1
|
Sánchez-Marín L, Jiménez-Castilla V, Flores-López M, Navarro JA, Gavito A, Blanco-Calvo E, Santín LJ, Pavón-Morón FJ, Rodríguez de Fonseca F, Serrano A. Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA 1 receptor-deficient mice. Neuropharmacology 2025; 268:110325. [PMID: 39864586 DOI: 10.1016/j.neuropharm.2025.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA1 receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA1 receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA1-null mice of both sexes. We hypothesized LPA1 receptor loss disrupts the interplay between LPA and the endocannabinoid 2-arachidonoylglycerol (2-AG) signaling, resulting in distinct behavioral and molecular alterations. maLPA1-null mice exhibited increased anxiety-like behaviors and altered stress-coping responses compared to wild-type counterparts, with more pronounced effects observed in females. Female mice also displayed higher corticosterone levels, though no genotype-related differences were observed. Plasma analyses revealed elevated LPA levels in maLPA1-null mice, suggesting a compensatory mechanism, and reduced 2-AG levels, indicating impaired ECS signaling. Gene expression profiling in the amygdala and medial prefrontal cortex showed significant alterations in the gene expression of key components of LPA and 2-AG signaling pathways, as well as neuropeptide systems such as corticotropin-releasing hormone (CRH) and neuropeptide Y (NPY). Glutamatergic signaling components also exhibited sex-specific variations. These findings suggest that LPA1 receptor deficiency impacts behavioral response and disrupts sex-specific neurotransmitter signaling, emphasizing the importance of LPA-ECS crosstalk in emotional regulation. This study provides insights into the molecular mechanisms underlying stress-related disorders such as depression and anxiety, which may inform the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Violeta Jiménez-Castilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Juan A Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Ana Gavito
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Eduardo Blanco-Calvo
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Francisco J Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain; Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29001, Malaga, Spain.
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain.
| |
Collapse
|
2
|
Yu B, Dai S, Cheng L, Lu Q, Liu Q, Chen H. Evaluation of Lysophosphatidic Acid Effects and Its Receptors During Bovine Embryo Development. Int J Mol Sci 2025; 26:2596. [PMID: 40141238 PMCID: PMC11941814 DOI: 10.3390/ijms26062596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Lysophosphatidic acid (LPA) is a small bioactive phospholipid which plays an important role during embryonic development and promotes developmental potential of in-vitro-produced (IVP) embryos in several species, including sheep and pigs. In bovines, LPA accelerates IVP blastocyst formation through the Hippo/YAP pathway. However, other LPA effects and its potential receptors during bovine embryo development are less clear. In this study, we used enzyme-linked immunosorbent assay (ELISA) to assess the presence of LPA in bovine oviductal fluid and determine cell apoptosis in embryos after LPA stimulation by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and quantitative reverse transcription polymerase chain reaction (qRT-PCR). We further evaluated potential receptors of LPA through molecular docking, RNA-seq data analysis and quantitative RT-PCR. LPA was found to be present in oviductal fluid. An increase in total cell number and a decrease in apoptosis levels were detected in day 7 blastocysts after LPA treatment. Among eight LPA receptors (LPARs), GPR87 and LPAR2 showed the highest affinity with LPA and their transcripts were expressed in embryos after the 16-cell stage in RNA-seq and qRT-PCR analysis. However, only the expression of LPAR2 was significantly increased in day 6 blastocysts after LPA stimulation, indicating its potential role in LPA-mediated signaling pathways. Our data highlight the positive effects of LPA on embryos and enrich information of related signaling mediators of LPA during embryonic development.
Collapse
Affiliation(s)
- Bo Yu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (B.Y.); (S.D.); (Q.L.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuying Dai
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (B.Y.); (S.D.); (Q.L.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China;
| | - Qirong Lu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Qing Liu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (B.Y.); (S.D.); (Q.L.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (B.Y.); (S.D.); (Q.L.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
3
|
Gutiérrez-Rojas C, Córdova-Casanova A, Faundez-Contreras J, Cruz-Soca M, Gallardo FS, Bock-Pereda A, Casar JC, Barton ER, Brandan E. Dysregulated ATX-LPA and YAP/TAZ signaling in dystrophic Sgcd -/- mice with early fibrosis and inflammation. Skelet Muscle 2025; 15:6. [PMID: 40050938 PMCID: PMC11884125 DOI: 10.1186/s13395-025-00375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/13/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Sarcoglycanopathies are muscle dystrophies caused by mutations in the genes encoding sarcoglycans (α, β, γ, and δ) that can destabilize the dystrophin-associated glycoprotein complex at the sarcolemma, leaving muscle fibers vulnerable to damage after contraction, followed by inflammatory and fibrotic responses and resulting in muscle weakness and atrophy. Two signaling pathways have been implicated in fibrosis and inflammation in various tissues: autotaxin/lysophosphatidic acid (ATX-LPA) and yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ). LPA, synthesized by ATX, can act as a pleiotropic molecule due to its multiple receptors. Two Hippo pathway effectors, YAP/TAZ, can be dephosphorylated by LPA and translocated to the nucleus. They induce several target genes, such as CCN2/CTGF, involved in fibrosis and inflammation. However, no detailed characterization of these processes or whether these pathways change early in the development of sarcoglycanopathy has been evaluated in skeletal muscle. METHODS Using the δ-sarcoglycan knockout mouse model (Sgcd-/-), we investigated components of these pathways, inflammatory and fibrotic markers, and contractile properties of different skeletal muscles (triceps-TR, gastrocnemius-GST, diaphragm-DFG, tibialis anterior-TA, and extensor digitorum longus-EDL) at one and two months of age. RESULTS We found that Sgcd-/- mice show early dystrophic features (fiber damage/necrosis, centrally nucleated fibers, inflammatory infiltrate, and regenerated fibers) followed by later fiber size reduction in TR, GST, and DFG. These changes are concomitant with an early inflammatory and fibrotic response in these muscles. Sgcd-/- mice also have early impaired force generation in the TA and EDL, and resistance to mechanical damage in the EDL. In addition, an early dysregulation of the ATX-LPA axis and the YAP/TAZ signaling pathway in the TR, GST, and DFG was observed in these mice. CONCLUSIONS The ATX-LPA axis and the YAP/TAZ signaling pathway, which are involved in inflammation and fibrosis, are dysregulated in skeletal muscle from an early age in Sgcd-/- mice. These changes are concomitant with a fibrotic and inflammatory response in these mice. Unraveling the role of the LPA axis and YAP/TAZ in sarcoglycanopathy holds great promise for improving our understanding of disease pathogenesis and identifying novel therapeutic targets for this currently incurable group of muscle disorders.
Collapse
Affiliation(s)
- Cristian Gutiérrez-Rojas
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2340025, Valparaíso, Chile.
- Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile.
| | | | - Jennifer Faundez-Contreras
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510602, Santiago, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
| | - Felipe S Gallardo
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
| | - Alexia Bock-Pereda
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Elisabeth R Barton
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510602, Santiago, Chile.
| |
Collapse
|
4
|
Zhang Q, Yuan Y, Wang B, Gong P, Xiang L. Lysophosphatidic acid regulates implant osseointegration in murine models via YAP. Connect Tissue Res 2025; 66:87-95. [PMID: 39902934 DOI: 10.1080/03008207.2025.2459856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Lysophosphatidic acid (LPA), a simple bioactive lysophospholipid, has been reported to regulate bone homeostasis and bone remodeling. This study aimed to elucidate the function and intrinsic mechanism of LPA in osseointegration in murine models. METHOD We constructed immediate implant models in murine maxillae. Micro-CT, H&E staining, and PCR assays were performed to evaluate the effects of LPA on osseointegration. Furthermore, Prx1-Cre;Yapf/f mice and Sp7-Cre;Yapf/f mice were generated to investigate the role of YAP on LPA-induced osseointegration. RESULT In this study, we identified that LPA might promote bone deposition on the tissue-implant interface and improve osseointegration. In addition, conditional knockout of YAP from MCSs and pre-osteoblasts blunts LPA-induced osteogenesis and osseointegration in mice. CONCLUSION Our data demonstrated that LPA-YAP signaling is particularly important to regulate osseointegration, which expands our understanding of LPA and provide the potential of LPA to be used in osseointegration.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Birker-Robaczewska M, Boucher M, Ranieri G, Poirey S, Studer R, Freti D, Schnoebelen M, Froidevaux S, Morrison K, Wyss C, Scherer J, Lescop C, Brotschi C, Bolli MH, Kramberg M, Di Stefano S, Rey M, Iglarz M, Delahaye S, Vezzali E, Sieber P, Schäfer A, Caimi SL, Hesse C, Nayler O. The novel lysophosphatidic acid receptor 1-selective antagonist, ACT-1016-0707, has unique binding properties that translate into effective antifibrotic and anti-inflammatory activity in different models of pulmonary fibrosis. J Pharmacol Exp Ther 2025; 392:103396. [PMID: 40073729 DOI: 10.1016/j.jpet.2025.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Pulmonary fibrosis encompasses different chronic interstitial lung diseases, and the predominant form, idiopathic pulmonary fibrosis, remains to have a poor prognosis despite 2 approved therapies. Although the exact pathobiological mechanisms are still incompletely understood, epithelial injury and aberrant wound healing responses contribute to the gradual change in lung architecture and functional impairment. Lysophosphatidic acid (LPA)-induced lysophosphatidic receptor 1 (LPA1) signaling was proposed to be a driver of lung fibrosis, and LPA1 antagonists have shown promising antifibrotic profiles in early clinical development. The novel, potent, and selective LPA1 antagonist, ACT-1016-0707, displayed insurmountable LPA1 antagonism in vitro with slow off-rate kinetics, leading to efficient inhibition of LPA1 signaling even in presence of high concentrations of LPA. This binding property translated into potent and highly efficient prevention of LPA-induced skin vascular leakage by ACT-1016-0707 in vivo, differentiating the compound from surmountable LPA1 antagonists. Furthermore, ACT-1016-0707 attenuated proinflammatory and profibrotic signaling in different lung fibrosis models in vitro and in the bleomycin-induced lung fibrosis model in vivo. Based on these data, ACT-1016-0707 shows potential as best-in-class LPA1 antagonist for treatment of fibrotic diseases. SIGNIFICANCE STATEMENT: ACT-1016-0707 is a potent, selective, and insurmountable lysophosphatidic receptor 1 (LPA1) antagonist demonstrating robust antifibrotic and anti-inflammatory activity in different lung fibrosis models in vitro and in vivo. This study is the first to demonstrate functional in vivo evidence of insurmountable LPA1 antagonist superiority by side-by-side comparison with surmountable LPA1 antagonists in highly controlled conditions, suggesting potential for ACT-1016-0707 as best-in-class LPA1 antagonist for treatment of fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Rolf Studer
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Diego Freti
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | | | | - Conrad Wyss
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | | | | | | | | | | - Markus Rey
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Marc Iglarz
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | | | | - Anny Schäfer
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine, Department of Preclinical Pharmacology and In-Vitro Toxicology, Member of German Center for Lung Research (DZL), Hannover, Germany
| | | |
Collapse
|
6
|
Kong H, Liu S, Li Z, Xu L, Zhang K, Wang Y. Broad-based targeted lipidomic analysis of dental fluorosis population in an adult population. Chem Phys Lipids 2025; 267:105471. [PMID: 39793642 DOI: 10.1016/j.chemphyslip.2025.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Dental fluorosis, as a common chronic fluoride toxicity oral disease, is mainly caused by long-term excessive intake of fluoride, which seriously affects the aesthetics and function of patients' teeth. In recent years, with the rapid development of metabolomics technology, lipidomics, as an important means to study the changes in lipid metabolism in organisms, has shown great potential in revealing the mechanisms of disease development. As a major component of cell membranes and a signaling molecule, metabolic disorders of lipids are closely related to a variety of diseases, but the specific mechanism of action in dental fluorosis is still unclear. Therefore, the present study aimed to systematically analyze the differences in lipid profiles between dental fluorosis patients and healthy populations by using broad-based targeted lipidomics technology to provide new perspectives on the pathogenesis of dental fluorosis. To this end, the researchers compared the salivary lipidome of healthy participants with the salivary micro lipidome of dental fluorosis patients. Their saliva samples were collected, and advanced broad-based targeted lipidomics technology, combined with a high-performance liquid chromatography-mass spectrometry (LC-MS) system, was used to comprehensively detect and quantify the lipids in the samples. The lipid data were processed and analyzed by bioinformatics to identify the unique patterns of changes in the lipid profiles of dental fluorosis patients and to verify the significance of these changes using statistical methods. Several glycerophospholipids, fatty acyls, and sphingolipids exhibited marked alterations in dental Among these, glycocholic acid, LPA (18:4), taurolithocholic acid-3-sulfate, lithocholic acid-3-sulfate, and taurochenodeoxycholic acid-3-sulfate were observed between dental fluorosis patients and healthy controls. taurochenodeoxycholic acid was significantly decreased, while PA (12:0_12:0) levels were significantly elevated. These findings suggest that These findings suggest that disturbances in lipid metabolism play a crucial role in developing dental fluorosis.
