1
|
Zheng L, Wang J, Jin X, Cheng Q, Zhang X, Li Y, Wang D, Song H, Zhu X, Lin L, Ma J, Gao J, Liang J, Tong J, Shi L. Erythroblastic island: the niche for erythroid terminal differentiation and beyond. BLOOD SCIENCE 2025; 7:e00228. [PMID: 40129604 PMCID: PMC11932602 DOI: 10.1097/bs9.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
The erythroblastic island (EBI) is a multicellular structure defined by the presence of 1 or 2 central macrophages surrounded by at least 3 erythroblasts. EBIs were initially proposed as a specialized microenvironment exclusively for erythroid terminal differentiation. Recent advancements in techniques such as lineage tracing mouse models, imaging flow cytometry, and single-cell RNA sequencing, accumulating evidence has provided novel insights that challenge this conventional view. Notably, the erythropoietin receptor has been identified as a novel marker for EBI macrophages. Additionally, neutrophils have been identified as novel cellular components of EBIs, raising the intriguing hypothesis that EBIs may support other hematopoietic lineage cells as well. Beyond the diverse cellular components of various hematopoietic lineages, even within the erythroid lineage, an immune-prone erythroblast subpopulation has been reported, although it remains unclear whether and how these immune-prone erythroblasts mature in EBIs. These observations indicate that EBIs are a heterogeneous population. In this review, we summarize the most recent findings on EBIs, discuss their potential immune functions, and provide a perspective for future investigations.
Collapse
Affiliation(s)
- Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qimei Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Lexuan Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
2
|
Kong L, Hu X, Xia D, Wu J, Zhao Y, Guo H, Zhang S, Qin C, Wang Y, Li L, Su Z, Zhu C, Xu S. Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation. Biomaterials 2025; 317:123060. [PMID: 39736219 DOI: 10.1016/j.biomaterials.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025]
Abstract
Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.
Collapse
Affiliation(s)
- Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Demeng Xia
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Science, Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yangpeng Zhao
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Song Zhang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Chun Qin
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Yanjun Wang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Lei Li
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuogui Xu
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
3
|
Zhang H, Nie J, Bao Z, Shi Y, Gong J, Li H. FOXC1 promotes EMT and colorectal cancer progression by attracting M2 macrophages via the TGF-β/Smad2/3/snail pathway. Cell Signal 2025; 130:111680. [PMID: 39978609 DOI: 10.1016/j.cellsig.2025.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Colorectal cancer is a highly prevalent and deadly malignancy worldwide. Current treatment strategies, including surgery, chemotherapy, and targeted therapy, still face limitations due to recurrence and metastasis. By conducting a weighted gene coexpression network analysis on gene expression data from The Cancer Genome Atlas, we pinpointed critical genes linked to M2 macrophages and tumor metastasis. Among these, FOXC1 emerged as a significant prognostic indicator within our predictive model. Clinical sample analysis further confirmed that FOXC1 is upregulated in colorectal cancer tissues and associated with an unfavorable patient outcome. Both in vivo and in vitro experimental results revealed that FOXC1 promotes CRC cell migration, invasion and proliferation by regulating the expression of Snail and TGF-β/Smad2/3 pathways, thereby facilitating the epithelial-mesenchymal transition process. Additionally, FOXC1 recruits M2 macrophages to the tumor microenvironment by regulating CXCL2 expression through Snail. The TGF-β factor secreted by M2 macrophages further activates the TGF-β/Smad2/3 pathway, forming a positive feedback loop. In these processes, FOXC1 plays a critical regulatory role. In summary, this study highlights the critical significance of FOXC1 in CRC progression and indicates its viability as a therapeutic target, offering a novel theoretical foundation for the development of future CRC treatment strategies.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jinlin Nie
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China; Department of Hepatobiliary Pancreatic Hernia Surgery, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China
| | - Zhen Bao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Yangdong Shi
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jin Gong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China.
| | - Hailiang Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China.
| |
Collapse
|
4
|
Wang X, Gui H, Liu C, Huo F, Lan W, Zhu X, Wang W, Ma A, Lan J. ENTR1 regulates periodontitis by modulating macrophage M1 polarization via AMPK activation. Life Sci 2025; 369:123525. [PMID: 40054733 DOI: 10.1016/j.lfs.2025.123525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/30/2025]
Abstract
AIMS Periodontitis is a chronic inflammatory disorder arising from an imbalance between oral microbiota and the host's immune response, with macrophages as pivotal targets for prevention and treatment. Endosome-associated Trafficking Regulator 1 (ENTR1) is indispensable for protein trafficking and implant osseointegration. However, its specific role in periodontitis has yet to be clarified. This research seeks to explore the effects of ENTR1 on macrophage polarization, elucidate its mechanisms, and evaluate its regulatory functions in the regeneration of periodontal tissues. MATERIALS AND METHODS A ligature-induced periodontitis mouse model was established to investigate the correlation between macrophage polarization markers and ENTR1 expression. Techniques including qRT-PCR, Western blot, ELISA, flow cytometry, and immunofluorescence staining were utilized to evaluate the impact of ENTR1 on macrophage polarization under inflammatory stimuli. Micro-CT and histological staining were applied to assess periodontal bone resorption. The interaction between ENTR1 and AMP-activated protein kinase (AMPK) was explored through Western blot and co-immunoprecipitation, further validated by applying the AMPK inhibitor Compound C (CpC). KEY FINDINGS ENTR1 expression was down-regulated in the mice with periodontitis relative to healthy controls. Overexpressing ENTR1 suppressed macrophage M1 polarization and mitigated bone loss in periodontitis, while knocking down ENTR1 exacerbated these effects. ENTR1 directly interacted with AMPK, enhancing its phosphorylation. Furthermore, the inhibitory impact of ENTR1 on macrophage M1 polarization and inflammation-induced alveolar bone resorption were partially attenuated by CpC treatment. SIGNIFICANCE ENTR1 regulates periodontitis by suppressing macrophage M1 polarization through enhancing AMPK phosphorylation, presenting a promising therapeutic target for its prevention and management.
Collapse
Affiliation(s)
- Xi Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Houda Gui
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Chenghang Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Fenglei Huo
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Weipeng Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Xingyan Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Wenhao Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Anquan Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China.
| |
Collapse
|
5
|
Mezouar S, Mege J. Monitoring Macrophage Polarization in Infectious Disease, Lesson From SARS-CoV-2 Infection. Rev Med Virol 2025; 35:e70034. [PMID: 40148134 PMCID: PMC11949774 DOI: 10.1002/ird3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The concept of macrophage polarization has been largely used in human diseases to define a typology of activation of myeloid cells reminiscent of lymphocyte functional subsets. In COVID-19, several studies have investigated myeloid compartment dysregulation and macrophage polarization as an indicator of disease prognosis and monitoring. SARS-CoV-2 induces an in vitro activation state in monocytes and macrophages that does not match the polarization categories in most studies. In COVID-19 patients, monocytes and macrophages are activated but they do not show a polarization profile. Therefore, the investigation of polarization under basic conditions was not relevant to assess monocyte and macrophage activation. The analysis of monocytes and macrophages with high-throughput methods has allowed the identification of new functional subsets in the context of COVID-19. This approach proposes an innovative stratification of myeloid cell activation. These new functional subsets of myeloid cells would be better biomarkers to assess the risk of complications in COVID-19, reserving the concept of polarization for pharmacological programme evaluation. This review reappraises the polarization of monocytes and macrophages in viral infections, particularly in COVID-19.
Collapse
Affiliation(s)
- Soraya Mezouar
- Centre National de la Recherche ScientifiqueÉtablissement Français du SangAnthropologie Bio‐Culturelle, Droit, Éthique et SantéAix‐Marseille UniversityMarseilleFrance
- Faculty of Medical and Paramedical SciencesAix‐Marseille UniversityHIPE Human LabMarseilleFrance
| | - Jean‐Louis Mege
- Centre National de la Recherche ScientifiqueÉtablissement Français du SangAnthropologie Bio‐Culturelle, Droit, Éthique et SantéAix‐Marseille UniversityMarseilleFrance
- Department of ImmunologyLa Timone HospitalMarseilleFrance
| |
Collapse
|
6
|
Ruan K, Zhang J, Chu Z, Wang X, Zhang X, Liu Q, Yang J. Exosomes in acute pancreatitis: Pathways to cellular death regulation and clinical application potential. Int Immunopharmacol 2025; 153:114491. [PMID: 40117803 DOI: 10.1016/j.intimp.2025.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition of the digestive system which, in severe cases, can lead to persistent organ failure (POF). Developing novel therapeutic interventions and diagnostic biomarkers is critical to improve the management and prognosis of this disease. Exosomes, small extracellular vesicles, can reflect the inflammatory state of the pancreas, providing valuable insights into disease progression. Moreover, these vesicles are essential mediators of intercellular communication, modulating inflammatory responses by affecting patterns of cell death and macrophage polarization-key factors in determining AP clinical outcomes. Their stability, bioavailability, and capacity to transport various bioactive molecules render exosomes promising tools for early diagnosis and precision therapy, potentially enhancing patient outcomes. This review highlights the innovative potential of exosomes in transforming the management of AP, providing a foundation for more accurate diagnostics and targeted treatments with clinical applicability.
Collapse
Affiliation(s)
- Kaiyi Ruan
- Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jinglei Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuohuan Chu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Wang
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China; Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310006, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou 310006, China.
| | - Qiang Liu
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310006, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou 310006, China.
| | - Jianfeng Yang
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310006, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
7
|
Chen R, Zheng S, Zhao X, Huang H, Xu Y, Qiu C, Li S, Liang X, Mao P, Yan Y, Lin Y, Song S, Cai W, Guan H, Yao Y, Zhu W, Shi X, Ganapathy V, Kou L. Metabolic reprogramming of macrophages by a nano-sized opsonization strategy to restore M1/M2 balance for osteoarthritis therapy. J Control Release 2025; 380:469-489. [PMID: 39921035 DOI: 10.1016/j.jconrel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Osteoarthritis is a chronic and progressive joint disease accompanied by cartilage degeneration and synovial inflammation. It is associated with an imbalance of synovial macrophage M1/M2 ratio tilting more towards the pro-inflammatory M1 than the anti-inflammatory M2. The M1-macrophages rely on aerobic glycolysis for energy whereas the M2-macrophages derive energy from oxidative phosphorylation. Therefore, inhibiting aerobic glycolysis to induce metabolic reprogramming of macrophages and consequently promote the shift from M1 type to M2 type is a therapeutic strategy for osteoarthritis. Here we developed a macrophage-targeting strategy based on opsonization, using nanoparticles self-assembled to incorporate Chrysin (an anti-inflammatory flavonoid) and V-9302 (an inhibitor of glutamine uptake), and the outer layer modified by immunoglobulin IgG by electrostatic adsorption into IgG/Fe-CV NPs. In vitro studies showed that IgG/Fe-CV NPs effectively target M1 macrophages and inhibit HIF-1α and GLUT-1 essential for aerobic glycolysis and promote polarization from M1 to M2-type macrophages. In vivo, IgG/Fe-CV NPs inhibit inflammation and protect against cartilage damage. The metabolic reprogramming strategy with IgG/Fe-CV NPs to shift macrophage polarization from inflammatory to anti-inflammatory phenotype by inhibiting aerobic glycolysis and glutamine delivery may open up new avenues to treat osteoarthritis.
