylpyridinium (MPP+) and it specifically prevented the lipid ROS elevation without affecting the mitochondrial ROS changes. These data support ACSL4 as a therapeutic target associated with lipid peroxidation in PD.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Liu-Yao Zhou
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Ping Li
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Ling-Ling Jiao
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Kang Chen
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Yu-Jie Guo
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Xu-Long Ding
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Si-Yu He
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Biao Dong
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Huan Xiong
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China.
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Peng Lei
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China.
| |
Collapse
|
39
|
Lu Y, Gao X, Nan Y, Mohammed SA, Fu J, Wang T, Wang C, Yuan C, Lu F, Liu S. Acanthopanax senticosus Harms improves Parkinson's disease by regulating gut microbial structure and metabolic disorders. Heliyon 2023; 9:e18045. [PMID: 37496895 PMCID: PMC10366437 DOI: 10.1016/j.heliyon.2023.e18045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with an increasing prevalence as the population ages, posing a serious threat to human health, but the pathogenesis remains uncertain. Acanthopanax senticosus (Rupr. et Maxim.) Harms (ASH) (aqueous ethanol extract), a Chinese herbal medicine, provides obvious and noticeable therapeutic effects on PD. To further investigate the ASH's mechanism of action in treating PD, the structural and functional gut microbiota, as well as intestinal metabolite before and after ASH intervention in the PD mice model, were examined utilizing metagenomics and fecal metabolomics analysis. α-syn transgenic mice were randomly divided into a model and ASH groups, with C57BL/6 mice as a control. The ASH group was gavaged with ASH (45.5 mg/kg/d for 20d). The time of pole climbing and autonomous activity were used to assess motor ability. The gut microbiota's structure, composition, and function were evaluated using Illumina sequencing. Fecal metabolites were identified using UHPLC-MS/MS to construct intestinal metabolites. The findings of this experiment demonstrate that ASH may reduce the climbing time of PD model mice while increasing the number of autonomous movements. The results of metagenomics analysis revealed that ASH could up-regulated Firmicutes and down-regulated Actinobacteria at the phylum level, while Clostridium was up-regulated and Akkermansia was down-regulated at the genus level; it could also recall 49 species from the phylum Firmicutes, Actinobacteria, and Tenericutes. Simultaneously, metabolomics analysis revealed that alpha-Linolenic acid metabolism might be a key metabolic pathway for ASH to impact in PD. Furthermore, metagenomics function analysis and metabolic pathway enrichment analysis revealed that ASH might influence unsaturated fatty acid synthesis and purine metabolism pathways. These metabolic pathways are connected to ALA, Palmitic acid, Adenine, and 16 species of Firmicutes, Actinobacteria, and Tenericutes. Finally, these results indicate that ASH may alleviate the movement disorder of the PD model, which may be connected to the regulation of gut microbiota structure and function as well as the modulation of metabolic disorders by ASH.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xin Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shadi A.D. Mohammed
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- School of Pharmacy, Lebanese International University, 18644, Sana’a, Yemen
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Tianyu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chongzhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Chunsu Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
40
|
Gao G, You L, Zhang J, Chang YZ, Yu P. Brain Iron Metabolism, Redox Balance and Neurological Diseases. Antioxidants (Basel) 2023; 12:1289. [PMID: 37372019 DOI: 10.3390/antiox12061289] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The incidence of neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment. These neurological disorders seriously affect the physical and mental health of patients and bring heavy economic burdens to families and society. Therefore, it is important to maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading to the development of disease. Evidence has shown that many therapies targeting brain iron and ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism disorders in neurological diseases.