Collapse
Affiliation(s)
- Huiying Kong
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| | - Shanshan Liu
- Department of Stomatology, The First Affiliated Hospital of BengbuMedical University, Bengbu, China.
| | - Zhenzhen Li
- Department of Stomatology, The First Affiliated Hospital of BengbuMedical University, Bengbu, China.
| | - Li Xu
- Department of Ultrasound, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, 287 Changhuai Road, Bengbu, China.
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, No.81, Meishan Road, Shushan District, Hefei 230032, China.
| |
Collapse
|
7
|
Xie XX, Sun JD, Zang MX, Zhang G, Li CX, Zhai XW, Shen W, Ge W, Cheng SF. LPA reduces the apoptosis of cryopreserved porcine skin-derived stem cells by inhibiting the regulatory factor TNF-α. Cryobiology 2025; 118:105189. [PMID: 39706283 DOI: 10.1016/j.cryobiol.2024.105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Preserving the viability and functionality of stem cells during cryopreservation is crucial for their successful application in regenerative medicine. The aim of this study is to investigate the effect of lysophosphatidic acid (LPA) on reducing the apoptosis of cryopreserved porcine skin-derived stem cells (pSDSCs). Our findings revealed that LPA, at a concentration of 5 μM, significantly improved viability and reduced apoptosis in cryopreserved pSDSCs. Furthermore, our data indicated that LPA enters pSDSCs through receptor type 1 (LPAR1). In cryopreserved pSDSCs, after LPA treatment, the expression level of tumor necrosis factor alpha (TNF-α) protein decreased, suggesting TNF-α involvement in the regulation of the anti-apoptotic process. Additionally, we found that resiquimod (R848), a TNF-α activator, increased the level of apoptosis in cryopreserved pSDSCs. When cryopreserved pSDSCs were treated with both LPA and R848, the protective effect of LPA against apoptosis was decreased. In conclusion, our study demonstrates that LPA could effectively counteract the effect of TNF-α-induced apoptosis, thereby enhancing the survival rates of cryopreserved pSDSCs. Importantly, this study explored a novel mechanism of reducing apoptosis in cryopreserved stem cells.
Collapse
Affiliation(s)
- Xin-Xiang Xie
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jia-Dong Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ming-Xin Zang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Geng Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Xiao Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiang-Wei Zhai
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Cheng P, Wang X, Wang S, Ren S, Liang Z, Guo K, Qu M, Meng X, Dou Y, Yin X, Sun Y. Class IIa histone deacetylase (HDAC) inhibitor TMP269 suppresses lumpy skin disease virus replication by regulating host lysophosphatidic acid metabolism. J Virol 2025; 99:e0182724. [PMID: 39840984 PMCID: PMC11852836 DOI: 10.1128/jvi.01827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Lumpy skin disease virus (LSDV) infection poses a significant threat to global cattle farming. Currently, effective therapeutic agents are lacking. TMP269, a small molecule inhibitor of class IIa histone deacetylase inhibitor, plays a vital role in cancer therapy. In this study, we demonstrated that TMP269 treatment inhibits the early-stage replication of LSDV in a dose-dependent manner. RNA sequencing data revealed that metabolism-related signaling pathways were significantly enriched after LSDV infection. Furthermore, untargeted metabolomics analysis revealed that lysophosphatidic acid (LPA), a key metabolite of the glycerophospholipid pathway, was upregulated following LSDV infection and downregulated after TMP269 treatment. In addition, exogenous LPA promotes LSDV replication by activating the mitogen-activated protein kinase (MEK)/extracellular-signal-regulated kinase (ERK) signaling pathway and suppressing the host's innate immune response. Furthermore, treatment with the LPA receptor inhibitor Ki16425 suppressed LSDV replication and promoted the host's innate immune response. These findings suggest that LSDV infection can induce LPA expression and aid viral activation of the MEK/ERK signaling pathway and escape of the host's innate immune response, whereas TMP269 treatment can inhibit LPA production and limit its promotion of LSDV replication. These data identified the antiviral mechanism of TMP269 and a novel mechanism by which LSDV inhibits host innate immune responses, providing insights into the development of new preventive or therapeutic strategies targeting altered metabolic pathways.IMPORTANCELumpy skin disease virus (LSDV) poses a significant threat to global cattle farming. Owing to insufficient research on LSDV infection, pathogenesis, and immune escape mechanisms, prevention and control methods against LSDV infection are lacking. Here, we found that TMP269, a class IIa histone deacetylase inhibitor, significantly inhibited LSDV replication. We further demonstrated that TMP269 altered LSDV infection-induced host glycerophospholipid metabolism. In addition, TMP269 decreased the accumulation of lysophosphatidic acid (LPA), a key metabolite in glycerophospholipid metabolism, induced by LSDV infection, and exogenous LPA-promoted LSDV replication by activating the mitogen-activated protein kinase (MEK)/extracellular-signal-regulated kinase (ERK) signaling pathway and suppressing the host innate immune response. Our findings identified the antiviral mechanism of TMP269 and a novel mechanism by which LSDV manipulates host signaling pathways to promote its replication, offering insights into the development of novel antiviral agents against LSDV infection.
Collapse
Affiliation(s)
- Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Zhengji Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Ke Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Xuelian Meng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Yongxi Dou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Xu X, Wang J, Chen T, Wang S, Wang F, He J, Meng XY, Shen Y. Deciphering novel mitochondrial signatures: multi-omics analysis uncovers cross-disease markers and oligodendrocyte pathways in Alzheimer's disease and glioblastoma. Front Aging Neurosci 2025; 17:1536142. [PMID: 40018519 PMCID: PMC11865232 DOI: 10.3389/fnagi.2025.1536142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Alzheimer's disease (AD) and glioblastoma (GBM) are severe neurological disorders that pose significant global healthcare challenges. Despite extensive research, the molecular mechanisms, particularly those involving mitochondrial dysfunction, remain poorly understood. A major limitation in current studies is the lack of cell-specific markers that effectively represent mitochondrial dynamics in AD and GBM. Methods In this study, we analyzed single-cell transcriptomic data using 10 machine learning algorithms to identify mitochondria-associated cell-specific markers. We validated these markers through the integration of gene expression and methylation data across diverse cell types. Our dataset comprised single-nucleus RNA sequencing (snRNA-seq) from AD patients, single-cell RNA sequencing (scRNA-seq) from GBM patients, and additional DNA methylation and transcriptomic data from the ROSMAP, ADNI, TCGA, and CGGA cohorts. Results Our analysis identified four significant cross-disease mitochondrial markers: EFHD1, SASH1, FAM110B, and SLC25A18. These markers showed both shared and unique expression profiles in AD and GBM, suggesting a common mitochondrial mechanism contributing to both diseases. Additionally, oligodendrocytes and their interactions with astrocytes were implicated in disease progression, particularly through the APP signaling pathway. Key hub genes, such as HS6ST3 and TUBB2B, were identified across different cellular subpopulations, highlighting a cell-specific co-expression network linked to mitochondrial function.
Collapse
Affiliation(s)
- Xuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiaqi Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| | - Shuaibin Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| | - Fei Wang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Junwen He
- College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Xiang-Yu Meng
- School of Basic Medical Sciences, Medical School, Hubei Minzu University, Enshi, Hubei, China
| | - Yin Shen
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Li J, Wu B, Fan G, Huang J, Li Z, Cao F. Lc-ms-based untargeted metabolomics reveals potential mechanisms of histologic chronic inflammation promoting prostate hyperplasia. PLoS One 2024; 19:e0314599. [PMID: 39715183 DOI: 10.1371/journal.pone.0314599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Chronic prostatitis may be a risk factor for developing proliferative changes in the prostate, although the underlying mechanisms are not entirely comprehended. MATERIALS AND METHODS Fifty individual prostate tissues were examined in this study, consisting of 25 patients diagnosed with prostatic hyperplasia combined with histologic chronic inflammation and 25 patients diagnosed with prostatic hyperplasia alone. We employed UPLC-Q-TOF-MS-based untargeted metabolomics using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to identify differential metabolites that can reveal the mechanisms that underlie the promotion of prostate hyperplasia by histologic chronic inflammation. Selected differential endogenous metabolites were analyzed using bioinformatics and subjected to metabolic pathway studies. RESULTS Nineteen differential metabolites, consisting of nine up-regulated and ten down-regulated, were identified between the two groups of patients. These groups included individuals with combined histologic chronic inflammation and those with prostatic hyperplasia alone. Glycerolipids, glycerophospholipids, and sphingolipids were primarily the components present. Metabolic pathway enrichment was conducted on the identified differentially expressed metabolites. Topological pathway analysis revealed the differential metabolites' predominant involvement in sphingolipid, ether lipid, and glycerophospholipid metabolism. The metabolites involved in sphingolipid metabolism were Sphingosine, Cer (d18:1/24:1), and Phytosphingosine. The metabolites involved in ether lipid metabolism were Glycerophosphocholine and LysoPC (O-18:0/0:0). The metabolites involved in glycerophospholipid metabolism were LysoPC (P-18:0/0:0) and Glycerophosphocholine. with Impact > 0. 1 and FDR < 0. 05, the most important metabolic pathway was sphingolipid metabolism. CONCLUSIONS In conclusion, our findings suggest that patients with prostate hyperplasia and combined histologic chronic inflammation possess distinctive metabolic profiles. These differential metabolites appear to play a significant role in the pathogenesis of histologic chronic inflammation-induced prostate hyperplasia, primarily through the regulation of sphingolipids and glycerophospholipids metabolic pathways. The mechanism by which histologic chronic inflammation promotes prostate hyperplasia was elucidated through the analysis of small molecule metabolites. These findings support the notion that chronic prostatitis may contribute to an increased risk of prostate hyperplasia.