Collapse
Affiliation(s)
- Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shengjie Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xindan Liang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Pengfei Mao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yinhao Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shengnan Song
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiong Guan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yinsha Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wanling Zhu
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
8
|
Zhong S, Zhong S, Wu Y, Liu Z, Yang Y, Wang X, Li S, Wu Y, Huang X, Zhu Y, Zhou Z, Xu Y, Wen L, Yao X. Macrophage-targeting nano-formulated bicalutamide alleviates colitis by inducing MAP3K1-mediated degradation of NLRP3. J Control Release 2025; 380:417-432. [PMID: 39892647 DOI: 10.1016/j.jconrel.2025.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
The excessive activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) in macrophages has been recognized as a critical factor in the exacerbation of severe inflammatory bowel disease (IBD). Consequently, the modulation of macrophage NLRP3 activity may serve as an effective strategy for mitigating IBD. Our study has indicated that bicalutamide, a clinically administered agent, has the capacity to reduce inflammation by promoting the degradation of NLRP3 in a macrophage-specific manner. However, the therapeutic efficacy of bicalutamide in treating colitis has remained limited. In an effort to enhance the precision of NLRP3 regulation, a nano-bicalutamide system targeting macrophages has been developed, which has shown potential to significantly improve the therapeutic impact on colitis. Mechanistically, it has been found that this system degrades the NLRP3 protein through the autophagy pathway by recruiting the E3 ligase, mitogen-activated protein kinase kinase 1 (MAP3K1), and the autophagy receptor protein optineurin (OPTN). Furthermore, our findings have indicated that the degradation of macrophage NLRP3 inhibits its M1-type polarization, which in turn hinders the colitis process. The system that we have devised has demonstrated potential to address the urgent need for the treatment of colitis, as well as other diseases related to macrophage NLRP3 dysregulation.
Collapse
Affiliation(s)
- Suqin Zhong
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
| | - Suzhen Zhong
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yi Wu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui 230051, China
| | - Zhiyuan Liu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yinyin Yang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xinfeng Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Shanshan Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yu Wu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaowan Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yangyang Zhu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhengang Zhou
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Youcui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Research and Industrialization of New Drug Release Technology Joint Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Longping Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China.
| |
Collapse
|
9
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H, Zhou Y. Roles of the gut microbiota in hepatocellular carcinoma: from the gut dysbiosis to the intratumoral microbiota. Cell Death Discov 2025; 11:140. [PMID: 40185720 PMCID: PMC11971373 DOI: 10.1038/s41420-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis, or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongcheng Chen
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Xianguang Huang
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Canhua Li
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huasheng Lai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
10
|
Jafarzadeh S, Nemati M, Zandvakili R, Jafarzadeh A. Modulation of M1 and M2 macrophage polarization by metformin: Implications for inflammatory diseases and malignant tumors. Int Immunopharmacol 2025; 151:114345. [PMID: 40024215 DOI: 10.1016/j.intimp.2025.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Macrophages perform an essential role in the body's defense mechanisms and tissue homeostasis. These cells exhibit plasticity and are categorized into two phenotypes, including classically activated/M1 pro-inflammatory and alternatively activated/M2 anti-inflammatory phenotypes. Functional deviation in macrophage polarization occurs in different pathological conditions that need correction. In addition to antidiabetic impacts, metformin also possesses multiple biological activities, including immunomodulatory, anti-inflammatory, anti-tumorigenic, anti-aging, cardioprotective, hepatoprotective, and tissue-regenerative properties. Metformin can influence the polarization of macrophages toward M1 and M2 phenotypes. The ability of metformin to support M2 polarization and suppress M1 polarization could enhance its anti-inflammatory properties and potentiate its protective effects in conditions such as chronic inflammatory diseases, atherosclerosis, and obesity. However, in metformin-treated tumors, the proportion of M2 macrophages is decreased, while the frequency ratio of M1 macrophages is increased, indicating that metformin can modulate macrophage polarization from a pro-tumoral M2 state to an anti-tumoral M1 phenotype in malignancies. Metformin affects macrophage polarization through AMPK-dependent and independent pathways involving factors, such as NF-κB, mTOR, ATF, AKT/AS160, SIRT1, STAT3, HO-1, PGC-1α/PPAR-γ, and NLRP3 inflammasome. By modulating cellular metabolism and apoptosis, metformin can also influence macrophage polarization. This review provides comprehensive evidence regarding metformin's effects on macrophage polarization and the underlying mechanisms. The polarization-inducing capabilities of metformin may provide significant therapeutic applications in various inflammatory diseases and malignant tumors.
Collapse
Affiliation(s)
- Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Hibino M, Filosi T, Carrion LL, Porcu E, Malhotra A, Lüdtke-Buzug K, Ibrahim SM, Yamada Y, Hirose M. An effective approach to modulate mitochondrial function in murine primary macrophages by a mitochondria-targeted nanocapsule, MITO-Porter. Biomed Pharmacother 2025; 186:118019. [PMID: 40184839 DOI: 10.1016/j.biopha.2025.118019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Macrophages play crucial roles in various pathological conditions as well as maintenance of homeostasis. Many chronic inflammatory conditions, such as atherosclerosis, rheumatoid arthritis, and obesity, are known to involve the polarization of macrophages into a proinflammatory state. Therefore, controlling the function of macrophages is a potential strategy to intervene in such pathological conditions. Modulation of immune cell metabolism has recently received attention as a novel therapeutic strategy to counteract such conditions. Recently, a unique nanocapsule (MITO-Porter) that can deliver macromolecules specifically into mitochondria was generated, and its application to improve mitochondrial function was achieved by the direct action of the molecules at the site of the mitochondria in a wide range of cell types but not in immune cells. Therefore, we initiated this study by investigating the feasibility of mitochondria-targeted delivery of coenzyme Q10 (CoQ10), a known antioxidant and cofactor of mitochondrial oxidative phosphorylation, in primary murine bone marrow macrophages (BMDMs) and then evaluated the functional consequences of the treatment with MITO-Porter on mitochondrial function in BMDMs. At steady state, CoQ10-loaded MITO-Porter containing octaarginine (R8) was successfully delivered into the mitochondria, resulting in significant antioxidant effects and increased mitochondrial respiration. Furthermore, the effect of CoQ10 on mitochondrial function in BMDMs was more pronounced when CoQ10 was encapsulated in R8(+) MITO-Porter than when CoQ10 was added alone. This proof-of-concept study highlights the potential of the application of MITO-Porter in macrophages and other immune cells as a novel immunomodulatory therapy for chronic inflammatory conditions.
Collapse
Affiliation(s)
- Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | - Emilio Porcu
- Department of Mathematics and Center for Biotechnology, Khalifa University, UAE; ADIA Lab, Abu Dhabi, UAE
| | - Ankit Malhotra
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| | - Kerstin Lüdtke-Buzug
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany; Institute of Medical Engineering, University of Lübeck, Germany
| | - Saleh M Ibrahim
- Department of Medical Sciences, Khalifa University, UAE; Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany; Institute of Neurobiology, University of Lübeck, Germany.
| |
Collapse
|
12
|
Chen Z, Wang X, Tan M, Hu W, Wang J, Jin Z. Overexpressed Rv0222 in M. smegmatis suppresses host innate immunity by downregulating miR-9 target SIRT1. Microb Pathog 2025; 204:107525. [PMID: 40180236 DOI: 10.1016/j.micpath.2025.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Tuberculosis (TB) remains one of the most fatal infectious diseases, the pathogenic bacterium Mycobacterium tuberculosis (Mtb) has a thick wall to resist the invasion of extracellular substances and secretes a variety of virulence proteins to antagonize host innate immunity. Rv0222, a protein encoded by the gene Rv0222 in the RD4 region of Mtb, is a critical virulence factor in the pathogenicity of Mtb. However, the mechanism of its regulation of miRNAs during bacterial infection is unclear. We used Rv0222 gene and Mycobacterium smegmatis (M. smegmatis), which is highly homologous to Mtb, to construct Rv0222 recombinant M. smegmatis Ms_Rv0222. Ms_Rv0222 induced down-regulation of miR-9 expression and up-regulation of SIRT1 in RAW264.7 cells and mice post-infection. Up-regulation of SIRT1 caused down-regulation of p65 activity and decreased the expression of pro-inflammatory cytokine, which increased the intracellular survival of M. smegmatis. Si-SIRT1 induced up-regulation of p65 activity and increased the expression of pro-inflammatory cytokine, then decreased the intracellular survival of M. smegmatis. This study reveals that Mtb Rv0222 mediates the suppression of host innate immunity by miR-9 and its target SIRT1, and may provide a potential site for the development of new anti-TB drugs targeting Rv0222.
Collapse
Affiliation(s)
- Zonghai Chen
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China; Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xianghu Wang
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Ming Tan
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Wenxu Hu
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Jinsuan Wang
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Zixuan Jin
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
13
|
Wei W, Li J, Huang J, Jiang Q, Lin C, Hu R, Wei J, Li Q, Xu G, Chang Z. Exosomal miR‑3681‑3p from M2‑polarized macrophages confers cisplatin resistance to gastric cancer cells by targeting MLH1. Mol Med Rep 2025; 31:94. [PMID: 39981936 PMCID: PMC11851060 DOI: 10.3892/mmr.2025.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025] Open
Abstract
Cisplatin (DDP) is a key chemotherapeutic agent in the treatment of gastric cancer; however, its efficacy is often limited by chemoresistance, a notable challenge in clinical oncology. The present study aimed to investigate the influence of exosomes derived from M2‑polarized macrophages, which promote this resistance, on the response of gastric cancer cells to DDP, examining both the effects and the underlying mechanisms. M2 macrophages, differentiated from mouse bone marrow cells with interleukin (IL)‑13 and IL‑4, were identified using immunofluorescence staining for CD206 and CD163. Exosomes derived from these macrophages were characterized using transmission electron microscopy and protein markers, including calnexin, tumor susceptibility gene 101 and CD9. The role of exosomal microRNA (miR)‑3681‑3p in DDP resistance was assessed using Cell Counting Kit‑8 and apoptosis assays, while a luciferase reporter assay was used to elucidate the interaction between miR‑3681‑3p and MutL protein homolog 1 (MLH1). Co‑culturing gastric cancer cells with M2 macrophages enhanced DDP resistance, an effect amplified by exosomes from M2 macrophages enriched with miR‑3681‑3p. This microRNA directly targeted and reduced MLH1 protein expression. Overexpression of miR‑3681‑3p through mimic transfection, along with MLH1 silencing by small interfering RNA transfection, significantly increased DDP resistance, as evidenced by elevated IC50 values in AGS cells. By contrast, the overexpression of MLH1 effectively reversed the drug resistance of AGS cells to DDP caused by miR‑3681‑3p mimic transfection, as evidenced by a decrease in the IC50 value. In conclusion, exosomal miR‑3681‑3p from M2 macrophages may have a key role in conferring DDP resistance to gastric cancer by suppressing MLH1, offering a new therapeutic target for overcoming chemoresistance.
