1
|
Wang H, He S, Sun Z, Wang R, Zou X, Lu F. Targeted Profiling of Rodent Unconjugated Bile Acids by GC-MS to Reveal the Influence of High-Fat Diet. Biomed Chromatogr 2022; 36:e5428. [PMID: 35708903 DOI: 10.1002/bmc.5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
Unconjugated bile acids (BAs) have gained more attention than conjugated BAs in the association studies among diet, gut microbiota and diseases. Gas chromatography-mass spectrometry (GC-MS) is probably a good choice for specialized analysis of unconjugated BAs due to high separation capacity and identification convenience. However, few reports have focused on the rodent unconjugated BAs by GC-MS, and the main library for identification has not included rodent-specific BAs. We developed a GC-MS method for targeted profiling of eight main unconjugated BAs in rodent models, which showed excellent performance on sensitivity, reproducibility and accuracy. Quantitative reproducibility in terms of relative standard deviation (RSD) was in the range of 2.05%-2.91%, with detection limits of 3-55 ng/mL, quantitation limits of 9-182 ng/mL and the recovery rate of 72%-115%. All the calibration curves displayed good linearity with correlation coefficient values (R2 ) more than 0.99. Using the established method, the influence of high-fat diet on the metabolism of unconjugated BAs were revealed. Significant increasing of fecal unconjugated BAs induced by high-fat diet, would be a potential risk to gut inflammation and cancer. The study provides a convenient and targeted GC-MS method for specialized profiling of rodent unconjugated BAs in physiological and pathological studies.
Collapse
Affiliation(s)
- Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Shi He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Zepeng Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ruijia Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xiaotong Zou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
2
|
Fang M, Zhang Q, Yu P, Ge C, Guo J, Zhang Y, Wang H. The effects, underlying mechanism and interactions of dexamethasone exposure during pregnancy on maternal bile acid metabolism. Toxicol Lett 2020; 332:97-106. [PMID: 32599024 DOI: 10.1016/j.toxlet.2020.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
As important members in steroids related signal pathways, bile acids are very important in regulating substance metabolism and immune homeostasis. However, bile acids are highly cytotoxic, and the excessive accumulation can induce several abnormalities such as cholestatic liver injury. It is known that the bile acid metabolism alters during pregnancy and mostly will not result in pathologies. However, the effect of dexamethasone exposure during pregnancy on bile acid metabolism is still unknown. In this study, pregnant Wistar rats were subcutaneously administered dexamethasone (0.2 mg/kg.d) or saline from gestation day 9-21, while virgin rats were given the same treatment for 13 days. We found that, physiological pregnancy or dexamethasone exposure during non-pregnancy did not affect maternal serum TBA level and liver function. Nevertheless, dexamethasone exposure during pregnancy increased serum TBA level and accompanied with liver injury. Furthermore, we discovered that the conservation of bile acid homeostasis under pregnancy or dexamethasone exposure was maintained through compensatory pathways. However, dexamethasone exposure during pregnancy tipped the balance of liver bile acid homeostasis by increasing classical synthesis and decreasing efflux and uptake. In addition, dexamethasone exposure during pregnancy also increased serum estrogen level and nuclear receptors mRNA expression levels. Finally, two-way ANOVA analysis showed that dexamethasone exposure during pregnancy could induce or facilitate maternal cholestasis and liver injury by up-regulating ERα and CYP7A1 expression. This study confirmed that dexamethasone exposure during pregnancy was related to maternal intrahepatic cholestasis of pregnancy and should be carefully monitored in clinical settings.