Collapse
Affiliation(s)
- Jiale Li
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Beiwen Wu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Guorui Fan
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Jie Huang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Fenghong Cao
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
11
|
Piotrowska-Tomala KK, Szóstek-Mioduchowska A, Jonczyk AW, Drzewiecka EM, Wrobel MH, Hojo T, Ferreira-Dias G, Skarzynski DJ. The effect of lysophosphatidic acid on myometrial contractility and the mRNA transcription of its receptors in the myometrium at different stages of endometrosis in mares. BMC Vet Res 2024; 20:571. [PMID: 39696406 DOI: 10.1186/s12917-024-04384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Endometrosis (chronic degenerative endometritis) results in morphological changes in the equine endometrium and impairs its secretory function. However, the effect of this condition on the myometrium remains unclear. Lysophosphatidic acid (LPA) may affect female reproductive function and embryo transport by influencing uterine contractility through its receptors (LPARs). The objective of this study was to determine myometrial LPAR1-6 mRNA transcription, and the effects of LPA on myometrial contractions in mares with endometrosis during the mid-luteal and follicular phases of the estrous cycle. RESULTS A reduction in myometrial LPAR1 mRNA transcription was observed in mares with endometrosis during the mid-luteal phase, in comparison to those with category I endometria (P < 0.05). While, upregulation of myometrial LPAR3 or LPAR6 mRNA transcription was observed in mares with category III or IIB endometria; respectively (P < 0.05). An increase in myometrial LPAR1, LPAR3 and LPAR5 mRNA transcription was observed during the follicular phase in mares with category IIA endometrium in comparison to their expression in category I endometrium (P < 0.05). During endometrosis progression LPA reduced the force of myometrial contractions in both phases of the estrous cycle (P < 0.05). However, in mares with category IIA endometrium during the follicular phase, LPA was found to increase the force of contraction of myometrial strips in comparison to mares with category I endometrium (P < 0.01). CONCLUSION In the course of endometrosis in mares, a disruption in the myometrial mRNA transcription of LPARs has been observed. This is the first study to examine the impact of LPA on myometrial contractility at diffrent stage of endometrosis. However, it is essential to consider that multiple factors may contribute to this process. Alternations in contractile activity and changes in myometrial LPARs mRNA transcription may indicate impaired LPA-signaling mechanisms in equine myometrium during endometrosis.
Collapse
Affiliation(s)
| | - Anna Szóstek-Mioduchowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | | | - Ewa Monika Drzewiecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Michał Hubert Wrobel
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Takuo Hojo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748, Olsztyn, Poland
- Kyushu Okinawa Agricultural Research Center, NARO, 2421, Suya, Koshi, Kumamoto, 861-1192, Japan
| | - Graca Ferreira-Dias
- Faculty of Veterinary Medicine, C.I.I.S.A, University of Lisbon, Lisbon, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Dariusz Jan Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748, Olsztyn, Poland.
| |
Collapse
|
12
|
Schirizzi A, Donghia R, De Nunzio V, Renna N, Centonze M, De Leonardis G, Lorusso V, Fantasia A, Coletta S, Stabile D, Ferro A, Notarnicola M, Ricci AD, Lotesoriere C, Lahn M, D'Alessandro R, Giannelli G. High levels of autotaxin and lysophosphatidic acid predict poor outcome in treatment of resectable gastric carcinoma. Eur J Cancer 2024; 213:115066. [PMID: 39426076 DOI: 10.1016/j.ejca.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Although early-stage gastric cancer is a candidate for curative surgical resection, the absence of specific early symptoms results in a late diagnosis and consequently most patients present advanced or metastatic disease. Identifying noveland tumor-specific biomarkers is needed to increase early detection and match patients to the appropriate treatment. The present study focused on the possible prognostic role of Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2)/Autotaxin (ATX) and lysophosphatidic acid (LPA) in Gastro-Esophageal Adenocarcinoma (GEA). High levels of ATX/LPA are associated with several malignancies including gastrointestinal tumors. METHODS Using a bioinformatics analysis, the incidence of ENPP2 mutations together with its expression in the tumor tissues and the correlation between the presence of mutations and the survival rate were examined in databases of GEA patients. Furthermore, circulating levels of ATX and LPA were studied retrospectively and longitudinally both in patients receiving frontal surgery and in patients receiving preoperative chemotherapy. RESULTS Overall findings suggested that although ENPP2 mutations occur at low incidence, their presence was associated with a particular poor Overall Survival (OS). Furthermore, removal of the tumour by surgery resulted in a decrease in serum ATX and LPA levels within five days, regardless of any previous chemotherapy. Basal circulating ATX were associated with the aggressive diffuse GEA and could be considered of negative prognostic value, mainly in combination models with circulating Carcino-Embryonic Antigen (CEA). CONCLUSIONS Based on these observations, clinical trials with ATX-targeted drugs and standard chemotherapy regimens may benefit from selecting GEA patients based on their levels of ATX, LPA and CEA.
Collapse
Affiliation(s)
- Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Natasha Renna
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Matteo Centonze
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Vincenza Lorusso
- Clinical Trial Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Alessia Fantasia
- Clinical Trial Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Sergio Coletta
- Core Facility Biobank, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Dolores Stabile
- Core Facility Biobank, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Annalisa Ferro
- Clinical Pathology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Maria Notarnicola
- Clinical Pathology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Angela D Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Michael Lahn
- iOnctura Clinical Research, Avenue Secheron 15, 1202 Geneva, Switzerland.
| | - Rosalba D'Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| |
Collapse
|
13
|
Geng Y, Li Y, Liu G, Jiao J. Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics analysis and machine learning. Sci Rep 2024; 14:29463. [PMID: 39604470 PMCID: PMC11603146 DOI: 10.1038/s41598-024-81120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Colorectal polyps are precursors of colorectal cancer. Metabolic dysfunction associated steatohepatitis (MASH) is one of metabolic dysfunction associated fatty liver disease (MAFLD) phenotypic manifestations. Much evidence has suggested an association between MASH and polyps. This study investigated the biomarkers of MASH and colorectal polyps, and the prediction of targeted drugs using an integrated bioinformatics analysis method. Differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were performed on GSE89632 and GSE41258 datasets, 49 shared genes revealed after intersection. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses depicted they were mainly enriched in apoptosis, proliferation and infection pathways. Machine learning algorithms identified S100P, FOXO1, and LPAR1 were biomarkers for colorectal polyps and MASH, ROC curve and violin plot showed ideal AUC and stable expression patterns in both the discovery and validation sets. GSEA analysis showed significant enrichment of bile acid and fatty acid pathways when grouped by the expression levels of the three candidate biomarkers. Immune infiltration analysis showed a significant infiltration of M0 macrophages and Treg cells in the colorectal polyps group. A total of 9 small molecule compounds were considered as potential chemoprevention agents in MASH and colorectal polyps by using the CMap website. Using integrated bioinformatics analysis, the molecular mechanism between MASH and colorectal polyps has been further explored.
Collapse
Affiliation(s)
- Ying Geng
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Yifang Li
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Ge Liu
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jian Jiao
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
14
|
Akasaka H, Sano FK, Shihoya W, Nureki O. Structural mechanisms of potent lysophosphatidic acid receptor 1 activation by nonlipid basic agonists. Commun Biol 2024; 7:1444. [PMID: 39506093 PMCID: PMC11541586 DOI: 10.1038/s42003-024-07152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) is one of the G protein-coupled receptors activated by the lipid mediator, lysophosphatidic acid (LPA). LPA1 is associated with a variety of diseases, and LPA1 agonists have potential therapeutic value for treating obesity and depression. Although potent nonlipid LPA1 agonists have recently been identified, the mechanisms of nonlipid molecule-mediated LPA1 activation remain unclear. Here, we report a cryo-electron microscopy structure of the human LPA1-Gi complex bound to a nonlipid basic agonist, CpY, which has 30-fold higher agonistic activity as compared with LPA. Structural comparisons of LPA1 with other lipid GPCRs revealed that the negative charge in the characteristic binding pocket of LPA1 allows the selective recognition of CpY, which lacks a polar head. In addition, our structure show that the ethyl group of CpY directly pushes W2716.48 to fix the active conformation. Endogenous LPA lacks these chemical features, which thus represent the crucial elements of nonlipid agonists that potently activate LPA1. This study provides detailed mechanistic insights into the ligand recognition and activation of LPA1 by nonlipid agonists, expanding the scope for drug development targeting the LPA receptors.
Collapse
Affiliation(s)
- Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
15
|
Li X, Koyama Y, Taura K, Nishio T, Yoh T, Nishino H, Uemoto Y, Kimura Y, Nakamura D, Nam NH, Sato M, Seo S, Iwaisako K, Hatano E. High expression of autotaxin is associated with poor recurrence-free survival in cholangiocarcinoma. Hepatol Res 2024; 54:817-826. [PMID: 38430513 DOI: 10.1111/hepr.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/04/2024]
Abstract
BACKGROUND AND AIM Autotaxin (ATX) is an extracellular lysophospholipase D that catalyzes the hydrolysis of lysophosphatidylcholine into lysophosphatidic acid (LPA). Recent accumulating evidence indicates the biological roles of ATX in malignant tumors. However, the expression and clinical implications of ATX in human cholangiocarcinoma (CCA) remain elusive. METHODS In this study, the expression of ATX in 97 human CCA tissues was evaluated by immunohistochemistry. Serum ATX levels were determined in CCA patients (n = 26) and healthy subjects (n = 8). Autotaxin expression in cell types within the tumor microenvironment was characterized by immunofluorescence staining. RESULTS High ATX expression in CCA tissue was significantly associated with a higher frequency of lymph node metastasis (p = 0.050). High ATX expression was correlated with shorter overall survival (p = 0.032) and recurrence-free survival (RFS) (p = 0.001) than low ATX expression. In multivariate Cox analysis, high ATX expression (p = 0.019) was an independent factor for shorter RFS. Compared with low ATX expression, high ATX expression was significantly associated with higher Ki-67-positive cell counts (p < 0.001). Serum ATX levels were significantly higher in male CCA patients than in healthy male subjects (p = 0.030). In the tumor microenvironment of CCA, ATX protein was predominantly expressed in tumor cells, cancer-associated fibroblasts, plasma cells, and biliary epithelial cells. CONCLUSIONS Our study highlights the clinical evidence and independent prognostic value of ATX in human CCA.
