1
|
Wang K, Hu Y, Wu Y, Xu J, Zhao Y, Yang J, Li X. The Therapeutic Potential of Gut-Microbiota-Derived Metabolite 4-Phenylbutyric Acid in Escherichia coli-Induced Colitis. Int J Mol Sci 2025; 26:1974. [PMID: 40076603 PMCID: PMC11901052 DOI: 10.3390/ijms26051974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/14/2025] Open
Abstract
Pathogenic Escherichia coli (E. coli) is a widely distributed pathogen that can cause varying degrees of zoonotic diseases, and infected animals often experience intestinal inflammation accompanied by diarrhea and dysbiosis. Previously, for the first time, we isolated Escherichia coli primarily of type B2 from a large-scale dairy farm in Yunnan, China. The 16s rRNA sequencing showed significant differences in the gut microbiota of calves infected with B2 E. coli, with higher abundance of harmful bacteria and lower abundance of beneficial bacteria compared with healthy calves. The metabolomics indicated that the concentrations of oxoadipic acid, 16-oxopalmitate, oerillyl alcohol, palmitoleic acid, and 4-phenylbutyrate (4-PBA) were significantly higher in the healthy group than in the infected group. The mouse model was established to assess the regulatory effect of 4-PBA on E. coli-induced colitis. Both oral administration of 4-PBA and fecal microbiota transplantation (FMT) had strong resistance to E. coli infection, improved survival rate and body weight, reduced intestinal tissue damage, decreased the levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), and restrained TLR4/MyD88/NF-κB pathway. Our study demonstrated that 4-PBA could relieve E. coli-induced colitis by improving gut microbiota structure and inhibiting the expression of pro-inflammatory cytokines through the TLR4/MyD88/NF-κB pathway. The present finding reveals the therapeutic potential of the gut-microbiota-derived metabolite 4-PBA for the treatment of colitis caused by E. coli.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Yang
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China; (K.W.); (Y.H.); (Y.W.); (J.X.); (Y.Z.)
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China; (K.W.); (Y.H.); (Y.W.); (J.X.); (Y.Z.)
| |
Collapse
|
2
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Chatterjee P, Spalinger MR, Acevedo C, Gries CM, Manz SM, Canale V, Santos AN, Shawki A, Sayoc-Becerra A, Lei H, Crawford MS, Eckmann L, Borneman J, McCole DF. Intestinal Epithelial PTPN2 Limits Pathobiont Colonization by Immune-Directed Antimicrobial Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614848. [PMID: 39386684 PMCID: PMC11463449 DOI: 10.1101/2024.09.24.614848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background and Aims Loss of activity of the inflammatory bowel disease (IBD) susceptibility gene, protein tyrosine phosphatase non-receptor type 2 (PTPN2), is associated with altered microbiome composition in both human subjects and mice. Further, expansion of the bacterial pathobiont, adherent-invasive E. coli (AIEC), is strongly linked to IBD pathogenesis. The mechanism by which intestinal epithelial cells (IEC) maintain equilibrium between commensal microbiota and immune cells to restrict invading pathobionts is poorly understood. Here, we investigated the role of IEC-specific PTPN2 in regulating AIEC colonization. Methods Tamoxifen-inducible, intestinal epithelial cell-specific Ptpn2 knockout mice (Ptpn2 ΔIEC) and control Ptpn2 fl/fl mice were infected with either non-invasive E. coli K12, or fluorescent-tagged mAIEC (mAIECred) for four consecutive days or administered PBS. Subsequently, bacterial colonization in mouse tissues was quantified. mRNA and protein expression were assayed in intestinal epithelial cells (IECs) or whole tissue lysates by PCR and Western blot. Tissue cytokine expression was determined by ELISA. Intestinal barrier function was determined by in vivo administration of 4 kDa FITC-dextran (FD4) or 70kDa Rhodamine-B dextran (RD70) fluorescent probes. Confocal microscopy was used to determine the localization of tight-junction proteins. Results Ptpn2 ΔIEC mice exhibited increased mAIECred - but not K12 - bacterial load in the distal colon compared to infected Ptpn2 fl/fl mice. The higher susceptibility to mAIECred infection was associated with altered levels of antimicrobial peptide (AMPs). Ileal RNA expression of the alpha-defensin AMPs, Defa5 and Defa6, as well as MMP7, was significantly lower in Ptpn2 ΔIEC vs. Ptpn2 fl/fl mice, after mAIECred but not K12 infection. Further, we observed increased tight junction-regulated permeability determined by elevated in vivo FD4 but not RD70 permeability in Ptpn2 ΔIEC-K12 mice compared to their respective controls. This effect was further exacerbated in Ptpn2 ΔIEC mAIEC-infected mice. Further, Ptpn2 ΔIEC mice displayed lower IL-22, IL-6, IL-17A cytokine expression post mAIEC infection compared to Ptpn2 fl/fl controls. Recombinant IL-22 reversed the FD4 permeability defect and reduced bacterial burden in Ptpn2 ΔIEC mice post mAIEC challenge. Conclusion Our findings highlight that intestinal epithelial PTPN2 is crucial for mucosal immunity and gut homeostasis by promoting anti-bacterial defense mechanisms involving coordinated epithelial-immune responses to restrict pathobiont colonization.
Collapse
Affiliation(s)
- Pritha Chatterjee
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Marianne R. Spalinger
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Charly Acevedo
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Casey M. Gries
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Salomon M. Manz
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Alina N. Santos
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Ali Shawki
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Hillmin Lei
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Meli’sa S. Crawford
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| | - Lars Eckmann
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| | - Declan F. McCole
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California
| |
Collapse
|
4
|
Cho YS, Han K, Xu J, Moon JJ. Novel strategies for modulating the gut microbiome for cancer therapy. Adv Drug Deliv Rev 2024; 210:115332. [PMID: 38759702 PMCID: PMC11268941 DOI: 10.1016/j.addr.2024.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Recent advancements in genomics, transcriptomics, and metabolomics have significantly advanced our understanding of the human gut microbiome and its impact on the efficacy and toxicity of anti-cancer therapeutics, including chemotherapy, immunotherapy, and radiotherapy. In particular, prebiotics, probiotics, and postbiotics are recognized for their unique properties in modulating the gut microbiota, maintaining the intestinal barrier, and regulating immune cells, thus emerging as new cancer treatment modalities. However, clinical translation of microbiome-based therapy is still in its early stages, facing challenges to overcome physicochemical and biological barriers of the gastrointestinal tract, enhance target-specific delivery, and improve drug bioavailability. This review aims to highlight the impact of prebiotics, probiotics, and postbiotics on the gut microbiome and their efficacy as cancer treatment modalities. Additionally, we summarize recent innovative engineering strategies designed to overcome challenges associated with oral administration of anti-cancer treatments. Moreover, we will explore the potential benefits of engineered gut microbiome-modulating approaches in ameliorating the side effects of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 21009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Koci O, Russell RK, Shaikh MG, Edwards C, Gerasimidis K, Ijaz UZ. CViewer: a Java-based statistical framework for integration of shotgun metagenomics with other omics datasets. MICROBIOME 2024; 12:117. [PMID: 38951915 PMCID: PMC11218139 DOI: 10.1186/s40168-024-01834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Shotgun metagenomics for microbial community survey recovers enormous amount of information for microbial genomes that include their abundances, taxonomic, and phylogenetic information, as well as their genomic makeup, the latter of which then helps retrieve their function based on annotated gene products, mRNA, protein, and metabolites. Within the context of a specific hypothesis, additional modalities are often included, to give host-microbiome interaction. For example, in human-associated microbiome projects, it has become increasingly common to include host immunology through flow cytometry. Whilst there are plenty of software approaches available, some that utilize marker-based and assembly-based approaches, for downstream statistical analyses, there is still a dearth of statistical tools that help consolidate all such information in a single platform. By virtue of stringent computational requirements, the statistical workflow is often passive with limited visual exploration. RESULTS In this study, we have developed a Java-based statistical framework ( https://github.com/KociOrges/cviewer ) to explore shotgun metagenomics data, which integrates seamlessly with conventional pipelines and offers exploratory as well as hypothesis-driven analyses. The end product is a highly interactive toolkit with a multiple document interface, which makes it easier for a person without specialized knowledge to perform analysis of multiomics datasets and unravel biologically relevant patterns. We have designed algorithms based on frequently used numerical ecology and machine learning principles, with value-driven from integrated omics tools which not only find correlations amongst different datasets but also provide discrimination based on case-control relationships. CONCLUSIONS CViewer was used to analyse two distinct metagenomic datasets with varying complexities. These include a dietary intervention study to understand Crohn's disease changes during a dietary treatment to include remission, as well as a gut microbiome profile for an obesity dataset comparing subjects who suffer from obesity of different aetiologies and against controls who were lean. Complete analyses of both studies in CViewer then provide very powerful mechanistic insights that corroborate with the published literature and demonstrate its full potential. Video Abstract.
Collapse
Affiliation(s)
- Orges Koci
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G4 0SF, UK
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children & Young People, Edinburgh, EH16 4TJ, UK
| | - M Guftar Shaikh
- Department of Endocrinology, Royal Hospital for Children, Glasgow, 1345 Govan Rd., Glasgow, G51 4T, UK
| | - Christine Edwards
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G4 0SF, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G4 0SF, UK
| | - Umer Zeeshan Ijaz
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow, G11 6EW, UK.
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 7BE, UK.
| |
Collapse
|
6
|
Guo J, Li L, Cai Y, Kang Y. The development of probiotics and prebiotics therapy to ulcerative colitis: a therapy that has gained considerable momentum. Cell Commun Signal 2024; 22:268. [PMID: 38745207 PMCID: PMC11094941 DOI: 10.1186/s12964-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.