Collapse
Affiliation(s)
- Wujun Wei
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
- Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jiaxing Li
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jingjing Huang
- Department of Health Care, Baise Maternity and Child Health Center, Baise, Guangxi 533000, P.R. China
| | - Qi Jiang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Cheng Lin
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Rentong Hu
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jiazhu Wei
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Qiao Li
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Guidan Xu
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zhengyi Chang
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
14
|
Yang Z, You J, Zhai S, Zhou J, Quni S, Liu M, Zhang L, Ma R, Qin Q, Huangfu H, Zhang Y, Zhou Y. pH-responsive molybdenum disulphide composite nanomaterials for skin wound healing using "ROS leveraging" synergistic immunomodulation. Mater Today Bio 2025; 31:101481. [PMID: 39925719 PMCID: PMC11804827 DOI: 10.1016/j.mtbio.2025.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
With the increasing prevalence of drug-resistant bacterial infections, wound bacterial infections have evolved into an escalating medical problem that poses a threat to the individual health as well as global public health. Traditional drug therapy not only suffers from a single treatment method, low drug utilisation and limited therapeutic effect, but long-term antibiotic abuse has significantly increased bacterial resistance. It is imperative to develop an antibiotic-free biomaterial with antibacterial and anti-inflammatory properties. The current use of photothermal therapy (PTT) and photodynamic therapy (PDT) relies on the generation of massive reactive oxygen species (ROS), which inevitably aggravates the inflammatory response. Herein, we developed AuAg bimetallic nanoparticles based on PDA modification and prepared a novel MoS2-based composite nanomaterials (AuAg@PDA-MoS2 NPs) with multiple mechanisms of antibacterial and anti-inflammatory potentials through the adhesion of PDA. In the early phase, PDT and PTT generated a large amount of ROS for rapid sterilisation. While in the later stage, MoS2 mimicked the peroxidase activity to leverage the ROS, balancing the generation of ROS in the infected environment to achieve the long-term anti-inflammatory. In vitro experiments showed that the killing efficiency of AuAg@PDA-MoS2 NPs was nearly 99 % under the irradiation of 808 nm near-infrared light for 10 min, which demonstrated excellent antibacterial activity. In vivo experiments showed that 808 nm NIR-assisted AuAg@PDA-MoS2 NPs to effectively inhibit infection, alleviated the inflammation, and accelerated the wound healing process. Therefore, AuAg@PDA-MoS2 NPs as a novel biomaterial could achieve programmed antimicrobial and anti-inflammatory effects, which has a promising potential for future application in the treatment of infected wounds.
Collapse
Affiliation(s)
- Zhen Yang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- No. 10 East Zangda Road, Chengguan District, Tibet University, Lhasa, 850000, Tibet Autonomous Region, China
| | - Jiaqian You
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Shaobo Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Jing Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Sezhen Quni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Qiuyue Qin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Huimin Huangfu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
15
|
Li Y, Li X, Zhu L, Liu T, Huang L. Chitosan-based biomaterials for bone tissue engineering. Int J Biol Macromol 2025; 304:140923. [PMID: 39947561 DOI: 10.1016/j.ijbiomac.2025.140923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Common critical size bone defects encountered in clinical practice often result in inadequate bone regeneration,primarily due to the extent of damage surpassing the inherent capacity of the body for self-healing. Bone tissue engineering scaffolds possess the desirable characteristics of biomimetic bone structure, simulated extracellular matrix, optimal mechanical strength, and biological functionality, rendering them the preferred option for the treatment of bone defects. Chitosan demonstrates favorable biocompatibility, plasticity, and a range of biological activities, rendering it a highly appealing material. Chitosan and its derivatives have been found to exert an impact on bone repair through their ability to modulate macrophage polarization, angiogenesis, and the delicate equilibrium of bone remodeling. However, the efficacy of pure chitosan is constrained, necessitating its combination with other bioactive substances to achieve an optimal biomimetic scaffold that is compatible with the specific bone defect site. Chitosan is commonly utilized in the field of bone repair in four different application forms: rigid scaffold, hydrogel, membranes, and microspheres. In order to enhance comprehension of the benefits and constraints associated with chitosan, this review provides a comprehensive overview of the structure and biological properties of chitosan, the molecular mechanisms by which chitosan promotes osteogenic differentiation, the diverse methods of chitosan preparation for various applications, and the impacts of chitosan when loaded with bioactive substances.
Collapse
Affiliation(s)
- Youbin Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
16
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
17
|
Wang R, Wang T, Chen Z, Jiang J, Du Y, Yuan H, Pan Y, Wang Y. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1025-1041. [PMID: 39825206 DOI: 10.1007/s11427-024-2745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 01/20/2025]
Abstract
Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing. BBR-HB-CM contained bioactive materials that promoted the polarization of macrophages from M1 to M2, impeded the formation of ANs and NETs, and modulated M2 macrophage efferocytosis in vivo and in vitro. Mechanistically, BBR-HB-CM promoted bone formation by inhibiting macrophage-myofibroblast transition and reprogrammed macrophage polarization through p85/AKT/mTOR pathway-dependent autophagy. The 3-methyladenine abolished the therapeutic effects of BBR-HB-CM. Further studies revealed that BBR-HB-CM accelerated TES healing in rats with type 2 diabetes mellitus. Overall, our results demonstrated that BBR-HB-CM had high potential to promote rapid TES healing.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
- Department of Stomatology, Chongzhou People's Hospital, Chengdu, 611230, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyu Chen
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
18
|
Zhang H, Hua S, He C, Yin M, Qin J, Liu H, Zhou H, Wu S, Yu X, Jiang H, Wang Y, Qian Y. Application of 4D-Printed Magnetoresponsive FOGS Hydrogel Scaffolds in Auricular Cartilage Regeneration. Adv Healthc Mater 2025; 14:e2404488. [PMID: 39955711 DOI: 10.1002/adhm.202404488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/01/2025] [Indexed: 02/17/2025]
Abstract
3D-printed hydrogel scaffolds are widely utilized in auricular cartilage tissue engineering. However, issues such as graft-related inflammation, poor mechanical properties, and the lack of external modulation of 3D-printed scaffolds in vivo have raised significant concerns. To address these challenges, a "fried egg" structure is designed, consisting of chitosan-coated ferroferric oxide magnetic nanoparticles (Fe3O4@CS MNPs), which are uniformly incorporated into hydrogel. Through 4D printing technology, magnetoresponsive hydrogel scaffolds are constructed to overcome the aforementioned limitations. The results demonstrated that, compared to 3D printing, 4D-printed magnetic hydrogel scaffolds significantly enhanced cartilage tissue regeneration in both in vitro and in vivo environments when subjected to an external magnetic field (MF). Furthermore, the mechanical strength of regenerated cartilage approached to that of natural cartilage. The chitosan coating on the surface of MNPs exhibited anti-inflammatory and antibacterial properties, promoting M2 polarization of macrophages and suppressing graft-related inflammation and bacteria. Transcriptomic analysis confirmed that MNPs modulate macrophage immunity by activating JAK2/STAT3 signaling pathway. Taken together, a magnetoresponsive multifunctional scaffold is designed that can be externally controlled by magnetic fields to promote ear cartilage tissue regeneration. The regenerated cartilage exhibits excellent biocompatibility, anti-inflammatory, antibacterial properties, and mechanical performance, providing new insights for auricular cartilage tissue engineering.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| | - Shan Hua
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| | - Chenlong He
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Ming Yin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Huawei Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Han Zhou
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Shengming Wu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xingge Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, P. R. China
| | - Hua Jiang
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| | - Yilong Wang
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yuxin Qian
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| |
Collapse
|
19
|
Xu X, Xu P, Shen G, Peng X, Liu Z, Chen C, Yu W, Su Z, Lin J, Zheng G, Ye G, Wang P, Xie Z, Wu Y, Shen H, Li J. Targeting macrophage polarization by inhibiting Pim2 alleviates inflammatory arthritis via metabolic reprogramming. Cell Mol Immunol 2025; 22:418-436. [PMID: 40000906 PMCID: PMC11955556 DOI: 10.1038/s41423-025-01268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Macrophage polarization and energy metabolic reprogramming play pivotal roles in the onset and progression of inflammatory arthritis. Moreover, although previous studies have reported that the proviral integration of Moloney virus 2 (Pim2) kinase is involved in various cancers through the mediation of aerobic glycolysis in cancer cells, its role in inflammatory arthritis remains unclear. In this study, we demonstrated that multiple metabolic enzymes are activated upon Pim2 upregulation during M1 macrophage polarization. Specifically, Pim2 directly phosphorylates PGK1-S203, PDHA1-S300, and PFKFB2-S466, thereby promoting glycolytic reprogramming. Pim2 expression was elevated in macrophages from patients with inflammatory arthritis and collagen-induced arthritis (CIA) model mice. Conditional knockout of Pim2 in macrophages or administration of the Pim2 inhibitor HJ-PI01 attenuated arthritis development by inhibiting M1 macrophage polarization. Through molecular docking and dynamic simulation, bexarotene was identified as an inhibitor of Pim2 that inhibits glycolysis and downstream M1 macrophage polarization, thereby mitigating the progression of inflammatory arthritis. For targeted treatment, neutrophil membrane-coated bexarotene (Bex)-loaded PLGA-based nanoparticles (NM@NP-Bex) were developed to slow the progression of inflammatory arthritis by suppressing the polarization of M1 macrophages, and these nanoparticles (NPs) exhibited superior therapeutic effects with fewer side effects. Taken together, the results of our study demonstrated that targeting Pim2 inhibition could effectively alleviate inflammatory arthritis via glycolysis inhibition and reversal of the M1/M2 macrophage imbalance. NM@NPs loaded with bexarotene could represent a promising targeted strategy for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Peitao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Guozhen Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Xiaoshuai Peng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Zhidong Liu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Chaoqiang Chen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Yanfeng Wu
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
| |
Collapse
|
20
|
Han Z, Shen Y, Yan Y, Bin P, Zhang M, Gan Z. Metabolic reprogramming shapes post-translational modification in macrophages. Mol Aspects Med 2025; 102:101338. [PMID: 39977975 DOI: 10.1016/j.mam.2025.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/10/2024] [Accepted: 01/11/2025] [Indexed: 02/22/2025]
Abstract
Polarized macrophages undergo metabolic reprogramming, as well as extensive epigenetic and post-translational modifications (PTMs) switch. Metabolic remodeling and dynamic changes of PTMs lead to timely macrophage response to infection or antigenic stimulation, as well as its transition from a pro-inflammatory to a reparative phenotype. The transformation of metabolites in the microenvironment also determines the PTMs of macrophages. Here we reviewed the current understanding of the altered metabolites of glucose, lipids and amino acids in macrophages shape signaling and metabolism pathway during macrophage polarization via PTMs, and how these metabolites in some macrophage-associated diseases affect disease progression by shaping macrophage PTMs.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yinhao Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meimei Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
21
|
Jia Z, Niu L, Guo J, Wang J, Li H, Liu R, Liu N, Zhang S, Wang F, Ge J. Pathogen-derived peptidoglycan skeleton enhances innate immune defense against Staphylococcus aureus via mTOR-HIF-1α-HK2-mediated trained immunity. Microbiol Res 2025; 296:128160. [PMID: 40174361 DOI: 10.1016/j.micres.2025.128160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Regulation of the innate immune response may be an effective strategy to enhance Staphylococcus aureus vaccines. Based on our previous findings that the Listeria peptidoglycan skeleton (pBLP) enhances the immune response through an unknown mechanism, we hypothesized that pBLP provides protection by modulating the innate immune response via trained immunity. In vitro, pBLP increased phagocytosis and inflammatory cytokine levels and elevated the anti-inflammatory cytokine TGF-β following secondary stimulation. In an in vivo model, our findings indicate that pBLP, when administered with a vaccine, protects mice from methicillin-resistant S. aureus challenge and also provides protection against S. aureus CMCC26003 in the absence of antigens. Using an ex vivo model, we demonstrated that pBLP increases markers of trained immunity in peritoneal macrophages. Transcriptome analysis of differentially expressed genes and inhibitor experiments revealed that the trained immunity process induced by pBLP depends on mTOR-HIF-1α and hexokinase 2. This study is the first to demonstrate that pBLP can induce trained immunity. Furthermore, we show that the peptidoglycan skeleton induces a distinct trained immunity phenotype compared to β-glucan, enhancing vaccine protection. Our study provides valuable insights for the design of novel vaccines that integrate both specific and innate immune responses.