Collapse
Affiliation(s)
- Xuefeng Li
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Koyama
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kojiro Taura
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Takahiro Nishio
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoaki Yoh
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroto Nishino
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Uemoto
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Kimura
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Nakamura
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nguyen Hai Nam
- Department of Liver Tumor, Cancer Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Motohiko Sato
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Seo
- Department of Surgery, Kochi Medical School, Kochi, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Etsuro Hatano
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Birgbauer E. Lysophospholipid receptors in neurodegeneration and neuroprotection. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024; 4:349-365. [PMID: 39247084 PMCID: PMC11379401 DOI: 10.37349/ent.2024.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
The central nervous system (CNS) is one of the most complex physiological systems, and treatment of CNS disorders represents an area of major medical need. One critical aspect of the CNS is its lack of regeneration, such that damage is often permanent. The damage often leads to neurodegeneration, and so strategies for neuroprotection could lead to major medical advances. The G protein-coupled receptor (GPCR) family is one of the major receptor classes, and they have been successfully targeted clinically. One class of GPCRs is those activated by bioactive lysophospholipids as ligands, especially sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA). Research has been increasingly demonstrating the important roles that S1P and LPA, and their receptors, play in physiology and disease. In this review, I describe the role of S1P and LPA receptors in neurodegeneration and potential roles in neuroprotection. Much of our understanding of the role of S1P receptors has been through pharmacological tools. One such tool, fingolimod (also known as FTY720), which is a S1P receptor agonist but a functional antagonist in the immune system, is clinically efficacious in multiple sclerosis by producing a lymphopenia to reduce autoimmune attacks; however, there is evidence that fingolimod is also neuroprotective. Furthermore, fingolimod is neuroprotective in many other neuropathologies, including stroke, Parkinson's disease, Huntington's disease, Rett syndrome, Alzheimer's disease, and others that are discussed here. LPA receptors also appear to be involved, being upregulated in a variety of neuropathologies. Antagonists or mutations of LPA receptors, especially LPA1, are neuroprotective in a variety of conditions, including cortical development, traumatic brain injury, spinal cord injury, stroke and others discussed here. Finally, LPA receptors may interact with other receptors, including a functional interaction with plasticity related genes.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| |
Collapse
|
17
|
Taketomi Y, Higashi T, Kano K, Miki Y, Mochizuki C, Toyoshima S, Okayama Y, Nishito Y, Nakae S, Tanaka S, Tokuoka SM, Oda Y, Shichino S, Ueha S, Matsushima K, Akahoshi N, Ishii S, Chun J, Aoki J, Murakami M. Lipid-orchestrated paracrine circuit coordinates mast cell maturation and anaphylaxis through functional interaction with fibroblasts. Immunity 2024; 57:1828-1847.e11. [PMID: 39002541 DOI: 10.1016/j.immuni.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.
Collapse
Affiliation(s)
- Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayoshi Higashi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Chika Mochizuki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shota Toyoshima
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, and Division of Internal Medicine, Department of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, and Division of Internal Medicine, Department of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Allergy and Internal Medicine, Misato Kenwa Hospital, Saitama 341-8555, Japan; Department of Internal Medicine, Division of Respiratory Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan; Advanced Medical Science Research Center, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
18
|
Fischer C, Schreiber Y, Nitsch R, Vogt J, Thomas D, Geisslinger G, Tegeder I. Lysophosphatidic Acid Receptors LPAR5 and LPAR2 Inversely Control Hydroxychloroquine-Evoked Itch and Scratching in Mice. Int J Mol Sci 2024; 25:8177. [PMID: 39125747 PMCID: PMC11312285 DOI: 10.3390/ijms25158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lysophosphatidic acids (LPAs) evoke nociception and itch in mice and humans. In this study, we assessed the signaling paths. Hydroxychloroquine was injected intradermally to evoke itch in mice, which evoked an increase of LPAs in the skin and in the thalamus, suggesting that peripheral and central LPA receptors (LPARs) were involved in HCQ-evoked pruriception. To unravel the signaling paths, we assessed the localization of candidate genes and itching behavior in knockout models addressing LPAR5, LPAR2, autotaxin/ENPP2 and the lysophospholipid phosphatases, as well as the plasticity-related genes Prg1/LPPR4 and Prg2/LPPR3. LacZ reporter studies and RNAscope revealed LPAR5 in neurons of the dorsal root ganglia (DRGs) and in skin keratinocytes, LPAR2 in cortical and thalamic neurons, and Prg1 in neuronal structures of the dorsal horn, thalamus and SSC. HCQ-evoked scratching behavior was reduced in sensory neuron-specific Advillin-LPAR5-/- mice (peripheral) but increased in LPAR2-/- and Prg1-/- mice (central), and it was not affected by deficiency of glial autotaxin (GFAP-ENPP2-/-) or Prg2 (PRG2-/-). Heat and mechanical nociception were not affected by any of the genotypes. The behavior suggested that HCQ-mediated itch involves the activation of peripheral LPAR5, which was supported by reduced itch upon treatment with an LPAR5 antagonist and autotaxin inhibitor. Further, HCQ-evoked calcium fluxes were reduced in primary sensory neurons of Advillin-LPAR5-/- mice. The results suggest that LPA-mediated itch is primarily mediated via peripheral LPAR5, suggesting that a topical LPAR5 blocker might suppress "non-histaminergic" itch.
Collapse
Affiliation(s)
- Caroline Fischer
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Robert Nitsch
- Institute for Translational Neuroscience, Medical Faculty, WWU Münster, 48149 Münster, Germany;
| | - Johannes Vogt
- Department of Molecular and Translational Neurosciences, Institute for Anatomy and Center of Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster for Aging associated Diseases (CECAD), University of Cologne, 50923 Köln, Germany;
| | - Dominique Thomas
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Gerd Geisslinger
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
- Fraunhofer Cluster of Excellence of Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| |
Collapse
|
19
|
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, De Leonardis G, D’Alessandro R, Lotesoriere C, Giannelli G. Autotaxin-Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications. Int J Mol Sci 2024; 25:7737. [PMID: 39062979 PMCID: PMC11277072 DOI: 10.3390/ijms25147737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
20
|
Li N, Li Y. Lysophosphatidic Acid (LPA) and Its Receptors in Mood Regulation: A Systematic Review of the Molecular Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:7440. [PMID: 39000547 PMCID: PMC11242315 DOI: 10.3390/ijms25137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Mood disorders affect over 300 million individuals worldwide, often characterized by their chronic and refractory nature, posing significant threats to patient life. There has been a notable increase in mood disorders among American adolescents and young adults, with a rising number of suicide attempts and fatalities, highlighting a growing association between mood disorders and suicidal outcomes. Dysregulation within the neuroimmune-endocrine system is now recognized as one of the fundamental biological mechanisms underlying mood and mood disorders. Lysophosphatidic acid (LPA), a novel mediator of mood behavior, induces anxiety-like and depression-like phenotypes through its receptors LPA1 and LPA5, regulating synaptic neurotransmission and plasticity. Consequently, LPA has garnered substantial interest in the study of mood regulation. This study aimed to elucidate the molecular mechanisms of lysophosphatidic acid and its receptors, along with LPA receptor ligands, in mood regulation and to explore their potential therapeutic efficacy in treating mood disorders. A comprehensive literature search was conducted using the PubMed and Web of Science databases, identifying 208 articles through keyword searches up to June 2024. After excluding duplicates, irrelevant publications, and those restricted by open access limitations, 21 scientific papers were included in this review. The findings indicate that LPA/LPA receptor modulation could be beneficial in treating mood disorders, suggesting that pharmacological agents or gintonin, an extract from ginseng, may serve as effective therapeutic strategies. This study opens new avenues for future research into how lysophosphatidic acid and its receptors, as well as lysophosphatidic acid receptor ligands, influence emotional behavior in animals and humans.
Collapse
Affiliation(s)
- Nan Li
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Yanchun Li
- China Institute of Sports and Health Science, Beijing Sport University, Beijing 100084, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| |
Collapse
|
21
|
Solís KH, Romero-Ávila MT, Rincón-Heredia R, García-Sáinz JA. Lysophosphatidic Acid Receptor 3 (LPA3): Signaling and Phosphorylation Sites. Int J Mol Sci 2024; 25:6491. [PMID: 38928196 PMCID: PMC11203643 DOI: 10.3390/ijms25126491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
LPA3 receptors were expressed in TREx HEK 293 cells, and their signaling and phosphorylation were studied. The agonist, lysophosphatidic acid (LPA), increased intracellular calcium and ERK phosphorylation through pertussis toxin-insensitive processes. Phorbol myristate acetate, but not LPA, desensitizes LPA3-mediated calcium signaling, the agonists, and the phorbol ester-induced LPA3 internalization. Pitstop 2 (clathrin heavy chain inhibitor) markedly reduced LPA-induced receptor internalization; in contrast, phorbol ester-induced internalization was only delayed. LPA induced rapid β-arrestin-LPA3 receptor association. The agonist and the phorbol ester-induced marked LPA3 receptor phosphorylation, and phosphorylation sites were detected using mass spectrometry. Phosphorylated residues were detected in the intracellular loop 3 (S221, T224, S225, and S229) and in the carboxyl terminus (S321, S325, S331, T333, S335, Y337, and S343). Interestingly, phosphorylation sites are within sequences predicted to constitute β-arrestin binding sites. These data provide insight into LPA3 receptor signaling and regulation.
Collapse
Affiliation(s)
- K. Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - M. Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico;
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| |
Collapse
|
22
|
Rubenzucker S, Manke MC, Lehmann R, Assinger A, Borst O, Ahrends R. A Targeted, Bioinert LC-MS/MS Method for Sensitive, Comprehensive Analysis of Signaling Lipids. Anal Chem 2024; 96:9643-9652. [PMID: 38795073 PMCID: PMC11170558 DOI: 10.1021/acs.analchem.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Signaling lipids are key players in cellular processes. Despite their importance, no method currently allows their comprehensive monitoring in one analytical run. Challenges include a wide dynamic range, isomeric and isobaric species, and unwanted interaction along the separation path. Herein, we present a sensitive and robust targeted liquid chromatography-mass spectrometry (LC-MS/MS) approach to overcome these challenges, covering a broad panel of 17 different signaling lipid classes. It involves a simple one-phase sample extraction and lipid analysis using bioinert reversed-phase liquid chromatography coupled to targeted mass spectrometry. The workflow shows excellent sensitivity and repeatability in different biological matrices, enabling the sensitive and robust monitoring of 388 lipids in a single run of only 20 min. To benchmark our workflow, we characterized the human plasma signaling lipidome, quantifying 307 endogenous molecular lipid species. Furthermore, we investigated the signaling lipidome during platelet activation, identifying numerous regulations along important lipid signaling pathways. This highlights the potential of the presented method to investigate signaling lipids in complex biological systems, enabling unprecedentedly comprehensive analysis and direct insight into signaling pathways.
Collapse
Affiliation(s)
- Stefanie Rubenzucker
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, 1090 Vienna, Austria
| | - Mailin-Christin Manke
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute
for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic
Laboratory Medicine, University Hospital
Tübingen, 72076 Tübingen, Germany
| | - Alice Assinger
- Department
of Vascular Biology and Thrombosis Research, Centre of Physiology
and Pharmacology, Medical University of
Vienna, 1090 Vienna, Austria
| | - Oliver Borst
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Robert Ahrends
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Córdova-Casanova A, Cruz-Soca M, Gallardo FS, Faundez-Contreras J, Bock-Pereda A, Chun J, Vio CP, Casar JC, Brandan E. LPA-induced expression of CCN2 in muscular fibro/adipogenic progenitors (FAPs): Unraveling cellular communication networks. Matrix Biol 2024; 130:36-46. [PMID: 38723870 DOI: 10.1016/j.matbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.
Collapse
Affiliation(s)
- Adriana Córdova-Casanova
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; P Universidad Católica de Chile, Santiago, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; P Universidad Católica de Chile, Santiago, Chile
| | | | | | - Alexia Bock-Pereda
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; P Universidad Católica de Chile, Santiago, Chile
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carlos P Vio
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
24
|
Dedoni S, Olianas MC, Onali P. Lysophosphatidic Acid Stimulates Mitogenic Activity and Signaling in Human Neuroblastoma Cells through a Crosstalk with Anaplastic Lymphoma Kinase. Biomolecules 2024; 14:631. [PMID: 38927035 PMCID: PMC11201523 DOI: 10.3390/biom14060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a well-documented pro-oncogenic factor in different cancers, but relatively little is known on its biological activity in neuroblastoma. The LPA effects and the participation of the tyrosine kinase receptor anaplastic lymphoma kinase (ALK) in LPA mitogenic signaling were studied in human neuroblastoma cell lines. We used light microscopy and [3H]-thymidine incorporation to determine cell proliferation, Western blot to study intracellular signaling, and pharmacological and molecular tools to examine the role of ALK. We found that LPA stimulated the growth of human neuroblastoma cells, as indicated by the enhanced cell number, clonogenic activity, and DNA synthesis. These effects were curtailed by the selective ALK inhibitors NPV-TAE684 and alectinib. In a panel of human neuroblastoma cell lines harboring different ALK genomic status, the ALK inhibitors suppressed LPA-induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), which are major regulators of cell proliferation. ALK depletion by siRNA treatment attenuated LPA-induced ERK1/2 activation. LPA enhanced ALK phosphorylation and potentiated ALK activation by the ALK ligand FAM150B. LPA enhanced the inhibitory phosphorylation of the tumor suppressor FoxO3a, and this response was impaired by the ALK inhibitors. These results indicate that LPA stimulates mitogenesis of human neuroblastoma cells through a crosstalk with ALK.