Collapse
Affiliation(s)
- Jing Guo
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liping Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Du J, Khemmani M, Halverson T, Ene A, Limeira R, Tinawi L, Hochstedler-Kramer BR, Noronha MF, Putonti C, Wolfe AJ. Cataloging the phylogenetic diversity of human bladder bacterial isolates. Genome Biol 2024; 25:75. [PMID: 38515176 PMCID: PMC10958879 DOI: 10.1186/s13059-024-03216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Although the human bladder is reported to harbor unique microbiota, our understanding of how these microbial communities interact with their human hosts is limited, mostly owing to the lack of isolates to test mechanistic hypotheses. Niche-specific bacterial collections and associated reference genome databases have been instrumental in expanding knowledge of the microbiota of other anatomical sites, such as the gut and oral cavity. RESULTS To facilitate genomic, functional, and experimental analyses of the human bladder microbiota, we present a bladder-specific bacterial isolate reference collection comprising 1134 genomes, primarily from adult females. These genomes were culled from bacterial isolates obtained by a metaculturomic method from bladder urine collected by transurethral catheterization. This bladder-specific bacterial isolate reference collection includes 196 different species, including representatives of major aerobes and facultative anaerobes, as well as some anaerobes. It captures 72.2% of the genera found when re-examining previously published 16S rRNA gene sequencing of 392 adult female bladder urine samples. Comparative genomic analysis finds that the taxonomies and functions of the bladder microbiota share more similarities with the vaginal microbiota than the gut microbiota. Whole-genome phylogenetic and functional analyses of 186 bladder Escherichia coli isolates and 387 gut Escherichia coli isolates support the hypothesis that phylogroup distribution and functions of Escherichia coli strains differ dramatically between these two very different niches. CONCLUSIONS This bladder-specific bacterial isolate reference collection is a unique resource that will enable bladder microbiota research and comparison to isolates from other anatomical sites.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
- Present address: Division of Nutritional Science, Cornell University, Ithaca, NY, 14850, USA
| | - Mark Khemmani
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Thomas Halverson
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Roberto Limeira
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Lana Tinawi
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Baylie R Hochstedler-Kramer
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Melline Fontes Noronha
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, 60660, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Alan J Wolfe
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
8
|
Wetzel S, Müller A, Kohnert E, Mehrbarzin N, Huber R, Häcker G, Kreutz C, Lederer AK, Badr MT. Longitudinal dynamics of gut bacteriome and mycobiome interactions pre- and post-visceral surgery in Crohn's disease. Front Cell Infect Microbiol 2024; 13:1275405. [PMID: 38287975 PMCID: PMC10822897 DOI: 10.3389/fcimb.2023.1275405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Alterations of the gut microbiome are involved in the pathogenesis of Crohn's disease (CD). The role of fungi in this context is unclear. This study aimed to determine postoperative changes in the bacterial and fungal gut communities of CD patients undergoing intestinal resection, and to evaluate interactions between the bacteriome and mycobiome and their impact on the patients' outcome. Methods We report a subgroup analysis of a prospective cohort study, focusing on 10 CD patients whose fecal samples were collected for bacterial 16S rRNA and fungal ITS2 genes next-generation sequencing the day before surgery and on the 5th or 6th postoperative day. Results No significant differences in bacterial and fungal diversity were observed between preoperative and postoperative stool samples. By in-depth analysis, significant postoperative abundance changes of bacteria and fungi and 17 interkingdom correlations were detected. Network analysis identified 13 microbial clusters in the perioperative gut communities, revealing symbiotic and competitive interactions. Relevant factors were gender, age, BMI, lifestyle habits (smoking, alcohol consumption) and surgical technique. Postoperative abundance changes and identified clusters were associated with clinical outcomes (length of hospital stay, complications) and levels of inflammatory markers. Conclusions Our findings highlight the importance of dissecting the interactions of gut bacterial and fungal communities in CD patients and their potential influence on postoperative and disease outcomes.
Collapse
Affiliation(s)
- Simon Wetzel
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Müller
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Negin Mehrbarzin
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ann-Kathrin Lederer
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamed Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Aufdecken gemeinsamer Prinzipien immunvermittelter Erkrankungen: von der Grundlagenwissenschaft zu neuen Therapien (IMM-PACT)-Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Hu S, Zhao R, Xu Y, Gu Z, Zhu B, Hu J. Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances. J Mater Chem B 2023; 12:13-38. [PMID: 38018424 DOI: 10.1039/d3tb02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and idiopathic condition that results in inflammation of the gastrointestinal tract, leading to conditions such as ulcerative colitis and Crohn's disease. Commonly used treatments for IBD include anti-inflammatory drugs, immunosuppressants, and antibiotics. Fecal microbiota transplantation is also being explored as a potential treatment method; however, these drugs may lead to systemic side effects. Oral administration is preferred for IBD treatment, but accurately locating the inflamed area in the colon is challenging due to multiple physiological barriers. Nanoparticle drug delivery systems possess unique physicochemical properties that enable precise delivery to the target site for IBD treatment, exploiting the increased permeability and retention effect of inflamed intestines. The first part of this review comprehensively introduces the pathophysiological environment of IBD, covering the gastrointestinal pH, various enzymes in the pathway, transport time, intestinal mucus, intestinal epithelium, intestinal immune cells, and intestinal microbiota. The second part focuses on the latest advances in the mechanism and strategies of targeted delivery using oral nanoparticle drug delivery systems for colitis-related fields. Finally, we present challenges and potential directions for future IBD treatment with the assistance of nanotechnology.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zelin Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
10
|
Hogins J, Xuan Z, Zimmern PE, Reitzer L. The distinct transcriptome of virulence-associated phylogenetic group B2 Escherichia coli. Microbiol Spectr 2023; 11:e0208523. [PMID: 37724859 PMCID: PMC10580932 DOI: 10.1128/spectrum.02085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/28/2023] [Indexed: 09/21/2023] Open
Abstract
Escherichia coli strains of phylogenetic group B2 are often associated with urinary tract infections (UTIs) and several other diseases. Recent genomic and transcriptomic analyses have not suggested or identified specific genes required for virulence, but have instead suggested multiple virulence strategies and complex host-pathogen interactions. Previous analyses have not compared core gene expression between phylogenetic groups or between pathogens and nonpathogens within phylogenetic groups. We compared the core gene expression of 35 strains from three phylogenetic groups that included both pathogens and nonpathogens after growth in a medium that allowed comparable growth of both types of strains. K-means clustering suggested a B2 cluster with 17 group B2 strains and two group A strains; an AD cluster with six group A strains, five group D strains and one B2 strain; and four outliers which included the highly studied model uropathogenic E. coli strains UTI89 and CFT073. Half of the core genes were differentially expressed between B2 and AD cluster strains, including transcripts of genes for all aspects of macromolecular synthesis-replication, transcription, translation, and peptidoglycan synthesis-energy metabolism, and environmental-sensing transcriptional regulators. Notably, core gene expression between nonpathogenic and uropathogenic transcriptomes within phylogenetic groups did not differ. If differences between pathogens and nonpathogens exist, then the differences do not require transcriptional reprogramming. In summary, B2 cluster strains have a distinct transcription pattern that involves hundreds of genes. We propose that this transcription pattern is one factor that contributes to virulence. IMPORTANCE Escherichia coli is a diverse species and an opportunistic pathogen that is associated with various diseases, such as urinary tract infections. When examined, phylogenetic group B2 strains are more often associated with these diseases, but the specific properties that contribute to their virulence are not known. From a comparative transcriptomic analysis, we found that group B2 strains grown in a nutrient-rich medium had a distinct transcription pattern, which is the first evidence that core gene expression differs between phylogenetic groups. Understanding the consequences of group B2 transcription pattern will provide important information on basic E. coli biology, the basis for E. coli virulence, and possibly for developing therapies for a majority of urinary tract infections and other group B2-associated diseases.
Collapse
Affiliation(s)
- Jacob Hogins
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Philippe E. Zimmern
- Department of Urology, The University of Texas Southwestern, Dallas, Texas, USA
| | - Larry Reitzer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
11
|
Damborg P, Pirolo M, Schøn Poulsen L, Frimodt-Møller N, Guardabassi L. Dogs Can Be Reservoirs of Escherichia coli Strains Causing Urinary Tract Infection in Human Household Contacts. Antibiotics (Basel) 2023; 12:1269. [PMID: 37627689 PMCID: PMC10451620 DOI: 10.3390/antibiotics12081269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to investigate the role played by pets as reservoirs of Escherichia coli strains causing human urinary tract infections (UTIs) in household contacts. Among 119 patients with community-acquired E. coli UTIs, we recruited 19 patients who lived with a dog or a cat. Fecal swabs from the household pet(s) were screened by antimicrobial selective culture to detect E. coli displaying the resistance profile of the human strain causing UTI. Two dogs shed E. coli isolates indistinguishable from the UTI strain by pulsed-field gel electrophoresis. Ten months later, new feces from these dogs and their owners were screened selectively and quantitatively for the presence of the UTI strain, followed by core-genome phylogenetic analysis of all isolates. In one pair, the resistance phenotype of the UTI strain occurred more frequently in human (108 CFU/g) than in canine feces (104 CFU/g), and human fecal isolates were more similar (2-7 SNPs) to the UTI strain than canine isolates (83-86 SNPs). In the other pair, isolates genetically related to the UTI strain (23-40 SNPs) were only detected in canine feces (105 CFU/g). These results show that dogs can be long-term carriers of E. coli strains causing UTIs in human household contacts.
Collapse
Affiliation(s)
- Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (P.D.); (M.P.); (L.S.P.)
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (P.D.); (M.P.); (L.S.P.)
| | - Laura Schøn Poulsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (P.D.); (M.P.); (L.S.P.)
| | | | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (P.D.); (M.P.); (L.S.P.)