Collapse
Affiliation(s)
- Zheng Jia
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Junjie Guo
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Jiaqing Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Runhang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ning Liu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Shuhe Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China.
| |
Collapse
|
22
|
Mo X, Shen A, Han Y, Xu L, Miao J, Xu D, Ji Q, Cao Y, Ge G, Zhu X, Deng H. Polysaccharide Nanoadjuvants Engineered via Phenotype-Specific Nanoprobe-Assisted Phenotypic Screen Reprogram Macrophage Cell Functions for Cancer and Rheumatoid Arthritis Therapy. ACS NANO 2025. [PMID: 40152971 DOI: 10.1021/acsnano.4c16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Macrophage plays critical roles in immune-related diseases, acting as a crucial therapeutic target for immunotherapy. Rational design and development of effective therapeutics for macrophage reprogramming are still challenging. Here, we rationally engineered polysaccharide nanoadjuvants to reprogram macrophage functions for enhanced immunotherapy in multiple diseases through a macrophage phenotype-specific nanoprobe (MPSNPr)-assisted high-throughput phenotypic screen. This MPSNPr exhibited high macrophage M1 phenotype specificity because of the formation of H-aggregates on the outer surface and the binding to glucose transporter 1 receptors by the polysaccharide nanocarrier. Based on this MPSNPr, a high-throughput platform was constructed and employed to screen a variety of pharmaceuticals for macrophage reprogramming, being able to identify both pro-inflammatory and anti-inflammatory drug candidates. Polysaccharide nanoadjuvants, Dex-BA and Dex-SAL, were rationally engineered with two potent candidates to amplify macrophage reprogramming efficacy both in vitro and in vivo. Dex-BA significantly inhibited tumor growth by inducing macrophage M1 polarization, dendritic cell maturation, and cytotoxic T cell activation in a mice melanoma model. Dex-SAL alleviated rheumatoid arthritis symptoms with reduced inflammation by reprogramming activated macrophages toward anti-inflammatory phenotype. Our work provides a robust strategy for the rational design and development of effective therapeutics for enhanced macrophage-mediated immunotherapy in diverse diseases.
Collapse
Affiliation(s)
- Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Anping Shen
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yicun Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuelong Cao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
23
|
Li D, Sun Y, Liu G, Liu C, Zhang G, Wang H, Sun S, An S. Layered Double Hydroxide Reshapes the Immune Microenvironment of Rheumatoid Arthritis through Small Mothers against Decapentaplegic 5. Biomater Res 2025; 29:0176. [PMID: 40161233 PMCID: PMC11951257 DOI: 10.34133/bmr.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Persistent synovitis is a pivotal pathological feature of rheumatoid arthritis (RA). However, the current rheumatoid drugs are accompanied by severe side effects and have limited anti-inflammatory capabilities. In this work, we designed a bioactive material-folic acid modified layered double hydroxides (FA-LDH), aiming at targeting M1 macrophages and modulating macrophage repolarization. The in vitro experiment showed that FA-LDH mitigated the release of proinflammatory cytokines and promoted the expression of M2 macrophage markers. In terms of the action mechanism, FA-LDH modulated the nucleocytoplasmic transport of the small mothers against decapentaplegic 5 (Smad5) protein by adjusting the pH within the immune microenvironment. Subsequently, relying on the interaction between phospho-Smad5 (pSmad5) and p65, the nuclear factor kappa B signaling pathway was down-regulated through inhibiting nuclear transport of p65. Additionally, FA-LDH exhibited excellent targeting capability toward M1 macrophages and strong accumulation capacity in inflamed joints. In vivo experiment showed that FA-LDH could relieve swelling of limbs, reduce the infiltration of inflammatory cells, and protect joint cartilage and subchondral bone structure in collagen-induced arthritis mice. In summary, this work introduces a strategy for utilizing bioactive FA-LDH in the treatment of RA, highlighting the potential of FA-LDH to alleviate inflammation and reshape the immune microenvironment through the pSmad5/p65 axis.
Collapse
Affiliation(s)
- Dengju Li
- Department of Joint Surgery,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yawei Sun
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangxian Liu
- Department of Orthopaedic,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital,
Shandong University, Jinan, Shandong 250012, China
| | - Guojiang Zhang
- Department of Joint Surgery, Shandong Provincial Hospital,
Shandong University, Jinan, Shandong 250012, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital,
Shandong University, Jinan, Shandong 250012, China
| | - Shui Sun
- Department of Joint Surgery,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital,
Shandong University, Jinan, Shandong 250012, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Senbo An
- Department of Joint Surgery,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
24
|
Zheng X, Zhang X, Yu J, Zheng J. Pan-cancer analysis identifies EIPR1 as a potential prognostic and immunological biomarker for lung adenocarcinoma and its functional validation. Gene 2025; 954:149439. [PMID: 40154585 DOI: 10.1016/j.gene.2025.149439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND EARP and GARP complex-interacting protein 1 (EIPR1) may be a new oncogene in tumors, influencing the prognosis and invasion of cancer. However, a systematic analysis of the function of EIPR1 in various cancers remains vacant. Thus, we proceeded with a comprehensive analysis to ascertain the role of EIPR1 among various cancers. METHODS We explored EIPR1 expression in pan-cancer, and its association with clinical stage, survival, gene mutations and methylation by the TIMER 2.0, GEPIA2, cBioPortal, and UALCAN. The protein-protein interaction (PPI) network, immune infiltration, and immune checkpoint assessments of EIPR1 was performed using the STRING and SangerBox. The role of EIPR1 expression in lung adenocarcinoma (LUAD) was explored by the R software. The impact of EIPR1 expression on LUAD progression was studied through in vitro assays. RESULTS EIPR1 was overexpressed in most cancers and revealed as a potential prognostic biomarker in tumors, involving in tumorigenesis by affecting its methylation and gene mutations. The immune infiltration and immune checkpoints of tumors were related to the expression of EIPR1. Additionally, EIPR1 expression affected the survival, diagnosis, clinicopathological features, tumor microenvironment, and drug sensitivity of LUAD patients. Validation studies demonstrated that EIPR1 knockdown suppressed the malignant growth, invasion, and migration of LUAD cells. CONCLUSIONS This study delivers an extensive landscape for the oncogenesis and immunological characteristics of EIPR1, which reveals that EIPR1 may serve as a potential biological target for future prognosis and immune treatment in tumors, especially in LUAD.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261053, China
| | - Xiao Zhang
- Department of Ultrasound, Weifang People's Hospital, Weifang 261041, China
| | - Jie Yu
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261053, China
| | - Jie Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261053, China; Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
25
|
O'Connor CE, Zhang F, Neufeld A, Prado O, Simmonds SP, Fortin CL, Johansson F, Mene J, Saxton SH, Kopyeva I, Gregorio NE, James Z, DeForest CA, Wayne EC, Witten DM, Stevens KR. Bioprinted platform for parallelized screening of engineered microtissues in vivo. Cell Stem Cell 2025:S1934-5909(25)00092-X. [PMID: 40168987 DOI: 10.1016/j.stem.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/19/2024] [Accepted: 03/04/2025] [Indexed: 04/03/2025]
Abstract
Human engineered tissues hold great promise for therapeutic tissue regeneration and repair. Yet, development of these technologies often stalls at the stage of in vivo studies due to the complexity of engineered tissue formulations, which are often composed of diverse cell populations and material elements, along with the tedious nature of in vivo experiments. We introduce a "plug and play" platform called parallelized host apposition for screening tissues in vivo (PHAST). PHAST enables parallelized in vivo testing of 43 three-dimensional microtissues in a single 3D-printed device. Using PHAST, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular graft-host inosculation and engineered liver tissue function in vivo. Our studies reveal that the cellular population(s) that should be included in engineered tissues for optimal in vivo performance is material dependent. PHAST could thus accelerate development of human tissue therapies for clinical regeneration and repair.
Collapse
Affiliation(s)
- Colleen E O'Connor
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Fan Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Anna Neufeld
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Olivia Prado
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Susana P Simmonds
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Chelsea L Fortin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Fredrik Johansson
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Jonathan Mene
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Sarah H Saxton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Nicole E Gregorio
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Zachary James
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth C Wayne
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Daniela M Witten
- Department of Statistics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Lu JJ, Ning Y, Hu WT, Sheng YR, Liu YK, Xie F, Li MQ, Zhu XY. Excess heme orchestrates progesterone resistance in uterine endometrial cancer through macrophage polarization and the IL-33/PAX8/PGR axis. Biomed Pharmacother 2025; 186:118008. [PMID: 40138919 DOI: 10.1016/j.biopha.2025.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Progesterone is an important drug for hormone therapy in uterine endometrial cancer (UEC). However, the therapeutic efficacy of progestogen is often limited by resistance, and the underlying mechanism remains unknown. In this study, we observed heme metabolism is more active in progesterone-insensitive patients. Heme induced macrophages (Mφs) bias towards M2-like phenotype and downregulated the expression of IL-33, resulting in increased levels of Paired box gene 8 (PAX8). Further study showed PAX8 inhibited the transcriptional activity of PGR by binding to the PGR promoter region. In addition, PGR can also act as a transcriptional factor to regulate the transcription of autophagy-related gene 7 (ATG). Low expression of PGR decreases the transcriptional activity of ATG7 promoter, which decreases cell autophagy and promotes the progression of UEC. Overall, this study reveals the important interaction between heme metabolism, IL-33 and PGR in progesterone-insensitive UEC, and is promising to provide new therapeutic targets for overcoming progesterone resistance.