Collapse
Affiliation(s)
| | | | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (S.D.); (M.C.O.)
| |
Collapse
|
25
|
Solís KH, Romero-Ávila MT, Rincón-Heredia R, García-Sáinz JA. LPA 3 Receptor Phosphorylation Sites: Roles in Signaling and Internalization. Int J Mol Sci 2024; 25:5508. [PMID: 38791546 PMCID: PMC11122405 DOI: 10.3390/ijms25105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Lysophosphatidic acid (LPA) type 3 (LPA3) receptor mutants were generated in which the sites detected phosphorylated were substituted by non-phosphorylatable amino acids. Substitutions were made in the intracellular loop 3 (IL3 mutant), the carboxyl terminus (Ctail), and both domains (IL3/Ctail). The wild-type (WT) receptor and the mutants were expressed in T-REx HEK293 cells, and the consequences of the substitutions were analyzed employing different functional parameters. Agonist- and LPA-mediated receptor phosphorylation was diminished in the IL3 and Ctail mutants and essentially abolished in the IL3/Ctail mutant, confirming that the main phosphorylation sites are present in both domains and their role in receptor phosphorylation eliminated by substitution and distributed in both domains. The WT and mutant receptors increased intracellular calcium and ERK 1/2 phosphorylation in response to LPA and PMA. The agonist, Ki16425, diminished baseline intracellular calcium, which suggests some receptor endogenous activity. Similarly, baseline ERK1/2 phosphorylation was diminished by Ki16425. An increase in baseline ERK phosphorylation was detected in the IL3/Ctail mutant. LPA and PMA-induced receptor interaction with β-arrestin 2 and LPA3 internalization were severely diminished in cells expressing the mutants. Mutant-expressing cells also exhibit increased baseline proliferation and response to different stimuli, which were inhibited by the antagonist Ki16425, suggesting a role of LPA receptors in this process. Migration in response to different attractants was markedly increased in the Ctail mutant, which the Ki16425 antagonist also attenuated. Our data experimentally show that receptor phosphorylation in the distinct domains is relevant for LPA3 receptor function.
Collapse
Affiliation(s)
- K. Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - M. Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico;
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México 04510, Mexico; (K.H.S.); (M.T.R.-Á.)
| |
Collapse
|
26
|
Xue J, Deng J, Qin H, Yan S, Zhao Z, Qin L, Liu J, Wang H. The interaction of platelet-related factors with tumor cells promotes tumor metastasis. J Transl Med 2024; 22:371. [PMID: 38637802 PMCID: PMC11025228 DOI: 10.1186/s12967-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.
Collapse
Affiliation(s)
- Jie Xue
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Jianzhao Deng
- Clinical Laboratory, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Hongwei Qin
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Songxia Yan
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Jiao Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
27
|
Xu L, Bajorski P, Poligone B. Lysophosphatidic acid down-regulates human RIPK4 mRNA in keratinocyte- derived cell lines. PLoS One 2024; 19:e0287444. [PMID: 38630705 PMCID: PMC11023271 DOI: 10.1371/journal.pone.0287444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/06/2023] [Indexed: 04/19/2024] Open
Abstract
The tight control of proliferating keratinocytes is vital to the successful function of the skin. Differentiation of dividing cells is necessary to form a skin barrier. The same dividing cells are necessary to heal wounds and when malignant form tumors. RIPK4, a serine-threonine kinase, plays critical roles in these processes. Its loss of function was associated with pathological keratinocyte proliferation and development of squamous cell carcinoma (SCC) in humans and mice. The current study extends previous findings in the importance of RIPK4 in keratinocyte proliferation. A serum-derived phospholipid, lysophosphatidic acid (LPA), was identified as an important biologic inhibitor of RIPK4. LPA functions by inhibiting the transcription of RIPK4 mRNA. LPA treatment led to increased keratinocyte proliferation, and this was compromised in cells with reduced RIPK4 expression. The current study may help to explain the mechanism by which RIPK4 was downregulated during SCC progression and provide insights on RIPK4 functions. It may also allow for targeting of RIPK4 through a natural component of serum.
Collapse
Affiliation(s)
- Lei Xu
- Rochester General Hospital Research Institute, Cancer Biology Research, Rochester, New York, United States of America
| | - Peter Bajorski
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Brian Poligone
- Rochester General Hospital Research Institute, Cancer Biology Research, Rochester, New York, United States of America
| |
Collapse
|
28
|
Karalis T, Poulogiannis G. The Emerging Role of LPA as an Oncometabolite. Cells 2024; 13:629. [PMID: 38607068 PMCID: PMC11011573 DOI: 10.3390/cells13070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.
Collapse
Affiliation(s)
| | - George Poulogiannis
- Signalling and Cancer Metabolism Laboratory, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| |
Collapse
|
29
|
Chaudhary R, Suhan T, Tarhuni MW, Abdel-Latif A. Lysophosphatidic Acid-Mediated Inflammation at the Heart of Heart Failure. Curr Cardiol Rep 2024; 26:113-120. [PMID: 38340272 DOI: 10.1007/s11886-024-02023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE OF REVIEW The primary aim of this review is to provide an in-depth examination of the role bioactive lipids-namely lysophosphatidic acid (LPA) and ceramides-play in inflammation-mediated cardiac remodeling during heart failure. With the global prevalence of heart failure on the rise, it is critical to understand the underlying molecular mechanisms contributing to its pathogenesis. Traditional studies have emphasized factors such as oxidative stress and neurohormonal activation, but emerging research has shed light on bioactive lipids as central mediators in heart failure pathology. By elucidating these intricacies, this review aims to: Bridge the gap between basic research and clinical practice by highlighting clinically relevant pathways contributing to the pathogenesis and prognosis of heart failure. Provide a foundation for the development of targeted therapies that could mitigate the effects of LPA and ceramides on heart failure. Serve as a comprehensive resource for clinicians and researchers interested in the molecular biology of heart failure, aiding in better diagnostic and therapeutic decisions. RECENT FINDINGS Recent findings have shed light on the central role of bioactive lipids, specifically lysophosphatidic acid (LPA) and ceramides, in heart failure pathology. Traditional studies have emphasized factors such as hypoxia-mediated cardiomyocyte loss and neurohormonal activation in the development of heart failure. Emerging research has elucidated the intricacies of bioactive lipid-mediated inflammation in cardiac remodeling and the development of heart failure. Studies have shown that LPA and ceramides contribute to the pathogenesis of heart failure by promoting inflammation, fibrosis, and apoptosis in cardiac cells. Additionally, recent studies have identified potential targeted therapies that could mitigate the effects of bioactive lipids on heart failure, including LPA receptor antagonists and ceramide synthase inhibitors. These recent findings provide a promising avenue for the development of targeted therapies that could improve the diagnosis and treatment of heart failure. In this review, we highlight the pivotal role of inflammation induced by bioactive lipid signaling and its influence on the pathogenesis of heart failure. By critically assessing the existing literature, we provide a comprehensive resource for clinicians and researchers interested in the molecular mechanisms of heart failure. Our review aims to bridge the gap between basic research and clinical practice by providing actionable insights and a foundation for the development of targeted therapies that could mitigate the effects of bioactive lipids on heart failure. We hope that this review will aid in better diagnostic and therapeutic decisions, further advancing our collective understanding and management of heart failure.
Collapse
Affiliation(s)
- Rajesh Chaudhary
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Tahra Suhan
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Mahmud W Tarhuni
- Department of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Ahmed Abdel-Latif
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA.
- Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
30
|
Balijepalli P, Yue G, Prasad B, Meier KE. Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1. Int J Mol Sci 2024; 25:2067. [PMID: 38396744 PMCID: PMC10889543 DOI: 10.3390/ijms25042067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Cysteine-rich angiogenic factor 61 (CCN1/Cyr61) is a matricellular protein that is induced and secreted in response to growth factors. Our previous work showed that 18:1-lysophosphatidic acid (LPA), which activates the G protein-coupled receptor LPAR1, induces CCN1 between 2-4 h in PC-3 human prostate cancer cells in a manner than enhances cell-substrate adhesion. While the time course of induction suggests that CCN1 contributes to intermediate events in LPA action, the roles of CCN1 in LPA-mediated signal transduction have not been fully elucidated. This study utilized a comprehensive global proteomics approach to identify proteins up- or down-regulated in response to treatment of PC-3 cells with LPA for three hours, during the time of peak CCN1 levels. In addition, the effects of siRNA-mediated CCN1 knockdown on LPA responses were analyzed. The results show that, in addition to CCN1, LPA increased the levels of multiple proteins. Proteins up-regulated by LPA included metastasis-associated in colon cancer protein 1 (MACC1) and thrombospondin-1 (TSP1/THBS1); both MACC1 and TSP1 regulated cancer cell adhesion and motility. LPA down-regulated thioredoxin interacting protein (TXNIP). CCN1 knockdown suppressed the LPA-induced up-regulation of 30 proteins; these included MACC1 and TSP1, as confirmed by immunoblotting. Gene ontology and STRING analyses revealed multiple pathways impacted by LPA and CCN1. These results indicate that CCN1 contributes to LPA signaling cascades that occur during the intermediate phase after the initial stimulus. The study provides a rationale for the development of interventions to disrupt the LPA-CCN1 axis.
Collapse
Affiliation(s)
| | | | | | - Kathryn E. Meier
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (P.B.); (G.Y.); (B.P.)
| |
Collapse
|
31
|
Kajitani N, Okada-Tsuchioka M, Inoue A, Miyano K, Masuda T, Boku S, Iwamoto K, Ohtsuki S, Uezono Y, Aoki J, Takebayashi M. G protein-biased LPAR1 agonism of prototypic antidepressants: Implication in the identification of novel therapeutic target for depression. Neuropsychopharmacology 2024; 49:561-572. [PMID: 37673966 PMCID: PMC10789764 DOI: 10.1038/s41386-023-01727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Prototypic antidepressants, such as tricyclic/tetracyclic antidepressants (TCAs), have multiple pharmacological properties and have been considered to be more effective than newer antidepressants, such as selective serotonin reuptake inhibitors, in treating severe depression. However, the clinical contribution of non-monoaminergic effects of TCAs remains elusive. In this study, we discovered that amitriptyline, a typical TCA, directly binds to the lysophosphatidic acid receptor 1 (LPAR1), a G protein-coupled receptor, and activates downstream G protein signaling, while exerting a little effect on β-arrestin recruitment. This suggests that amitriptyline acts as a G protein-biased agonist of LPAR1. This biased agonism was specific to TCAs and was not observed with other antidepressants. LPAR1 was found to be involved in the behavioral effects of amitriptyline. Notably, long-term infusion of mouse hippocampus with the potent G protein-biased LPAR agonist OMPT, but not the non-biased agonist LPA, induced antidepressant-like behavior, indicating that G protein-biased agonism might be necessary for the antidepressant-like effects. Furthermore, RNA-seq analysis revealed that LPA and OMPT have opposite patterns of gene expression changes in the hippocampus. Pathway analysis indicated that long-term treatment with OMPT activated LPAR1 downstream signaling (Rho and MAPK), whereas LPA suppressed LPAR1 signaling. Our findings provide insights into the mechanisms underlying the non-monoaminergic antidepressant effects of TCAs and identify the G protein-biased agonism of LPAR1 as a promising target for the development of novel antidepressants.