| |
Collapse
|
12
|
Bourgonje AR, Andreu-Sánchez S, Vogl T, Hu S, Vich Vila A, Gacesa R, Leviatan S, Kurilshikov A, Klompus S, Kalka IN, van Dullemen HM, Weinberger A, Visschedijk MC, Festen EAM, Faber KN, Wijmenga C, Dijkstra G, Segal E, Fu J, Zhernakova A, Weersma RK. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures. Immunity 2023; 56:1393-1409.e6. [PMID: 37164015 DOI: 10.1016/j.immuni.2023.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2022] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria; Center for Cancer Research, Medical University of Vienna, Wien, Austria
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris N Kalka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hendrik M van Dullemen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Tsai YY, Franca M, Camus A, Stabler LJ, Barbieri N, Logue CM. Laser Capture Microdissection, Culture Analysis, and Bacterial Sequencing to Evaluate the Microbiota of Focal Duodenal Necrosis in Egg Layers. Avian Dis 2023; 67:177-185. [PMID: 37556297 DOI: 10.1637/aviandiseases-d-22-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/05/2023] [Indexed: 08/11/2023]
Abstract
Focal duodenal necrosis (FDN) is a common intestinal disease of table egg layers. In this research we aimed to identify the bacteria commonly found in FDN lesions as seen with histopathological analysis. Fifty-nine ethanol-fixed duodenum samples were collected from egg layers on eight FDN-affected farms, and 42 samples had typical FDN lesions. Excision of bacteria-containing lesions using laser capture microdissection was performed, followed by 16S rRNA gene sequencing of extracted DNA for bacterial identification. Bacterial sequencing analysis revealed no consistent bacterial species identified from samples with FDN. However, analysis of the relative phylum abundance revealed differences in the duodenal microbiota between layers with FDN and healthy birds. There were differences in the abundance of Proteobacteria, Firmicutes, and Actinobacteria between FDN-positive and FDN-negative control samples compatible with intestinal dysbiosis. In addition, 10 duodenal samples with FDN lesions were collected for bacteriological analysis, yielding 47 colonies on tryptone soy agar, MacConkey agar, and blood agar plates. Using 16S rRNA gene PCR, 39/47 (53.8%) colonies were identified as Escherichia coli. PCR for E. coli virulence genes identified 21/39 (53.8%) E. coli isolates as avian pathogenic E. coli-like. PCR analysis for 19 E. coli virulence genes associated with intestinal disease strains including inflammatory bowel disease found 11/39 (28.2%) isolates containing more than 10 of these virulence genes. In conclusion, FDN appears to be a multifactorial inflammatory intestinal disease associated with intestinal dysbiosis, and Gram-negative bacteria including E. coli may contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Yu-Yang Tsai
- Department of Population Health, Athens GA 30602
| | | | - Alvin Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | | | | |
Collapse
|
14
|
Du J, Khemmani M, Halverson T, Ene A, Limeira R, Tinawi L, Hochstedler-Kramer BR, Noronha MF, Putonti C, Wolfe AJ. Cataloging the Phylogenetic Diversity of Human Bladder Bacterial Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541916. [PMID: 37292924 PMCID: PMC10245883 DOI: 10.1101/2023.05.23.541916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the human bladder is reported to harbor unique microbiota, our understanding of how these microbial communities interact with their human hosts is limited, mostly owing to the lack of isolates to test mechanistic hypotheses. Niche-specific bacterial collections and associated reference genome databases have been instrumental in expanding knowledge of the microbiota of other anatomical sites, e.g., the gut and oral cavity. To facilitate genomic, functional, and experimental analyses of the human bladder microbiota, here we present a bladder-specific bacterial reference collection comprised of 1134 genomes. These genomes were culled from bacterial isolates obtained by a metaculturomic method from bladder urine collected by transurethral catheterization. This bladder-specific bacterial reference collection includes 196 different species, including representatives of major aerobes and facultative anaerobes, as well as some anaerobes. It captures 72.2 % of the genera found when we reexamined previously published 16S rRNA gene sequencing of 392 adult female bladder urine samples. Comparative genomic analysis found that the taxonomies and functions of the bladder microbiota shared more similarities with the vaginal microbiota than the gut microbiota. Whole-genome phylogenetic and functional analyses of 186 bladder E. coli isolates and 387 gut E. coli isolates supports the hypothesis that phylogroup distribution and functions of E. coli strains differ dramatically between these two very different niches. This bladder-specific bacterial reference collection is a unique resource that will enable hypothesis-driven bladder microbiota research and comparison to isolates from other anatomical sites.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Mark Khemmani
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Thomas Halverson
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660
| | - Roberto Limeira
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Lana Tinawi
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Baylie R. Hochstedler-Kramer
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Melline Fontes Noronha
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660
- Department of Biology, Loyola University Chicago, Chicago, IL 60660
| | - Alan J. Wolfe
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
15
|
Jamieson PE, Carbonero F, Stevens JF. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr Res Food Sci 2023; 6:100521. [PMID: 37266414 PMCID: PMC10230173 DOI: 10.1016/j.crfs.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.
Collapse
Affiliation(s)
- Paige E. Jamieson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, 99202, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
16
|
Gu X, Ma X, Wu Q, Tao Q, Chai Y, Zhou X, Han M, Li J, Huang X, Wu T, Zhang X, Zhong F, Cao Y, Zhang L. Isolation, identification, molecular typing, and drug resistance of Escherichia coli from infected cattle and sheep in Xinjiang, China. Vet Med Sci 2023; 9:1359-1368. [PMID: 36977209 DOI: 10.1002/vms3.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Escherichia coli infections are common in Xinjiang, a major region of cattle and sheep breeding in China. Therefore, strategies are required to control E. coli. The aim of this study was to investigate the phylogenetic groups, virulence genes, and antibiotic resistance characteristics of E. coli isolates. METHODS In this study, 116 tissue samples were collected from the organs of cattle and sheep that were suspected of having E. coli infections between 2015 and 2019. Bacteria in the samples were identified using a biochemical identification system and amplification of 16S rRNA, and the phylogenetic groupings of E. coli isolates were determined by multiplex polymerase chain reactions. In addition, PCR detection and analysis of virulence factors, antibiotic resistance genes, and drug-resistant phenotypes of E. coli isolates were performed. RESULTS A total of 116 pathogenic E. coli strains belonging to seven phylogenetic groups were isolated, with the majority of isolates in groups A and B1. Among the virulence genes, curli-encoding crl had the highest detection rate of 97.4%, followed by hemolysin-encoding hlyE with the detection rate of 94.82%. Antimicrobial susceptibility test results indicated that the isolates had the highest rates of resistance against streptomycin (81.9%). CONCLUSION These characteristics complicate the prevention and treatment of E. coli-related diseases in Xinjiang.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xue Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Qin Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Qiaoxiaoci Tao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xia Zhou
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Mengli Han
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Jie Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xin Huang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Tongzhong Wu
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xingxing Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Fagang Zhong
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yiheng Cao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Liyuan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
Evidence for a Causal Role for Escherichia coli Strains Identified as Adherent-Invasive (AIEC) in Intestinal Inflammation. mSphere 2023; 8:e0047822. [PMID: 36883813 PMCID: PMC10117065 DOI: 10.1128/msphere.00478-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Enrichment of adherent-invasive Escherichia coli (AIEC) has been consistently detected in subsets of inflammatory bowel disease (IBD) patients. Although some AIEC strains cause colitis in animal models, these studies did not systematically compare AIEC with non-AIEC strains, and causal links between AIEC and disease are still disputed. Specifically, it remains unclear whether AIEC shows enhanced pathogenicity compared to that of commensal E. coli found in the same ecological microhabitat and if the in vitro phenotypes used to classify strains as AIEC are pathologically relevant. Here, we utilized in vitro phenotyping and a murine model of intestinal inflammation to systematically compare strains identified as AIEC with those identified as non-AIEC and relate AIEC phenotypes to pathogenicity. Strains identified as AIEC caused, on average, more severe intestinal inflammation. Intracellular survival/replication phenotypes routinely used to classify AIEC positively correlated with disease, while adherence to epithelial cells and tumor necrosis factor alpha production by macrophages did not. This knowledge was then applied to design and test a strategy to prevent inflammation by selecting E. coli strains that adhered to epithelial cells but poorly survived/replicated intracellularly. Two E. coli strains that ameliorated AIEC-mediated disease were subsequently identified. In summary, our results show a relationship between intracellular survival/replication in E. coli and pathology in murine colitis, suggesting that strains possessing these phenotypes might not only become enriched in human IBD but also contribute to disease. We provide new evidence that specific AIEC phenotypes are pathologically relevant and proof of principle that such mechanistic information can be therapeutically exploited to alleviate intestinal inflammation. IMPORTANCE Inflammatory bowel disease (IBD) is associated with an altered gut microbiota composition, including expansion of Proteobacteria. Many species in this phylum are thought to contribute to disease under certain conditions, including adherent-invasive Escherichia coli (AIEC) strains, which are enriched in some patients. However, whether this bloom contributes to disease or is just a response to IBD-associated physiological changes is unknown. Although assigning causality is challenging, appropriate animal models can test the hypothesis that AIEC strains have an enhanced ability to cause colitis in comparison to other gut commensal E. coli strains and to identify bacterial traits contributing to virulence. We observed that AIEC strains are generally more pathogenic than commensal E. coli and that bacterial intracellular survival/replication phenotypes contributed to disease. We also found that E. coli strains lacking primary virulence traits can prevent inflammation. Our findings provide critical information on E. coli pathogenicity that may inform development of IBD diagnostic tools and therapies.
Collapse
|
18
|
Hallam JC, Sandalli S, Floria I, Turner NCA, Tang-Fichaux M, Oswald E, O'Boyle N, Roe AJ. D-Serine reduces the expression of the cytopathic genotoxin colibactin. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:63-77. [PMID: 36908282 PMCID: PMC9993432 DOI: 10.15698/mic2023.03.793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
Some Escherichia coli strains harbour the pks island, a 54 kb genomic island encoding the biosynthesis genes for a genotoxic compound named colibactin. In eukaryotic cells, colibactin can induce DNA damage, cell cycle arrest and chromosomal instability. Production of colibactin has been implicated in the development of colorectal cancer (CRC). In this study, we demonstrate the inhibitory effect of D-Serine on the expression of the pks island in both prototypic and clinically-associated colibactin-producing strains and determine the implications for cytopathic effects on host cells. We also tested a comprehensive panel of proteinogenic L-amino acids and corresponding D-enantiomers for their ability to modulate clbB transcription. Whilst several D-amino acids exhibited the ability to inhibit expression of clbB, D-Serine exerted the strongest repressing activity (>3.8-fold) and thus, we focussed additional experiments on D-Serine. To investigate the cellular effect, we investigated if repression of colibactin by D-Serine could reduce the cytopathic responses normally observed during infection of HeLa cells with pks + strains. Levels of γ-H2AX (a marker of DNA double strand breaks) were reduced 2.75-fold in cells infected with D-Serine treatment. Moreover, exposure of pks + E. coli to D-Serine during infection caused a reduction in cellular senescence that was observable at 72 h post infection. The recent finding of an association between pks-carrying commensal E. coli and CRC, highlights the necessity for the development of colibactin targeting therapeutics. Here we show that D-Serine can reduce expression of colibactin, and inhibit downstream cellular cytopathy, illuminating its potential to prevent colibactin-associated disease.
Collapse
Affiliation(s)
- Jennifer C. Hallam
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Sofia Sandalli
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Iris Floria
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Natasha C. A. Turner
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Min Tang-Fichaux
- IRSD, INSERM, INRAE, Université de Toulouse, ENVT, Toulouse, France
| | - Eric Oswald
- IRSD, INSERM, INRAE, Université de Toulouse, ENVT, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - Nicky O'Boyle
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Andrew J. Roe
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
19
|
Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:ijms24043813. [PMID: 36835225 PMCID: PMC9961503 DOI: 10.3390/ijms24043813] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
It is generally accepted that diet-derived polyphenols are bioactive compounds with several potentially beneficial effects on human health. In general, polyphenols have several chemical structures, and the most representative are flavonoids, phenolic acids, and stilbenes. It should be noted that the beneficial effects of polyphenols are closely related to their bioavailability and bioaccessibility, as many of them are rapidly metabolized after administration. Polyphenols-with a protective effect on the gastrointestinal tract-promote the maintenance of the eubiosis of the intestinal microbiota with protective effects against gastric and colon cancers. Thus, the benefits obtained from dietary supplementation of polyphenols would seem to be mediated by the gut microbiota. Taken at certain concentrations, polyphenols have been shown to positively modulate the bacterial component, increasing Lactiplantibacillus spp. and Bifidobacterium spp. involved in the protection of the intestinal barrier and decreasing Clostridium and Fusobacterium, which are negatively associated with human well-being. Based on the diet-microbiota-health axis, this review aims to describe the latest knowledge on the action of dietary polyphenols on human health through the activity of the gut microbiota and discusses micro-encapsulation of polyphenols as a strategy to improve the microbiota.