Collapse
Affiliation(s)
- Jia-Jing Lu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, PR China; Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Yan Ning
- Department of Pathology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Wen-Ting Hu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Yan-Ran Sheng
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Yu-Kai Liu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Ming-Qing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China; Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Xiao-Yong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, PR China; Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, PR China.
| |
Collapse
|
27
|
Wu X, Hou S, Ye Y, Gao Z. CXCR2P1 enhances the response of gastric cancer to PD-1 inhibitors through increasing the immune infiltration of tumors. Front Immunol 2025; 16:1545605. [PMID: 40176817 PMCID: PMC11961440 DOI: 10.3389/fimmu.2025.1545605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
Background Recent years, immunotherapy has emerged as a pivotal approach in cancer treatment. However, the response of gastric cancer to immunotherapy exhibits significant heterogeneity. Therefore, the early identification of gastric cancer patients who are likely to benefit from immunotherapy and the discovery of novel therapeutic targets are of critical importance. Materials and methods We collected data from European Nucleotide Archive (ENA) and Gene Expression Omnibus (GEO) databases. In project PRJEB25780, we performed WGCNA analysis and Lasso regression and chose CXCR2P1 for the subsequent analysis. Then, we compared the expression difference of CXCR2P1 among different groups. Kaplan-Meier curve was used to analyze the prognostic value of CXCR2P1, which was validated by project IMvigor210 and GEO datasets. ESTIMATE and CIBERSORT algorithm were used to evaluate the reshaping effect of CXCR2P1 to immune microenvironment of tumor. Differentially expressed genes (DEG) analysis, enrichGO analysis, Gene Set Enrichment Analysis (GSEA) and co-expression analysis were used to explore the cell biological function and signaling pathway involved in CXCR2P1. Results WGCNA identified CXCR2P1 as a hub gene significantly associated with immune response to PD-1 inhibitors in gastric cancer. CXCR2P1 expression was elevated in responders and correlated with better prognosis. Functional analysis revealed its role in reshaping the tumor immune microenvironment by promoting immune cell infiltration, including M1 macrophages, activated CD4+ T cells, and follicular helper T cells. CXCR2P1 enhanced antigen presentation via the MHC-II complex, influenced key immune pathways, such as Toll-like receptor signaling and T-cell activation, which led to the up-regulation of expression of PD-L1. GSEA showed CXCR2P1 were correlated with microRNAs. Through DEG analysis and expression analysis, MIR215 was identified as a potential direct target of CXCR2P1. Conclusion High expression of CXCR2P1 is correlated with better response to PD-1 inhibitor. It reshapes the immune microenvironment by increasing immune infiltration and changing the fraction of immune cells. In tumor immune microenvironment, CXCR2P1 can promote inflammation, enhance antigen presentation and activate the PD-1/PD-L1-related signaling pathway, which might be achieved by CXCR2P1-MIR215 axis.
Collapse
Affiliation(s)
- Xinchun Wu
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
| | - Sen Hou
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing, China
| | - Zhidong Gao
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
28
|
Liu Z, Ou Y, He X, Yuan T, Li M, Long Y, Li Y, Tan Y. Guardians of the Lung: The Multifaceted Roles of Macrophages in Cancer and Infectious Disease. DNA Cell Biol 2025. [PMID: 40106386 DOI: 10.1089/dna.2024.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
The lung as an organ that is fully exposed to the external environment for extended periods, comes into contact with numerous inhaled microorganisms. Lung macrophages are crucial for maintaining lung immunity and operate primarily through signaling pathways such as toll-like receptor 4 and nuclear factor-κB pathways. These macrophages constitute a diverse population with significant plasticity, exhibiting different phenotypes and functions on the basis of their origin, tissue residence, and environmental factors. During lung homeostasis, they are involved in the clearance of inhaled particles, cellular remnants, and even participate in metabolic processes. In disease states, lung macrophages transition from the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. These distinct phenotypes have varying transcriptional profiles and serve different functions, from combating pathogens to repairing inflammation-induced damage. However, macrophages can also exacerbate lung injury during prolonged inflammation or exposure to antigens. In this review, we delve into the diverse roles of pulmonary macrophages the realms in homeostasis, pneumonia, tuberculosis, and lung tumors.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Zhuzhou, China
| | - Yangjing Ou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xiaojin He
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Ting Yuan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Miao Li
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yingzheng Tan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
29
|
Sholevar CJ, Liu NM, Mukarrama T, Kim J, Lawrence J, Canter RJ. Myeloid Cells in the Immunosuppressive Microenvironment as Immunotargets in Osteosarcoma. Immunotargets Ther 2025; 14:247-258. [PMID: 40125425 PMCID: PMC11930235 DOI: 10.2147/itt.s485672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Osteosarcoma is an aggressive primary malignant bone tumor associated with high rates of metastasis and poor 5-year survival rates with limited improvements in approximately 40 years. Standard multimodality treatment includes chemotherapy and surgery, and survival rates have remained stagnant. Overall, response rates to immunotherapy like immune checkpoint inhibitors have been disappointing in osteosarcoma despite exciting results in other epithelial tumor types. The poor response of osteosarcoma to current immunotherapies is multifactorial, but a key observation is that the tumor microenvironment in osteosarcoma is profoundly immunosuppressive, and increasing evidence suggests a significant role of suppressive myeloid cells in tumor progression and immune evasion, particularly by myeloid-derived suppressor cells. Targeting suppressive myeloid cells via novel agents are attractive strategies to develop novel immunotherapies for osteosarcoma, and combination strategies will likely be important for durable responses. In this review, we will examine mechanisms of the immunosuppressive microenvironment, highlight pre-clinical and clinical data of combination strategies including colony-stimulating factor 1 (CSF-1) receptor, phosphoinositide 3-kinase (PI3K), CXCR4, and checkpoint inhibition, as well as the role of canine models in elucidating myeloid cells as targets in osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Cyrus J Sholevar
- Department of Surgery, Division of Surgical Oncology, University of California Davis, Sacramento, CA, USA
| | - Natalie M Liu
- Department of Surgery, Division of Surgical Oncology, University of California Davis, Sacramento, CA, USA
| | - Tasneem Mukarrama
- Biomedical Engineering, University of California Davis, Sacramento, CA, USA
| | - Jinhwan Kim
- Biomedical Engineering, University of California Davis, Sacramento, CA, USA
| | - Jessica Lawrence
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
30
|
Suzuki M, Baillo A, Albarracin L, Elean M, Serda R, Suda Y, Namai F, Nishiyama K, Kitazawa H, Villena J. Modulation of Macrophages TLR4-Mediated Transcriptional Response by Lacticaseibacillus rhamnosus CRL1505 and Lactiplantibacillus plantarum CRL1506. Int J Mol Sci 2025; 26:2688. [PMID: 40141330 PMCID: PMC11942546 DOI: 10.3390/ijms26062688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Lacticaseibacillus rhamnosus CRL1505 and Lactiplantibacillus plantarum CRL1506 increase the resistance of mice to Gram-negative pathogens infections. In this work, we advanced the characterization of the CRL1505 and CRL1506 immunomodulatory properties by evaluating their effect on the Toll-like receptor 4 (TLR4)-triggered immune response in macrophages. We performed experiments in murine RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) to evaluate the transcriptomic changes induced by lactobacilli. These in vitro experiments were complemented with in vivo studies in mice to determine the effect of CRL1505 and CRL1506 strains on Peyer's patches and peritoneal macrophages. Microarray transcriptomic studies and qPCR confirmation showed that the CRL1505 and CRL1506 strains modulated the expression of inflammatory cytokines and chemokines as well as adhesion molecules in LPS-challenged RAW macrophages, making the effect of L. rhamnosus CRL1505 more remarkable. Lactobacilli also modulate regulatory factors in macrophages. L. plantarum CRL1506 increased il10 and socs2 while L. rhamnosus CRL1505 upregulated il27, socs1, and socs3 in RAW cells, indicating a strain-specific effect. However, in vivo, both strains induced similar effects. Peyer's patches and peritoneal macrophages from mice treated with lactobacilli produced higher levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-6, and colony stimulating factor (CSF)-3 after LPS stimulation. This effect would allow improved protection against pathogens. In addition, both lactobacilli equally modulated socs1 and socs2 expressions and IL-10 and IL-27 production in Peyer's patches macrophages and socs3 and IL-10 in peritoneal cells. Furthermore, lactobacilli reduced the production of IL-1β, IL-12, CSF2, C-C motif chemokine ligand (CCL)-2, and CCL8 in LPS-challenged macrophages. This differential modulation of regulatory and inflammatory factors would allow minimal inflammatory-mediated tissue damage during the generation of the innate immune response. This work provides evidence that L. rhamnosus CRL1505 and L. plantarum CRL1506 modulate macrophages' TLR4-mediated immunotranscriptomic response, helping to improve protection against Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Masahiko Suzuki
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
| | - Ayelen Baillo
- Laboratory of Technology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina;
| | - Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| | - Rodrigo Serda
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| |
Collapse
|
31
|
Zhang Y, Chen X, Li J, Chen X, Zhao J, Liu Q, Li X, Wang X, Xiao Z. Seminal plasma exosome derived miR-26-5p can regulate decidual macrophage polarization via PTEN / PI3K / AKT signaling pathway. Sci Rep 2025; 15:9192. [PMID: 40097471 PMCID: PMC11914418 DOI: 10.1038/s41598-025-92880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
The immunomodulatory effects of seminal plasma (SP) on the maternal immune system play an important role in the implantation and development of the embryo. Decidual macrophages (dMΦs) are one of the major immune cells in the maternal-fetal immune microenvironment, and their M2-type polarization facilitates the establishment and maintenance of pregnancy. However, the role of SP on the polarization of dMΦs is unknown. In this study, we investigated the role and mechanism of SP on the polarization of dMΦs by gene chip sequencing as well as in vitro and in vivo experiments. The results revealed that SP promoted dMΦs M2-type polarization. Gene chip sequencing revealed that miR-26-5p was highly expressed in seminal exosomes (SEs) which could act on PTEN/PI3K/AKT signaling pathway and significantly promote MΦs M2 polarization. Moreover, SEs supplementation significantly reduced embryo resorption in spontaneously aborted mice. In conclusion, our study demonstrated that the SEs derived miR-26-5p in SP promoted the M2 polarization of dMΦs by targeting PTEN/PI3K/AKT signaling pathway, which created an immune-tolerant environment conducive to embryo implantation and development. This study provided new ideas for clinical SP-assisted therapy to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Yan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jie Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jing Zhao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qing Liu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaoling Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xinyu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
32
|
Hao W, Chen S, Chao H, Li Z, Yang H, Chen D, Li S, Zhang S, Zhang J, Wang J, Li Z, Li X, Zhan Z, Guan T, Zhang Y, Li W, Liu H. IL-33-Induced TREM2 + Macrophages Promote Pathological New Bone Formation Through CREG1-IGF2R Axis in Ankylosing Spondylitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500952. [PMID: 40091508 DOI: 10.1002/advs.202500952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 03/19/2025]
Abstract
Pathological new bone formation is the main cause of disability in ankylosing spondylitis (AS), and so far, it lacks a targeted therapy. Macrophages are central orchestrators of inflammation progression and tissue remodeling, but their contribution to pathological new bone formation has largely not been explored. Here, it is identified that TREM2+ macrophages predominated within the sites of new bone formation and adjacent to osteogenic precursor cells. In vivo, both depletion of macrophages and knockout of Trem2 significantly reduced pathological new bone formation in a collagen antibody-induced arthritis (CAIA) model. Specifically, TREM2+ macrophages promoted osteogenic differentiation of ligament-derived progenitor cells (LDPCs) by secreting CREG1, a secretory glycoprotein involved in cell differentiation and normal physiology. CREG1-IGF2R-PI3K-AKT signaling pathway is involved in TREM2+ macrophage-mediated pathological new bone formation. In addition, it is found that IL-33 promoted TREM2+ macrophage differentiation through phosphorylation of STAT6. Targeting the above signalings alleviated new bone formation in the CAIA model. The findings highlight the critical role of IL-33-induced TREM2+ macrophages in pathological new bone formation and provide potential therapeutic targets for halting spinal ankylosis in AS.