Collapse
Affiliation(s)
- Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan.
| |
Collapse
|
32
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
33
|
Abdelwahid MS, Ohsawa K, Uwamizu A, Kano K, Aoki J, Doi T. Synthesis and Biological Evaluation of Lysophosphatidic Acid Analogues Using Conformational Restriction and Bioisosteric Replacement Strategies. ACS OMEGA 2023; 8:49278-49288. [PMID: 38162765 PMCID: PMC10753746 DOI: 10.1021/acsomega.3c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Lysophosphatidic acid (LPA) is a key player in many physiological and pathophysiological processes. The biological activities of LPA are mediated through interactions with-at least-six subtypes of G-protein-coupled receptors (GPCRs) named LPA1-6. Developing a pharmacological tool molecule that activates LPA subtype receptors selectively will allow a better understanding of their specific physiological roles. Here, we designed and synthesized conformationally restricted 25 1-oleoyl LPA analogues MZN-001 to MZN-025 by incorporating its glycerol linker into dihydropyran, tetrahydropyran, and pyrrolidine rings and variating the lipophilic chain. The agonistic activities of these compounds were evaluated using the TGFα shedding assay. Overall, the synthesized analogues exhibited significantly reduced agonistic activities toward LPA1, LPA2, and LPA6, while demonstrating potent activities toward LPA3, LPA4, and LPA5 compared to the parent LPA. Specifically, MZN-010 showed more than 10 times greater potency (EC50 = 4.9 nM) than the standard 1-oleoyl LPA (EC50 = 78 nM) toward LPA5 while exhibiting significantly lower activity on LPA1, LPA2, and LPA6 and comparable potency toward LPA3 and LPA4. Based on the MZN-010 scaffold, we synthesized additional analogues with improved selectivity and potency toward LPA5. Compound MZN-021, which contains a saturated lipophilic chain, exhibited 50 times more potent activity (EC50 = 1.2 nM) than the natural LPA against LPA5 with over a 45-fold higher selectivity when compared to those of other LPA receptors. Thus, MZN-021 was found to be a potent and selective LPA5 agonist. The findings of this study could contribute to broadening the current knowledge about the stereochemical and three-dimensional arrangement of LPA pharmacophore components inside LPA receptors and paving the way toward synthesizing other subtype-selective pharmacological probes.
Collapse
Affiliation(s)
- Mazin
A. S. Abdelwahid
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kosuke Ohsawa
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Akiharu Uwamizu
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kuniyuki Kano
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junken Aoki
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Doi
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
34
|
Cho HS, Kwon TW, Kim JH, Lee R, Bae CS, Kim HC, Kim JH, Choi SH, Cho IH, Nah SY. Gintonin Alleviates HCl/Ethanol- and Indomethacin-Induced Gastric Ulcers in Mice. Int J Mol Sci 2023; 24:16721. [PMID: 38069044 PMCID: PMC10705886 DOI: 10.3390/ijms242316721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Gintonin, newly extracted from ginseng, is a glycoprotein that acts as an exogenous lysophosphatidic acid (LPA) receptor ligand. This study aimed to demonstrate the in vivo preventive effects of gintonin on gastric damage. ICR mice were randomly assigned to five groups: a normal group (received saline, 0.1 mL/10 g, p.o.); a control group (administered 0.3 M HCl/ethanol, 0.1 mL/10 g, p.o.) or indomethacin (30 mg/kg, p.o.); gintonin at two different doses (50 mg/kg or 100 mg/kg, p.o.) with either 0.3 M HCl/ethanol or indomethacin; and a positive control (Ranitidine, 40 mg/kg, p.o.). After gastric ulcer induction, the gastric tissue was examined to calculate the ulcer index. The expression of gastric damage markers, such as tumor necrosis factor (TNF)-α, cyclooxygenase 2 (COX-2), and LPA2 and LPA5 receptors, were measured by Western blotting. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay. The platelet endothelial cell adhesion molecule (PECAM-1), Evans blue, and occludin levels in gastric tissues were measured using immunofluorescence analysis. Both HCl/ethanol- and indomethacin-induced gastric ulcers showed increased TNF-α, IL-6, Evans blue permeation, and PECAM-1, and decreased COX-2, PGE2, occludin, and LPA5 receptor expression levels. However, oral administration of gintonin alleviated the gastric ulcer index induced by HCl/ethanol and indomethacin in a dose-dependent manner. Gintonin suppressed TNF-α and IL-6 expression, but increased COX-2 expression and PGE2 levels in mouse gastric tissues. Gintonin intake also increased LPA5 receptor expression in mouse gastric tissues. These results indicate that gintonin can play a role in gastric protection against gastric damage induced by HCl/ethanol or indomethacin.
Collapse
Affiliation(s)
- Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Tae Woo Kwon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-City 54596, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si 18119, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| |
Collapse
|
35
|
Han L, Jiang Y, Shi M, Gan L, Wu Z, Xue M, Zhu Y, Xiong C, Wang T, Lin X, Shen B, Jiang L, Chen H. LIPH contributes to glycolytic phenotype in pancreatic ductal adenocarcinoma by activating LPA/LPAR axis and maintaining ALDOA stability. J Transl Med 2023; 21:838. [PMID: 37990271 PMCID: PMC10664664 DOI: 10.1186/s12967-023-04702-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND LIPH, a membrane-associated phosphatidic acid-selective phospholipase A1a, can produce LPA (Lysophosphatidic acid) from PA (Phosphatidic acid) on the outer leaflet of the plasma membrane. It is well known that LIPH dysfunction contributes to lipid metabolism disorder. Previous study shows that LIPH was found to be a potential gene related to poor prognosis with pancreatic ductal adenocarcinoma (PDAC). However, the biological functions of LIPH in PDAC remain unclear. METHODS Cell viability assays were used to evaluate whether LIPH affected cell proliferation. RNA sequencing and immunoprecipitation showed that LIPH participates in tumor glycolysis by stimulating LPA/LPAR axis and maintaining aldolase A (ALDOA) stability in the cytosol. Subcutaneous, orthotopic xenograft models and patient-derived xenograft PDAC model were used to evaluate a newly developed Gemcitabine-based therapy. RESULTS LIPH was significantly upregulated in PDAC and was related to later pathological stage and poor prognosis. LIPH downregulation in PDAC cells inhibited colony formation and proliferation. Mechanistically, LIPH triggered PI3K/AKT/HIF1A signaling via LPA/LPAR axis. LIPH also promoted glycolysis and de novo synthesis of glycerolipids by maintaining ALDOA stability in the cytosol. Xenograft models show that PDAC with high LIPH expression levels was sensitive to gemcitabine/ki16425/aldometanib therapy without causing discernible side effects. CONCLUSION LIPH directly bridges PDAC cells and tumor microenvironment to facilitate aberrant aerobic glycolysis via activating LPA/LPAR axis and maintaining ALDOA stability, which provides an actionable gemcitabine-based combination therapy with limited side effects.
Collapse
Affiliation(s)
- Lijie Han
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Lina Gan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Zhichong Wu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Cheng Xiong
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Ting Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
36
|
Requena-Ocaña N, Flores-López M, García-Marchena N, Pavón-Morón FJ, Pedraza C, Wallace A, Castilla-Ortega E, Rodríguez de Fonseca F, Serrano A, Araos P. Plasma Lysophosphatidic Acid Concentrations in Sex Differences and Psychiatric Comorbidity in Patients with Cocaine Use Disorder. Int J Mol Sci 2023; 24:15586. [PMID: 37958570 PMCID: PMC10649657 DOI: 10.3390/ijms242115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
We have recently reported sex differences in the plasma concentrations of lysophosphatidic acid (LPA) and alterations in LPA species in patients with alcohol and cocaine use disorders. Preclinical evidence suggests a main role of lysophosphatidic acid (LPA) signaling in anxiogenic responses and drug addiction. To further explore the potential role of the LPA signaling system in sex differences and psychiatric comorbidity in cocaine use disorder (CUD), we conducted a cross-sectional study with 88 patients diagnosed with CUD in outpatient treatment and 60 healthy controls. Plasma concentrations of total LPA and LPA species (16:0, 18:0, 18:1, 18:2 and 20:4) were quantified and correlated with cortisol and tryptophan metabolites [tryptophan (TRP), serotonin (5-HT), kynurenine (KYN), quinolinic acid (QUIN) and kynurenic acid (KYNA)]. We found sexual dimorphism for the total LPA and most LPA species in the control and CUD groups. The total LPA and LPA species were not altered in CUD patients compared to the controls. There was a significant correlation between 18:2 LPA and age at CUD diagnosis (years) in the total sample, but total LPA, 16:0 LPA and 18:2 LPA correlated with age at onset of CUD in male patients. Women with CUD had more comorbid anxiety and eating disorders, whereas men had more cannabis use disorders. Total LPA, 18:0 LPA and 20:4 LPA were significantly decreased in CUD patients with anxiety disorders. Both 20:4 LPA and total LPA were significantly higher in women without anxiety disorders compared to men with and without anxiety disorders. Total LPA and 16:0 LPA were significantly decreased in CUD patients with childhood ADHD. Both 18:1 LPA and 20:4 LPA were significantly augmented in CUD patients with personality disorders. KYNA significantly correlated with total LPA, 16:0 LPA and 18:2 LPA species, while TRP correlated with the 18:1 LPA species. Our results demonstrate that LPA signaling is affected by sex and psychiatric comorbidity in CUD patients, playing an essential role in mediating their anxiety symptoms.
Collapse
Affiliation(s)
- Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Nuria García-Marchena
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Francisco J. Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| | - Agustín Wallace
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| | - Estela Castilla-Ortega
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Pedro Araos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| |
Collapse
|
37
|
Smith GR, Zhao B, Lindholm ME, Raja A, Viggars M, Pincas H, Gay NR, Sun Y, Ge Y, Nair VD, Sanford JA, Amper MAS, Vasoya M, Smith KS, Montgomery S, Zaslavsky E, Bodine SC, Esser KA, Walsh MJ, Snyder MP. Multi-omic identification of key transcriptional regulatory programs during endurance exercise training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523450. [PMID: 36711841 PMCID: PMC9882056 DOI: 10.1101/2023.01.10.523450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transcription factors (TFs) play a key role in regulating gene expression and responses to stimuli. We conducted an integrated analysis of chromatin accessibility, DNA methylation, and RNA expression across eight rat tissues following endurance exercise training (EET) to map epigenomic changes to transcriptional changes and determine key TFs involved. We uncovered tissue-specific changes and TF motif enrichment across all omic layers, differentially accessible regions (DARs), differentially methylated regions (DMRs), and differentially expressed genes (DEGs). We discovered distinct routes of EET-induced regulation through either epigenomic alterations providing better access for TFs to affect target genes, or via changes in TF expression or activity enabling target gene response. We identified TF motifs enriched among correlated epigenomic and transcriptomic alterations, DEGs correlated with exercise-related phenotypic changes, and EET-induced activity changes of TFs enriched for DEGs among their gene targets. This analysis elucidates the unique transcriptional regulatory mechanisms mediating diverse organ effects of EET.
