1
|
Roggendorf M, Kosinska AD, Liu J, Lu M. The Woodchuck, a Nonprimate Model for Immunopathogenesis and Therapeutic Immunomodulation in Chronic Hepatitis B Virus Infection. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021451. [PMID: 26511761 DOI: 10.1101/cshperspect.a021451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The woodchuck hepatitis virus (WHV) and its host, the eastern woodchuck, is a very valuable model system for hepatitis B virus infection. Many aspects of WHV replication and pathogenesis resemble acute and chronic hepatitis B infection in patients. Since the establishment of immunological tools, woodchucks were used to develop new therapeutic vaccines and immunomodulatory approaches to treat chronic hepadnaviral infections. Combination therapy of nucleos(t)ide analogs, with prime-boost vaccination and triple therapy, including immunomodulatory strategies by blocking the interaction of the programmed death-1 (PD-1) receptor with its ligand inducing a potent T-cell response in chronic WHV carrier woodchucks, suppression of viral replication, and complete elimination of the virus in 30% of the animals. Both strategies may be used for future therapies in patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Michael Roggendorf
- Institute for Virology, University of Duisburg-Essen, 45122 Essen, Germany
| | - Anna D Kosinska
- Institute for Virology, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jia Liu
- Institute for Virology, University of Duisburg-Essen, 45122 Essen, Germany
| | - Mengji Lu
- Institute for Virology, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
2
|
Kosinska AD, Liu J, Lu M, Roggendorf M. Therapeutic vaccination and immunomodulation in the treatment of chronic hepatitis B: preclinical studies in the woodchuck. Med Microbiol Immunol 2014; 204:103-14. [PMID: 25535101 PMCID: PMC4305085 DOI: 10.1007/s00430-014-0379-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
Infection with hepatitis B virus (HBV) may lead to subclinical, acute or chronic hepatitis. In the prevaccination era, HBV infections were endemic due to frequent mother to child transmission in large regions of the world. However, there are still estimated 240 million chronic HBV carriers today and ca. 620,000 patients die per year due to HBV-related liver diseases. Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to satisfactory results. Induction of HBV-specific T cells by therapeutic vaccination or immunomodulation may be an innovative strategy to overcome virus persistence. Vaccination with commercially available HBV vaccines in patients with or without therapeutic reduction of viral load did not result in effective immune control of HBV infection, suggesting that combination of antiviral treatment with new formulations of therapeutic vaccines is needed. The woodchuck (Marmota monax) and its HBV-like woodchuck hepatitis virus are a useful preclinical animal model for developing new therapeutic approaches in chronic hepadnaviral infections. Several innovative approaches combining antiviral treatments using nucleos(t)ide analogues, with prime-boost vaccination using DNA vaccines, new hepadnaviral antigens or recombinant adenoviral vectors were tested in the woodchuck model. In this review, we summarize these encouraging results obtained with these therapeutic vaccines. In addition, we present potential innovations in immunostimulatory strategies by blocking the interaction of the inhibitory programmed death receptor 1 with its ligand in this animal model.
Collapse
Affiliation(s)
- Anna D Kosinska
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstrasse 179, 45122, Essen, Germany
| | | | | | | |
Collapse
|
3
|
Electroporation enhances immunogenicity of a DNA vaccine expressing woodchuck hepatitis virus surface antigen in woodchucks. J Virol 2011; 85:4853-62. [PMID: 21389124 DOI: 10.1128/jvi.02437-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The development of therapeutic vaccines for chronic hepatitis B virus (HBV) infection has been hampered by host immune tolerance and the generally low magnitude and inconsistent immune responses to conventional vaccines and proposed new delivery methods. Electroporation (EP) for plasmid DNA (pDNA) vaccine delivery has demonstrated the enhanced immunogenicity of HBV antigens in various animal models. In the present study, the efficiency of the EP-based delivery of pDNA expressing various reporter genes first was evaluated in normal woodchucks, and then the immunogenicity of an analog woodchuck hepatitis virus (WHV) surface antigen (WHsAg) pDNA vaccine was studied in this model. The expression of reporter genes was greatly increased when the cellular uptake of pDNA was facilitated by EP. The EP of WHsAg-pDNA resulted in enhanced, dose-dependent antibody and T-cell responses to WHsAg compared to those of the conventional hypodermic needle injection of WHsAg-pDNA. Although subunit WHsAg protein vaccine elicited higher antibody titers than the DNA vaccine delivered with EP, T-cell response rates were comparable. However, in WHsAg-stimulated mononuclear cell cultures, the mRNA expression of CD4 and CD8 leukocyte surface markers and Th1 cytokines was more frequent and was skewed following DNA vaccination compared to that of protein immunization. Thus, the EP-based vaccination of normal woodchucks with pDNA-WHsAg induced a skew in the Th1/Th2 balance toward Th1 immune responses, which may be considered more appropriate for approaches involving therapeutic vaccines to treat chronic HBV infection.