Collapse
|
20
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, Brand MW, Rosas V, Wannemuehler MJ, Phillips GJ, Hinton DM. The E. coli pathobiont LF82 encodes a unique variant of σ 70 that results in specific gene expression changes and altered phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.523653. [PMID: 36798310 PMCID: PMC9934711 DOI: 10.1101/2023.02.08.523653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| |
Collapse
|
21
|
Effect of a Multistrain Probiotic on Feline Gut Health through the Fecal Microbiota and Its Metabolite SCFAs. Metabolites 2023; 13:metabo13020228. [PMID: 36837847 PMCID: PMC9962843 DOI: 10.3390/metabo13020228] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
With the increasing awareness of raising pets following scientific methods, people are becoming increasingly more interested in the nutrition and health of pets, especially their intestinal health, which has become a research hotspot. Both Saccharomyces boulardii and Pediococcus acidilactici are probiotics with strong probiotic properties that can maintain the balance of intestinal flora. However, the role of Saccharomyces boulardii and Pediococcus acidilactici in felines has not been comprehensively studied to date. The aim of this study is to investigate the effect of multistrain probiotics consisting of Saccharomyces boulardii and Pediococcus acidilactici on the gut health of felines by modulating gut microbes and the production of metabolite SCFAs. The results show that the multistrain probiotic did not alter the intestinal microbial diversity and structure of short-haired domestic cats, promoted the colonization of beneficial bacteria, increased the levels of microbiota-derived SCFAs and fecal antioxidants, and reduced the levels of fecal inflammatory markers. In conclusion, the use of a multistrain probiotic in healthy, short-haired domestic cats can promote gut health by modulating gut microbes, improving microbiota-derived SCFA production, reducing inflammatory conditions, and improving antioxidant status. These results provide new insights for further exploration of the role of probiotics in the gut microbiome of cats.
Collapse
|
22
|
Bondegaard PW, Torp AM, Guerra P, Kristensen KA, Christfort JF, Krogfelt KA, Nielsen LH, Zor K, Boisen A, Mortensen MS, Bahl MI, Licht TR. Delivery of E. coli Nissle to the mouse gut by mucoadhesive microcontainers does not improve its competitive ability against strains linked to ulcerative colitis. FEMS Microbiol Lett 2023; 370:fnad110. [PMID: 37863838 PMCID: PMC10612143 DOI: 10.1093/femsle/fnad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023] Open
Abstract
For patients with ulcerative colitis (UC), administration of the probiotic E. coli Nissle (EcN) holds promise for alleviation of disease symptoms. The mechanisms are unclear, but it has been hypothesised that a capacity of the probiotic to outcompete potentially detrimental UC-associated E. coli strains plays an important role. However, this could previously not be confirmed in a mouse model of competition between EcN and two UC-associated strains, as reported by Petersen et al. 2011. In the present study, we re-evaluated the idea, hypothesising that delivery of EcN by a micro device dosing system (microcontainers), designed for delivery into the intestinal mucus, could support colonisation and confer a competition advantage compared to classical oral dosing. Six groups of mice were pre-colonised with one of two UC-associated E. coli strains followed by oral delivery of EcN, either in capsules containing microcontainers with freeze-dried EcN powder, capsules containing freeze-dried EcN powder, or as a fresh sucrose suspension. Co-colonisation between the probiotic and the disease-associated strains was observed regardless of dosing method, and no competition advantages linked to microcontainer delivery were identified within this setup. Other approaches are thus needed if the competitive capacity of EcN in the gut should be improved.
Collapse
Affiliation(s)
- Pi Westi Bondegaard
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Anders Meyer Torp
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Priscila Guerra
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Katja Ann Kristensen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Karen Angeliki Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, Roskilde University, Roskilde, 4000, Denmark
| | - Line Hagner Nielsen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Kinga Zor
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Anja Boisen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
23
|
Gaab ME, Lozano PO, Ibañez D, Manese KD, Riego FM, Tiongco RE, Albano PM. A Meta-Analysis on the Association of Colibactin-Producing pks+ Escherichia coli with the Development of Colorectal Cancer. Lab Med 2023; 54:75-82. [PMID: 35960765 DOI: 10.1093/labmed/lmac072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Previous studies on the association between pks+Escherichia coli and colorectal cancer (CRC) demonstrated conflicting results. Hence, we performed a meta-analysis to obtain more precise estimates. METHODS Related literature was obtained from PubMed, ScienceDirect, Google Scholar, and Cochrane Library. Data were then extracted, summarized, and subjected to analysis using Review Manager 5.4 by computing for the pooled odds ratios at the 95% confidence interval. RESULTS Overall analysis showed that individuals carrying pks+E coli had a greater risk of developing CRC. Subgroup analysis further showed that individuals from Western countries carrying pks+E coli and individuals with pks+E coli in their tissue samples had increased risk of developing CRC. CONCLUSION Results of this meta-analysis suggest that individuals with pks+E coli have a greater risk of developing CRC. However, more studies are needed to confirm our claims.
Collapse
Affiliation(s)
- Marcianne Elaine Gaab
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Prim Olivette Lozano
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Danica Ibañez
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Korina Diane Manese
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Fatima May Riego
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Raphael Enrique Tiongco
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines
| | - Pia Marie Albano
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines.,Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
24
|
Mansour S, Asrar T, Elhenawy W. The multifaceted virulence of adherent-invasive Escherichia coli. Gut Microbes 2023; 15:2172669. [PMID: 36740845 PMCID: PMC9904308 DOI: 10.1080/19490976.2023.2172669] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
The surge in inflammatory bowel diseases, like Crohn's disease (CD), is alarming. While the role of the gut microbiome in CD development is unresolved, the frequent isolation of adherent-invasive Escherichia coli (AIEC) strains from patient biopsies, together with their propensity to trigger gut inflammation, underpin the potential role of these bacteria as disease modifiers. In this review, we explore the spectrum of AIEC pathogenesis, including their metabolic versatility in the gut. We describe how AIEC strains hijack the host defense mechanisms to evade immune attrition and promote inflammation. Furthermore, we highlight the key traits that differentiate AIEC from commensal E. coli. Deciphering the main components of AIEC virulence is cardinal to the discovery of the next generation of antimicrobials that can selectively eradicate CD-associated bacteria.
Collapse
Affiliation(s)
- Sarah Mansour
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Tahreem Asrar
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Wael Elhenawy
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Canada
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Canada
- Women and Children’s Health Research Institute, Edmonton, Alberta, Canada
- Antimicrobial Resistance, One Health Consortium - Edmonton, AB, Canada
| |
Collapse
|
25
|
Bosák J, Kohoutová D, Hrala M, Křenová J, Morávková P, Rejchrt S, Bureš J, Šmajs D. Escherichia coli from biopsies differ in virulence genes between patients with colorectal neoplasia and healthy controls. Front Microbiol 2023; 14:1141619. [PMID: 37125208 PMCID: PMC10133476 DOI: 10.3389/fmicb.2023.1141619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Pathogenic strains of Escherichia coli have been clearly identified as the causative agents of extraintestinal and diarrheal infections; however, the etiopathogenic role of E. coli in other conditions, including colorectal cancer, remains unclear. Methods This study aimed to characterize mucosal E. coli isolates (n = 246) from 61 neoplasia patients and 20 healthy controls for the presence of 35 genetic determinants encoding known virulence factors. Results Virulence determinants encoding invasin (ibeA), siderophore receptor (iroN), S-fimbriae (sfa), and genotoxin (usp) were more prevalent among E. coli isolated from patients with neoplasia compared to the control group (p < 0.05). In addition, the prevalence of these virulence determinants was increased in more advanced neoplasia stages (p adj < 0.0125). Compared to patients with advanced colorectal adenoma and carcinoma, the ibeA gene was rarely found in the control group and among patients with non-advanced adenoma (p < 0.05), indicating its potential as the advanced-neoplasia biomarker. Patients with neoplasia frequently had E. coli strains with at least one of the abovementioned virulence factors, whereby specific combinations of these virulence factors were found. Discussion These findings suggest that E. coli strains isolated from patients with colorectal neoplasia possess several virulence factors, which could contribute to the development of neoplastic processes in the large intestine.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Darina Kohoutová
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jitka Křenová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Paula Morávková
- Second Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - Stanislav Rejchrt
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - Jan Bureš
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- *Correspondence: David Šmajs,
| |
Collapse
|
26
|
Wiredu Ocansey DK, Hang S, Yuan X, Qian H, Zhou M, Valerie Olovo C, Zhang X, Mao F. The diagnostic and prognostic potential of gut bacteria in inflammatory bowel disease. Gut Microbes 2023; 15:2176118. [PMID: 36794838 PMCID: PMC9980661 DOI: 10.1080/19490976.2023.2176118] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The gut microbiome serves as a signaling hub that integrates environmental inputs with genetic and immune signals to influence the host's metabolism and immunity. Gut bacteria are intricately connected with human health and disease state, with specific bacteria species driving the characteristic dysbiosis found in gastrointestinal conditions such as inflammatory bowel disease (IBD); thus, gut bacteria changes could be harnessed to improve IBD diagnosis, prognosis, and treatment. The advancement in next-generation sequencing techniques such as 16S rRNA and whole-genome shotgun sequencing has allowed the exploration of the complexity of the gut microbial ecosystem with high resolution. Current microbiome data is promising and appears to perform better in some studies than the currently used fecal inflammation biomarker, calprotectin, in predicting IBD from healthy controls and irritable bowel syndrome (IBS). This study reviews current data on the differential potential of gut bacteria within IBD cohorts, and between IBD and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Sanhua Hang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, P.R. China
| | - Xinyi Yuan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Hua Qian
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, P.R. China
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
27
|
Taylor SJ, Winter MG, Gillis CC, Silva LAD, Dobbins AL, Muramatsu MK, Jimenez AG, Chanin RB, Spiga L, Llano EM, Rojas VK, Kim J, Santos RL, Zhu W, Winter SE. Colonocyte-derived lactate promotes E. coli fitness in the context of inflammation-associated gut microbiota dysbiosis. MICROBIOME 2022; 10:200. [PMID: 36434690 PMCID: PMC9701030 DOI: 10.1186/s40168-022-01389-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/12/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Intestinal inflammation disrupts the microbiota composition leading to an expansion of Enterobacteriaceae family members (dysbiosis). Associated with this shift in microbiota composition is a profound change in the metabolic landscape of the intestine. It is unclear how changes in metabolite availability during gut inflammation impact microbial and host physiology. RESULTS We investigated microbial and host lactate metabolism in murine models of infectious and non-infectious colitis. During inflammation-associated dysbiosis, lactate levels in the gut lumen increased. The disease-associated spike in lactate availability was significantly reduced in mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells. Commensal E. coli and pathogenic Salmonella, representative Enterobacteriaceae family members, utilized lactate via the respiratory L-lactate dehydrogenase LldD to increase fitness. Furthermore, mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells exhibited lower levels of inflammation in a model of non-infectious colitis. CONCLUSIONS The release of lactate by intestinal epithelial cells during gut inflammation impacts the metabolism of gut-associated microbial communities. These findings suggest that during intestinal inflammation and dysbiosis, changes in metabolite availability can perpetuate colitis-associated disturbances of microbiota composition. Video Abstract.