Collapse
Affiliation(s)
- Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Linhao You
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Jianhua Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| |
Collapse
|
41
|
Sinha BK, Bortner CD, Jarmusch AK, Tokar EJ, Murphy C, Wu X, Winter H, Cannon RE. Ferroptosis-Mediated Cell Death Induced by NCX4040, The Non-Steroidal Nitric Oxide Donor, in Human Colorectal Cancer Cells: Implications in Therapy. Cells 2023; 12:1626. [PMID: 37371096 DOI: 10.3390/cells12121626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Our recent studies show that the treatment of human ovarian tumor cells with NCX4040 results in significant depletions of cellular glutathione, the formation of reactive oxygen/nitrogen species and cell death. NCX4040 is also cytotoxic to several human colorectal cancer (CRC) cells in vitro and in vivo. Here, we examined the ferroptosis-dependent mechanism(s) of cytotoxicity of NCX4040 in HT-29 and K-RAS mutant HCT 116 colon cell lines. Ferroptosis is characterized by the accumulation of reactive oxygen species (ROS) within the cell, leading to an iron-dependent oxidative stress-mediated cell death. However, its relevance in the mechanism of NCX4040 cytotoxicity in CRCs is not known. We found that NCX4040 generates ROS in CRC cells without any depletion of cellular GSH. Combinations of NCX4040 with erastin (ER) or RSL3 (RAS-selective lethal 3), known inducers of ferroptosis, enhanced CRC death. In contrast, ferrostatin-1, an inhibitor of ferroptosis, significantly inhibited NCX4040-induced cell death. Treatment of CRC cells with NCX4040 resulted in the induction of lipid peroxidation in a dose- and time-dependent manner. NCX4040 treatment induced several genes related to ferroptosis (e.g., CHAC1, GPX4 and NOX4) in both cell lines. Metabolomic studies also indicated significant increases in both lipid and energy metabolism following the drug treatment in HT-29 and HCT 116 cells. These observations strongly suggest that NCX4040 causes the ferroptosis-mediated cell death of CRC cells. Furthermore, combinations of NCX4040 and ER or RSL3 may contribute significantly to the treatment of CRC, including those that are difficult to treat due to the presence of Ras mutations in the clinic. NCX4040-induced ferroptosis may also be a dynamic form of cell death for the treatment of other cancers.
Collapse
Affiliation(s)
- Birandra K Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Carl D Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Alan K Jarmusch
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Erik J Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Carri Murphy
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Xian Wu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Heather Winter
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Ronald E Cannon
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
42
|
Tang L, Liu S, Li S, Chen Y, Xie B, Zhou J. Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis: A Novel Therapeutic Target in Nervous System Diseases. Int J Mol Sci 2023; 24:10127. [PMID: 37373274 DOI: 10.3390/ijms241210127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, three emerging cell deaths, ferroptosis, necroptosis and pyroptosis, have gradually attracted everyone's attention, and they also play an important role in the occurrence and development of various diseases. Ferroptosis is an idiographic iron-dependent form regulated cell death with the hallmark of accumulation of the intracellular reactive oxygen species (ROS). Necroptosis is a form of regulated necrotic cell death mediated by the receptor-interacting protein kinase 1(RIPK1) and receptor-interacting protein kinase 3RIPK3. Pyroptosis, also known as cell inflammatory necrosis, is a programmed cell necrosis mediated by Gasdermin D (GSDMD). It is manifested by the continuous swelling of the cells until the cell membrane ruptures, resulting in the release of the cell contents and the activation of a strong inflammatory response. Neurological disorders remain a clinical challenge and patients do not respond well to conventional treatments. Nerve cell death can aggravate the occurrence and development of neurological diseases. This article reviews the specific mechanisms of these three types of cell death and their relationship with neurological diseases and the evidence for the role of the three types of cell death in neurological diseases; understanding these pathways and their mechanisms is helpful for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Sitong Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Shiwei Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