Collapse
Affiliation(s)
- Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- These authors contributed equally
| | - Bingqing Zhao
- Department of Genetics, Stanford University, Stanford, CA 94305
- These authors contributed equally
| | - Malene E Lindholm
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Archana Raja
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Mark Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, Florida 32610
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicole R Gay
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James A Sanford
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Mary Anne S Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kevin S Smith
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Stephen Montgomery
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida 32610
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | |
Collapse
|
38
|
Ren Z, Hou J, Li W, Tang Y, Wang M, Ding R, Liu S, Fu Y, Mai Y, Xia J, Zuo W, Zhou LH, Ye JH, Fu R. LPA1 receptors in the lateral habenula regulate negative affective states associated with alcohol withdrawal. Neuropsychopharmacology 2023; 48:1567-1578. [PMID: 37059867 PMCID: PMC10516930 DOI: 10.1038/s41386-023-01582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
The role of lysophosphatidic acid (LPA) signaling in psychiatric disorders and drug abuse is significant. LPA receptors are widely expressed in the central nervous system, including the lateral habenula (LHb). Recent studies suggest that LHb is involved in a negative emotional state during alcohol withdrawal, which can lead to relapse. The current study examines the role of LHb LPA signaling in the negative affective state associated with alcohol withdrawal. Adult male Long-Evans rats were trained to consume either alcohol or water for eight weeks. At 48 h of withdrawal, alcohol-drinking rats showed anxiety- and depression-like symptoms, along with a significant increase in LPA signaling and related neuronal activation molecules, including autotaxin (ATX, Enpp2), LPA receptor 1/3 (LPA1/3), βCaMKII, and c-Fos. However, there was a decrease in lipid phosphate phosphatase-related protein type 4 (LPPR4) in the LHb. Intra-LHb infusion of the LPA1/3 receptor antagonist ki-16425 or PKC-γ inhibitor Go-6983 reduced the abnormal behaviors and elevated relapse-like ethanol drinking. It also normalized high LPA1/3 receptors and enhanced AMPA GluA1 phosphorylation in Ser831 and GluA1/GluA2 ratio. Conversely, selective activation of LPA1/3 receptors by intra-LHb infusion of 18:1 LPA induced negative affective states and upregulated βCaMKII-AMPA receptor phosphorylation in Naive rats, which were reversed by pretreatment with intra-LHb Go-6983. Our findings suggest that disturbances in LPA signaling contribute to adverse affective disorders during alcohol withdrawal, likely through PKC-γ/βCaMKII-linked glutamate signaling. Targeting LPA may therefore be beneficial for individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Molin Wang
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Songlin Liu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong, 510970, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Li-Hua Zhou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518106, China.
| |
Collapse
|
39
|
Hong JM, Lee JW, Seen DS, Jeong JY, Huh WK. LPA1-mediated inhibition of CXCR4 attenuates CXCL12-induced signaling and cell migration. Cell Commun Signal 2023; 21:257. [PMID: 37749552 PMCID: PMC10518940 DOI: 10.1186/s12964-023-01261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND G protein-coupled receptor heteromerization is believed to exert dynamic regulatory impact on signal transduction. CXC chemokine receptor 4 (CXCR4) and its ligand CXCL12, both of which are overexpressed in many cancers, play a pivotal role in metastasis. Likewise, lysophosphatidic acid receptor 1 (LPA1) is implicated in cancer cell proliferation and migration. In our preliminary study, we identified LPA1 as a prospective CXCR4 interactor. In the present study, we investigated in detail the formation of the CXCR4-LPA1 heteromer and characterized the unique molecular features and function of this heteromer. METHODS We employed bimolecular fluorescence complementation, bioluminescence resonance energy transfer, and proximity ligation assays to demonstrate heteromerization between CXCR4 and LPA1. To elucidate the distinctive molecular characteristics and functional implications of the CXCR4-LPA1 heteromer, we performed various assays, including cAMP, BRET for G protein activation, β-arrestin recruitment, ligand binding, and transwell migration assays. RESULTS We observed that CXCR4 forms heteromers with LPA1 in recombinant HEK293A cells and the human breast cancer cell line MDA-MB-231. Coexpression of LPA1 with CXCR4 reduced CXCL12-mediated cAMP inhibition, ERK activation, Gαi/o activation, and β-arrestin recruitment, while CXCL12 binding to CXCR4 remained unaffected. In contrast, CXCR4 had no impact on LPA1-mediated signaling. The addition of lysophosphatidic acid (LPA) further hindered CXCL12-induced Gαi/o recruitment to CXCR4. LPA or alkyl-OMPT inhibited CXCL12-induced migration in various cancer cells that endogenously express both CXCR4 and LPA1. Conversely, CXCL12-induced calcium signaling and migration were increased in LPAR1 knockout cells, and LPA1-selective antagonists enhanced CXCL12-induced Gαi/o signaling and cell migration in the parental MDA-MB-231 cells but not in LPA1-deficient cells. Ultimately, complete inhibition of cell migration toward CXCL12 and alkyl-OMPT was only achieved in the presence of both CXCR4 and LPA1 antagonists. CONCLUSIONS The presence and impact of CXCR4-LPA1 heteromers on CXCL12-induced signaling and cell migration have been evidenced across various cell lines. This discovery provides crucial insights into a valuable regulatory mechanism of CXCR4 through heteromerization. Moreover, our findings propose a therapeutic potential in combined CXCR4 and LPA1 inhibitors for cancer and inflammatory diseases associated with these receptors, simultaneously raising concerns about the use of LPA1 antagonists alone for such conditions. Video Abstract.
Collapse
Affiliation(s)
- Jong Min Hong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Seung Seen
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea.
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
40
|
Liao HY, O’Flaherty C. Lysophosphatidic Acid Signalling Regulates Human Sperm Viability via the Phosphoinositide 3-Kinase/AKT Pathway. Cells 2023; 12:2196. [PMID: 37681929 PMCID: PMC10486690 DOI: 10.3390/cells12172196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Lysophosphatidic acid (LPA) signalling is essential for maintaining germ cell viability during mouse spermatogenesis; however, its role in human spermatozoa is unknown. We previously demonstrated that peroxiredoxin 6 (PRDX6) calcium-independent phospholipase A2 (iPLA2) releases lysophospholipids such as LPA or arachidonic acid (AA) and that inhibiting PRDX6 iPLA2 activity impairs sperm cell viability. The exogenous addition of LPA bypassed the inhibition of PRDX6 iPLA2 activity and maintained the active phosphoinositide 3-kinase (PI3K)/AKT pathway. Here, we aimed to study PI3K/AKT pathway regulation via LPA signalling and protein kinases in maintaining sperm viability. The localization of LPARs in human spermatozoa was determined using immunocytochemistry, and P-PI3K and P-AKT substrate phosphorylations via immunoblotting. Sperm viability was determined using the hypo-osmotic swelling test. LPAR1, 3, 5 and 6 were located on the sperm plasma membrane. The inhibition of LPAR1-3 with Ki16425 promoted the impairment of sperm viability and decreased the phosphorylation of PI3K AKT substrates. Inhibitors of PKC, receptor-type PTK and PLC impaired sperm viability and the PI3K/AKT pathway. Adding 1-oleoyl-2-acetyl-snglycerol (OAG), a cell-permeable analog of diacylglycerol (DAG), prevented the loss of sperm viability and maintained the phosphorylation of PI3K. In conclusion, human sperm viability is supported by LPAR signalling and regulated by PLC, PKC and RT-PTK by maintaining phosphorylation levels of PI3K and AKT substrates.
Collapse
Affiliation(s)
- Hao-Yu Liao
- Department of Medicine, Experimental Medicine Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Cristian O’Flaherty
- Department of Medicine, Experimental Medicine Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
41
|
Balijepalli P, Meier KE. From outside to inside and back again: the lysophosphatidic acid-CCN axis in signal transduction. J Cell Commun Signal 2023; 17:845-849. [PMID: 36795277 PMCID: PMC10409932 DOI: 10.1007/s12079-023-00728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
CCN1 and CCN2 are matricellular proteins that are transcriptionally induced by various stimuli, including growth factors. CCN proteins act to facilitate signaling events involving extracellular matrix proteins. Lysophosphatidic acid (LPA) is a lipid that activates G protein-coupled receptors (GPCRs), enhancing proliferation, adhesion, and migration in many types of cancer cells. Our group previously reported that LPA induces production of CCN1 protein in human prostate cancer cell lines within 2-4 h. In these cells, the mitogenic activity of LPA is mediated by LPA Receptor 1 (LPAR1), a GPCR. There are multiple examples of the induction of CCN proteins by LPA, and by the related lipid mediator sphingosine-1-phosphate (S1P), in various cellular models. The signaling pathways responsible for LPA/S1P-induced CCN1/2 typically involve activation of the small GTP-binding protein Rho and the transcription factor YAP. Inducible CCNs can potentially play roles in downstream signal transduction events required for LPA and S1P-induced responses. Specifically, CCNs secreted into the extracellular space can facilitate the activation of additional receptors and signal transduction pathways, contributing to the biphasic delayed responses typically seen in response to growth factors acting via GPCRs. In some model systems, CCN1 and CCN2 play key roles in LPA/S1P-induced cell migration and proliferation. In this way, an extracellular signal (LPA or S1P) can activate GPCR-mediated intracellular signaling to induce the production of extracellular modulators (CCN1 and CCN2) that in turn initiate another round of intracellular signaling.
Collapse
Affiliation(s)
- Pravita Balijepalli
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA USA
| | - Kathryn E. Meier
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA USA
| |
Collapse
|
42
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
43
|
Prakash E, Pavithra S, Kishor Kumar DG, Panigrahi M, Singh TU, Kumar D, Parida S. TXA2 mediates LPA1-stimulated uterine contraction in late pregnant mouse. Prostaglandins Other Lipid Mediat 2023; 167:106736. [PMID: 37062326 DOI: 10.1016/j.prostaglandins.2023.106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Lysophosphatidic acid (LPA) is known to increase uterine contraction in the estrus cycle and early pregnancy, however, the effect of LPA in late pregnant uterus and its mechanisms are not clear. In the present study, we show the LPA receptor subtypes expressed and the mechanism of LPA-induced contractions in late pregnant mouse uterus. We determined the relative mRNA expression of LPA receptor genes by quantitative PCR and elicited log concentration-response curves to oleoyl-L-α-LPA by performing tension experiments in the presence and absence of nonselective and selective receptor antagonists and inhibitors of the TXA2 pathway. LPA1 was the most highly expressed receptor subtype in the late pregnant mouse uterus and LPA1/2/3 agonist (Oleoyl-L-α LPA) elicited increased contractions in this tissue that had lesser efficacy compared to oxytocin. LPA1/3 antagonist, Ki-16425, and a potent LPA1 antagonist (AM-095) significantly inhibited the LPA-induced contractions. Further, the nonselective COX inhibitor, indomethacin, and potent thromboxane A2 synthase inhibitor, furegrelate significantly impaired LPA-induced contractions. Moreover, selective thromboxane receptor (TP) antagonist, SQ-29548, and Rho kinase inhibitor, Y-27632 almost eliminated LPA-induced uterine contractions. LPA1 stimulation elicits contractions in the late pregnant mouse uterus using the contractile prostanoid, TXA2 and may be targeted to induce labor in uterine dysfunctions/ dystocia.