Collapse
Affiliation(s)
- Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Hua Chao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Hao Yang
- Pediatric Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China
| | - Dongying Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Sifang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Jingyu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Zhongping Zhan
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tangming Guan
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510000, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510000, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| |
Collapse
|
33
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2025; 20:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
34
|
Zheng H, Dong Y, Zhang X, Liu J, Geng X, Liu Z, Liao Y, Liu Y, Yang P, Yang G, Liu X. Modulation of Mettl5 alleviates airway allergy by regulating the epigenetic profile of M2 macrophages. Cell Signal 2025; 131:111740. [PMID: 40089091 DOI: 10.1016/j.cellsig.2025.111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
M2 macrophages (M2 cells) are known to be involved in both Th2 responses and immune regulation. However, the underlying mechanisms remain unclear. Functional abnormalities in macrophages are associated with airway allergy (AA). The objective of this study was to investigate the role of methyltransferase-like 5 (Mettl5) in macrophages and its potential to alleviate AA. In this study, an airway allergy (AA) mouse model was established using dust mite extracts (DME) as the specific antigen. M2 cells were collected from mice with and without AA. The role of Mettl5 in modulating the immune activities of M2 cells was assessed using both epigenetic and immunological approaches. We found that Mettl5 levels were elevated in airway M2 cells from mice with AA. The presence of Mettl5 in airway M2 cells was positively correlated with airway Th2 polarization in these mice. Airway M2 cells from AA mice exhibited impaired immune-suppressive function, which was resolved by ablating the Mettl5 gene in macrophages. Mettl5 was responsible for the hypermethylation of the Il10 promoter in airway M2 cells of AA mice. Exposure to DME induced Mettl5, which in turn recruited USP21 to deubiquitinate GATA3, thereby boosting IL-4 expression in M2 cells. Inhibiting Mettl5 restored the immune-suppressive capacity of airway M2 cells and mitigated experimental AA. In conclusion, Mettl5 plays a critical role in subverting the immune-regulatory capacity and enhancing IL-4 expression in M2 cells. Inhibition of Mettl5 can mitigate experimental AA by restoring the immune-regulatory functions of M2 cells.
Collapse
Affiliation(s)
- Haoyue Zheng
- Department of Otolaryngology, Longgang Central Hospital and Clinical College affiliated to Guangzhou University of Chinese Medicine, Shenzhen, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China
| | - Yixuan Dong
- Department of Otolaryngology, Longgang Central Hospital and Clinical College affiliated to Guangzhou University of Chinese Medicine, Shenzhen, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China
| | - Xiwen Zhang
- Department of Otolaryngology, Longgang Central Hospital and Clinical College affiliated to Guangzhou University of Chinese Medicine, Shenzhen, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China
| | - Jiangqi Liu
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Xiaorui Geng
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Zhiqiang Liu
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Yun Liao
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Pingchang Yang
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China.
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital and Clinical College affiliated to Guangzhou University of Chinese Medicine, Shenzhen, China.
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen, China.
| |
Collapse
|
35
|
Mao J, Li L, Sun H, Han J, Li J, Dong CS, Zhao H. Investigation of sphingolipid-related genes in lung adenocarcinoma. Front Mol Biosci 2025; 12:1548655. [PMID: 40182622 PMCID: PMC11966433 DOI: 10.3389/fmolb.2025.1548655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is responsible for majority cases of lung cancer and considered to be the primary cause of cancer-related mortality. The imbalance of cellular proliferation and apoptosis is critically implicated in the pathogenesis and progression of LUAD. Sphingomyelin, a vital lipid component, is integral to the regulation of tumor cell growth and apoptosis, and has garnered significant attention as a target in novel anticancer therapies. The pivotal molecules involved in sphingomyelin metabolism are crucial in modulating tumor cell behavior, thereby influencing clinical outcomes. Methods A comprehensive consensus clustering analysis was conducted by collecting clinical LUAD figures from the TCGA and GEO databases. By employing Cox regression and Lasso regression analysis, a prognostic model for LUAD patients was established by identifying seven sphingolipid-related genes (SRGs), and validated in the GEO database. The study also delved into the clinical relevance, functional capabilities, and immune implications of prognostic signals associated with sphingolipid metabolism. Finally, experiments conducted in vitro confirmed the imbalance of sphingolipid-associated genes in LUAD. Results Using the prognostic model, lung adenocarcinoma (LUAD) patients can be divided into high-risk and low-risk groups. Meanwhile, we can observe marked disparities in survival times among these groups. Additionally, the model demonstrates high predictive accuracy in external validation cohorts. Research on the immune microenvironment and immunotherapy points to this risk stratification as a useful reference for immunotherapeutic strategies in LUAD. Finally, our hypothesis was corroborated through in vitro experiments. Conclusion This study demonstrates that sphingolipid-related gene prognostic characteristics correlate with tumor progression and recurrence, long-term prognosis, and immune infiltration in LUAD patients. The outcomes of our study could help shape innovative strategies for early intervention and prognosis prediction in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jibin Mao
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Hui Sun
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Han
- Department of Radiation Oncology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Jinqiao Li
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chang-Sheng Dong
- Cancer Institute of Traditional Chinese Medicine/Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Zhao
- Department of Radiation Oncology, The Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
36
|
Wang S, Xu D, Xiao L, Liu B, Yuan X. Radiation-induced lung injury: from mechanism to prognosis and drug therapy. Radiat Oncol 2025; 20:39. [PMID: 40082925 PMCID: PMC11907960 DOI: 10.1186/s13014-025-02617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Radiation induced lung injury, known as the main complication of thoracic radiation, remains to be a major resistance to tumor treatment. Based on the recent studies on radiation-induced lung injury, this review collated the possible mechanisms at the level of target cells and key pathways, corresponding prognostic models including predictors, patient size, number of centers, radiotherapy technology, construction methods and accuracy, and pharmacotherapy including drugs, targets, therapeutic effects, impact on anti-tumor treatment and research types. The research priorities and limitations are summarized to provide a reference for the research and management of radiation-induced lung injury.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210000, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
37
|
Tang Z, Zhang Z, Zhao J, Zhang F, Zhang Y, Wen Y, Li M, Sun J, Shi L, Chen W, Li Z, Guo Z, Liu Y. Integrated analysis of multiple programmed cell death-related prognostic genes and functional validation of apoptosis-related genes in osteosarcoma. Int J Biol Macromol 2025; 307:142113. [PMID: 40089239 DOI: 10.1016/j.ijbiomac.2025.142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Osteosarcoma (OS) is one of the most prevalent bone malignancies with a poor prognosis. Various types of programmed cell death patterns can influence cancer progression and response to treatment. We aimed to integrate different molecular characteristics of cell death for risk stratification and personalized therapy. First, we obtained transcriptomic, single-cell transcriptomic, and clinical information from the TARGET-OS and GEO databases as well as analyzed genes in fourteen cell death patterns to establish the cell death index (CDI) signature. A nomogram constructed from the CDI calculated from seven genes in combination with metastasis could effectively predict the prognosis of OS patients. Subsequently, the prognostic value and immune characteristics in CDI-defined subgroups were analyzed. A construct nomogram model was also constructed with clinical information. Notably, immunohistochemistry confirmed that the expression of GALNT14, a core gene in CDI model, correlated with poor survival. Deficiency of the highly expressed prognostic gene GALNT14 significantly repressed OS progression and OS cell proliferation by promoting apoptosis. We subsequently demonstrated that Bortezomib, a targeted inhibitor of GALNT14, can be used to enhance chemosensitivity. Finally, it was further elucidated that Bortezomib reduces MT2A glycosylation and improves its stability to promote apoptosis in OS cells by inhibiting GALNT14 expression. In summary, integration of multiple cell death genes may improve the ability to stratify risk in patients with OS, and targeting GALNT14 with Bortezomib improves chemotherapy sensitivity and induces apoptosis.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China; Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Zhang
- Department of Orthopedic Surgery, Guyuan People's Hospital, Ningxia, China
| | - Jungang Zhao
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yiran Zhang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yanhua Wen
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Miaozhen Li
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jin Sun
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| | - Zheng Guo
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| | - Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| |
Collapse
|
38
|
Nguyen DC, Stephan JK, Brainard RE, Brittian KR, Luque LG, Wells CK, Taylor MS, Martinez-Ondaro Y, Gouwens KR, Little DT, Boyd N, Singhal RA, Hellmann J, Wysoczynski M, Hill BG. TGFβ-activated kinase 1 signaling controls acquisition of the inflammatory fibroblast phenotype and regulates cardiac remodeling after myocardial infarction. RESEARCH SQUARE 2025:rs.3.rs-6122755. [PMID: 40162230 PMCID: PMC11952645 DOI: 10.21203/rs.3.rs-6122755/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Organ health and function depend on communication between cell types to coordinate tissue growth and repair. Recent studies have indicated that fibroblasts are critical to this process; however, their role in regulating inflammatory responses to injury have remained ambiguous. Here, we demonstrate that transforming growth factor β-activated kinase 1 (TAK1) is a gatekeeper of the inflammatory cardiac fibroblast phenotype. We find that TAK1 propagates IL-1β and TNF-α signaling in cardiac fibroblasts and coordinates the synthesis and secretion of chemokines as well as inflammatory and pro-resolving lipid mediators. Deletion of TAK1 in fibroblasts decreased immune cell recruitment after MI, which was associated with improved cardiac structural and functional remodeling in male mice. Nevertheless, we found the effects of TAK1 deletion to be sexually dimorphic in nature, providing support to the idea that the protected phenotype of the female sex may be based in disparate immune and inflammatory responses. Moreover, TAK1 signaling controlled the acquisition of novel markers of the inflammatory fibroblast phenotype, having a biological basis in redox stress, chemokine and lipid mediator biosynthesis, metalloproteinase activity, and damage-associated molecular pattern recognition. Collectively, these results further resolve the nature and function of inflammatory cardiac fibroblasts in cardiac responses to injury and identify TAK1 signaling in fibroblasts as a potential target for therapy.