Collapse
Affiliation(s)
- Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
3
|
Memon N, Griffin IJ, Lee CW, Herdt A, Weinberger BI, Hegyi T, Carayannopoulos MO, Aleksunes LM, Guo GL. Developmental regulation of the gut-liver (FGF19-CYP7A1) axis in neonates. J Matern Fetal Neonatal Med 2018; 33:987-992. [PMID: 30122083 DOI: 10.1080/14767058.2018.1513483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Fibroblast growth factor 19 (FGF19) is a gut-derived hormone that regulates the expression of CYP7A1, the rate-limiting enzyme in bile acid (BA) synthesis pathway. Dysregulation of the FGF19-CYP7A1 (gut-liver) axis is associated with cholestatic liver disease. Infants, especially preterm infants and those with intestinal failure are at high risk for developing cholestatic liver disease. The activity of the gut-liver axis has not been characterized in this population. Our objective was to assess relationships between circulating FGF19 concentrations and CYP7A1 activity in neonates.Materials and methods: Plasma samples were obtained longitudinally from term and preterm infants (22-41-week gestation) hospitalized in a neonatal intensive care unit. Infants with congenital and acquired gastrointestinal disorders were excluded. Plasma levels of 7α-hydroxy-4-cholesten-3-one (C4), a marker of CYP7A1 activity, were quantified using HPLC-MS/MS. Plasma FGF19 concentrations were quantified by ELISA. Data were analyzed using linear regression models and structural equation modeling.Results: One hundred eighty-one plasma samples were analyzed from 62 infants. C4 concentrations were undetectable prior to 30 weeks' gestation and, thereafter, increased with advancing gestational age and with volume of enteral feeds. They did not correlate with serum FGF19 concentrations, which decreased with advancing gestational age and volume of enteral feeds.Discussion: The activity of CYP7A1, the rate-limiting BA synthetic enzyme in adults, is developmentally regulated and undetectable in newborns less than 30 weeks' gestation. FGF19 concentrations do not correlate with CYP7A1 activity, suggesting that the gut-liver axis is not functional in infants. High FGF19 concentrations at birth in infants less than 37 weeks' gestation is a novel finding, and its source and role in preterm infants warrants further investigation.Rationale: The intestinal hormone, fibroblast growth factor 19 (FGF19), is a major regulator of CYP7A1, the rate limiting enzyme in bile acid (BA) synthesis. Recently, dysregulation of the gut-liver (FGF19-CYP7A1) axis has been implicated in adult cholestatic liver disease, and animal studies have shown that exogenous FGF19 protects against liver injury. Given the therapeutic potential related to this signaling pathway, we sought to characterize the association between CYP7A1 and FGF19 in term and preterm infants. We conducted a prospective, observational study that measured in vivo CYP7A1 activity and FGF19 concentrations in 62 term and preterm infants (n = 181 samples). We found that CYP7A1 activity is developmentally regulated; its activity is undetectable prior to 30 weeks' gestation and increases with advancing gestational age and volume of enteral feeds. Contrary to expectation, we demonstrated that FGF19 is expressed at birth in preterm infants and decreases over time, even as enteral feeds increase. Using structural equation modeling, we were able to show that CYP7A1 activity does not correlate with FGF19 concentrations. Our results suggest that the gut-liver axis is not upregulated in preterm and term infants and that neonates with cholestatic liver disease will unlikely benefit from supplemental FGF19. We also report novel findings of elevated FGF19 concentrations in preterm infants at birth and speculate that there may be an extra-intestinal source of FGF19 that is developmentally expressed in these infants.
Collapse
Affiliation(s)
- Naureen Memon
- MidAtlantic Neonatology Associates, Morristown, NJ, USA.,Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ, USA
| | - Ian J Griffin
- MidAtlantic Neonatology Associates, Morristown, NJ, USA.,Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ, USA
| | - Chris W Lee
- MidAtlantic Neonatology Associates, Morristown, NJ, USA
| | - Aimee Herdt
- MidAtlantic Neonatology Associates, Morristown, NJ, USA
| | - Barry I Weinberger
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center of New York, Northwell Health, New Hyde Park, NY, USA
| | - Thomas Hegyi
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Mary O Carayannopoulos
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
4
|
Jiang Z, Huang X, Huang S, Guo H, Wang L, Li X, Huang X, Wang T, Zhang L, Sun L. Sex-Related Differences of Lipid Metabolism Induced by Triptolide: The Possible Role of the LXRα/SREBP-1 Signaling Pathway. Front Pharmacol 2016; 7:87. [PMID: 27065871 PMCID: PMC4814849 DOI: 10.3389/fphar.2016.00087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Triptolide, a diterpenoid isolated from the plant Tripterygium wilfordii Hook. f., exerts a unique bioactive spectrum of anti-inflammatory and anticancer activities. However, triptolide's clinical applications are limited due to its severe toxicities. Fatty liver toxicity occurs in response to triptolide, and this toxic response significantly differs between males and females. This report investigated the pathogenesis underlying the sex-related differences in the dyslipidosis induced by triptolide in rats. Wistar rats were administered 0, 150, 300, or 450 μg triptolide/kg/day by gavage for 28 days. Ultrastructural examination revealed that more lipid droplets were present in female triptolide-treated rats than in male triptolide-treated rats. Furthermore, liver triglyceride, total bile acid and free fatty acid levels were significantly increased in female rats in the 300 and 450 μg/kg dose groups. The expression of liver X receptor α (LXRα) and its target genes, cholesterol 7α-hydroxylase (CYP7A1) and Sterol regulatory element-binding transcription factor 1(SREBP-1), increased following triptolide treatment in both male and female rats; however, the female rats were more sensitive to triptolide than the male rats. In addition, the expression of acetyl-CoA carboxylase 1(ACC1), a target gene of SREBP-1, increased in the female rats treated with 450 μg triptolide/kg/day, and ACC1 expression contributed to the sex-related differences in the triptolide-induced dysfunction of lipid metabolism. Our results demonstrate that the sex-related differences in LXR/SREBP-1-mediated regulation of gene expression in rats are responsible for the sex-related differences in lipid metabolism induced by triptolide, which likely underlie the sex-related differences in triptolide hepatotoxicity. This study will be important for predicting sex-related effects on the pharmacokinetics and toxicity of triptolide and for improving its safety.