Collapse
|
4
|
Ochoa-Callejero L, Berraondo P, Crettaz J, Olagüe C, Vales A, Ruiz J, Prieto J, Tennant BC, Menne S, González-Aseguinolaza G. Woodchuck dendritic cells generated from peripheral blood mononuclear cells and transduced with recombinant human adenovirus serotype 5 induce antigen-specific cellular immune responses. J Med Virol 2007; 79:522-9. [PMID: 17385694 DOI: 10.1002/jmv.20808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Woodchucks infected with the woodchuck hepatitis virus (WHV) is the best available animal model for testing the immunotherapeutic effects of dendritic cells (DCs) in the setting of a chronic infection, as woodchucks develop a persistent infection resembling that seen in humans infected with the hepatitis B virus. In the present study, DCs were generated from woodchuck peripheral blood mononuclear cells (wDCs) in the presence of human granulocyte macrophage colony-stimulating factor (hGM-CSF) and human interleukin 4 (hIL-4). After 7 days of culture, cells with morphology similar to DCs were stained positively with a cross-reactive anti-human CD86 antibody. Functional analysis showed that uptake of FITC-dextran by wDCs was very efficient and was partially inhibited after LPS-induced maturation. Furthermore, wDCs stimulated allogenic lymphocytes and induced proliferation. Moreover, wDCs were transduced efficiently with a human adenovirus serotype 5 for the expression of beta-galactosidase. Following transduction and in vivo administration of such DCs into woodchucks, an antigen-specific cellular immune response was induced. These results demonstrate that wDCs can be generated from the peripheral blood. Following transfection with a recombinant adenovirus wDCs can be used as a feasible and effective tool for eliciting WHV-specific T-cell responses indicating their potential to serve as prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Laura Ochoa-Callejero
- Laboratory of Gene Therapy of Viral Hepatitis, Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lu M, Menne S, Yang D, Xu Y, Roggendorf M. Immunomodulation as an option for the treatment of chronic hepatitis B virus infection: preclinical studies in the woodchuck model. Expert Opin Investig Drugs 2007; 16:787-801. [PMID: 17501692 DOI: 10.1517/13543784.16.6.787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic hepatitis B virus infection based on immunomodulation are now under investigation. The woodchuck model for hepatitis B virus infection has emerged as a useful animal model for the evaluation of such approaches, after developing necessary assays and reagents for immunologic studies in this model. Conventional and novel vaccines such as DNA vaccines were tested in woodchucks for their ability to induce protective immune responses against challenge infection with the woodchuck hepatitis virus (WHV). Furthermore, immunotherapeutic approaches for the control of chronic hepadnaviral infection were evaluated in woodchucks. Immunizations with WHV proteins and DNA vaccines led to the development of antibodies to the WHV surface antigen and to a significant decrease of viral load in chronically WHV-infected woodchucks. Viral vector-mediated gene transfer was explored for the delivery of antiviral cytokines IFN-alpha in woodchucks and resulted in the decrease of viral replication. It is now generally accepted that a combination of antiviral treatment and immunization will be necessary to achieve successful immunomodulation with a long-term control of chronic hepatitis B virus infection.
Collapse
Affiliation(s)
- Mengji Lu
- Institut für Virologie, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|
6
|
Puro R, Schneider RJ. Tumor necrosis factor activates a conserved innate antiviral response to hepatitis B virus that destabilizes nucleocapsids and reduces nuclear viral DNA. J Virol 2007; 81:7351-62. [PMID: 17475655 PMCID: PMC1933346 DOI: 10.1128/jvi.00554-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor necrosis factor (TNF) is critical for the control of hepatitis B virus (HBV) in the clinical setting and in model systems. TNF induces noncytopathic suppression and clearance of HBV in animal models, possibly through reduction of viral nucleocapsids, but the mechanism is not well described. Here, we demonstrate the molecular mechanism and broad host range for TNF action against HBV. We show that TNF rapidly blocks HBV replication by promoting destabilization of preexisting cytoplasmic viral nucleocapsids containing viral RNA and DNA, as well as empty nucleocapsids. TNF destabilized human HBV nucleocapsids in a variety of human hepatocytic cell lines and in primary rat hepatocytes and also destabilized duck HBV (DHBV) nucleocapsids in chicken hepatocytic cells. Lysates from TNF-treated uninfected cells also destabilized HBV nucleocapsids in vitro. Moreover, inhibition of DHBV DNA replication by TNF blocks nuclear accumulation of the viral transcription template, maintenance of which is essential for the establishment and maintenance of chronic infection. We show that TNF destabilization of HBV nucleocapsids does not involve ubiquitination or methylation of the viral core protein and is not mediated by the nitric oxide free radical arm of the TNF pathway. These results define a novel antiviral mechanism mediated by TNF against multiple types of HBVs in different species.