43
|
Jin X, Jiang C, Zou Z, Huang H, Li X, Xu S, Tan R. Ferritinophagy in the etiopathogenic mechanism of related diseases. J Nutr Biochem 2023; 117:109339. [PMID: 37061010 DOI: 10.1016/j.jnutbio.2023.109339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/17/2023]
Abstract
Iron is an essential trace element that is involved in a variety of physiological processes. Ferritinophagy is selective autophagy mediated by nuclear receptor coactivator 4 (NCOA4), which regulates iron homeostasis in the body. Upon iron depletion or starvation, ferritinophagy is activated, releasing large amounts of Fe2+ and increasing reactive oxygen species (ROS), leading to ferroptosis. This plays a significant role in the etiopathogenesis of many diseases, such as metabolic diseases, neurodegenerative diseases, infectious diseases, tumors, cardiomyopathy, and ischemia-reperfusion ischemia-reperfusion injury. Here, we first review the regulation and functions of ferritinophagy and then describe its involvement in different diseases, with hopes of providing new understanding and insights into iron metabolism and iron disorder-related diseases and the therapeutic opportunity for targeting ferritinophagy.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Zhizhou Zou
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - He Huang
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Songji Xu
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
44
|
Xing N, Dong Z, Wu Q, Zhang Y, Kan P, Han Y, Cheng X, Wang Y, Zhang B. Identification of ferroptosis related biomarkers and immune infiltration in Parkinson's disease by integrated bioinformatic analysis. BMC Med Genomics 2023; 16:55. [PMID: 36918862 PMCID: PMC10012699 DOI: 10.1186/s12920-023-01481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Increasing evidence has indicated that ferroptosis engages in the progression of Parkinson's disease (PD). This study aimed to explore the role of ferroptosis-related genes (FRGs), immune infiltration and immune checkpoint genes (ICGs) in the pathogenesis and development of PD. METHODS The microarray data of PD patients and healthy controls (HC) from the Gene Expression Omnibus (GEO) database was downloaded. Weighted gene co-expression network analysis (WGCNA) was processed to identify the significant modules related to PD in the GSE18838 dataset. Machine learning algorithms were used to screen the candidate biomarkers based on the intersect between WGCNA, FRGs and differentially expressed genes. Enrichment analysis of GSVA, GSEA, GO, KEGG, and immune infiltration, group comparison of ICGs were also performed. Next, candidate biomarkers were validated in clinical samples by ELISA and receiver operating characteristic curve (ROC) was used to assess diagnose ability. RESULTS In this study, FRGs had correlations with ICGs, immune infiltration. Then, plasma levels of LPIN1 in PD was significantly lower than that in healthy controls, while the expression of TNFAIP3 was higher in PD in comparison with HC. ROC curves showed that the area under curve (AUC) of the LPIN1 and TNFAIP3 combination was 0.833 (95% CI: 0.750-0.916). Moreover, each biomarker alone could discriminate the PD from HC (LPIN1: AUC = 0.754, 95% CI: 0.659-0.849; TNFAIP3: AUC = 0.754, 95% CI: 0.660-0.849). For detection of early PD from HC, the model of combination maintained diagnostic accuracy with an AUC of 0.831 (95% CI: 0.734-0.927), LPIN1 also performed well in distinguishing the early PD from HC (AUC = 0.817, 95% CI: 0.717-0.917). However, the diagnostic efficacy was relatively poor in distinguishing the early from middle-advanced PD patients. CONCLUSION The combination model composed of LPIN1 and TNFAIP3, and each biomarker may serve as an efficient tool for distinguishing PD from HC.