Collapse
Affiliation(s)
- Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China
| | - Xiao Huang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Shan Huang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Hongli Guo
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Lu Wang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical UniversityNanjing, China
| |
Collapse
|
5
|
Thomson ABR, Chopra A, Clandinin MT, Freeman H. Recent advances in small bowel diseases: Part II. World J Gastroenterol 2012; 18:3353-74. [PMID: 22807605 PMCID: PMC3396188 DOI: 10.3748/wjg.v18.i26.3353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
As is the case in all areas of gastroenterology and hepatology, in 2009 and 2010 there were many advances in our knowledge and understanding of small intestinal diseases. Over 1000 publications were reviewed, and the important advances in basic science as well as clinical applications were considered. In Part II we review six topics: absorption, short bowel syndrome, smooth muscle function and intestinal motility, tumors, diagnostic imaging, and cystic fibrosis.
Collapse
|
6
|
Chen Q, Wang E, Ma L, Zhai P. Dietary resveratrol increases the expression of hepatic 7α-hydroxylase and ameliorates hypercholesterolemia in high-fat fed C57BL/6J mice. Lipids Health Dis 2012; 11:56. [PMID: 22607622 PMCID: PMC3439360 DOI: 10.1186/1476-511x-11-56] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023] Open
Abstract
Background Resveratrol (RSV), a naturally occurring polyphenolic stilbenoid, is known to possess potent anti-atherogenic properties; however, the effect of RSV on hypercholesterolemia is not fully understood. We hypothesized that RSV decreases blood cholesterol levels through the activation of cholesterol 7α-hydroxylase (CYP7A1)-mediated bile acid synthetic pathway pathways in vitro and in vivo. Methods In this study, we evaluated body weight, serum lipid concentrations, hepatic lipid content and the size of the bile acid pool in high-fat diet (HFD)-fed C57BL/6 J mice that were treated with RSV. In addition, we characterized the underlying mechanism of the effects of RSV in HepG2 hepatocytes by Western blot analysis. Results RSV (200 mg/kg per day) reduced body weight and liver weight gains, improved serum lipid parameters, reduced hepatic cholesterol accumulation and increased the bile acid pool size in mice fed an HFD for 8 wks. RSV significantly increased liver expression of CYP7A1 mRNA and protein and CYP7A1 enzyme activity. Furthermore, RSV treatment upregulated CYP7A1 expression and induced liver X receptor alpha (LXRα) activation in a time- and dose-dependent manner in HepG2 cells. In addition, the specific liver X receptor alpha (LXRα) inhibitor geranylgeranyl pyrophosphate (GGPP) inhibited the RSV-induced expression of CYP7A1 in HepG2 hepatocytes. Conclusion The beneficial effects of RSV on HFD-induced hypercholesterolemia are mediated through LXRα signaling pathways, suggesting a potential target for the prevention of dyslipidemia.
Collapse
Affiliation(s)
- Qiong Chen
- Department of food science, Guangdong Food and Drug Vocational College, Guangzhou, 510635, China.
| | | | | | | |
Collapse
|
7
|
Drozdowski LA, Clandinin T, Thomson ABR. Ontogeny, growth and development of the small intestine: Understanding pediatric gastroenterology. World J Gastroenterol 2010; 16:787-99. [PMID: 20143457 PMCID: PMC2825325 DOI: 10.3748/wjg.v16.i7.787] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Throughout our lifetime, the intestine changes. Some alterations in its form and function may be genetically determined, and some are the result of adaptation to diet, temperature, or stress. The critical period programming of the intestine can be modified, such as from subtle differences in the types and ratios of n3:m6 fatty acids in the diet of the pregnant mother, or in the diet of the weanlings. This early forced adaptation may persist in later life, such as the unwanted increased intestinal absorption of sugars, fatty acids and cholesterol. Thus, the ontogeny, early growth and development of the intestine is important for the adult gastroenterologist to appreciate, because of the potential for these early life events to affect the responsiveness of the intestine to physiological or pathological challenges in later life.
Collapse
|