Collapse
Affiliation(s)
- Savannah J Taylor
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, CA, 95616, USA
| | - Caroline C Gillis
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Novome Biotechnologies, South San Francisco, CA, 94080, USA
| | - Laice Alves da Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270, Brazil
| | - Amanda L Dobbins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew K Muramatsu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, CA, 95616, USA
| | - Angel G Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Infectious Diseases, Genentech, South San Francisco, CA, 94080, USA
| | - Rachael B Chanin
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Department of Medicine, Hematology, Blood and Marrow Transplantation, Stanford University, Stanford, CA, USA
| | - Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Ernesto M Llano
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vivian K Rojas
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present Address: Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, CA, 95616, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270, Brazil
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Present Address: Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, CA, 95616, USA.
| |
Collapse
|
28
|
Baumgartner M, Zirnbauer R, Schlager S, Mertens D, Gasche N, Sladek B, Herbold C, Bochkareva O, Emelianenko V, Vogelsang H, Lang M, Klotz A, Moik B, Makristathis A, Berry D, Dabsch S, Khare V, Gasche C. Atypical enteropathogenic E. coli are associated with disease activity in ulcerative colitis. Gut Microbes 2022; 14:2143218. [PMID: 36415023 PMCID: PMC9704410 DOI: 10.1080/19490976.2022.2143218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With increasing urbanization and industrialization, the prevalence of inflammatory bowel diseases (IBDs) has steadily been rising over the past two decades. IBD involves flares of gastrointestinal (GI) inflammation accompanied by microbiota perturbations. However, microbial mechanisms that trigger such flares remain elusive. Here, we analyzed the association of the emerging pathogen atypical enteropathogenic E. coli (aEPEC) with IBD disease activity. The presence of diarrheagenic E. coli was assessed in stool samples from 630 IBD patients and 234 age- and sex-matched controls without GI symptoms. Microbiota was analyzed with 16S ribosomal RNA gene amplicon sequencing, and 57 clinical aEPEC isolates were subjected to whole-genome sequencing and in vitro pathogenicity experiments including biofilm formation, epithelial barrier function and the ability to induce pro-inflammatory signaling. The presence of aEPEC correlated with laboratory, clinical and endoscopic disease activity in ulcerative colitis (UC), as well as microbiota dysbiosis. In vitro, aEPEC strains induce epithelial p21-activated kinases, disrupt the epithelial barrier and display potent biofilm formation. The effector proteins espV and espG2 distinguish aEPEC cultured from UC and Crohn's disease patients, respectively. EspV-positive aEPEC harbor more virulence factors and have a higher pro-inflammatory potential, which is counteracted by 5-ASA. aEPEC may tip a fragile immune-microbiota homeostasis and thereby contribute to flares in UC. aEPEC isolates from UC patients display properties to disrupt the epithelial barrier and to induce pro-inflammatory signaling in vitro.
Collapse
Affiliation(s)
- Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Rebecca Zirnbauer
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Sabine Schlager
- National Reference Laboratory for Escherichia coli, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Daniel Mertens
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | | | | | - Craig Herbold
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Olga Bochkareva
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Vera Emelianenko
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Harald Vogelsang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Anton Klotz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Birgit Moik
- National Reference Laboratory for Escherichia coli, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Athanasios Makristathis
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria,Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Stefanie Dabsch
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria,CONTACT Christoph Gasche Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, A-1090Austria
| |
Collapse
|
29
|
Analysis of the Virulence and Inflammatory Markers Elicited by Enteroaggregative Escherichia coli Isolated from Clinical and Non-Clinical Sources in an Experimental Infection Model, India. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is highly heterogeneous in virulence; we wanted to understand the pathogenic potential of EAEC isolated from various clinical and non-clinical sources in an animal model. We infected male BALB/c mice in six mice/groups with 50 EAEC isolates isolated from clinical and non-clinical sources. We studied colonization, weight loss, stool shedding, and inflammatory markers and their relationship with 21 virulence genes and phylogroups, EAEC organ burden, and histopathological changes. We detected significantly more inflammatory changes and fecal lactoferrin and calprotectin levels in mice infected with EAEC isolated from symptomatic cases. In clinical EAEC isolates, the presence of chromosomal genes (aap (46%), aaiC (23.3%), SPATEs (pet (13.3%), sat (20%), sigA, and pic (6.6%)), the adhesive variantsof EAEC (agg4A (53.3%), aggA (53.3%), aafA (36.6%), andagg3A (40%)), and the master regulator gene aggR (66.6%) were associated with higher levels of lactoferrin and calprotectin. Additionally, 70% (9/13) of EAEC isolated from acute diarrheal cases bearing chuA (70%) in our study were assigned to groups B2 (4 isolates) and D (5 isolates). Real-time PCR analysis revealed that colonization by EAEC strains from different clinical and non-clinical sources occurs up to 10–15 days of life. Even from non-diarrheal stools and non-clinical sources, EAEC strainshad the potential to cause prolonged colonization, weight loss, and inflammation in the intestine, though the degree varied. Moreover, a better understanding of EAEC pathogenic pathways is desperately needed in different clinical scenarios.
Collapse
|
30
|
Dubinsky V, Reshef L, Rabinowitz K, Wasserberg N, Dotan I, Gophna U. Escherichia coli Strains from Patients with Inflammatory Bowel Diseases have Disease-specific Genomic Adaptations. J Crohns Colitis 2022; 16:1584-1597. [PMID: 35560165 DOI: 10.1093/ecco-jcc/jjac071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Escherichia coli is over-abundant in the gut microbiome of patients with inflammatory bowel disease [IBD]. Here, we aimed to identify IBD-specific genomic functions of diverse E. coli lineages. METHODS We investigated E. coli genomes from patients with ulcerative colitis [UC], Crohn's disease [CD] or a pouch, and healthy subjects. The majority of genomes were reconstructed from metagenomic samples, including newly sequenced faecal metagenomes. Clinical metadata were collected. Functional analysis at the gene and mutation level were performed and integrated with IBD phenotypes and biomarkers. RESULTS Overall, 530 E. coli genomes were analysed. The E. coli B2 lineage was more prevalent in UC compared with other IBD phenotypes. Genomic metabolic capacities varied across E. coli lineages and IBD phenotypes. Host mucin utilisation enzymes were present in a single lineage and depleted in patients with a pouch, whereas those involved in inulin hydrolysis were enriched in patients with a pouch. E. coli strains from patients with UC were twice as likely to encode the genotoxic molecule colibactin than strains from patients with CD or a pouch. Strikingly, patients with a pouch showed the highest inferred E. coli growth rates, even in the presence of antibiotics. Faecal calprotectin did not correlate with the relative abundance of E. coli. Finally, we identified multiple IBD-specific non-synonymous mutations in E. coli genes encoding for bacterial cell envelope components. CONCLUSIONS Comparative genomics indicates that E. coli is a commensal species adapted to the overactive mucosal immune milieu in IBD, rather than causing it. Our results reveal mutations that may lead to attenuated antigenicity in some E. coli strains.
Collapse
Affiliation(s)
- Vadim Dubinsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Leah Reshef
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Keren Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Nir Wasserberg
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Colorectal Unit, Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Cho YH, Renouf MJ, Omotoso O, McPhee JB. Inflammatory bowel disease-associated adherent-invasive Escherichia coli have elevated host-defense peptide resistance. FEMS Microbiol Lett 2022; 369:6754321. [PMID: 36208952 DOI: 10.1093/femsle/fnac098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) are isolated from inflammatory bowel disease (IBD) patients at a higher rate than from control patients. Using a collection of E. coli strains collected from Crohn's disease (CD), ulcerative colitis (UC), or non-IBD control patients, antibiotic and resistance to the antimicrobial peptides HBD-3 and LL-37 was assessed. Carriage of bacterial-encoded omptin protease genes was assessed by PCR and omptin protease activity was measured using a whole-cell based fluorescence assay. Elevated resistance to antibiotics and host defense peptides in IBD-associated AIEC were observed. IBD-associated strains showed increased (but statistically non-significant) antibiotic resistance. CD-associated strains showed greater (but statistically non-significant) resistance to HBD3-mediated killing while UC-associated strains showed statistically greater resistance to LL-37 mediated killing. High-level resistance to LL-37 was associated with carriage of omptin protease genes and with increased omptin protease activity. Antimicrobial host defense peptide resistance may be an adaptive feature of AIEC leading to enhanced pathogenesis during the initiation or progression of IBD.
Collapse
Affiliation(s)
- Youn Hee Cho
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Michael J Renouf
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Oluwafikemi Omotoso
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| |
Collapse
|
32
|
Singh N, Bernstein CN. Environmental risk factors for inflammatory bowel disease. United European Gastroenterol J 2022; 10:1047-1053. [PMID: 36262056 PMCID: PMC9752273 DOI: 10.1002/ueg2.12319] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/17/2022] [Indexed: 01/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, progressive immune-mediated inflammatory condition of the gastrointestinal tract. Environmental risk factors play a role in developing either type of IBD, Crohn's disease and ulcerative colitis; although the exact mechanism is still unknown. Herein, we review environmental risks from early life exposures, lifestyle and hygiene, vaccinations, surgeries, exposure to drugs and gastrointestinal pathogens that may increase the risk of developing IBD.
Collapse
Affiliation(s)
- Noreen Singh
- Department of Internal MedicineMax Rady College of MedicineRady Faculty of MedicineUniversity of ManitobaWinnipegManitobaCanada
| | | |
Collapse
|
33
|
Abdel-Rahman LIH, Morgan XC. Searching for a Consensus Among Inflammatory Bowel Disease Studies: A Systematic Meta-Analysis. Inflamm Bowel Dis 2022; 29:125-139. [PMID: 36112501 PMCID: PMC9825291 DOI: 10.1093/ibd/izac194] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Numerous studies have examined the gut microbial ecology of patients with Crohn's disease (CD) and ulcerative colitis, but inflammatory bowel disease-associated taxa and ecological effect sizes are not consistent between studies. METHODS We systematically searched PubMed and Google Scholar and performed a meta-analysis of 13 studies to analyze how variables such as sample type (stool, biopsy, and lavage) affect results in inflammatory bowel disease gut microbiome studies, using uniform bioinformatic methods for all primary data. RESULTS Reduced alpha diversity was a consistent feature of both CD and ulcerative colitis but was more pronounced in CD. Disease contributed significantly variation in beta diversity in most studies, but effect size varied, and the effect of sample type was greater than the effect of disease. Fusobacterium was the genus most consistently associated with CD, but disease-associated genera were mostly inconsistent between studies. Stool studies had lower heterogeneity than biopsy studies, especially for CD. CONCLUSIONS Our results indicate that sample type variation is an important contributor to study variability that should be carefully considered during study design, and stool is likely superior to biopsy for CD studies due to its lower heterogeneity.