Collapse
Affiliation(s)
- E Prakash
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - S Pavithra
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - D G Kishor Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| |
Collapse
|
44
|
Wu YN, Su X, Wang XQ, Liu NN, Xu ZW. The roles of phospholipase C-β related signals in the proliferation, metastasis and angiogenesis of malignant tumors, and the corresponding protective measures. Front Oncol 2023; 13:1231875. [PMID: 37576896 PMCID: PMC10419273 DOI: 10.3389/fonc.2023.1231875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
PLC-β is widely distributed in eukaryotic cells and is the key enzyme in phosphatidylinositol signal transduction pathway. The cellular functions regulated by its four subtypes (PLC-β1, PLC-β2, PLC-β3, PLC-β4) play an important role in maintaining homeostasis of organism. PLC-β and its related signals can promote or inhibit the occurrence and development of cancer by affecting the growth, differentiation and metastasis of cells, while targeted intervention of PLC-β1-PI3K-AKT, PLC-β2/CD133, CXCR2-NHERF1-PLC-β3, Gαq-PLC-β4-PKC-MAPK and so on can provide new strategies for the precise prevention and treatment of malignant tumors. This paper reviews the mechanism of PLC-β in various tumor cells from four aspects: proliferation and differentiation, invasion and metastasis, angiogenesis and protective measures.
Collapse
Affiliation(s)
- Yu-Nuo Wu
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xing Su
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Qin Wang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Na-Na Liu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui, China
| |
Collapse
|
45
|
Flores-López M, García-Marchena N, Pavón-Morón FJ, Requena-Ocaña N, Sánchez-Marín L, Martín-Chaves L, García-Medina M, Pedraza C, Castilla-Ortega E, Ruiz JJ, Rodríguez de Fonseca F, Araos P, Serrano A. Plasma concentrations of lysophosphatidic acid and the expression of its receptors in peripheral blood mononuclear cells are altered in patients with cocaine use disorders. Transl Psychiatry 2023; 13:215. [PMID: 37344453 PMCID: PMC10284796 DOI: 10.1038/s41398-023-02523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
We have recently reported alterations in the plasma concentrations of lysophosphatidic acid (LPA) in patients with substance use disorders. In order to further explore the potential role of the LPA signaling system as biomarker in cocaine use disorders (CUD) we conducted a cross-sectional study with 105 patients diagnosed with CUD and 92 healthy controls. Participants were clinically evaluated and blood samples were collected to determine plasma concentrations of total LPA and LPA species (16:0-, 18:0-, 18:1-, 18:2-, and 20:4-LPA), and the gene expression of LPA1 and LPA2 receptors in peripheral blood mononuclear cells. We found that patients with CUD had significantly lower plasma concentration of the majority of LPA species, while the mRNA expression of LPA1 receptor was found to be higher than controls. Moreover, we found a positive association between plasma concentration of 20:4-LPA and relevant CUD-related variables: age of onset cocaine use and length of cocaine abstinence. The statistical analysis revealed sex differences in concentrations of total LPA and LPA species, and women showed higher LPA concentrations than men. Furthermore, studies in rats of both sexes showed that plasma concentrations of total LPA were also altered after acute and chronic cocaine administration, revealing a sexual dimorphism in these effects. This study found alterations on the LPA signaling system in both, patients with CUD and rats treated with cocaine. Our results demonstrate that LPA signaling is impacted by CUD and sex, which must be taken into consideration in future studies evaluating LPA as a reliable biomarker for CUD.
Collapse
Affiliation(s)
- María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Nuria García-Marchena
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
- Unidad de Adicciones-Servicio de Medicina Interna, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
| | - Francisco J Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Laura Sánchez-Marín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Laura Martín-Chaves
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010, Málaga, Spain
| | - Mónica García-Medina
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Estela Castilla-Ortega
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Juan J Ruiz
- Centro Provincial de Drogodependencias de Málaga, Diputación Provincial de Málaga, 29010, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain.
- Unidad de Gestión Clínica de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain.
| | - Pedro Araos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain.
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain.
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain.
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain.
| |
Collapse
|
46
|
Cerutis DR, Weston MD, Miyamoto T. Entering, Linked with the Sphinx: Lysophosphatidic Acids Everywhere, All at Once, in the Oral System and Cancer. Int J Mol Sci 2023; 24:10278. [PMID: 37373424 PMCID: PMC10299546 DOI: 10.3390/ijms241210278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Oral health is crucial to overall health, and periodontal disease (PDD) is a chronic inflammatory disease. Over the past decade, PDD has been recognized as a significant contributor to systemic inflammation. Here, we relate our seminal work defining the role of lysophosphatidic acid (LPA) and its receptors (LPARs) in the oral system with findings and parallels relevant to cancer. We discuss the largely unexplored fine-tuning potential of LPA species for biological control of complex immune responses and suggest approaches for the areas where we believe more research should be undertaken to advance our understanding of signaling at the level of the cellular microenvironment in biological processes where LPA is a key player so we can better treat diseases such as PDD, cancer, and emerging diseases.
Collapse
Affiliation(s)
- D. Roselyn Cerutis
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| | - Michael D. Weston
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| | - Takanari Miyamoto
- Department of Periodontics, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| |
Collapse
|
47
|
Neighbors M, Li Q, Zhu SJ, Liu J, Wong WR, Jia G, Sandoval W, Tew GW. Bioactive lipid lysophosphatidic acid species are associated with disease progression in idiopathic pulmonary fibrosis. J Lipid Res 2023; 64:100375. [PMID: 37075981 PMCID: PMC10205439 DOI: 10.1016/j.jlr.2023.100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality. Prognostic biomarkers to identify rapid progressors are urgently needed to improve patient management. Since the lysophosphatidic acid (LPA) pathway has been implicated in lung fibrosis in preclinical models and identified as a potential therapeutic target, we aimed to investigate if bioactive lipid LPA species could be prognostic biomarkers that predict IPF disease progression. LPAs and lipidomics were measured in baseline placebo plasma of a randomized IPF-controlled trial. The association of lipids with disease progression indices were assessed using statistical models. Compared to healthy, IPF patients had significantly higher levels of five LPAs (LPA16:0, 16:1, 18:1, 18:2, 20:4) and reduced levels of two triglycerides species (TAG48:4-FA12:0, -FA18:2) (false discovery rate < 0.05, fold change > 2). Patients with higher levels of LPAs had greater declines in diffusion capacity of carbon monoxide over 52 weeks (P < 0.01); additionally, LPA20:4-high (≥median) patients had earlier time to exacerbation compared to LPA20:4-low (
Collapse
Affiliation(s)
| | - Qingling Li
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Sha Joe Zhu
- PD Data Science, F Hoffmann-La Roche, Shanghai, China
| | - Jia Liu
- PD Data Science, F Hoffmann-La Roche, Shanghai, China
| | - Weng Ruh Wong
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech Inc., South San Francisco, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Gaik W Tew
- I2O Technology and Translational Research, Genentech Inc., South San Francisco, USA.
| |
Collapse
|
48
|
Mukherjee A, Gali J, Kar I, Datta S, Roy M, Acharya AP, Patra AK. Candidate genes and proteins regulating bull semen quality: a review. Trop Anim Health Prod 2023; 55:212. [PMID: 37208528 DOI: 10.1007/s11250-023-03617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Poor semen profile reflected by suboptimum fertility statistics is a concern in bulls reared for breeding purpose. A critical review of research on candidate genes and proteins associated with semen quality traits will be useful to understand the progress of molecular marker development for bull semen quality traits. Here, we have tabulated and classified candidate genes and proteins associated with bull semen quality based on a literature survey. A total of 175 candidate genes are associated with semen quality traits in various breeds of cattle. Several studies using candidate gene approach have identified 26 genes carrying a total of 44 single nucleotide polymorphisms. Furthermore, nine genome-wide association studies (GWASes) have identified 150 candidate genes using bovine single nucleotide polymorphisms (SNP) chips. Three genes, namely membrane-associated ring-CH-type finger 1 (MARCH1), platelet-derived growth factor receptor beta, and phosphodiesterase type 1, were identified commonly in two GWASes, which, especially MARCH1, are required to explore their regulatory roles in bull semen quality in in-depth studies. With the advancement of high-throughput-omic technologies, more candidate genes associated with bull semen quality may be identified in the future. Therefore, the functional significance of candidate genes and proteins need to be delved further into future investigations to augment bull semen quality.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Veterinary Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Jaganmohanarao Gali
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - Indrajit Kar
- Department of Avian Science, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Sanjoy Datta
- Department of Animal Genetics and Breeding, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Manoranjan Roy
- Department of Animal Genetics and Breeding, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Aditya Pratap Acharya
- Department of Veterinary Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India.
- American Institute for Goat Research, Langston University, Langston, Oklahoma, USA.
| |
Collapse
|
49
|
Cruz-Soca M, Faundez-Contreras J, Córdova-Casanova A, Gallardo FS, Bock-Pereda A, Chun J, Casar JC, Brandan E. Activation of skeletal muscle FAPs by LPA requires the Hippo signaling via the FAK pathway. Matrix Biol 2023; 119:57-81. [PMID: 37137584 DOI: 10.1016/j.matbio.2023.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that signals through six G-protein coupled receptors (LPARs), LPA1 to LPA6. LPA has been described as a potent modulator of fibrosis in different pathologies. In skeletal muscle, LPA increases fibrosis-related proteins and the number of fibro/adipogenic progenitors (FAPs). FAPs are the primary source of ECM-secreting myofibroblasts in acute and chronic damage. However, the effect of LPA on FAPs activation in vitro has not been explored. This study aimed to investigate FAPs' response to LPA and the downstream signaling mediators involved. Here, we demonstrated that LPA mediates FAPs activation by increasing their proliferation, expression of myofibroblasts markers, and upregulation of fibrosis-related proteins. Pretreatment with the LPA1/LPA3 antagonist Ki16425 or genetic deletion of LPA1 attenuated the LPA-induced FAPs activation, resulting in decreased expression of cyclin e1, α-SMA, and fibronectin. We also evaluated the activation of the focal adhesion kinase (FAK) in response to LPA. Our results showed that LPA induces FAK phosphorylation in FAPs. Treatment with the P-FAK inhibitor PF-228 partially prevented the induction of cell responses involved in FAPs activation, suggesting that this pathway mediates LPA signaling. FAK activation controls downstream cell signaling within the cytoplasm, such as the Hippo pathway. LPA induced the dephosphorylation of the transcriptional coactivator YAP (Yes-associated protein) and promoted direct expression of target pathway genes such as Ctgf/Ccn2 and Ccn1. The blockage of YAP transcriptional activity with Super-TDU further confirmed the role of YAP in LPA-induced FAPs activation. Finally, we demonstrated that FAK is required for LPA-dependent YAP dephosphorylation and the induction of Hippo pathway target genes. In conclusion, LPA signals through LPA1 to regulate FAPs activation by activating FAK to control the Hippo pathway.
Collapse
Affiliation(s)
- Meilyn Cruz-Soca
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jennifer Faundez-Contreras
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Adriana Córdova-Casanova
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Felipe S Gallardo
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Alexia Bock-Pereda
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
50
|
Yanagida K, Shimizu T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol Ther 2023; 246:108421. [PMID: 37080433 DOI: 10.1016/j.pharmthera.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|