Collapse
Affiliation(s)
- Na Xing
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ziye Dong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yufeng Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengcheng Kan
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuan Han
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiuli Cheng
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Yaru Wang
- Chu Hsien-I Memorial Hospital (Metabolic Diseases Hospital) of Tianjin Medical University, Tianjin, China
| | - Biao Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
45
|
El Hajj S, Canabady-Rochelle L, Gaucher C. Nature-Inspired Bioactive Compounds: A Promising Approach for Ferroptosis-Linked Human Diseases? Molecules 2023; 28:molecules28062636. [PMID: 36985608 PMCID: PMC10059971 DOI: 10.3390/molecules28062636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis is a type of cell death driven by iron overload and lipid peroxidation. It is considered a key mechanism in the development of various diseases such as atherosclerosis, Alzheimer, diabetes, cancer, and renal failure. The redox status of cells, such as the balance between intracellular oxidants (lipid peroxides, reactive oxygen species, free iron ions) and antioxidants (glutathione, glutathione Peroxidase 4), plays a major role in ferroptosis regulation and constitutes its principal biomarkers. Therefore, the induction and inhibition of ferroptosis are promising strategies for disease treatments such as cancer or neurodegenerative and cardiovascular diseases, respectively. Many drugs have been developed to exert ferroptosis-inducing and/or inhibiting reactions, such as erastin and iron-chelating compounds, respectively. In addition, many natural bioactive compounds have significantly contributed to regulating ferroptosis and ferroptosis-induced oxidative stress. Natural bioactive compounds are largely abundant in food and plants and have been for a long time, inspiring the development of various low-toxic therapeutic drugs. Currently, functional bioactive peptides are widely reported for their antioxidant properties and application in human disease treatment. The scientific evidence from biochemical and in vitro tests of these peptides strongly supports the existence of a relationship between their antioxidant properties (such as iron chelation) and ferroptosis regulation. In this review, we answer questions concerning ferroptosis milestones, its importance in physiopathology mechanisms, and its downstream regulatory mechanisms. We also address ferroptosis regulatory natural compounds as well as provide promising thoughts about bioactive peptides.
Collapse
Affiliation(s)
- Sarah El Hajj
- Université de Lorraine, CITHEFOR, F-54505 Vandoeuvre Les Nancy, France
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | | | - Caroline Gaucher
- Université de Lorraine, CITHEFOR, F-54505 Vandoeuvre Les Nancy, France
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Correspondence:
| |
Collapse
|
46
|
Li Q, Peng F, Yan X, Chen Y, Zhou J, Wu S, Jiang W, Jin X, Liang J, Peng C, Pan X. Inhibition of SLC7A11-GPX4 signal pathway is involved in aconitine-induced ferroptosis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116029. [PMID: 36503029 DOI: 10.1016/j.jep.2022.116029] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum species, with a long history of traditional application, were applied to treat rheumatism, arthritis, stroke, and pain in Chinese medical practice. However, misuse of Aconitum species may induce central nervous toxic effects, such as numbness, vomiting, and even coma. Aconitine has been proved to be the main toxic component of Aconitum plants. Neurotoxicity is the main toxic effect of aconitine, while the underlying mechanism of aconitine remains unclear. AIM OF THE STUDY The purpose of the study is to explore the effects and molecular mechanism of ferroptosis caused by aconitine in vivo and in vitro. MATERIALS AND METHODS Six-dpf zebrafish larvae and SH-SY5Y cells were treated with different concentrations of aconitine for 24 h. Inhibitors treatment, e.g. pretreatment with Necrostain-1 (Nec-1) and Z-VZD-FMK for 12 h, or with Ferrostain-1 (Fer-1) for 4 h, were involved in the identification of aconitine-induced ferroptosis. Transient transfection experiment was conducted to explore the effects of SLC7A11 in the process of aconitine-induced ferroptosis. The effects of aconitine on morphological changes, lipid peroxidation, ferrous ion, and ferroptosis were detected by transmission electron microscope, flow cytometry, confocal microscopy, enzyme-linked immunosorbent assay and western blotting. RESULTS In SH-SY5Y cells, morphological changes including shrunken mitochondria, increased mitochondrial membranes density and ruptured mitochondrial membranes were captured in aconitine-treated group. The cell viability and GSH content dose-dependently declined, levels of lipid reactive oxygen species (ROS), malondialdehyde (MDA), and ferrous ion significantly increased after aconitine exposure for 24 h. Ferroptosis inhibitor Fer-1 pretreatment effectively increased cell viability, GSH content, and decreased levels of MDA and lipid peroxidation, suggesting that aconitine induced ferroptosis. In addition, the protein expression of SLC7A11 and GPX4 were improved after Fer-1 preincubation, which indicated that aconitine triggered ferroptosis via the inhibition of SLC7A11 and the inactivation of GPX4. Ferroptotic characteristics, including GSH depletion and lipid peroxidation accumulation, were alleviated via overexpression of SLC7A11 to increase protein expression of GPX4. In zebrafish experiment, GSH depletion, lipid peroxidation accumulation, iron overload, and the decreased protein expression of SLC7A11 and GPX4 were also induced in zebrafish larvae after aconitine exposure. Taken together, aconitine triggered ferroptotic cell death via inhibiting SLC7A11/GPX4 signal pathway in vivo and in vitro. CONCLUSION All results indicated that aconitine triggered ferroptosis of SH-SY5Y cells and zebrafish larvae nerve cells, which involved the inhibition of SLC7A11/GPX4 signal pathway mediated by lipid peroxidation damage and iron overload.