Collapse
Affiliation(s)
- Robyn Puro
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
7
|
Gudima S, He Y, Meier A, Chang J, Chen R, Jarnik M, Nicolas E, Bruss V, Taylor J. Assembly of hepatitis delta virus: particle characterization, including the ability to infect primary human hepatocytes. J Virol 2007; 81:3608-17. [PMID: 17229685 PMCID: PMC1866043 DOI: 10.1128/jvi.02277-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 01/08/2007] [Indexed: 12/27/2022] Open
Abstract
Efficient assembly of hepatitis delta virus (HDV) was achieved by cotransfection of Huh7 cells with two plasmids: one to provide expression of the large, middle, and small envelope proteins of hepatitis B virus (HBV), the natural helper of HDV, and another to initiate replication of the HDV RNA genome. HDV released into the media was assayed for HDV RNA and HBV envelope proteins and characterized by rate-zonal sedimentation, immunoaffinity purification, electron microscopy, and the ability to infect primary human hepatocytes. Among the novel findings were that (i) immunostaining for delta antigen 6 days after infection with 300 genome equivalents (GE) per cell showed only 1% of cells as infected, but this was increased to 16% when 5% polyethylene glycol was present during infection; (ii) uninfected cells did not differ from infected cells in terms of albumin accumulation or the presence of E-cadherin at cell junctions; and (iii) sensitive quantitative real-time PCR assays detected HDV replication even when the multiplicity of infection was 0.2 GE/cell. In the future, this HDV assembly and infection system can be further developed to better understand the mechanisms shared by HBV and HDV for attachment and entry into host cells.
Collapse
Affiliation(s)
- Severin Gudima
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Menne S, Cote PJ. The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J Gastroenterol 2007; 13:104-24. [PMID: 17206759 PMCID: PMC4065868 DOI: 10.3748/wjg.v13.i1.104] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 08/25/2006] [Accepted: 10/04/2006] [Indexed: 02/06/2023] Open
Abstract
This review describes the woodchuck and the woodchuck hepatitis virus (WHV) as an animal model for pathogenesis and therapy of chronic hepatitis B virus (HBV) infection and disease in humans. The establishment of woodchuck breeding colonies, and use of laboratory-reared woodchucks infected with defined WHV inocula, have enhanced our understanding of the virology and immunology of HBV infection and disease pathogenesis, including major sequelae like chronic hepatitis and hepatocellular carcinoma. The role of persistent WHV infection and of viral load on the natural history of infection and disease progression has been firmly established along the way. More recently, the model has shed new light on the role of host immune responses in these natural processes, and on how the immune system of the chronic carrier can be manipulated therapeutically to reduce or delay serious disease sequelae through induction of the recovery phenotype. The woodchuck is an outbred species and is not well defined immunologically due to a limitation of available host markers. However, the recent development of several key host response assays for woodchucks provides experimental opportunities for further mechanistic studies of outcome predictors in neonatal- and adult-acquired infections. Understanding the virological and immunological mechanisms responsible for resolution of self-limited infection, and for the onset and maintenance of chronic infection, will greatly facilitate the development of successful strategies for the therapeutic eradication of established chronic HBV infection. Likewise, the results of drug efficacy and toxicity studies in the chronic carrier woodchucks are predictive for responses of patients chronically infected with HBV. Therefore, chronic WHV carrier woodchucks provide a well-characterized mammalian model for preclinical evaluation of the safety and efficacy of drug candidates, experimental therapeutic vaccines, and immunomodulators for the treatment and prevention of HBV disease sequelae.