Collapse
Affiliation(s)
| | - Xochitl C Morgan
- Address correspondence to: Xochitl C. Morgan, PhD, Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9010 New Zealand ()
| |
Collapse
|
34
|
Nadalian B, Nadalian B, Houri H, Shahrokh S, Abdehagh M, Yadegar A, Ebrahimipour G. Phylogrouping and characterization of Escherichia coli isolated from colonic biopsies and fecal samples of patients with flare of inflammatory bowel disease in Iran. Front Med (Lausanne) 2022; 9:985300. [PMID: 36106322 PMCID: PMC9464868 DOI: 10.3389/fmed.2022.985300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Although the etiopathogenesis of inflammatory bowel disease (IBD) is still poorly understood, Escherichia coli has been described as a potential causative microorganism in IBD pathogenesis and also disease progression, offering a potential therapeutic target for disease management. Therefore, we conducted this study to investigate the pathotypes, phylogenetic groups, and antimicrobial resistance of E. coli isolates from patients with IBD in Iran. METHODS Fecal and biopsy colonic samples were collected from IBD patients experiencing flare-up episodes referred to Taleghani hospital in Tehran, Iran, between August 2020 and January 2021. Identification of E. coli strains was performed based on biochemical and molecular methods. Antibiotic susceptibility testing was performed as recommended by the Clinical and Laboratory Standards Institute. Phylogrouping and pathotyping of each isolate were carried out using polymerase chain reaction (PCR) and multilocus sequence typing (MLST) assays. RESULTS A total of 132 non-duplicate E. coli strains were isolated from 113 IBD patients, including 96 ulcerative colitis (UC), and 17 Crohn's disease (CD) patients. In our study, 55% of CD-related E. coli and 70.5% of UC-related isolates were non-susceptible to at least three or more unique antimicrobial classes, and were considered as multidrug-resistant (MDR) strains. E. coli strains exhibited a high level of resistance to cefazolin, ampicillin, tetracycline, ceftazidime, ciprofloxacin, and cefotaxime. Enterotoxigenic E. coli (ETEC) and diffusely adherent E. coli (DAEC) were the most prevalent pathotypes, and groups B2 and D were the predominant phylogroups. CONCLUSION In the present study, we found that E. coli strains that colonize the gut of Iranian patients with IBD most frequently belonged to phylogenetic groups B2 and D. We also conclude that E. coli isolates from IBD patients have been revealed to be resistant to commonly used antibiotics, in which most of them harbored strains that would be categorized as MDR.
Collapse
Affiliation(s)
- Banafsheh Nadalian
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Nadalian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdehagh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
35
|
Chang R, Chen J, Zhong Z, Li Y, Wu K, Zheng H, Yang Y. Inflammatory bowel disease-associated Escherichia coli strain LF82 in the damage of gut and cognition of honeybees. Front Cell Infect Microbiol 2022; 12:983169. [PMID: 36093189 PMCID: PMC9453226 DOI: 10.3389/fcimb.2022.983169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) are often accompanied with some cognitive impairment, but the mechanism is unclear. By orally exposing honeybees (Apis mellifera) to IBD-associated Escherichia coli LF82 (LF82), and non-pathogenic Escherichia coli MG1655 (MG1655) as the normal strain, we investigated whether and how LF82 induces enteritis-like manifestations and cognitive behavioral modifications in honeybees using multiparametric analysis. LF82 significantly increased gut permeability, impaired learning and memory ability in olfactory proboscis extension response conditioning, and shortened the lifespan of honeybees. Compared to MG1655, LF82 reduced the levels of tryptophan metabolism pathway substances in the honeybee gut. LF82 also upregulated genes involved in immune and apoptosis-related pathways and downregulated genes involved in G protein-coupled receptors in the honeybee brain. In conclusion, LF82 can induce enteritis-like manifestations and cognition impairment through gut metabolites and brain transcriptome alteration in honeybees. Honeybees can serve as a novel potential model to study the microbiota-gut-brain interaction in IBD condition.
Collapse
Affiliation(s)
- Ruqi Chang
- Medical College of Nankai University, Tianjin, China
| | - Jieteng Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhaopeng Zhong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yiyuan Li
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | - Hao Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunsheng Yang
- Medical College of Nankai University, Tianjin, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Saitz W, Montero DA, Pardo M, Araya D, De la Fuente M, Hermoso MA, Farfán MJ, Ginard D, Rosselló-Móra R, Rasko DA, Del Canto F, Vidal RM. Characterization of Adherent-Invasive Escherichia coli (AIEC) Outer Membrane Proteins Provides Potential Molecular Markers to Screen Putative AIEC Strains. Int J Mol Sci 2022; 23:ijms23169005. [PMID: 36012279 PMCID: PMC9409007 DOI: 10.3390/ijms23169005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023] Open
Abstract
Adherent-invasive E. coli (AIEC) is a pathotype associated with the etiopathogenesis of Crohn's disease (CD), albeit with an as-yet unclear role. The main pathogenic mechanisms described for AIEC are adherence to epithelial cells, invasion of epithelial cells, and survival and replication within macrophages. A few virulence factors have been described as participating directly in these phenotypes, most of which have been evaluated only in AIEC reference strains. To date, no molecular markers have been identified that can differentiate AIEC from other E. coli pathotypes, so these strains are currently identified based on the phenotypic characterization of their pathogenic mechanisms. The identification of putative AIEC molecular markers could be beneficial not only from the diagnostic point of view but could also help in better understanding the determinants of AIEC pathogenicity. The objective of this study was to identify molecular markers that contribute to the screening of AIEC strains. For this, we characterized outer membrane protein (OMP) profiles in a group of AIEC strains and compared them with the commensal E. coli HS strain. Notably, we found a set of OMPs that were present in the AIEC strains but absent in the HS strain. Moreover, we developed a PCR assay and performed phylogenomic analyses to determine the frequency and distribution of the genes coding for these OMPs in a larger collection of AIEC and other E. coli strains. As result, it was found that three genes (chuA, eefC, and fitA) are widely distributed and significantly correlated with AIEC strains, whereas they are infrequent in commensal and diarrheagenic E. coli strains (DEC). Additional studies are needed to validate these markers in diverse strain collections from different geographical regions, as well as investigate their possible role in AIEC pathogenicity.
Collapse
Affiliation(s)
- Waleska Saitz
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - David A. Montero
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Mirka Pardo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniela Araya
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marjorie De la Fuente
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marcela A. Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen (UMCG), University of Groningen, 9712 Groningen, The Netherlands
| | - Mauricio J. Farfán
- Departamento de Pediatría y Cirugía Infantil Oriente, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago 7500539, Chile
| | - Daniel Ginard
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Ramon Rosselló-Móra
- Grupo de Microbiología Marina, Instituto Mediterráneo de Estudios Avanzados (IMEDEA; CSIC-UIB), 07190 Esporles, Illes Balears, Spain
| | - Dave A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (F.D.C.); (R.M.V.)
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (F.D.C.); (R.M.V.)
| |
Collapse
|
37
|
Petersen AM. Gastrointestinal dysbiosis and Escherichia coli pathobionts in inflammatory bowel diseases. APMIS 2022; 130 Suppl 144:1-38. [PMID: 35899316 PMCID: PMC9546507 DOI: 10.1111/apm.13256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Munk Petersen
- Department of Gastroenterology and Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
38
|
Buttimer C, Sutton T, Colom J, Murray E, Bettio PH, Smith L, Bolocan AS, Shkoporov A, Oka A, Liu B, Herzog JW, Sartor RB, Draper LA, Ross RP, Hill C. Impact of a phage cocktail targeting Escherichia coli and Enterococcus faecalis as members of a gut bacterial consortium in vitro and in vivo. Front Microbiol 2022; 13:936083. [PMID: 35935217 PMCID: PMC9355613 DOI: 10.3389/fmicb.2022.936083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023] Open
Abstract
Escherichia coli and Enterococcus faecalis have been implicated as important players in human gut health that have been associated with the onset of inflammatory bowel disease (IBD). Bacteriophage (phage) therapy has been used for decades to target pathogens as an alternative to antibiotics, but the ability of phage to shape complex bacterial consortia in the lower gastrointestinal tract is not clearly understood. We administered a cocktail of six phages (either viable or heat-inactivated) targeting pro-inflammatory Escherichia coli LF82 and Enterococcus faecalis OG1RF as members of a defined community in both a continuous fermenter and a murine colitis model. The two target strains were members of a six species simplified human microbiome consortium (SIHUMI-6). In a 72-h continuous fermentation, the phage cocktail caused a 1.1 and 1.5 log (log10 genome copies/mL) reduction in E. faecalis and E. coli numbers, respectively. This interaction was accompanied by changes in the numbers of other SIHUMI-6 members, with an increase of Lactiplantibacillus plantarum (1.7 log) and Faecalibacterium prausnitzii (1.8 log). However, in germ-free mice colonized by the same bacterial consortium, the same phage cocktail administered twice a week over nine weeks did not cause a significant reduction of the target strains. Mice treated with active or inactive phage had similar levels of pro-inflammatory cytokines (IFN-y/IL12p40) in unstimulated colorectal colonic strip cultures. However, histology scores of the murine lower GIT (cecum and distal colon) were lower in the viable phage-treated mice, suggesting that the phage cocktail did influence the functionality of the SIHUMI-6 consortium. For this study, we conclude that the observed potential of phages to reduce host populations in in vitro models did not translate to a similar outcome in an in vivo setting, with this effect likely brought about by the reduction of phage numbers during transit of the mouse GIT.