Collapse
Affiliation(s)
- Daniel C. Nguyen
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Jonah K. Stephan
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | | | - Kenneth R. Brittian
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Lianay Gutierrez Luque
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Collin K. Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Madison S. Taylor
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Yania Martinez-Ondaro
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Kara R. Gouwens
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Danielle T. Little
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Nolan Boyd
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Richa A. Singhal
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Jason Hellmann
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Bradford G. Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
39
|
Zheng S, Sun X, Chen K, Zhang M, Zou C, Wang L, Guo Z, Jin Z, Ma Z, Li G, Wu G. Metal-Phenolic Modified Coaxial Electrospun Biomembrane Combined with the Photothermal Effect Enhances Bone Regeneration by Ameliorating Oxidative Stress and Mitochondrial Dysfunction via the PI3K/Akt Signaling Pathway. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15019-15034. [PMID: 40016904 DOI: 10.1021/acsami.4c21265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Critical-sized bone defect regeneration remains a significant clinical challenge due to the complex cascade of biological processes involved. To address this, we developed a sophisticated hierarchical biomembrane (PCS@MPN10) designed to modulate the osteogenic microenvironment. Using coaxial electrospinning, we fabricated a core-shell structure with polylactic acid (PLA) as the membrane base, incorporating simvastatin in the core and chitosan in the shell. The membrane surface was further modified with a tannic acid-iron metal-polyphenol network coating. Our results demonstrated that the biomembrane exhibits excellent biocompatibility, photothermal properties, and significant antibacterial activity. Additionally, the membrane regulates the microenvironment by promoting M1-to-M2 macrophage polarization, showing strong osteogenic potential both in vitro and in vivo. Furthermore, PCS@MPN10+NIR modulates mitochondrial function through the PI3K-AKT pathway, clears mitochondrial reactive oxygen species (ROS), and alleviates cellular oxidative stress, thereby enhancing bone regeneration. Overall, these findings suggest that this biomembrane holds great promise as a strategy for improving bone regeneration in critical-sized defects.
Collapse
Affiliation(s)
- Shikang Zheng
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Xiumei Sun
- Department of Orthodontics, Hospital of Stomatology, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Kai Chen
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Mingjun Zhang
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Chentong Zou
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Lin Wang
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Zhipeng Guo
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, P. R. China
| | - Zhaoyi Jin
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Ziyi Ma
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Guanyu Li
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Guomin Wu
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
40
|
Yu S, You Y, Liu L, Cai X, Huang C. Modulation of biomaterial-induced foreign body response by regulating the differentiation and migration of Treg cells through the CXCL12-CXCR4/7 axis. Biomater Sci 2025; 13:1529-1542. [PMID: 39932368 DOI: 10.1039/d4bm01474j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Tissue exposure to implanted biomaterials triggers a foreign body response (FBR), which is a stepwise immunological process involving innate immune cells and tissue repair cells. Although the regulatory T (Treg) cells play a crucial role in inflammation and tissue repair, their function in the process of FBR has not been well investigated. In this study, as titanium (Ti) exhibits better biocompatibility and induces milder FBR than polymethyl methacrylate (PMMA), we analyzed the characteristics of Treg cells during FBR caused by the two types of biomaterials. In a rat femur implantation model, we found that the number of Treg cells around titanium implants was much more than that in the PMMA-implanted group. Meanwhile, the expression of CXCR4 in tissues around Ti implants was significantly higher, and the expression of CXCR7 was lower. When co-cultured with biomaterials and macrophages, the differentiation and migration of Treg cells in the Ti-implanted group were promoted, and this effect could be modulated by CXCR4/7 inhibitors. Moreover, targeting CXCR4/7 influenced the amount of Treg cells in vivo and then reversed the FBR induced by PMMA or Ti implants. In summary, our findings revealed the role of CXCR4/CXCR7 in regulating the migration and differentiation of Treg cells during FBR and suggested that the CXCL12-CXCR4/CXCR7 axis may serve as a potential therapeutic target for immunomodulating foreign body response.
Collapse
Affiliation(s)
- Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Yuan You
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Lan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Xinjie Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
41
|
Zhou X, He J, Song H, Zhao W, Li R, Han W, Li Q. Regulation of macrophage efferocytosis by the CLCF1/NF-κB pathway improves neurological and cognitive impairment following CO poisoning. Brain Behav Immun 2025; 127:126-146. [PMID: 40081779 DOI: 10.1016/j.bbi.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Severe carbon monoxide (CO) poisoning can induce structural and functional damage to the nervous system, resulting in persistent cognitive impairments. Properly terminating inflammation caused by neuronal damage is essential for tissue repair. Macrophages clear cell corpses and fragments through efferocytosis and produce cytokines to coordinate the immune response, thus promoting neuronal repair and regeneration. However, within the microenvironment of the CO-affected nervous system, macrophage efferocytosis is disrupted. Our study found that macrophages regulate efferocytosis by releasing Cardiotrophin-like cytokine factor 1 (CLCF1), which modulates the NF-κB pathway in both macrophages and microglia, thereby controlling inflammation and promoting nervous system repair. Furthermore, efferocytosis regulates the secretion of cytokines such as TNF-α, IL-1β, and IL-10, promoting M2 polarization of macrophages, which aids in neuronal repair and regeneration. Regulating macrophage CLCF1 expression also leads to improvements in the memory, learning, and motor abilities of rats poisoned with CO.
Collapse
Affiliation(s)
- Xudong Zhou
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China; The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Jingjing He
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Huiping Song
- Department of Traditional Chinese Medicine II, Rehabilitation University Qingdao Central Hospital, Qingdao, Shandong 266042, PR China
| | - Weiwei Zhao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, PR China
| | - Rui Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Qin Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China; The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
42
|
Cai D, Hu W, Cai Y, Fang T, Chen X. Integrated Analysis of Ferroptosis and Immune Infiltration in Ulcerative Colitis Based on Bioinformatics. J Inflamm Res 2025; 18:3535-3549. [PMID: 40093944 PMCID: PMC11908401 DOI: 10.2147/jir.s501651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory bowel disease influenced by genetic, immune, and environmental factors. This study investigates the link between ferroptosis, a cell death process related to oxidative stress and iron metabolism, and immune infiltration in UC. Materials and Methods We analyzed UC patient transcription data from the Gene Expression Omnibus (GEO) and identified ferroptosis-related genes using FerrDB. Using STRING and Cytoscape, we analyzed protein-protein interactions to identify hub UC Differentially Expressed Genes (UCDEGs) and performed functional enrichment with GO and KEGG pathways. Machine learning helped further identify key UC Differentially Expressed Ferroptosis-related genes (UCDE-FRGs), which were validated using additional GEO datasets and immunohistochemical staining. Results A total of 11 hub UCDEGs (CCL2, ICAM1, TLR2, CXCL9, MMP9, CXCL10, IL1B, CXCL8, PTPRC, FCGR3A, and IL1A) and 3 key UCDE-FRGs (DUOX2, LCN2 and IDO1) were identified. GO and KEGG functional enrichment indicates that these genes play a role in immunity and ferroptosis. Analysis of immune cell infiltration showed that there were a large number of Plasma cells, Monocytes, M0/M1 Macrophages and Neutrophils in the UC. Correlation analysis revealed 3 key UCDE-FRGs associated with immune-infiltrated cells in UC. IHC results showed that the expression levels of 3 key UCDE-FRGs in UC were all higher than that in the healthy controls. Conclusion In summary, this study identified three key genes related to UC ferroptosis and immunity, namely DUOX2, IDO1 and LCN2. These findings suggest that immune infiltration plays an important role in UC caused by ferroptosis, and that there is mutual regulation between UC and immune-infiltrated cells. Our research revealed the potential application of immune and ferroptosis in the diagnosis, treatment and prognosis of UC, providing new strategies for clinical management.
Collapse
Affiliation(s)
- Daxing Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Weitao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Yanliang Cai
- Department of Pediatrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| |
Collapse
|
43
|
Jin Y, Xu C, Zhu Y, Gu Z. Extracellular vesicle as a next-generation drug delivery platform for rheumatoid arthritis therapy. J Control Release 2025; 381:113610. [PMID: 40058499 DOI: 10.1016/j.jconrel.2025.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic inflammation and progressive damage to connective tissue. It is driven by dysregulated cellular homeostasis, often leading to autoimmune destruction and permanent disability in severe cases. Over the past decade, various drug delivery systems have been developed to enable targeted therapies for disease prevention, reduction, or suppression. As an emerging therapeutic platform, extracellular vesicles (EVs) offer several advantages over conventional drug delivery systems, including biocompatibility and low immunogenicity. Consequently, an increasing number of studies have explored EV-based delivery systems in the treatment of RA, leveraging their natural ability to evade phagocytosis, prolong in vivo half-life, and minimize the immunogenicity of therapeutic agents. In this review, we first provide an in-depth overview of the pathogenesis of RA and the current treatment landscape. We then discuss the classification and biological properties of EVs, their potential therapeutic mechanisms, and the latest advancements in EVs as drug delivery platforms for RA therapy. We emphasize the significance of EVs as carriers in RA treatment and their potential to revolutionize therapeutic strategies. Furthermore, we examine key technological innovations and the future trajectory of EV research, focusing on the challenges and opportunities in translating these platforms into clinical practice. Our discussion aims to offer a comprehensive understanding of the current state and future prospects of EV-based therapeutics in RA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Yujuan Zhu
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
44
|
Weng J, Liu H, Wu Z, Huang Y, Zhang S, Xu Y. Periplocin improves the sensitivity of oxaliplatin-resistant hepatocellular carcinoma cells by inhibiting M2 macrophage polarization. BIOMOLECULES & BIOMEDICINE 2025; 25:857-868. [PMID: 39207178 PMCID: PMC11959402 DOI: 10.17305/bb.2024.10928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The aim of this research was to investigate the impact of periplocin (PPLN) on oxaliplatin (OXA) resistance in hepatocellular carcinoma (HCC) cells and offer insights for improving clinical treatment of HCC. The IC50 value of HCC cell lines against OXA was detected by the CCK-8 assay, and an OXA-resistant HepG2 cell line (HepG2/OXA) was constructed. THP-1 cells were induced into M1 or M2 macrophages, and M2 macrophage-conditioned medium (M2-CM) was prepared. M1 and M2 macrophage polarization were detected using RT-qPCR and flow cytometry. CCK-8, EdU staining, clone formation assay, flow cytometry, and western blotting were used to assess the proliferation and apoptosis of HepG2/OXA cells treated with PPLN and M2-CM. Additionally, a nude mouse subcutaneous graft tumor model was constructed. PPLN enhanced the sensitivity of HepG2/OXA cells to OXA, reduced their clone-forming ability, and promoted their apoptosis. Notably, PPLN hindered M0 macrophage polarization to M2 macrophages, while M1 polarization remained unaffected. The proliferation-inhibiting and apoptosis-promoting effects of OXA+PPLN on HepG2/OXA cells were significantly attenuated by the addition of M2-CM, suggesting that PPLN improves the OXA sensitivity of HepG2/OXA cells by hindering M2 macrophage polarization. Furthermore, PPLN inhibited M2 macrophage polarization and improved the OXA sensitivity of HepG2/OXA cells in vivo. In conclusion, PPLN inhibited the proliferation of HepG2/OXA cells, promoted their apoptosis, and inhibited M2 macrophage polarization both in vivo and in vitro, which in turn enhanced the OXA sensitivity of HepG2/OXA cells.