Collapse
Affiliation(s)
- Stephan Menne
- Department of Clinical Sciences, College of Veterinary Medicine, Veterinary Medical Center, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
9
|
Gonzalez-Aseguinolaza G, Crettaz J, Ochoa L, Otano I, Aldabe R, Paneda A. Gene therapy for viral hepatitis. Expert Opin Biol Ther 2006; 6:1263-78. [PMID: 17223736 DOI: 10.1517/14712598.6.12.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B and C infections are two of the most prevalent viral diseases in the world. Existing therapies against chronic viral hepatitis are far from satisfactory due to low response rates, undesirable side effects and selection of resistant viral strains. Therefore, new therapeutic approaches are urgently needed. This review, after briefly summarising the in vitro and in vivo systems for the study of both diseases and the genetic vehicles commonly used for liver gene transfer, examines the existing status of gene therapy-based antiviral strategies that have been employed to prevent, eliminate or reduce viral infection. In particular, the authors focus on the results obtained in clinical trials and experimental clinically relevant animal models.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Genetic Therapy/methods
- Genetic Therapy/trends
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/prevention & control
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/prevention & control
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/prevention & control
- Humans
Collapse
Affiliation(s)
- Gloria Gonzalez-Aseguinolaza
- University of Navarra, Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Wang J, Gujar SA, Cova L, Michalak TI. Bicistronic woodchuck hepatitis virus core and gamma interferon DNA vaccine can protect from hepatitis but does not elicit sterilizing antiviral immunity. J Virol 2006; 81:903-16. [PMID: 17079319 PMCID: PMC1797430 DOI: 10.1128/jvi.01537-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The immunity elicited against nucleocapsid of hepatitis B virus (HBV) and closely related woodchuck hepatitis virus (WHV) has been shown to be important in resolution of hepatitis and protection from infection. Further, activity of gamma interferon (IFN-gamma), which may directly inhibit hepadnavirus replication, promotes antiviral defense and favors T helper cell type 1 (Th1) response, which is seemingly a prerequisite of HBV clearance. In this study, to enhance induction of protective immunity against hepadnavirus, healthy woodchucks were immunized with a bicistronic DNA vaccine carrying WHV core (WHc) and woodchuck IFN-gamma (wIFN-gamma) gene sequences. Three groups, each group containing three animals, were injected once or twice with 0.5 mg, 0.9 mg, or 1.5 mg per dose of this vaccine. In addition, four animals received two injections of 0.6 mg or 1 mg WHc DNA alone. All animals were challenged with WHV. The results showed that four of nine animals injected with the bicistronic vaccine and one of four immunized with WHc DNA became protected from serologically evident infection and hepatitis. This protection was not linked to induction of WHc antigen-specific antibodies or T-cell proliferative response and was not associated with enhanced transcription of Th1 cytokines or 2',5'-oligoadenylate synthetase. Strikingly, all animals protected from hepatitis became reactive for WHV DNA and carried low levels of replicating virus in hepatic and lymphoid tissues after challenge with WHV. This study shows that the bicistronic DNA vaccine encoding both hepadnavirus core antigen and IFN-gamma was more effective in preventing hepatitis than that encoding virus core alone, but neither of them could mount sterile immunity against the virus or prevent establishment of occult infection.
Collapse
Affiliation(s)
- Jinguo Wang
- Molecular Virology and Hepatology Research, Division of Basic Medical Science, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland, Canada
| | | | | | | |
Collapse
|
11
|
Abstract
Hepatitis C virus is an important public health threat, not only because of the high prevalence of this infection in western and third world countries, but also because of the high rate of resistance to the available antiviral therapy that consists on the use of pegylated interferon plus ribavirin. Currently, new forms of therapy are being developed based on a more precise knowledge of the structure and function of the viral proteins and of the strategies used by the virus to escape the immune and interferon systems. The new therapeutic approaches aim at different objectives: a) the inhibition of viral replication by blocking the viral protease and/or replicase; b) the use of other types of interferon with more potent antiviral effect, c) the induction of a specific anti-viral immune response by means of immunomodulatory compounds or therapeutic vaccination, d) the blockade of "de novo" infection of other cells with neutralizing antibodies, e) the induction of a antiviral state in the liver by transferring to this organ the gene of interferon and/or immunostimulating cytokines.