Collapse
Affiliation(s)
- Qiuju Li
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhou
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyue Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanyanhan Jiang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhui Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Jie Liang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaoqi Pan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
47
|
Vitamin D Promotes Ferroptosis in Colorectal Cancer Stem Cells via SLC7A11 Downregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4772134. [PMID: 36846715 PMCID: PMC9950793 DOI: 10.1155/2023/4772134] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
Colorectal cancer stem cells (CCSCs) play important roles in the prognosis, chemoresistance, and treatment failure of colorectal cancer (CRC). Ferroptosis is an effective treatment for CCSCs. Vitamin D (VD) reportedly inhibits colon cancer cell proliferation. However, information on the relationship between VD and ferroptosis in CCSCs is not well documented. In this study, we aimed to understand the effect of VD on ferroptosis in CCSCs. To this end, we treated CCSCs with different concentrations of VD and performed spheroid formation assay and transmission electron microscopy and determined cysteine (Cys), glutathione (GSH), and reactive oxygen species (ROS) levels. Furthermore, functional experiments, western blotting, and qRT-PCR were performed to explore the downstream molecular mechanisms of VD in vitro and in vivo. Results showed that VD treatment significantly inhibited the proliferation of CCSCs and reduced the number of tumour spheroids in vitro. Further evaluations showed that the VD-treated CCSCs exhibited significantly higher ROS levels and lower levels of Cys and GSH as well as thickened mitochondrial membranes. Furthermore, the mitochondria in CCSCs were narrowed and ruptured after VD treatment. These results indicated that VD treatment significantly induced ferroptosis in CCSCs. Further exploration showed that SLC7A11 overexpression significantly attenuated VD-induced ferroptosis in vitro and in vivo. Hence, we concluded that VD induces ferroptosis in CCSCs by downregulating SLC7A11 in vitro and in vivo. These results provide new evidence for the therapeutic use of VD in treating CRC and new insights into VD-induced ferroptosis in CCSCs.
Collapse
|
48
|
Sivagurunathan N, Gnanasekaran P, Calivarathan L. Mitochondrial Toxicant-Induced Neuronal Apoptosis in Parkinson's Disease: What We Know so Far. Degener Neurol Neuromuscul Dis 2023; 13:1-13. [PMID: 36726995 PMCID: PMC9885882 DOI: 10.2147/dnnd.s361526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative diseases caused by the loss of dopamine-producing neuronal cells in the region of substantia nigra pars compacta of the brain. During biological aging, neuronal cells slowly undergo degeneration, but the rate of cell death increases tremendously under some pathological conditions, leading to irreversible neurodegenerative diseases. By the time symptoms of PD usually appear, more than 50 to 60% of neuronal cells have already been destroyed. PD symptoms often start with tremors, followed by slow movement, stiffness, and postural imbalance. The etiology of PD is still unknown; however, besides genetics, several factors contribute to neurodegenerative disease, including exposure to pesticides, environmental chemicals, solvents, and heavy metals. Postmortem brain tissues of patients with PD show mitochondrial abnormalities, including dysfunction of the electron transport chain. Most chemicals present in our environment have been shown to target the mitochondria; remarkably, patients with PD show a mild deficiency in NADH dehydrogenase activity, signifying a possible link between PD and mitochondrial dysfunction. Inhibition of electron transport complexes generates free radicals that further attack the macromolecules leading to neuropathological conditions. Apart from that, oxidative stress also causes neuroinflammation-mediated neurodegeneration due to the activation of microglial cells. However, the mechanism that causes mitochondrial dysfunction, especially the electron transport chain, in the pathogenesis of PD remains unclear. This review discusses the recent updates and explains the possible mechanisms of mitochondrial toxicant-induced neuroinflammation and neurodegeneration in PD.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Priyadharshini Gnanasekaran