Collapse
Affiliation(s)
- Colin Buttimer
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Tom Sutton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Joan Colom
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ellen Murray
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Pedro H. Bettio
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Linda Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Akihiko Oka
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Internal Medicine II, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Bo Liu
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy W. Herzog
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R. Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
Wang X, Yue H, Zhang H, Wan L, Ji S, Geng C. Preventive Effects of Long-Term Intake of Plant Oils With Different Linoleic Acid/Alpha-Linolenic Acid Ratios on Acute Colitis Mouse Model. Front Nutr 2022; 9:788775. [PMID: 35903457 PMCID: PMC9315388 DOI: 10.3389/fnut.2022.788775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the preventive effects of plant oils with different linoleic acid/alpha-linolenic acid (LA/ALA) ratios against colitis symptoms, and dysbiosis of gut microbiota in acute colitis mouse model.MethodsSixty male C57BL/6 mice were assigned into six groups (n = 10): three groups were fed low-fat diets with low, medium, and high LA/ALA ratios; and three groups were fed with high-fat diets with low, medium, and high LA/ALA ratios. After 3 months of diet, the mice were exposed to dextran sodium sulfate solution to induce acute colitis. The severity of colitis was estimated by disease activity index (DAI) and histopathological examination. 16S rRNA gene sequencing was used for the analysis of gut microbiota.ResultsPlant oils with a lower LA/ALA ratio showed higher alleviating effects on the symptoms of colitis, which were accompanied by the better prebiotic characteristics manifested as effectively inhibiting the abnormal expansion of phylum Proteobacteria and genus Escherichia-Shigella in the gut microbiota of colitis mouse models.ConclusionA potential IBD prevention strategy of reducing the LA/ALA ratio in the daily consumed plant oils was proposed in this study. Furthermore, based on the optimized LA/ALA ratio, this preventive effect might not be weakened by the high intake of plant oils.
Collapse
Affiliation(s)
- Xianshu Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Hao Yue
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Lei Wan
- Department of Endocrine and Metabolic Diseases, Affiliated Hospital of Wei Fang Medical University, Weifang, China
| | - Shuxia Ji
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chong Geng
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chong Geng,
| |
Collapse
|
40
|
Zhang Z, Tanaka I, Pan Z, Ernst PB, Kiyono H, Kurashima Y. Intestinal homeostasis and inflammation: gut microbiota at the crossroads of pancreas-intestinal barrier axis. Eur J Immunol 2022; 52:1035-1046. [PMID: 35476255 PMCID: PMC9540119 DOI: 10.1002/eji.202149532] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
The pancreas contains exocrine glands, which release enzymes (e.g., amylase, trypsin, and lipase) that are important for digestion and islets, which produce hormones. Digestive enzymes and hormones are secreted from the pancreas into the duodenum and bloodstream, respectively. Growing evidence suggests that the roles of the pancreas extend to not only the secretion of digestive enzymes and hormones but also to the regulation of intestinal homeostasis and inflammation (e.g., mucosal defense to pathogens and pathobionts). Organ crosstalk between the pancreas and intestine is linked to a range of physiological, immunological, and pathological activities, such as the regulation of the gut microbiota by the pancreatic proteins and lipids, the retroaction of the gut microbiota on the pancreas, the relationship between inflammatory bowel disease, and pancreatic diseases. We herein discuss the current understanding of the pancreas–intestinal barrier axis and the control of commensal bacteria in intestinal inflammation.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Izumi Tanaka
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Zhen Pan
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.,Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, 92093-0956, USA.,Departments of Medicine and Pathology, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Hiroshi Kiyono
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.,Departments of Medicine and Pathology, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA.,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Human Mucosal Vaccinology, Chiba University, Chiba, 260-8670, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.,Departments of Medicine and Pathology, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA.,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Human Mucosal Vaccinology, Chiba University, Chiba, 260-8670, Japan.,Institute for Advanced Academic Research, Chiba University, Chiba, 260-8670, Japan
| |
Collapse
|
41
|
López-Siles M, Camprubí-Font C, Gómez del Pulgar EM, Sabat Mir M, Busquets D, Sanz Y, Martinez-Medina M. Prevalence, Abundance, and Virulence of Adherent-Invasive Escherichia coli in Ulcerative Colitis, Colorectal Cancer, and Coeliac Disease. Front Immunol 2022; 13:748839. [PMID: 35359974 PMCID: PMC8960851 DOI: 10.3389/fimmu.2022.748839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND & AIMS Adherent-invasive E. coli (AIEC) has largely been implicated in the pathogenesis of Crohn's disease (CD). E. coli strains with similar genetic backgrounds and virulence genes profiles have been associated with other intestinal disorders, such as ulcerative colitis (UC), colorectal cancer (CRC), and coeliac disease (CeD), but the role of AIEC in these diseases remains unexplored. We aimed to assess the distribution, abundance, and pathogenic features of AIEC in UC, CRC, and CeD. METHODS The AIEC phenotype was investigated in 4,233 E. coli isolated from the ileum and colon of 14 UC and 15 CRC patients and in 38 fecal E. coli strains obtained from 17 CeD and 10 healthy (H) children. AIEC prevalence and abundance were compared with previous data from CD patients and H controls. Clonality, virulence gene carriage, and phylogenetic origin were determined for the AIEC identified. RESULTS In UC, AIEC prevalence was intermediate between CD and H subjects (UC: 35.7%, CD: 55.0%, H: 21.4%), and similar to CD patients with colonic disease (C-CD: 40.0%). In CRC, the prevalence was lower (6.7%) than these groups. In patients with AIEC, the estimated abundance was similar across all intestinal conditions. All AIEC strains isolated from UC and CRC belonged to the B1 phylogroup, except for a strain of the A phylogroup, and the majority (75% of clonally distinct AIEC) harbored the Afa/Dr operon and the cdt gene. None of the E. coli isolated from the CeD cohort were AIEC. Nonetheless, E. coli strains isolated from active CeD patients showed higher invasion indices than those isolated from H and inactive CeD pediatric patients. CONCLUSION We support the hypothesis that AIEC-like strains can be involved not only in CD but also in UC. Further works are needed to study the virulence particularities of these groups of strains and to determine if there is a causative link between AIEC and UC. In contrast, we rule out the possible association of AIEC with CRC. In addition, to further study the E. coli strains in CeD for their possible pathogenic role would be of interest.
Collapse
Affiliation(s)
- Mireia López-Siles
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Carla Camprubí-Font
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Eva M. Gómez del Pulgar
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | - Miriam Sabat Mir
- Department of Gastroenterology, Hospital Santa Caterina, Salt, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Yolanda Sanz
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | | |
Collapse
|
42
|
Mirsepasi-Lauridsen HC, Vranckx K, Nielsen HV, Andersen LO, Archampong T, Krogfelt KA, Petersen AM. Substantial Intestinal Microbiota Differences Between Patients With Ulcerative Colitis From Ghana and Denmark. Front Cell Infect Microbiol 2022; 12:832500. [PMID: 35372093 PMCID: PMC8965593 DOI: 10.3389/fcimb.2022.832500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Background Ulcerative colitis (UC) is a relapsing nontransmural inflammatory disease that is restricted to the colon and is characterized by flare-ups of bloody diarrhea. In this study, we aimed to investigate intestinal bacterial diversity in healthy controls and patients with UC with and without active disease, from Ghana and Denmark. Methods The study included 18 UC patients (9 with active and 9 with inactive disease) and 18 healthy controls from Ghana. In addition 16 UC patients from Denmark (8 UC with active and 8 UC with inactive disease) and 19 healthy controls from Denmark. Microbiota diversity analysis relied on sequencing of ribosomal small subunit genes. Purified genomic DNA was submitted to PCR using a primer set targeting prokaryotes and eukaryotes. The purified DNA was sequenced on the Illumina MiSeq system in a 2 × 250 bp set up (Illumina, San Diego, CA, USA). Blinded analysis of the taxonomy table was performed using BioNumerics-7.5 (Applied Maths NV, Sint-Martens-Latem, Belgium). Results When analyzing the taxonomy data for prokaryotes, cluster and principal component analysis shows Danish healthy controls clustered together, but separate from healthy controls from Ghana, which also clustered together. The Shannon diversity index (SDI) for prokaryotes shows significant differences between Danish healthy controls and patients in comparison with the corresponding groups from Ghana (p = 0.0056). Significant increased abundance of Escherichia coli was detected in healthy controls from Ghana in comparison with healthy controls from Denmark. The SDI of the prokaryotes ranges between 0 and 3.1 in the Ghana study groups, while in the Danish study groups it ranges between 1.4 and 3.2, the difference is however not significant (p = 0.138). Our data show a significant increased abundance of eukaryotes species in the healthy control group from Ghana and Denmark in comparison with patient groups from Ghana and Denmark. Conclusion Overall, healthy controls and patients with UC from Denmark have increased diversity of prokaryotes. Healthy controls from Denmark and Ghana have increased abundance of eukaryotes in comparison with UC patient groups from Denmark and Ghana.
Collapse
Affiliation(s)
- Hengameh Chloé Mirsepasi-Lauridsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Unit of Molecular and Medical Biology, Roskilde University, Roskilde, Denmark
- *Correspondence: Hengameh Chloé Mirsepasi-Lauridsen,
| | | | - Henrik Vedel Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lee O’Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Timothy Archampong
- Department of Medicine and Therapeutics, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| | - Karen Angeliki Krogfelt
- Department of Science and Environment, Unit of Molecular and Medical Biology, Roskilde University, Roskilde, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Andreas Munk Petersen
- Department of Gastroenterology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
43
|
Antibiotic resistance, virulence, and phylogenetic analysis of Escherichia coli strains isolated from free-living birds in human habitats. PLoS One 2022; 17:e0262236. [PMID: 35020771 PMCID: PMC8754294 DOI: 10.1371/journal.pone.0262236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Wild birds can be colonized by bacteria, which are often resistant to antibiotics and have various virulence profiles. The aim of this study was to analyze antibiotic resistance mechanisms and virulence profiles in relation to the phylogenetic group of E. coli strains that were isolated from the GI tract of wildfowl. Out of 241 faecal samples, presence of E. coli resistant to a cephalosporin (ESBL/AmpC) was estimated for 33 isolates (13,7%). Based on the analysis of the coexistence of 4 genes encoding ESBLs/AmpC (blaCTX-M, blaTEM,blaSHV, blaAmpC) and class 1 and 2 integrons genes (intI1, intI2) a subset of two resistance profiles was observed among the investigated E. coli isolates carrying blaAmpC, blaSHV, and blaCTX-M, blaTEM, class 1 and 2 integrons, respectively. The E. coli isolates were categorized into 4 phylogenetic groups A (39.4%), B2 (24.25%), D (24.25%) and B1 (12.1%). The pathogenic B2 and D groups were mainly typical for the Laridae family. Among the 28 virulence factors (Vfs) detected in pathogenic phylogenetic groups B2 and D, 7 were exclusively found in those groups (sfa, vat, tosA, tosB, hly, usp, cnf), while 4 VFs (fecA, fyuA, irp2, kspMTII) showed a statistically significant association (P≤0.05) with phylogroups A and B1. Our results indicated that strains belonging to commensal phylogroups A/B1 possess extensive iron acquisition systems (93,9%) and autotransporters (60,6%), typical for pathogens, hence we suggest that these strains evolve towards higher levels of virulence. This study, which is a point assessment of the virulence and drug resistance potential of wild birds, confirms the importance of taking wild birds as a reservoir of strains that pose a growing threat to humans. The E. coli analyzed in our study derive from different phylogenetic groups and possess an arsenal of antibiotic resistance genes and virulence factors that contribute to their ability to cause diseases.