Collapse
Affiliation(s)
- Lucía Gil-Guerrero
- Clínica Universitaria y Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Navarra, España.
| | | | | |
Collapse
|
12
|
Huang Z, Buckwold VE. A TaqMan PCR assay using degenerate primers for the quantitative detection of woodchuck hepatitis virus DNA of multiple genotypes. Mol Cell Probes 2006; 19:282-9. [PMID: 16005181 DOI: 10.1016/j.mcp.2005.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 04/11/2005] [Indexed: 11/25/2022]
Abstract
Woodchuck hepatitis virus (WHV) is a valuable animal model system for studies of hepatitis B virus infection and accurate assessments of WHV viral load are necessary in these studies. Wild-captured woodchucks that are naturally infected with WHV are sometimes used in these studies, however, the sequence variation in WHV isolates generally precludes the use of TaqMan PCR. To facilitate this, we have created a real-time TaqMan PCR assay for WHV using degenerate primers with inosine residues employed at the locations of known sequence heterogeneity. This TaqMan assay has a dynamic range of 10-10(8) genomic equivalents (ge) of WHV DNA per reaction and the assay is robust and reproducible in the 10(2)-10(7) ge WHV DNA per reaction range (intra-assay coefficient of variation (CV) <2.1%, inter-assay CV <2.9%). During our assay validation, we cloned and analyzed a series of six naturally occurring virus variants that contained sequence heterogeneity in the TaqMan primer sequence region. We showed that the presence of some of these sequence variations prevented the PCR amplification of the target when regular primer sequences were used, while degenerate primer sequences were able to efficiently amplify all tested sequences equally well.
Collapse
Affiliation(s)
- Zhuhui Huang
- Infectious Disease Research Department, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701, USA
| | | |
Collapse
|
13
|
Wozniak TM, Ryan AA, Triccas JA, Britton WJ. Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection. Infect Immun 2006; 74:557-65. [PMID: 16369012 PMCID: PMC1346624 DOI: 10.1128/iai.74.1.557-565.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protection against intracellular pathogens such as Mycobacterium tuberculosis requires the development of Th1-like T-cell responses. This in turn is dependent on the pattern of cytokine produced from dendritic cells (DCs) after infection. Three heterodimeric cytokines, interleukin-12 (IL-12), IL-23, and IL-27, as well as IL-18, contribute to the differentiation and expansion of naive CD4(+) T cells. In this study we compared the effects of plasmids expressing both chains of IL-12, IL-23, or IL-27 as adjuvants for DNA immunization against M. tuberculosis infection. The genes encoding p19 and p40 chains of IL-23 or EBI3 and p28 chains of IL-27 were cloned on either side of a self-cleaving peptide from the FMDV2A protein. The secretion of functional cytokines from transfected cells was detected with bioassays. Supernatant from p2AIL-23-transfected cells induced the release of IL-17 from activated lymphocytes, confirming the presence of bioactive IL-23. Further, supernatant from p2AIL-27-transfected cells stimulated a significant increase in the proliferation of peptide-stimulated transgenic CD4(+) T cells. In initial experiments, M. tuberculosis infection of DCs was more potent at inducing IL-12 and IL-23 secretion than infection with the vaccine strain Mycobacterium bovis bacille Calmette-Guérin (BCG), and no significant upregulation of IL-27 was observed. Coimmunization of C57BL/6 mice with DNA expressing M. tuberculosis antigen 85B (Ag85B; DNA85B) and plasmids expressing IL-23 or IL-12 stimulated stronger Ag85B-specific T-cell proliferative and IFN-gamma responses than DNA85B alone, whereas the addition of p2AIL-27 had no effect. Interestingly, DNA85B codelivered with p2AIL-12, but not p2AIL-23, reduced the immunoglobulin G antibody response. Both p2AIL-23 and p2AIL-12, but not p2AIL-27, enhanced the protective efficacy of DNA85B against aerosol M. tuberculosis challenge. Therefore, both p2AIL-23 and p2AIL-12 are valuable as cytokine adjuvants for increasing the protective antituberculosis immunity induced by DNA vaccines.