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India,Correspondence: Latchoumycandane Calivarathan, Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology (Sponsored by DST-FIST), School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, India, Tel +91-6381989116, Email
| |
Collapse
|
49
|
Liu H, Zhao Z, Yan M, Zhang Q, Jiang T, Xue J. Calycosin decreases cerebral ischemia/reperfusion injury by suppressing ACSL4-dependent ferroptosis. Arch Biochem Biophys 2023; 734:109488. [PMID: 36516890 DOI: 10.1016/j.abb.2022.109488] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is the second leading cause of death globally. Calycosin is a typical phytoestrogen that protects against cerebral ischemia/reperfusion (I/R) injury. However, the role of ferroptosis in this effect remains unknown. In the present study, we investigated the ferroptosis mechanism of calycosin against cerebral I/R injury using transient middle cerebral artery occlusion/reperfusion (tMCAO/R)-exposed rats and oxygen-glucose deprivation/reperfusion (OGD/R)-stimulated PC12 cells. We found that calycosin treatment significantly improved neurological deficits, brain edema, blood-brain barrier (BBB) breakdown, infarction volume, and neuronal injuries in rats that underwent tMCAO/R; similar to ferrostatin-1 (a ferroptosis inhibitor), calycosin prevented cell viability loss in PC12 cells exposed to OGD/R stimulation. In addition, calycosin intervention decreased ferroptosis, as assessed by iron accumulation, malondialdehyde (MDA), superoxide dismutase (SOD), ceramide, and reactive oxygen species (ROS) levels, as well as ferroptosis-related protein expression (ACSL4, TfR1, FTH1, and GPX4). Furthermore, overexpression of ACSL4 reversed calycosin-induced beneficial efficacy in OGD/R-stimulated PC12 cells. The molecular docking analysis demonstrated that calycosin binds to ACSL4 by forming stable hydrogen bonds at G465, K690, and D573. Collectively, these findings indicate that calycosin ameliorates cerebral I/R injury by depressing ACSL4-dependent ferroptosis.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Zongbo Zhao
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Manyun Yan
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Qiu Zhang
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Tingwang Jiang
- Department of Key Laboratory, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China.
| | - Jianzhong Xue
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China.
| |
Collapse
|
50
|
Wang Z, Wu Z, Xie Z, Zhou W, Li M. Metformin Attenuates Ferroptosis and Promotes Functional Recovery of Spinal Cord Injury. World Neurosurg 2022; 167:e929-e939. [PMID: 36058489 DOI: 10.1016/j.wneu.2022.08.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ferroptosis is involved in traumatic spinal cord injury (SCI), and its inhibition may improve functional recovery after traumatic SCI. This study investigated whether metformin (Met) can have a neuroprotective effect in SCI repair by inhibiting ferroptosis. METHODS We assessed functional change to determine the long-term effects after intraperitoneal injection of Met in SCI rats with the Basso-Beattie-Bresnahan locomotor rating scale. Malondialdehyde level and relative expression of key proteins, inflammatory cytokines, and nuclear factor E2-related factor 2 signalling molecules were determined in SCI rats and PC12 cells exposed to FeCl3 solution. RESULTS Met treatment decreased the contents of malondialdehyde, regulated the levels of inflammatory factors, activated the nuclear factor E2-related factor 2 signalling pathway, and improved long-term outcomes by ameliorating SCI-induced locomotor deficits. In vitro studies further confirmed the beneficial and antiferroptotic actions of Met partly through activation of nuclear factor E2-related factor 2 signalling. CONCLUSION Met can have a neuroprotective effect on SCI repair partly through antiferroptotic effects.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhiwu Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|