Collapse
|
44
|
Isidori M, Corbee RJ, Trabalza-Marinucci M. Nonpharmacological Treatment Strategies for the Management of Canine Chronic Inflammatory Enteropathy—A Narrative Review. Vet Sci 2022; 9:vetsci9020037. [PMID: 35202290 PMCID: PMC8878421 DOI: 10.3390/vetsci9020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammatory enteropathy (CIE) refers to a heterogeneous group of idiopathic diseases of the dog characterised by persistent gastrointestinal (GI) clinical signs. If conventional dietary treatment alone would be unsuccessful, management of CIE is traditionally attained by the use of pharmaceuticals, such as antibiotics and immunosuppressive drugs. While being rather effective, however, these drugs are endowed with side effects, which may impact negatively on the animal’s quality of life. Therefore, novel, safe and effective therapies for CIE are highly sought after. As gut microbiota imbalances are often associated with GI disorders, a compelling rationale exists for the use of nonpharmacological methods of microbial manipulation in CIE, such as faecal microbiota transplantation and administration of pre-, pro-, syn- and postbiotics. In addition to providing direct health benefits to the host via a gentle modulation of the intestinal microbiota composition and function, these treatments may also possess immunomodulatory and epithelial barrier-enhancing actions. Likewise, intestinal barrier integrity, along with mucosal inflammation, are deemed to be two chief therapeutic targets of mesenchymal stem cells and selected vegetable-derived bioactive compounds. Although pioneering studies have revealed encouraging findings regarding the use of novel treatment agents in CIE, a larger body of research is needed to address fully their mode of action, efficacy and safety.
Collapse
Affiliation(s)
- Marco Isidori
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
- Correspondence:
| | - Ronald Jan Corbee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Yalelaan 108, 3584 CM Utrecht, The Netherlands;
| | | |
Collapse
|
45
|
Agus A, Richard D, Faïs T, Vazeille E, Chervy M, Bonnin V, Dalmasso G, Denizot J, Billard E, Bonnet R, Buisson A, Barnich N, Delmas J. Propionate catabolism by CD-associated adherent-invasive E. coli counteracts its anti-inflammatory effect. Gut Microbes 2022; 13:1-18. [PMID: 33769191 PMCID: PMC8007151 DOI: 10.1080/19490976.2020.1839318] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) is a chronic and disabling inflammatory disorder of the gut that is profoundly influenced by intestinal microbiota composition, host genetics and environmental factors. Several groups worldwide have described an imbalance of the gut microbiome composition, called dysbiosis, in CD patients, with an increase in Proteobacteria and Bacteroidetes and a decrease in Firmicutes. A high prevalence of adherent-invasive Escherichia coli (AIEC) pathobionts has been identified in the intestinal mucosa of CD patients. A significant loss in the bacteria that produce short-chain fatty acids (SCFAs) with anti-inflammatory properties, such as propionate, is also a consequence of dysbiosis in CD patients. Here, the AIEC reference strain LF82 was able to degrade propionate in the gut, which was sufficient to counteract the anti-inflammatory effect of propionate both in in vitro models and in mice with DSS-induced colitis. The consumption of propionate by AIEC pathobionts leads to an increase in TNF-α production by macrophages upon infection through the bacterial methyl-citrate pathway. To induce the protective effects of SCFAs on the inflamed gut, we used a G-protein-coupled receptor 43 agonist (GPR43 agonist) that is not metabolizable by intestinal bacteria. Interestingly, this agonist showed anti-inflammatory properties and decreased the severity of colitis in AIEC-infected mice, as assessed by an improvement in the disease activity index (DAI) and a decrease in AIEC pathobiont encroachment. Taken together, these results highlight the effectiveness of GPR43 agonist treatment in the control of gut inflammation and improved our understanding of the ability of AIEC to modulate propionate availability to create an infectious niche to its advantage.
Collapse
Affiliation(s)
- Allison Agus
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,INRAE, AgroParisTech, Micalis Institute, University Paris-Saclay, Jouy-en-Josas, France,Allison Agus Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2iSH), Centre De Recherche En Nutrition Humaine Auvergne, University Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Richard
- Department of Pharmacology, University Hospital of Clermont-Ferrand, France
| | - Tiphanie Faïs
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Department of Bacteriology, University Hospital of Clermont-Ferrand, France
| | - Emilie Vazeille
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Service d’Hépato-Gastro Entérologie, 3iHP, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Mélissa Chervy
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France
| | - Virginie Bonnin
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Denizot
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Institut Universitaire De Technologie, University Clermont Auvergne, Clermont-Ferrand, France
| | - Elisabeth Billard
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Institut Universitaire De Technologie, University Clermont Auvergne, Clermont-Ferrand, France
| | - Richard Bonnet
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Department of Bacteriology, University Hospital of Clermont-Ferrand, France
| | - Anthony Buisson
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Service d’Hépato-Gastro Entérologie, 3iHP, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Institut Universitaire De Technologie, University Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Department of Bacteriology, University Hospital of Clermont-Ferrand, France,CONTACT Julien Delmas
| |
Collapse
|
46
|
Kotłowski R. Comparative analysis of mRNA transcripts of HT-29 cell line expressed in identical quantities for pathogenic E. coli strains UM146 and UM147 with control Escherichia coli Nissle 1917. J Genomics 2022; 10:1-7. [PMID: 34976225 PMCID: PMC8709692 DOI: 10.7150/jgen.67277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Aim of study was comparative analysis of mRNA transcripts of HT-29 cell line, expressed in identical quantities for the combination of pathogenic and non-pathogenic Escherichia coli strains. HT-29 confluent monolayers infection with two pathogenic E. coli strains UM146 and UM147 resulted in two sets of mRNA transcripts that were identical with RNA transcripts obtained for non-pathogenic one strain E. coli Nissle 1917. In this study genome-wide experiments were conducted using expression microarray-system. Only one common mRNA transcript coding for CCDC65 gene was equally expressed by HT-29 cells after incubation challenge with three different E. coli strains used. This gene and its bacterial analogue are important in the ciliary or flagellar motility, respectively. Altogether, 78 and 81 HT-29 mRNA transcripts for E. coli UM146 and E. coli UM147 had identical RNA quantity in comparison to the response obtained for non-pathogenic E. coli Nissle 1917 interactions with HT-29 monolayers. Specific analysis using REACTOME and agriGO terms enrichment data-mining tools as well as word-cloud analysis allowed for identification the most important processes characteristic during HT-29 cell line infections for each pathogenic E. coli strain used. The importance of results may contribute to recognition of those processes during bacterial infections that are identical with processes arising from human interaction with non-pathogenic strains that belong to the same bacterial species.
Collapse
Affiliation(s)
- Roman Kotłowski
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, Faculty of Chemistry, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
47
|
Kriaa A, Jablaoui A, Rhimi S, Soussou S, Mkaouar H, Mariaule V, Gruba N, Gargouri A, Maguin E, Lesner A, Rhimi M. SP-1, a Serine Protease from the Gut Microbiota, Influences Colitis and Drives Intestinal Dysbiosis in Mice. Cells 2021; 10:2658. [PMID: 34685638 PMCID: PMC8534766 DOI: 10.3390/cells10102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
Increased protease activity has been linked to the pathogenesis of IBD. While most studies have been focusing on host proteases in gut inflammation, it remains unclear how to address the potential contribution of their bacterial counterparts. In the present study, we report a functional characterization of a newly identified serine protease, SP-1, from the human gut microbiota. The serine protease repertoire of gut Clostridium was first explored, and the specificity of SP-1 was analyzed using a combinatorial chemistry method. Combining in vitro analyses and a mouse model of colitis, we show that oral administration of recombinant bacteria secreting SP-1 (i) compromises the epithelial barrier, (ii) alters the microbial community, and (ii) exacerbates colitis. These findings suggest that gut microbial protease activity may constitute a valuable contributor to IBD and could, therefore, represent a promising target for the treatment of the disease.
Collapse
Affiliation(s)
- Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Souha Soussou
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Héla Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Natalia Gruba
- Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland; (N.G.); (A.L.)
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax Bp ‘1177’ 3018, Tunisia;
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland; (N.G.); (A.L.)
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| |
Collapse
|
48
|
Leite G, Pimentel M, Barlow GM, Chang C, Hosseini A, Wang J, Parodi G, Sedighi R, Rezaie A, Mathur R. Age and the aging process significantly alter the small bowel microbiome. Cell Rep 2021; 36:109765. [PMID: 34592155 DOI: 10.1016/j.celrep.2021.109765] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
Gut microbial diversity decreases with aging, but existing studies have used stool samples, which do not represent the entire gut. We analyzed the duodenal microbiome in 251 subjects aged 18-35 (n = 32), 36-50 (n = 41), 51-65 (n = 96), and 66-80 (n = 82). Decreased duodenal microbial diversity in older subjects is associated with combinations of chronological age, number of concomitant diseases, and number of medications used, and also correlated with increasing coliform numbers (p < 0.0001). Relative abundance (RA) of phylum Proteobacteria increases in older subjects, with increased RA of family Enterobacteriaceae and coliform genera Escherichia and Klebsiella, and is associated with alterations in the RA of other duodenal microbial taxa and decreased microbial diversity. Increased RA of specific genera are associated with chronological age only (Escherichia, Lactobacillus, and Enterococcus), number of medications only (Klebsiella), or number of concomitant diseases only (Clostridium and Bilophila). These findings indicate the small intestinal microbiome changes significantly with age and the aging process.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Christine Chang
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Jiajing Wang
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Rashin Sedighi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA.
| |
Collapse
|
49
|
de Sousa Figueiredo MB, Pradel E, George F, Mahieux S, Houcke I, Pottier M, Fradin C, Neut C, Daniel C, Bongiovanni A, Foligné B, Titécat M. Adherent-Invasive and Non-Invasive Escherichia coli Isolates Differ in Their Effects on Caenorhabditis elegans' Lifespan. Microorganisms 2021; 9:microorganisms9091823. [PMID: 34576719 PMCID: PMC8465672 DOI: 10.3390/microorganisms9091823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023] Open
Abstract
The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn’s disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain’s clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains’ ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC’s virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans’ lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.
Collapse
Affiliation(s)
- Maria Beatriz de Sousa Figueiredo
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Elizabeth Pradel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Fanny George
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Séverine Mahieux
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Isabelle Houcke
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Muriel Pottier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Chantal Fradin
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE, F-59000 Lille, France;
| | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Catherine Daniel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France;
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| |
Collapse
|
50
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|