Collapse
Affiliation(s)
- Teresa M Wozniak
- Centenary Institute of Cancer Medicine and Cell Biology, Mycobacterial Research Laboratory, Locked Bag No. 6, Newtown, NSW 2042, Australia
| | | | | | | |
Collapse
|
14
|
Lu M, Isogawa M, Xu Y, Hilken G. Immunization with the gene expressing woodchuck hepatitis virus nucleocapsid protein fused to cytotoxic-T-lymphocyte-associated antigen 4 leads to enhanced specific immune responses in mice and woodchucks. J Virol 2005; 79:6368-76. [PMID: 15858020 PMCID: PMC1091665 DOI: 10.1128/jvi.79.10.6368-6376.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A number of options are available to modify and improve DNA vaccines. An interesting approach to improve DNA vaccines is to fuse bioactive domains, like cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), to an antigen. Such fusion antigens are expressed in vivo and directed to immune cells by the specific bioactive domain and therefore possess great potential to induce and modulate antigen-specific immune responses. In the present study, we tested this new approach for immunomodulation against hepadnavirus infection in the woodchuck model. Plasmids expressing the nucleocapsid protein (WHcAg) and e antigen (WHeAg) of woodchuck hepatitis virus (WHV) alone or in fusion to the extracellular domain of woodchuck CTLA-4 and CD28 were constructed. Immunizations of mice with plasmids expressing WHcAg or WHeAg led to a specific immunoglobulin G2a (IgG2a)-dominant antibody response. In contrast, fusions of WHcAg to CTLA-4 and CD28 induced a specific antibody response with comparable levels of IgG1 and IgG2a. Furthermore, the specific IgG1 response to WHcAg/WHeAg developed immediately after a single immunization with the CTLA-4-WHcAg fusion. Woodchucks were immunized with plasmids expressing WHeAg or the CTLA-4-WHcAg fusion and subsequently challenged with WHV. CTLA-4-WHcAg showed an improved efficacy in induction of protective immune responses to WHV. In particular, the anti-WHsAg antibody response developed earlier after challenge in woodchucks that received immunizations with CTLA-4-WHcAg, consistent with the hypothesis that anti-WHs response is dependent on a Th cell response to WHcAg. In conclusion, the use of fusion genes represents a generally applicable strategy to improve DNA vaccination.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Antigens, CD
- Antigens, Differentiation/immunology
- CD28 Antigens/immunology
- CTLA-4 Antigen
- Drug Evaluation, Preclinical
- Hepatitis B/blood
- Hepatitis B/immunology
- Hepatitis B/prevention & control
- Hepatitis B Antibodies/blood
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Woodchuck/immunology
- Hepatitis, Viral, Animal/blood
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Immunoglobulin G/blood
- Injections, Intramuscular
- Marmota
- Mice
- Mice, Inbred BALB C
- Nucleocapsid/immunology
- Nucleocapsid Proteins
- Plasmids/metabolism
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Mengji Lu
- Institut für Virologie, Universitätsklinikum Essen, Hufelandstrasse 55, Essen D-45122, Germany.
| | | | | | | |
Collapse
|
15
|
Prieto J, Qian C, Hernandez-Alcoceba R, Gonzalez-Aseguinolaza G, Mazzolini G, Sangro B, Kramer MG. Gene therapy of liver diseases. Expert Opin Biol Ther 2005; 4:1073-91. [PMID: 15268675 DOI: 10.1517/14712598.4.7.1073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many liver diseases lack satisfactory treatment and alternative therapeutic options are urgently needed. Gene therapy is a new mode of treatment for both inherited and acquired diseases, based on the transfer of genetic material to the tissues. Genes are incorporated into appropriate vectors in order to facilitate their entrance and function inside the target cells. Gene therapy vectors can be constructed on the basis of viral or non-viral molecular structures. Viral vectors are frequently used, due to their higher transduction efficiency. Both the type of vector and the expression cassette determine the duration, specificity and inducibility of gene expression. A considerable number of preclinical studies indicate that a great variety of liver diseases, including inherited metabolic defects, chronic viral hepatitis, liver cirrhosis and primary and metastatic liver cancer, are amenable to gene therapy. Gene transfer to the liver can also be used to convert this organ into a factory of secreted proteins needed to treat conditions that do not affect the liver itself. Clinical trials of gene therapy for the treatment of inherited diseases and liver cancer have been initiated but human gene therapy is still in its infancy. Recent progress in vector technology and imaging techniques, allowing in vivo assessment of gene expression, will facilitate the development of clinical applications of gene therapy.