Collapse
Affiliation(s)
- Jiefeng Weng
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Hui Liu
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Zhaofeng Wu
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Yu Huang
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Shuai Zhang
- Physical Examination Center, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Yujie Xu
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| |
Collapse
|
45
|
Suliman M, Saleh RO, Chandra M, Rasool KH, Jabir M, Jawad SF, Hasan TF, Singh M, Singh M, Singh A. Macrophage-derived lncRNAs in cancer: regulators of tumor progression and therapeutic targets. Med Oncol 2025; 42:91. [PMID: 40048034 DOI: 10.1007/s12032-025-02643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Macrophages are key tumor microenvironment (TME) regulators, exhibiting remarkable plasticity that enables them to either suppress or promote cancer progression. Emerging evidence highlights the critical role of macrophage-derived long non-coding RNAs (lncRNAs) in shaping tumor immunity, influencing macrophage polarization, immune evasion, angiogenesis, metastasis, and therapy resistance. This review comprehensively elucidates the functional roles of M1- and M2-associated lncRNAs, detailing their molecular mechanisms and impact on cancer pathogenesis. In summary, elucidating the roles of lncRNAs derived from macrophages in cancer progression offers new avenues for therapeutic strategies, significantly improving patient outcomes in the fight against the disease. Further research into the functional significance of these lncRNAs and the development of targeted therapies is essential to harness their potential fully in clinical applications. We further explore their potential as biomarkers for cancer prognosis and therapeutic targets for modulating macrophage activity to enhance anti-cancer immunity. Targeting macrophage-derived lncRNAs represents a promising avenue for precision oncology, offering novel strategies to reshape the TME and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Thikra F Hasan
- College of Health & Medical Technology, Uruk University, Baghdad, Iraq
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
46
|
Yang Y, Fan A, Lin H, Wang X, Yang K, Zhang H, Fan G, Li L. Role of macrophages in cardiac arrhythmias: Pathogenesis and therapeutic perspectives. Int Immunopharmacol 2025; 149:114206. [PMID: 39923583 DOI: 10.1016/j.intimp.2025.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
The pathophysiology of arrhythmias is complex, involving changes in cardiac contractile and conduction systems, electrical conduction heterogeneity, and structural alterations. Recent studies indicate that cardiac macrophages can induce arrhythmias by interacting with cardiomyocytes or altering tissue composition. Due to the heterogeneity and diversity, macrophages develop different cellular functions during pathological processes. This review identifies various macrophage subpopulations and focuses on their pathological mechanisms in arrhythmogenesis. Furthermore, we explore the interactions of macrophages with other immune cells and summarize the promising approaches for targeting macrophages in arrhythmias treatment. Macrophages directly or indirectly influence arrhythmogenesis through multiple systemic effects. Preclinical studies suggest that modifying macrophages' phenotype or regulating their activity may directly affect cardiac conduction. This review provides a theoretical basis for developing immunotherapies for patients with cardiac arrhythmias.
Collapse
Affiliation(s)
- Yakun Yang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aodi Fan
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hanqing Lin
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xizheng Wang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ke Yang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haixia Zhang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
47
|
Joshi H, Anaya E, Addanki A, Almgren-Bell A, Todd EM, Morley SC. Mechanosensitivity of macrophage polarization: comparing small molecule leukadherin-1 to substrate stiffness. Front Immunol 2025; 16:1420325. [PMID: 40114914 PMCID: PMC11922956 DOI: 10.3389/fimmu.2025.1420325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Macrophages sustain tissue homeostasis through host defense and wound repair. To promote host defense, macrophages upregulate surface markers associated with antigen processing and secrete pro-inflammatory mediators such as IL-6 and IL-1β. After pathogen clearance, macrophages shift phenotype to promote wound repair. Shifts in phenotypes are termed "polarization" and have historically been modeled by exposure to soluble mediators such as LPS+IFNγ (host defense) or IL-4+IL-13 (tissue repair). Greater emphasis is now being placed on understanding how the mechanical environment of macrophages, such as tissue compliance, regulates macrophages responses. Here, we compare incubation of primary macrophages on collagen-coated silica gels of varying stiffness to treatment with the small molecule integrin activator, leukadherin-1 (LA1), to examine how substrate stiffness alters macrophage polarization in response to multiple stimuli. LA1 was developed as an immunomodulator to treat inflammatory diseases by impairing trafficking of inflammatory cells. A recent clinical trial examining LA1 as an immunomodulator in solid tumors was terminated early because no benefit was observed. We hypothesized that LA1 treatment may exert additional, unexpected effects on macrophage polarization by replicating mechanotransduction. Specifically, we hypothesized that LA1 would mimic effects of incubation on stiffer substrates, as both conditions would be predicted to activate integrins. Our results show that soft substrate (0.2 kPa) trends towards upregulation of host defense molecules, in contrast to prior reports using different experimental systems. We further show that soft substrates enhance NLRP3-mediated IL-1β production, compared to stiff, in both primary mouse and human macrophages. LA1 mimicked incubation on stiff substrates in inhibiting NLRP3 activation and in regulating expression of several surface markers but differed by reducing IL-6 production. Our results show that macrophage inflammatory responses are regulated by adhesion-based, integrin-mediated mechanical signaling. Modulation of NLRP3-mediated IL-1β production by LA1 supports the possibility of repurposing LA1 to treat NLRP3-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Edgar Anaya
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Anvitha Addanki
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Alison Almgren-Bell
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elizabeth M Todd
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
- Division of Immunobiology, Department of Pathology and Immunology, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
48
|
Chen J, Liu H, Fu Y, Chen X, Zhang S, Yang Y, Li S, Wang G, Lan T. Kaempferol attenuates macrophage M1 polarization and liver fibrosis by inhibiting mitogen-activated protein kinase/nuclear factor κB signaling pathway. J Pharmacol Exp Ther 2025; 392:103533. [PMID: 40139075 DOI: 10.1016/j.jpet.2025.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic liver inflammation is a major cause of death in patients with liver fibrosis and cirrhosis, which pose a serious health threat worldwide, and there is no effective anti-hepatic fibrosis drug. Kaempferol (KA), a flavonoid polyphenol extracted from many edible plants and traditional Chinese medicine, has been reported to possess anti-inflammatory, antioxidant, and antitumor activities and has an ameliorating effect on liver fibrosis or other fibroproliferative diseases. However, the specific regulatory mechanism of KA-reversed macrophage M1 polarization is still obscure. This study aimed to investigate the protective effects of KA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice through M1 polarization. C57BL/6 mice were intraperitoneally injected with CCl4 twice weekly to induce liver fibrosis. Male mice were randomly divided into 4 groups (n = 5): the oil group, the CCl4 group, the low-dose KA-treatment CCl4 group (50 mg/kg/day KA), and the high-dose KA-treatment CCl4 group (100 mg/kg/day KA). An equal amount of solvent was given to each group by intraperitoneal injection. The results indicated that KA decreased liver pathologic changes, hepatic macrophage recruitment, and serum alanine aminotransferase levels. Notably, it reduced the activation of M1-type macrophages in the liver. The expression of proinflammatory cytokines and genes associated with M1 macrophages, such as tumor necrosis factor-α, interleukin-6, interleukin-1β, and inducible nitric oxide synthase, was also decreased. The core targets, signaling pathways, and possible mechanisms related to the M1 polarization of KA were analyzed by network pharmacology and molecular docking. Further analysis revealed that KA regulated mitogen-activated protein kinase (MAPK)/nuclear factor κB (NF-κB) signaling pathways. Finally, the results indicated that KA regulates M1 macrophage activation by modulating the MAPK/NF-κB signaling pathways. This study revealed that KA ameliorated liver injury, inflammation, and fibrosis by inhibiting macrophage M1 polarization through the MAPK/NF-κB signaling pathway, highlighting KA as a potential novel agent for the prevention and treatment of liver fibrosis. SIGNIFICANCE STATEMENT: Chronic liver inflammation is a leading cause of mortality in patients with liver fibrosis and cirrhosis, presenting a significant global health threat. Kaempferol, as a traditional Chinese medicine, effectively suppresses M1 polarization of macrophages through the mitogen-activated protein kinase/nuclear factor κB signaling pathway, thereby ameliorating liver injury, inflammation, and fibrosis. These findings underscore the potential of kaempferol as an innovative therapeutic agent for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huanle Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanfang Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaolan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiqin Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongqi Yang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shengwen Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
49
|
Zhang Y, Wang B, Chen J, Li T. Role of exosomal miRNAs and macrophage polarization in gastric cancer: A novel therapeutic strategy. Eur J Pharmacol 2025; 990:177268. [PMID: 39805486 DOI: 10.1016/j.ejphar.2025.177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication. In recent years, exosomal miRNAs have gained attention for their role in various cancers. These exosomal miRNAs can impact GC development and progression by targeting specific genes or influencing signaling pathways and cytokines involved in Angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and immune regulation. They show great potential in terms of diagnosis, prognosis, and treatment of GC. Notably, the gastrointestinal tract has the largest number of macrophages, which play a significant role in GC progression. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and can influence macrophage programming through various mediators, including macrophage polarization. Macrophage polarization is involved in inflammatory responses and significantly impacts the GC process.
Collapse
Affiliation(s)
- Yun Zhang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| | - Tao Li
- Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Ningxia, China.
| |
Collapse
|
50
|
Liu W, Mao Y, Li H, Hu J, Gan T, Wang Y, Wang Y, Wang Z. Erianin alleviates autoimmune myocarditis by suppressing the M1 polarization of macrophages via the NF-κB/NLRP3 signaling pathway. Eur J Pharmacol 2025; 990:177292. [PMID: 39863146 DOI: 10.1016/j.ejphar.2025.177292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/04/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Myocarditis tends to lead to a poor prognosis, but there are no satisfactory preventive or therapeutic strategies. Erianin, a natural benzene compound, has been found to have antioxidant and anti-inflammatory effects. However, the effects of erianin on myocarditis remain unclear. This study aimed to investigate the effects of erianin on myocarditis and the involved mechanisms. METHODS We developed a mouse model of experimental autoimmune myocarditis (EAM) and assessed the effects of erianin using echocardiography and pathological staining. In vitro experiments, flow cytometry, immunofluorescence and western blotting were performed to determine whether erianin inhibits macrophage activation. RESULTS Erianin ameliorated cardiac fibrosis and cardiac dysfunction and reduced the percentage of M1-type macrophages and the secretion of inflammatory factors. Mechanistically, erianin inhibits the activation of the NLRP3 inflammasome by inhibiting the NF-κB pathway. CONCLUSION Erianin could be a natural therapeutic drug for EAM by inhibiting NLRP3 activation and M1 macrophage-mediated inflammation through the IκBα/NF-κB pathway.
Collapse
Affiliation(s)
- Wenhu Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuyuan Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Hu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Gan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|