Collapse
Affiliation(s)
- Jesus Prieto
- Department of Internal Medicine, Clinica Universitaria de Navarra, Avda. Pio XII 36, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Arad U, Axelrod J, Ben-nun-Shaul O, Oppenheim A, Galun E. Hepatitis B virus enhances transduction of human hepatocytes by SV40-based vectors. J Hepatol 2004; 40:520-6. [PMID: 15123369 DOI: 10.1016/j.jhep.2003.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 11/23/2003] [Accepted: 11/25/2003] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Chronic HBV infection, a world-wide epidemic, can lead to chronic hepatitis and eventually to cirrhosis and hepatocellular carcinoma. The liver poses obstacles for many available gene-transfer vectors. SV40-based vectors can transduce human hepatic and hematopoietic cells. We studied the effect of HBV on the transduction - efficiency of human hepatic cells by SV40 - based vectors. METHODS A SV40-vector carrying the luciferase gene, and wild-type SV40, were used to assess transduction efficiency of human HBV-positive and HBV-negative hepatic cells. Transduction efficiency was measured as luciferase activity or by T-antigen staining. To evaluate whether differences in transduction efficiency are due to cell recognition and/or nuclear transport, MHC-I receptors were measured by FACS analysis and SV40-DNA was extracted from the nuclei of transduced cells and quantified. RESULTS Two HBV-positive cell-lines, HepG2.2.2.15 and FLC4-A10II, were transduced significantly more efficiently than their parental HBV-negative cell-lines. Transient transfection of HuH-7 cells with the HBV genome also increased transduction efficiency. The level of MHC-I, the cellular receptor for SV40, was comparable in all the cell-lines studied. However, soon after infection with SV40, the nuclei of HepG2.2.2.15 contained >6-fold more SV40-DNA than HepG2. CONCLUSIONS HBV increases transduction by SV40-vectors. This is due to enhanced vector entry and/or transport into the nucleus. SV40-vectors appear to have a potential for gene therapy for the treatment of HBV infections.
Collapse
Affiliation(s)
- Uri Arad
- Department of Hematology and Goldyne Savad Gene Therapy Institute, The Hebrew University-Hadassah Medical School and Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
17
|
Prieto J, Herraiz M, Sangro B, Qian C, Mazzolini G, Melero I, Ruiz J. The promise of gene therapy in gastrointestinal and liver diseases. Gut 2003; 52 Suppl 2:ii49-54. [PMID: 12651882 PMCID: PMC1867750 DOI: 10.1136/gut.52.suppl_2.ii49] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene therapy consists of the transfer of genetic material to cells to achieve a therapeutic goal. In the field of gastroenterology and hepatology gene therapy has produced considerable expectation as a potential tool in the management of conditions that lack effective therapy including non-resectable neoplasms of the liver, pancreas and gastrointestinal tract, chronic viral hepatitis unresponsive to interferon therapy, liver cirrhosis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- J Prieto
- Division of Hepatology and Gene Therapy, Department of Medicine, Clinica Universitaria, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|
18
|
Pumpens P, Grens E, Nassal M. Molecular epidemiology and immunology of hepatitis B virus infection - an update. Intervirology 2003; 45:218-32. [PMID: 12566704 DOI: 10.1159/000067915] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) continues to be one of the most important viral pathogens in humans. This review provides an update on the molecular epidemiology and immunology of HBV infection. DNA sequencing has allowed replacement of the initial serotypic classification of HBV strains by a more systematic genotype system that currently consists of 7 members (genotypes A-G). More recently, sequence analysis of virus isolates from many individual patients has revealed the occurrence of certain mutational hot spots in the genome, some of which appear to correlate with the patient's immunological and/or disease status; however, cause and effect are not always easily discernible. This holds particularly for the issue of whether virus variants exist that have, per se, an increased pathogenic potential; due to the scarcity of appropriate experimental in vivo models, such hypotheses are difficult to prove. Similarly, because of the compact organization of the HBV genome, almost every single mutation may have pleiotropic phenotypic effects. Nonetheless, there is accumulating evidence that at least some frequently observed mutations are causally related to viral escape from selective pressures, such as the presence of antibodies against dominant B cell epitopes, or drugs that inhibit the viral reverse transcriptase; possibly, this is also true for the cellular immune response. Therefore, despite the availability of an effective prophylactic vaccine, further extensive efforts are required to monitor the emergence of vaccination- and therapy-resistant HBV variants and to prevent their spread in the general population.
Collapse
Affiliation(s)
- Paul Pumpens
- Biomedical Research and Study Centre, University of Latvia, Riga, Latvia.
| | | | | |
Collapse
|
19
|
Frelin L, Alheim M, Chen A, Söderholm J, Rozell B, Barnfield C, Liljeström P, Sällberg M. Low dose and gene gun immunization with a hepatitis C virus nonstructural (NS) 3 DNA-based vaccine containing NS4A inhibit NS3/4A-expressing tumors in vivo. Gene Ther 2003; 10:686-99. [PMID: 12692597 DOI: 10.1038/sj.gt.3301933] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus (HCV) protease and helicase encompasses the nonstructural (NS) 3 protein and the cofactor NS4A, which targets the NS3/4A-complex to intracellular membranes. We here evaluate the importance of NS4A in NS3-based genetic immunogens. A full-length genotype 1 NS3/4A gene was cloned into a eucaryotic expression vector in the form of NS3/4A and NS3 alone. Transient transfections revealed that the inclusion of NS4A increased the expression levels of NS3. Subsequently, immunization with the NS3/4A gene primed 10- to 100-fold higher levels of NS3-specific antibodies as compared to immunization with the NS3 gene. Humoral responses primed by the NS3/4A gene had a higher IgG2a/IgG1 ratio (>20) as compared to the NS3 gene (3.0), suggesting a T helper 1-skewed response. Low dose i.m. (10 microg) immunization with the NS3/4A gene inhibited the growth of NS3/4A-expressing tumor cells in vivo, whereas the NS3 gene alone or NS3 protein did not. We then evaluated the efficiency of the NS3/4A gene administered by the gene gun, at the same doses used for humans, in priming cytotoxic T lymphocyte (CTL) responses. Three to four 4 microg doses of the NS3/4A gene primed CTL at a precursor frequency of 2-4%, which inhibited the growth of NS3/4A-expressing tumor cells in vivo. Thus, NS4A enhances the expression levels and immunogenicity of NS3, and an NS3/4A gene delivered transdermally could be a therapeutic vaccine candidate.
Collapse
Affiliation(s)
- L Frelin
- Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Menne S, Wang Y, Butler SD, Gerin JL, Cote PJ, Tennant BC. Real-time polymerase chain reaction assays for leukocyte CD and cytokine mRNAs of the Eastern woodchuck (Marmota monax). Vet Immunol Immunopathol 2002; 87:97-105. [PMID: 12052347 DOI: 10.1016/s0165-2427(02)00121-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Real-time polymerase chain reaction (PCR) assays were developed for woodchuck leukocyte cluster of differentiation (CD) and cytokine mRNA expression. Plasmid DNA standards of each marker (CD3, CD4, CD8, IL-2, IFN-gamma, TNF-alpha, IL-4, IL-10), and RNA standards from mitogen-stimulated woodchuck peripheral blood mononuclear cells (PBMCs) were used to validate and optimize the assays for TaqMan 7700 and iCycler PCR instruments. The complementary DNAs (cDNAs) produced by reverse transcription (RT) of RNA were quantified by real-time PCR against the plasmid DNA standards (6-8 log range) with detection of as few as 10-50 copies of amplicon cDNA per reaction. Analysis of unstimulated and concanavalin A-stimulated woodchuck PBMC demonstrated increased CD and cytokine mRNA expression following mitogenic activation. A liver sample from a woodchuck hepatitis virus (WHV) infected woodchuck with histologically confirmed acute hepatitis had increased intrahepatic CD and cytokine mRNAs compared to liver from an uninfected control woodchuck. The real-time PCR assays were highly specific for the woodchuck markers in PBMC and liver samples and were equally applicable for use in alternate real-time PCR instrumentation. These assays will enable the high-throughput analyses of mRNA markers during WHV infection, and thereby facilitate continued modelling of the immunopathogenesis and immunotherapy of human hepatitis B virus (HBV) infection.
Collapse
Affiliation(s)
- Stephan Menne
- Gastrointestinal Unit, Department of Clinical Sciences, College of Veterinary Medicine, Room C2 005 VMC, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Schmitz V, Qian C, Ruiz J, Sangro B, Melero I, Mazzolini G, Narvaiza I, Prieto J. Gene therapy for liver diseases: recent strategies for treatment of viral hepatitis and liver malignancies. Gut 2002; 50:130-5. [PMID: 11772981 PMCID: PMC1773082 DOI: 10.1136/gut.50.1.130] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2001] [Indexed: 12/20/2022]
Abstract
Gene therapy has emerged as a powerful and very plastic tool to regulate biological functions in diseased tissues with application in virtually all medical fields. An increasing number of experimental and clinical studies underline the importance of genes as curative agents in the future. However, intense research is needed to evaluate the potential of gene therapy to improve efficacy and minimise the toxicity of the procedure.
Collapse
Affiliation(s)
- V Schmitz
- Gene Therapy Unit, Department of Internal Medicine, Clinica Universitaria, Faculty of Medicine, Universidad de Navarra, Pamplona Spain.
| | | | | | | | | | | | | | | |
Collapse
|